1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
4 */
5
6 #include <linux/preempt.h>
7 #include <linux/spinlock.h>
8 #include <linux/debug_locks.h>
9 #include <linux/kdb.h>
10 #include <linux/smp.h>
11 #include <linux/cpumask.h>
12 #include <linux/irq_work.h>
13 #include <linux/printk.h>
14 #include <linux/kprobes.h>
15
16 #include "internal.h"
17
18 /*
19 * printk() could not take logbuf_lock in NMI context. Instead,
20 * it uses an alternative implementation that temporary stores
21 * the strings into a per-CPU buffer. The content of the buffer
22 * is later flushed into the main ring buffer via IRQ work.
23 *
24 * The alternative implementation is chosen transparently
25 * by examining current printk() context mask stored in @printk_context
26 * per-CPU variable.
27 *
28 * The implementation allows to flush the strings also from another CPU.
29 * There are situations when we want to make sure that all buffers
30 * were handled or when IRQs are blocked.
31 */
32
33 #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \
34 sizeof(atomic_t) - \
35 sizeof(atomic_t) - \
36 sizeof(struct irq_work))
37
38 struct printk_safe_seq_buf {
39 atomic_t len; /* length of written data */
40 atomic_t message_lost;
41 struct irq_work work; /* IRQ work that flushes the buffer */
42 unsigned char buffer[SAFE_LOG_BUF_LEN];
43 };
44
45 static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
46 static DEFINE_PER_CPU(int, printk_context);
47
48 static DEFINE_RAW_SPINLOCK(safe_read_lock);
49
50 #ifdef CONFIG_PRINTK_NMI
51 static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
52 #endif
53
54 /* Get flushed in a more safe context. */
queue_flush_work(struct printk_safe_seq_buf * s)55 static void queue_flush_work(struct printk_safe_seq_buf *s)
56 {
57 if (printk_percpu_data_ready())
58 irq_work_queue(&s->work);
59 }
60
61 /*
62 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
63 * have dedicated buffers, because otherwise printk-safe preempted by
64 * NMI-printk would have overwritten the NMI messages.
65 *
66 * The messages are flushed from irq work (or from panic()), possibly,
67 * from other CPU, concurrently with printk_safe_log_store(). Should this
68 * happen, printk_safe_log_store() will notice the buffer->len mismatch
69 * and repeat the write.
70 */
printk_safe_log_store(struct printk_safe_seq_buf * s,const char * fmt,va_list args)71 static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
72 const char *fmt, va_list args)
73 {
74 int add;
75 size_t len;
76 va_list ap;
77
78 again:
79 len = atomic_read(&s->len);
80
81 /* The trailing '\0' is not counted into len. */
82 if (len >= sizeof(s->buffer) - 1) {
83 atomic_inc(&s->message_lost);
84 queue_flush_work(s);
85 return 0;
86 }
87
88 /*
89 * Make sure that all old data have been read before the buffer
90 * was reset. This is not needed when we just append data.
91 */
92 if (!len)
93 smp_rmb();
94
95 va_copy(ap, args);
96 add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
97 va_end(ap);
98 if (!add)
99 return 0;
100
101 /*
102 * Do it once again if the buffer has been flushed in the meantime.
103 * Note that atomic_cmpxchg() is an implicit memory barrier that
104 * makes sure that the data were written before updating s->len.
105 */
106 if (atomic_cmpxchg(&s->len, len, len + add) != len)
107 goto again;
108
109 queue_flush_work(s);
110 return add;
111 }
112
printk_safe_flush_line(const char * text,int len)113 static inline void printk_safe_flush_line(const char *text, int len)
114 {
115 /*
116 * Avoid any console drivers calls from here, because we may be
117 * in NMI or printk_safe context (when in panic). The messages
118 * must go only into the ring buffer at this stage. Consoles will
119 * get explicitly called later when a crashdump is not generated.
120 */
121 printk_deferred("%.*s", len, text);
122 }
123
124 /* printk part of the temporary buffer line by line */
printk_safe_flush_buffer(const char * start,size_t len)125 static int printk_safe_flush_buffer(const char *start, size_t len)
126 {
127 const char *c, *end;
128 bool header;
129
130 c = start;
131 end = start + len;
132 header = true;
133
134 /* Print line by line. */
135 while (c < end) {
136 if (*c == '\n') {
137 printk_safe_flush_line(start, c - start + 1);
138 start = ++c;
139 header = true;
140 continue;
141 }
142
143 /* Handle continuous lines or missing new line. */
144 if ((c + 1 < end) && printk_get_level(c)) {
145 if (header) {
146 c = printk_skip_level(c);
147 continue;
148 }
149
150 printk_safe_flush_line(start, c - start);
151 start = c++;
152 header = true;
153 continue;
154 }
155
156 header = false;
157 c++;
158 }
159
160 /* Check if there was a partial line. Ignore pure header. */
161 if (start < end && !header) {
162 static const char newline[] = KERN_CONT "\n";
163
164 printk_safe_flush_line(start, end - start);
165 printk_safe_flush_line(newline, strlen(newline));
166 }
167
168 return len;
169 }
170
report_message_lost(struct printk_safe_seq_buf * s)171 static void report_message_lost(struct printk_safe_seq_buf *s)
172 {
173 int lost = atomic_xchg(&s->message_lost, 0);
174
175 if (lost)
176 printk_deferred("Lost %d message(s)!\n", lost);
177 }
178
179 /*
180 * Flush data from the associated per-CPU buffer. The function
181 * can be called either via IRQ work or independently.
182 */
__printk_safe_flush(struct irq_work * work)183 static void __printk_safe_flush(struct irq_work *work)
184 {
185 struct printk_safe_seq_buf *s =
186 container_of(work, struct printk_safe_seq_buf, work);
187 unsigned long flags;
188 size_t len;
189 int i;
190
191 /*
192 * The lock has two functions. First, one reader has to flush all
193 * available message to make the lockless synchronization with
194 * writers easier. Second, we do not want to mix messages from
195 * different CPUs. This is especially important when printing
196 * a backtrace.
197 */
198 raw_spin_lock_irqsave(&safe_read_lock, flags);
199
200 i = 0;
201 more:
202 len = atomic_read(&s->len);
203
204 /*
205 * This is just a paranoid check that nobody has manipulated
206 * the buffer an unexpected way. If we printed something then
207 * @len must only increase. Also it should never overflow the
208 * buffer size.
209 */
210 if ((i && i >= len) || len > sizeof(s->buffer)) {
211 const char *msg = "printk_safe_flush: internal error\n";
212
213 printk_safe_flush_line(msg, strlen(msg));
214 len = 0;
215 }
216
217 if (!len)
218 goto out; /* Someone else has already flushed the buffer. */
219
220 /* Make sure that data has been written up to the @len */
221 smp_rmb();
222 i += printk_safe_flush_buffer(s->buffer + i, len - i);
223
224 /*
225 * Check that nothing has got added in the meantime and truncate
226 * the buffer. Note that atomic_cmpxchg() is an implicit memory
227 * barrier that makes sure that the data were copied before
228 * updating s->len.
229 */
230 if (atomic_cmpxchg(&s->len, len, 0) != len)
231 goto more;
232
233 out:
234 report_message_lost(s);
235 raw_spin_unlock_irqrestore(&safe_read_lock, flags);
236 }
237
238 /**
239 * printk_safe_flush - flush all per-cpu nmi buffers.
240 *
241 * The buffers are flushed automatically via IRQ work. This function
242 * is useful only when someone wants to be sure that all buffers have
243 * been flushed at some point.
244 */
printk_safe_flush(void)245 void printk_safe_flush(void)
246 {
247 int cpu;
248
249 for_each_possible_cpu(cpu) {
250 #ifdef CONFIG_PRINTK_NMI
251 __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
252 #endif
253 __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
254 }
255 }
256
257 /**
258 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
259 * goes down.
260 *
261 * Similar to printk_safe_flush() but it can be called even in NMI context when
262 * the system goes down. It does the best effort to get NMI messages into
263 * the main ring buffer.
264 *
265 * Note that it could try harder when there is only one CPU online.
266 */
printk_safe_flush_on_panic(void)267 void printk_safe_flush_on_panic(void)
268 {
269 /*
270 * Make sure that we could access the main ring buffer.
271 * Do not risk a double release when more CPUs are up.
272 */
273 if (raw_spin_is_locked(&logbuf_lock)) {
274 if (num_online_cpus() > 1)
275 return;
276
277 debug_locks_off();
278 raw_spin_lock_init(&logbuf_lock);
279 }
280
281 if (raw_spin_is_locked(&safe_read_lock)) {
282 if (num_online_cpus() > 1)
283 return;
284
285 debug_locks_off();
286 raw_spin_lock_init(&safe_read_lock);
287 }
288
289 printk_safe_flush();
290 }
291
292 #ifdef CONFIG_PRINTK_NMI
293 /*
294 * Safe printk() for NMI context. It uses a per-CPU buffer to
295 * store the message. NMIs are not nested, so there is always only
296 * one writer running. But the buffer might get flushed from another
297 * CPU, so we need to be careful.
298 */
vprintk_nmi(const char * fmt,va_list args)299 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
300 {
301 struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
302
303 return printk_safe_log_store(s, fmt, args);
304 }
305
printk_nmi_enter(void)306 void noinstr printk_nmi_enter(void)
307 {
308 this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
309 }
310
printk_nmi_exit(void)311 void noinstr printk_nmi_exit(void)
312 {
313 this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
314 }
315
316 /*
317 * Marks a code that might produce many messages in NMI context
318 * and the risk of losing them is more critical than eventual
319 * reordering.
320 *
321 * It has effect only when called in NMI context. Then printk()
322 * will try to store the messages into the main logbuf directly
323 * and use the per-CPU buffers only as a fallback when the lock
324 * is not available.
325 */
printk_nmi_direct_enter(void)326 void printk_nmi_direct_enter(void)
327 {
328 if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
329 this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
330 }
331
printk_nmi_direct_exit(void)332 void printk_nmi_direct_exit(void)
333 {
334 this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
335 }
336
337 #else
338
vprintk_nmi(const char * fmt,va_list args)339 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
340 {
341 return 0;
342 }
343
344 #endif /* CONFIG_PRINTK_NMI */
345
346 /*
347 * Lock-less printk(), to avoid deadlocks should the printk() recurse
348 * into itself. It uses a per-CPU buffer to store the message, just like
349 * NMI.
350 */
vprintk_safe(const char * fmt,va_list args)351 static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
352 {
353 struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
354
355 return printk_safe_log_store(s, fmt, args);
356 }
357
358 /* Can be preempted by NMI. */
__printk_safe_enter(void)359 void __printk_safe_enter(void)
360 {
361 this_cpu_inc(printk_context);
362 }
363
364 /* Can be preempted by NMI. */
__printk_safe_exit(void)365 void __printk_safe_exit(void)
366 {
367 this_cpu_dec(printk_context);
368 }
369
vprintk_func(const char * fmt,va_list args)370 __printf(1, 0) int vprintk_func(const char *fmt, va_list args)
371 {
372 #ifdef CONFIG_KGDB_KDB
373 /* Allow to pass printk() to kdb but avoid a recursion. */
374 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
375 return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
376 #endif
377
378 /*
379 * Try to use the main logbuf even in NMI. But avoid calling console
380 * drivers that might have their own locks.
381 */
382 if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
383 raw_spin_trylock(&logbuf_lock)) {
384 int len;
385
386 len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
387 raw_spin_unlock(&logbuf_lock);
388 defer_console_output();
389 return len;
390 }
391
392 /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
393 if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
394 return vprintk_nmi(fmt, args);
395
396 /* Use extra buffer to prevent a recursion deadlock in safe mode. */
397 if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
398 return vprintk_safe(fmt, args);
399
400 /* No obstacles. */
401 return vprintk_default(fmt, args);
402 }
403
printk_safe_init(void)404 void __init printk_safe_init(void)
405 {
406 int cpu;
407
408 for_each_possible_cpu(cpu) {
409 struct printk_safe_seq_buf *s;
410
411 s = &per_cpu(safe_print_seq, cpu);
412 init_irq_work(&s->work, __printk_safe_flush);
413
414 #ifdef CONFIG_PRINTK_NMI
415 s = &per_cpu(nmi_print_seq, cpu);
416 init_irq_work(&s->work, __printk_safe_flush);
417 #endif
418 }
419
420 /* Flush pending messages that did not have scheduled IRQ works. */
421 printk_safe_flush();
422 }
423