• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
36 
37 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
40 
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
44 
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
49 
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p)					\
52 do {									\
53 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
54 	smp_mb__after_unlock_lock();					\
55 } while (0)
56 
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58 
59 #define spin_lock_irq_rcu_node(p)					\
60 do {									\
61 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_irq_rcu_node(p)					\
66 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67 
68 #define spin_lock_irqsave_rcu_node(p, flags)			\
69 do {									\
70 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
71 	smp_mb__after_unlock_lock();					\
72 } while (0)
73 
74 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
75 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
76 
77 /*
78  * Initialize SRCU combining tree.  Note that statically allocated
79  * srcu_struct structures might already have srcu_read_lock() and
80  * srcu_read_unlock() running against them.  So if the is_static parameter
81  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82  */
init_srcu_struct_nodes(struct srcu_struct * ssp,bool is_static)83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
84 {
85 	int cpu;
86 	int i;
87 	int level = 0;
88 	int levelspread[RCU_NUM_LVLS];
89 	struct srcu_data *sdp;
90 	struct srcu_node *snp;
91 	struct srcu_node *snp_first;
92 
93 	/* Initialize geometry if it has not already been initialized. */
94 	rcu_init_geometry();
95 
96 	/* Work out the overall tree geometry. */
97 	ssp->level[0] = &ssp->node[0];
98 	for (i = 1; i < rcu_num_lvls; i++)
99 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
100 	rcu_init_levelspread(levelspread, num_rcu_lvl);
101 
102 	/* Each pass through this loop initializes one srcu_node structure. */
103 	srcu_for_each_node_breadth_first(ssp, snp) {
104 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
105 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
106 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
107 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
108 			snp->srcu_have_cbs[i] = 0;
109 			snp->srcu_data_have_cbs[i] = 0;
110 		}
111 		snp->srcu_gp_seq_needed_exp = 0;
112 		snp->grplo = -1;
113 		snp->grphi = -1;
114 		if (snp == &ssp->node[0]) {
115 			/* Root node, special case. */
116 			snp->srcu_parent = NULL;
117 			continue;
118 		}
119 
120 		/* Non-root node. */
121 		if (snp == ssp->level[level + 1])
122 			level++;
123 		snp->srcu_parent = ssp->level[level - 1] +
124 				   (snp - ssp->level[level]) /
125 				   levelspread[level - 1];
126 	}
127 
128 	/*
129 	 * Initialize the per-CPU srcu_data array, which feeds into the
130 	 * leaves of the srcu_node tree.
131 	 */
132 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
133 		     ARRAY_SIZE(sdp->srcu_unlock_count));
134 	level = rcu_num_lvls - 1;
135 	snp_first = ssp->level[level];
136 	for_each_possible_cpu(cpu) {
137 		sdp = per_cpu_ptr(ssp->sda, cpu);
138 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
139 		rcu_segcblist_init(&sdp->srcu_cblist);
140 		sdp->srcu_cblist_invoking = false;
141 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
142 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
143 		sdp->mynode = &snp_first[cpu / levelspread[level]];
144 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
145 			if (snp->grplo < 0)
146 				snp->grplo = cpu;
147 			snp->grphi = cpu;
148 		}
149 		sdp->cpu = cpu;
150 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
151 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
152 		sdp->ssp = ssp;
153 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
154 		if (is_static)
155 			continue;
156 
157 		/* Dynamically allocated, better be no srcu_read_locks()! */
158 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
159 			sdp->srcu_lock_count[i] = 0;
160 			sdp->srcu_unlock_count[i] = 0;
161 		}
162 	}
163 }
164 
165 /*
166  * Initialize non-compile-time initialized fields, including the
167  * associated srcu_node and srcu_data structures.  The is_static
168  * parameter is passed through to init_srcu_struct_nodes(), and
169  * also tells us that ->sda has already been wired up to srcu_data.
170  */
init_srcu_struct_fields(struct srcu_struct * ssp,bool is_static)171 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
172 {
173 	mutex_init(&ssp->srcu_cb_mutex);
174 	mutex_init(&ssp->srcu_gp_mutex);
175 	ssp->srcu_idx = 0;
176 	ssp->srcu_gp_seq = 0;
177 	ssp->srcu_barrier_seq = 0;
178 	mutex_init(&ssp->srcu_barrier_mutex);
179 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
180 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
181 	if (!is_static)
182 		ssp->sda = alloc_percpu(struct srcu_data);
183 	init_srcu_struct_nodes(ssp, is_static);
184 	ssp->srcu_gp_seq_needed_exp = 0;
185 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
186 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
187 	return ssp->sda ? 0 : -ENOMEM;
188 }
189 
190 #ifdef CONFIG_DEBUG_LOCK_ALLOC
191 
__init_srcu_struct(struct srcu_struct * ssp,const char * name,struct lock_class_key * key)192 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
193 		       struct lock_class_key *key)
194 {
195 	/* Don't re-initialize a lock while it is held. */
196 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
197 	lockdep_init_map(&ssp->dep_map, name, key, 0);
198 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
199 	return init_srcu_struct_fields(ssp, false);
200 }
201 EXPORT_SYMBOL_GPL(__init_srcu_struct);
202 
203 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
204 
205 /**
206  * init_srcu_struct - initialize a sleep-RCU structure
207  * @ssp: structure to initialize.
208  *
209  * Must invoke this on a given srcu_struct before passing that srcu_struct
210  * to any other function.  Each srcu_struct represents a separate domain
211  * of SRCU protection.
212  */
init_srcu_struct(struct srcu_struct * ssp)213 int init_srcu_struct(struct srcu_struct *ssp)
214 {
215 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
216 	return init_srcu_struct_fields(ssp, false);
217 }
218 EXPORT_SYMBOL_GPL(init_srcu_struct);
219 
220 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
221 
222 /*
223  * First-use initialization of statically allocated srcu_struct
224  * structure.  Wiring up the combining tree is more than can be
225  * done with compile-time initialization, so this check is added
226  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
227  * compile-time initialized, to resolve races involving multiple
228  * CPUs trying to garner first-use privileges.
229  */
check_init_srcu_struct(struct srcu_struct * ssp)230 static void check_init_srcu_struct(struct srcu_struct *ssp)
231 {
232 	unsigned long flags;
233 
234 	/* The smp_load_acquire() pairs with the smp_store_release(). */
235 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
236 		return; /* Already initialized. */
237 	spin_lock_irqsave_rcu_node(ssp, flags);
238 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
239 		spin_unlock_irqrestore_rcu_node(ssp, flags);
240 		return;
241 	}
242 	init_srcu_struct_fields(ssp, true);
243 	spin_unlock_irqrestore_rcu_node(ssp, flags);
244 }
245 
246 /*
247  * Returns approximate total of the readers' ->srcu_lock_count[] values
248  * for the rank of per-CPU counters specified by idx.
249  */
srcu_readers_lock_idx(struct srcu_struct * ssp,int idx)250 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
251 {
252 	int cpu;
253 	unsigned long sum = 0;
254 
255 	for_each_possible_cpu(cpu) {
256 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
257 
258 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
259 	}
260 	return sum;
261 }
262 
263 /*
264  * Returns approximate total of the readers' ->srcu_unlock_count[] values
265  * for the rank of per-CPU counters specified by idx.
266  */
srcu_readers_unlock_idx(struct srcu_struct * ssp,int idx)267 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
268 {
269 	int cpu;
270 	unsigned long sum = 0;
271 
272 	for_each_possible_cpu(cpu) {
273 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
274 
275 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
276 	}
277 	return sum;
278 }
279 
280 /*
281  * Return true if the number of pre-existing readers is determined to
282  * be zero.
283  */
srcu_readers_active_idx_check(struct srcu_struct * ssp,int idx)284 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
285 {
286 	unsigned long unlocks;
287 
288 	unlocks = srcu_readers_unlock_idx(ssp, idx);
289 
290 	/*
291 	 * Make sure that a lock is always counted if the corresponding
292 	 * unlock is counted. Needs to be a smp_mb() as the read side may
293 	 * contain a read from a variable that is written to before the
294 	 * synchronize_srcu() in the write side. In this case smp_mb()s
295 	 * A and B act like the store buffering pattern.
296 	 *
297 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
298 	 * after the synchronize_srcu() from being executed before the
299 	 * grace period ends.
300 	 */
301 	smp_mb(); /* A */
302 
303 	/*
304 	 * If the locks are the same as the unlocks, then there must have
305 	 * been no readers on this index at some time in between. This does
306 	 * not mean that there are no more readers, as one could have read
307 	 * the current index but not have incremented the lock counter yet.
308 	 *
309 	 * So suppose that the updater is preempted here for so long
310 	 * that more than ULONG_MAX non-nested readers come and go in
311 	 * the meantime.  It turns out that this cannot result in overflow
312 	 * because if a reader modifies its unlock count after we read it
313 	 * above, then that reader's next load of ->srcu_idx is guaranteed
314 	 * to get the new value, which will cause it to operate on the
315 	 * other bank of counters, where it cannot contribute to the
316 	 * overflow of these counters.  This means that there is a maximum
317 	 * of 2*NR_CPUS increments, which cannot overflow given current
318 	 * systems, especially not on 64-bit systems.
319 	 *
320 	 * OK, how about nesting?  This does impose a limit on nesting
321 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
322 	 * especially on 64-bit systems.
323 	 */
324 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
325 }
326 
327 /**
328  * srcu_readers_active - returns true if there are readers. and false
329  *                       otherwise
330  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
331  *
332  * Note that this is not an atomic primitive, and can therefore suffer
333  * severe errors when invoked on an active srcu_struct.  That said, it
334  * can be useful as an error check at cleanup time.
335  */
srcu_readers_active(struct srcu_struct * ssp)336 static bool srcu_readers_active(struct srcu_struct *ssp)
337 {
338 	int cpu;
339 	unsigned long sum = 0;
340 
341 	for_each_possible_cpu(cpu) {
342 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
343 
344 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
345 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
346 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
347 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
348 	}
349 	return sum;
350 }
351 
352 #define SRCU_INTERVAL		1
353 
354 /*
355  * Return grace-period delay, zero if there are expedited grace
356  * periods pending, SRCU_INTERVAL otherwise.
357  */
srcu_get_delay(struct srcu_struct * ssp)358 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
359 {
360 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
361 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
362 		return 0;
363 	return SRCU_INTERVAL;
364 }
365 
366 /**
367  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
368  * @ssp: structure to clean up.
369  *
370  * Must invoke this after you are finished using a given srcu_struct that
371  * was initialized via init_srcu_struct(), else you leak memory.
372  */
cleanup_srcu_struct(struct srcu_struct * ssp)373 void cleanup_srcu_struct(struct srcu_struct *ssp)
374 {
375 	int cpu;
376 
377 	if (WARN_ON(!srcu_get_delay(ssp)))
378 		return; /* Just leak it! */
379 	if (WARN_ON(srcu_readers_active(ssp)))
380 		return; /* Just leak it! */
381 	flush_delayed_work(&ssp->work);
382 	for_each_possible_cpu(cpu) {
383 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
384 
385 		del_timer_sync(&sdp->delay_work);
386 		flush_work(&sdp->work);
387 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
388 			return; /* Forgot srcu_barrier(), so just leak it! */
389 	}
390 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
391 	    WARN_ON(srcu_readers_active(ssp))) {
392 		pr_info("%s: Active srcu_struct %p state: %d\n",
393 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
394 		return; /* Caller forgot to stop doing call_srcu()? */
395 	}
396 	free_percpu(ssp->sda);
397 	ssp->sda = NULL;
398 }
399 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
400 
401 /*
402  * Counts the new reader in the appropriate per-CPU element of the
403  * srcu_struct.
404  * Returns an index that must be passed to the matching srcu_read_unlock().
405  */
__srcu_read_lock(struct srcu_struct * ssp)406 int __srcu_read_lock(struct srcu_struct *ssp)
407 {
408 	int idx;
409 
410 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
411 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
412 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
413 	return idx;
414 }
415 EXPORT_SYMBOL_GPL(__srcu_read_lock);
416 
417 /*
418  * Removes the count for the old reader from the appropriate per-CPU
419  * element of the srcu_struct.  Note that this may well be a different
420  * CPU than that which was incremented by the corresponding srcu_read_lock().
421  */
__srcu_read_unlock(struct srcu_struct * ssp,int idx)422 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
423 {
424 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
425 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
426 }
427 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
428 
429 /*
430  * We use an adaptive strategy for synchronize_srcu() and especially for
431  * synchronize_srcu_expedited().  We spin for a fixed time period
432  * (defined below) to allow SRCU readers to exit their read-side critical
433  * sections.  If there are still some readers after a few microseconds,
434  * we repeatedly block for 1-millisecond time periods.
435  */
436 #define SRCU_RETRY_CHECK_DELAY		5
437 
438 /*
439  * Start an SRCU grace period.
440  */
srcu_gp_start(struct srcu_struct * ssp)441 static void srcu_gp_start(struct srcu_struct *ssp)
442 {
443 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
444 	int state;
445 
446 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
447 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
448 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
449 	rcu_segcblist_advance(&sdp->srcu_cblist,
450 			      rcu_seq_current(&ssp->srcu_gp_seq));
451 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
452 				       rcu_seq_snap(&ssp->srcu_gp_seq));
453 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
454 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
455 	rcu_seq_start(&ssp->srcu_gp_seq);
456 	state = rcu_seq_state(ssp->srcu_gp_seq);
457 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
458 }
459 
460 
srcu_delay_timer(struct timer_list * t)461 static void srcu_delay_timer(struct timer_list *t)
462 {
463 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
464 
465 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
466 }
467 
srcu_queue_delayed_work_on(struct srcu_data * sdp,unsigned long delay)468 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
469 				       unsigned long delay)
470 {
471 	if (!delay) {
472 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
473 		return;
474 	}
475 
476 	timer_reduce(&sdp->delay_work, jiffies + delay);
477 }
478 
479 /*
480  * Schedule callback invocation for the specified srcu_data structure,
481  * if possible, on the corresponding CPU.
482  */
srcu_schedule_cbs_sdp(struct srcu_data * sdp,unsigned long delay)483 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
484 {
485 	srcu_queue_delayed_work_on(sdp, delay);
486 }
487 
488 /*
489  * Schedule callback invocation for all srcu_data structures associated
490  * with the specified srcu_node structure that have callbacks for the
491  * just-completed grace period, the one corresponding to idx.  If possible,
492  * schedule this invocation on the corresponding CPUs.
493  */
srcu_schedule_cbs_snp(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long mask,unsigned long delay)494 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
495 				  unsigned long mask, unsigned long delay)
496 {
497 	int cpu;
498 
499 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
500 		if (!(mask & (1 << (cpu - snp->grplo))))
501 			continue;
502 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
503 	}
504 }
505 
506 /*
507  * Note the end of an SRCU grace period.  Initiates callback invocation
508  * and starts a new grace period if needed.
509  *
510  * The ->srcu_cb_mutex acquisition does not protect any data, but
511  * instead prevents more than one grace period from starting while we
512  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
513  * array to have a finite number of elements.
514  */
srcu_gp_end(struct srcu_struct * ssp)515 static void srcu_gp_end(struct srcu_struct *ssp)
516 {
517 	unsigned long cbdelay;
518 	bool cbs;
519 	bool last_lvl;
520 	int cpu;
521 	unsigned long flags;
522 	unsigned long gpseq;
523 	int idx;
524 	unsigned long mask;
525 	struct srcu_data *sdp;
526 	struct srcu_node *snp;
527 
528 	/* Prevent more than one additional grace period. */
529 	mutex_lock(&ssp->srcu_cb_mutex);
530 
531 	/* End the current grace period. */
532 	spin_lock_irq_rcu_node(ssp);
533 	idx = rcu_seq_state(ssp->srcu_gp_seq);
534 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
535 	cbdelay = srcu_get_delay(ssp);
536 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
537 	rcu_seq_end(&ssp->srcu_gp_seq);
538 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
539 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
540 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
541 	spin_unlock_irq_rcu_node(ssp);
542 	mutex_unlock(&ssp->srcu_gp_mutex);
543 	/* A new grace period can start at this point.  But only one. */
544 
545 	/* Initiate callback invocation as needed. */
546 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
547 	srcu_for_each_node_breadth_first(ssp, snp) {
548 		spin_lock_irq_rcu_node(snp);
549 		cbs = false;
550 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
551 		if (last_lvl)
552 			cbs = snp->srcu_have_cbs[idx] == gpseq;
553 		snp->srcu_have_cbs[idx] = gpseq;
554 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
555 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
556 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
557 		mask = snp->srcu_data_have_cbs[idx];
558 		snp->srcu_data_have_cbs[idx] = 0;
559 		spin_unlock_irq_rcu_node(snp);
560 		if (cbs)
561 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
562 
563 		/* Occasionally prevent srcu_data counter wrap. */
564 		if (!(gpseq & counter_wrap_check) && last_lvl)
565 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
566 				sdp = per_cpu_ptr(ssp->sda, cpu);
567 				spin_lock_irqsave_rcu_node(sdp, flags);
568 				if (ULONG_CMP_GE(gpseq,
569 						 sdp->srcu_gp_seq_needed + 100))
570 					sdp->srcu_gp_seq_needed = gpseq;
571 				if (ULONG_CMP_GE(gpseq,
572 						 sdp->srcu_gp_seq_needed_exp + 100))
573 					sdp->srcu_gp_seq_needed_exp = gpseq;
574 				spin_unlock_irqrestore_rcu_node(sdp, flags);
575 			}
576 	}
577 
578 	/* Callback initiation done, allow grace periods after next. */
579 	mutex_unlock(&ssp->srcu_cb_mutex);
580 
581 	/* Start a new grace period if needed. */
582 	spin_lock_irq_rcu_node(ssp);
583 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
584 	if (!rcu_seq_state(gpseq) &&
585 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
586 		srcu_gp_start(ssp);
587 		spin_unlock_irq_rcu_node(ssp);
588 		srcu_reschedule(ssp, 0);
589 	} else {
590 		spin_unlock_irq_rcu_node(ssp);
591 	}
592 }
593 
594 /*
595  * Funnel-locking scheme to scalably mediate many concurrent expedited
596  * grace-period requests.  This function is invoked for the first known
597  * expedited request for a grace period that has already been requested,
598  * but without expediting.  To start a completely new grace period,
599  * whether expedited or not, use srcu_funnel_gp_start() instead.
600  */
srcu_funnel_exp_start(struct srcu_struct * ssp,struct srcu_node * snp,unsigned long s)601 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
602 				  unsigned long s)
603 {
604 	unsigned long flags;
605 
606 	for (; snp != NULL; snp = snp->srcu_parent) {
607 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
608 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
609 			return;
610 		spin_lock_irqsave_rcu_node(snp, flags);
611 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
612 			spin_unlock_irqrestore_rcu_node(snp, flags);
613 			return;
614 		}
615 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
616 		spin_unlock_irqrestore_rcu_node(snp, flags);
617 	}
618 	spin_lock_irqsave_rcu_node(ssp, flags);
619 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
620 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
621 	spin_unlock_irqrestore_rcu_node(ssp, flags);
622 }
623 
624 /*
625  * Funnel-locking scheme to scalably mediate many concurrent grace-period
626  * requests.  The winner has to do the work of actually starting grace
627  * period s.  Losers must either ensure that their desired grace-period
628  * number is recorded on at least their leaf srcu_node structure, or they
629  * must take steps to invoke their own callbacks.
630  *
631  * Note that this function also does the work of srcu_funnel_exp_start(),
632  * in some cases by directly invoking it.
633  */
srcu_funnel_gp_start(struct srcu_struct * ssp,struct srcu_data * sdp,unsigned long s,bool do_norm)634 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
635 				 unsigned long s, bool do_norm)
636 {
637 	unsigned long flags;
638 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
639 	struct srcu_node *snp = sdp->mynode;
640 	unsigned long snp_seq;
641 
642 	/* Each pass through the loop does one level of the srcu_node tree. */
643 	for (; snp != NULL; snp = snp->srcu_parent) {
644 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
645 			return; /* GP already done and CBs recorded. */
646 		spin_lock_irqsave_rcu_node(snp, flags);
647 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
648 			snp_seq = snp->srcu_have_cbs[idx];
649 			if (snp == sdp->mynode && snp_seq == s)
650 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
651 			spin_unlock_irqrestore_rcu_node(snp, flags);
652 			if (snp == sdp->mynode && snp_seq != s) {
653 				srcu_schedule_cbs_sdp(sdp, do_norm
654 							   ? SRCU_INTERVAL
655 							   : 0);
656 				return;
657 			}
658 			if (!do_norm)
659 				srcu_funnel_exp_start(ssp, snp, s);
660 			return;
661 		}
662 		snp->srcu_have_cbs[idx] = s;
663 		if (snp == sdp->mynode)
664 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
665 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
666 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
667 		spin_unlock_irqrestore_rcu_node(snp, flags);
668 	}
669 
670 	/* Top of tree, must ensure the grace period will be started. */
671 	spin_lock_irqsave_rcu_node(ssp, flags);
672 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
673 		/*
674 		 * Record need for grace period s.  Pair with load
675 		 * acquire setting up for initialization.
676 		 */
677 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
678 	}
679 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
680 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
681 
682 	/* If grace period not already done and none in progress, start it. */
683 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
684 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
685 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
686 		srcu_gp_start(ssp);
687 		if (likely(srcu_init_done))
688 			queue_delayed_work(rcu_gp_wq, &ssp->work,
689 					   srcu_get_delay(ssp));
690 		else if (list_empty(&ssp->work.work.entry))
691 			list_add(&ssp->work.work.entry, &srcu_boot_list);
692 	}
693 	spin_unlock_irqrestore_rcu_node(ssp, flags);
694 }
695 
696 /*
697  * Wait until all readers counted by array index idx complete, but
698  * loop an additional time if there is an expedited grace period pending.
699  * The caller must ensure that ->srcu_idx is not changed while checking.
700  */
try_check_zero(struct srcu_struct * ssp,int idx,int trycount)701 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
702 {
703 	for (;;) {
704 		if (srcu_readers_active_idx_check(ssp, idx))
705 			return true;
706 		if (--trycount + !srcu_get_delay(ssp) <= 0)
707 			return false;
708 		udelay(SRCU_RETRY_CHECK_DELAY);
709 	}
710 }
711 
712 /*
713  * Increment the ->srcu_idx counter so that future SRCU readers will
714  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
715  * us to wait for pre-existing readers in a starvation-free manner.
716  */
srcu_flip(struct srcu_struct * ssp)717 static void srcu_flip(struct srcu_struct *ssp)
718 {
719 	/*
720 	 * Ensure that if this updater saw a given reader's increment
721 	 * from __srcu_read_lock(), that reader was using an old value
722 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
723 	 * new value of ->srcu_idx, this updater's earlier scans cannot
724 	 * have seen that reader's increments (which is OK, because this
725 	 * grace period need not wait on that reader).
726 	 */
727 	smp_mb(); /* E */  /* Pairs with B and C. */
728 
729 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
730 
731 	/*
732 	 * Ensure that if the updater misses an __srcu_read_unlock()
733 	 * increment, that task's next __srcu_read_lock() will see the
734 	 * above counter update.  Note that both this memory barrier
735 	 * and the one in srcu_readers_active_idx_check() provide the
736 	 * guarantee for __srcu_read_lock().
737 	 */
738 	smp_mb(); /* D */  /* Pairs with C. */
739 }
740 
741 /*
742  * If SRCU is likely idle, return true, otherwise return false.
743  *
744  * Note that it is OK for several current from-idle requests for a new
745  * grace period from idle to specify expediting because they will all end
746  * up requesting the same grace period anyhow.  So no loss.
747  *
748  * Note also that if any CPU (including the current one) is still invoking
749  * callbacks, this function will nevertheless say "idle".  This is not
750  * ideal, but the overhead of checking all CPUs' callback lists is even
751  * less ideal, especially on large systems.  Furthermore, the wakeup
752  * can happen before the callback is fully removed, so we have no choice
753  * but to accept this type of error.
754  *
755  * This function is also subject to counter-wrap errors, but let's face
756  * it, if this function was preempted for enough time for the counters
757  * to wrap, it really doesn't matter whether or not we expedite the grace
758  * period.  The extra overhead of a needlessly expedited grace period is
759  * negligible when amortized over that time period, and the extra latency
760  * of a needlessly non-expedited grace period is similarly negligible.
761  */
srcu_might_be_idle(struct srcu_struct * ssp)762 static bool srcu_might_be_idle(struct srcu_struct *ssp)
763 {
764 	unsigned long curseq;
765 	unsigned long flags;
766 	struct srcu_data *sdp;
767 	unsigned long t;
768 	unsigned long tlast;
769 
770 	check_init_srcu_struct(ssp);
771 	/* If the local srcu_data structure has callbacks, not idle.  */
772 	sdp = raw_cpu_ptr(ssp->sda);
773 	spin_lock_irqsave_rcu_node(sdp, flags);
774 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
775 		spin_unlock_irqrestore_rcu_node(sdp, flags);
776 		return false; /* Callbacks already present, so not idle. */
777 	}
778 	spin_unlock_irqrestore_rcu_node(sdp, flags);
779 
780 	/*
781 	 * No local callbacks, so probabalistically probe global state.
782 	 * Exact information would require acquiring locks, which would
783 	 * kill scalability, hence the probabalistic nature of the probe.
784 	 */
785 
786 	/* First, see if enough time has passed since the last GP. */
787 	t = ktime_get_mono_fast_ns();
788 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
789 	if (exp_holdoff == 0 ||
790 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
791 		return false; /* Too soon after last GP. */
792 
793 	/* Next, check for probable idleness. */
794 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
795 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
796 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
797 		return false; /* Grace period in progress, so not idle. */
798 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
799 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
800 		return false; /* GP # changed, so not idle. */
801 	return true; /* With reasonable probability, idle! */
802 }
803 
804 /*
805  * SRCU callback function to leak a callback.
806  */
srcu_leak_callback(struct rcu_head * rhp)807 static void srcu_leak_callback(struct rcu_head *rhp)
808 {
809 }
810 
811 /*
812  * Start an SRCU grace period, and also queue the callback if non-NULL.
813  */
srcu_gp_start_if_needed(struct srcu_struct * ssp,struct rcu_head * rhp,bool do_norm)814 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
815 					     struct rcu_head *rhp, bool do_norm)
816 {
817 	unsigned long flags;
818 	int idx;
819 	bool needexp = false;
820 	bool needgp = false;
821 	unsigned long s;
822 	struct srcu_data *sdp;
823 
824 	check_init_srcu_struct(ssp);
825 	idx = srcu_read_lock(ssp);
826 	sdp = raw_cpu_ptr(ssp->sda);
827 	spin_lock_irqsave_rcu_node(sdp, flags);
828 	if (rhp)
829 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
830 	rcu_segcblist_advance(&sdp->srcu_cblist,
831 			      rcu_seq_current(&ssp->srcu_gp_seq));
832 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
833 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
834 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
835 		sdp->srcu_gp_seq_needed = s;
836 		needgp = true;
837 	}
838 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
839 		sdp->srcu_gp_seq_needed_exp = s;
840 		needexp = true;
841 	}
842 	spin_unlock_irqrestore_rcu_node(sdp, flags);
843 	if (needgp)
844 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
845 	else if (needexp)
846 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
847 	srcu_read_unlock(ssp, idx);
848 	return s;
849 }
850 
851 /*
852  * Enqueue an SRCU callback on the srcu_data structure associated with
853  * the current CPU and the specified srcu_struct structure, initiating
854  * grace-period processing if it is not already running.
855  *
856  * Note that all CPUs must agree that the grace period extended beyond
857  * all pre-existing SRCU read-side critical section.  On systems with
858  * more than one CPU, this means that when "func()" is invoked, each CPU
859  * is guaranteed to have executed a full memory barrier since the end of
860  * its last corresponding SRCU read-side critical section whose beginning
861  * preceded the call to call_srcu().  It also means that each CPU executing
862  * an SRCU read-side critical section that continues beyond the start of
863  * "func()" must have executed a memory barrier after the call_srcu()
864  * but before the beginning of that SRCU read-side critical section.
865  * Note that these guarantees include CPUs that are offline, idle, or
866  * executing in user mode, as well as CPUs that are executing in the kernel.
867  *
868  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
869  * resulting SRCU callback function "func()", then both CPU A and CPU
870  * B are guaranteed to execute a full memory barrier during the time
871  * interval between the call to call_srcu() and the invocation of "func()".
872  * This guarantee applies even if CPU A and CPU B are the same CPU (but
873  * again only if the system has more than one CPU).
874  *
875  * Of course, these guarantees apply only for invocations of call_srcu(),
876  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
877  * srcu_struct structure.
878  */
__call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func,bool do_norm)879 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
880 			rcu_callback_t func, bool do_norm)
881 {
882 	if (debug_rcu_head_queue(rhp)) {
883 		/* Probable double call_srcu(), so leak the callback. */
884 		WRITE_ONCE(rhp->func, srcu_leak_callback);
885 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
886 		return;
887 	}
888 	rhp->func = func;
889 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
890 }
891 
892 /**
893  * call_srcu() - Queue a callback for invocation after an SRCU grace period
894  * @ssp: srcu_struct in queue the callback
895  * @rhp: structure to be used for queueing the SRCU callback.
896  * @func: function to be invoked after the SRCU grace period
897  *
898  * The callback function will be invoked some time after a full SRCU
899  * grace period elapses, in other words after all pre-existing SRCU
900  * read-side critical sections have completed.  However, the callback
901  * function might well execute concurrently with other SRCU read-side
902  * critical sections that started after call_srcu() was invoked.  SRCU
903  * read-side critical sections are delimited by srcu_read_lock() and
904  * srcu_read_unlock(), and may be nested.
905  *
906  * The callback will be invoked from process context, but must nevertheless
907  * be fast and must not block.
908  */
call_srcu(struct srcu_struct * ssp,struct rcu_head * rhp,rcu_callback_t func)909 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
910 	       rcu_callback_t func)
911 {
912 	__call_srcu(ssp, rhp, func, true);
913 }
914 EXPORT_SYMBOL_GPL(call_srcu);
915 
916 /*
917  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
918  */
__synchronize_srcu(struct srcu_struct * ssp,bool do_norm)919 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
920 {
921 	struct rcu_synchronize rcu;
922 
923 	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
924 			 lock_is_held(&rcu_bh_lock_map) ||
925 			 lock_is_held(&rcu_lock_map) ||
926 			 lock_is_held(&rcu_sched_lock_map),
927 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
928 
929 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
930 		return;
931 	might_sleep();
932 	check_init_srcu_struct(ssp);
933 	init_completion(&rcu.completion);
934 	init_rcu_head_on_stack(&rcu.head);
935 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
936 	wait_for_completion(&rcu.completion);
937 	destroy_rcu_head_on_stack(&rcu.head);
938 
939 	/*
940 	 * Make sure that later code is ordered after the SRCU grace
941 	 * period.  This pairs with the spin_lock_irq_rcu_node()
942 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
943 	 * because the current CPU might have been totally uninvolved with
944 	 * (and thus unordered against) that grace period.
945 	 */
946 	smp_mb();
947 }
948 
949 /**
950  * synchronize_srcu_expedited - Brute-force SRCU grace period
951  * @ssp: srcu_struct with which to synchronize.
952  *
953  * Wait for an SRCU grace period to elapse, but be more aggressive about
954  * spinning rather than blocking when waiting.
955  *
956  * Note that synchronize_srcu_expedited() has the same deadlock and
957  * memory-ordering properties as does synchronize_srcu().
958  */
synchronize_srcu_expedited(struct srcu_struct * ssp)959 void synchronize_srcu_expedited(struct srcu_struct *ssp)
960 {
961 	__synchronize_srcu(ssp, rcu_gp_is_normal());
962 }
963 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
964 
965 /**
966  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
967  * @ssp: srcu_struct with which to synchronize.
968  *
969  * Wait for the count to drain to zero of both indexes. To avoid the
970  * possible starvation of synchronize_srcu(), it waits for the count of
971  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
972  * and then flip the srcu_idx and wait for the count of the other index.
973  *
974  * Can block; must be called from process context.
975  *
976  * Note that it is illegal to call synchronize_srcu() from the corresponding
977  * SRCU read-side critical section; doing so will result in deadlock.
978  * However, it is perfectly legal to call synchronize_srcu() on one
979  * srcu_struct from some other srcu_struct's read-side critical section,
980  * as long as the resulting graph of srcu_structs is acyclic.
981  *
982  * There are memory-ordering constraints implied by synchronize_srcu().
983  * On systems with more than one CPU, when synchronize_srcu() returns,
984  * each CPU is guaranteed to have executed a full memory barrier since
985  * the end of its last corresponding SRCU read-side critical section
986  * whose beginning preceded the call to synchronize_srcu().  In addition,
987  * each CPU having an SRCU read-side critical section that extends beyond
988  * the return from synchronize_srcu() is guaranteed to have executed a
989  * full memory barrier after the beginning of synchronize_srcu() and before
990  * the beginning of that SRCU read-side critical section.  Note that these
991  * guarantees include CPUs that are offline, idle, or executing in user mode,
992  * as well as CPUs that are executing in the kernel.
993  *
994  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
995  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
996  * to have executed a full memory barrier during the execution of
997  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
998  * are the same CPU, but again only if the system has more than one CPU.
999  *
1000  * Of course, these memory-ordering guarantees apply only when
1001  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1002  * passed the same srcu_struct structure.
1003  *
1004  * If SRCU is likely idle, expedite the first request.  This semantic
1005  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1006  * SRCU must also provide it.  Note that detecting idleness is heuristic
1007  * and subject to both false positives and negatives.
1008  */
synchronize_srcu(struct srcu_struct * ssp)1009 void synchronize_srcu(struct srcu_struct *ssp)
1010 {
1011 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1012 		synchronize_srcu_expedited(ssp);
1013 	else
1014 		__synchronize_srcu(ssp, true);
1015 }
1016 EXPORT_SYMBOL_GPL(synchronize_srcu);
1017 
1018 /**
1019  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1020  * @ssp: srcu_struct to provide cookie for.
1021  *
1022  * This function returns a cookie that can be passed to
1023  * poll_state_synchronize_srcu(), which will return true if a full grace
1024  * period has elapsed in the meantime.  It is the caller's responsibility
1025  * to make sure that grace period happens, for example, by invoking
1026  * call_srcu() after return from get_state_synchronize_srcu().
1027  */
get_state_synchronize_srcu(struct srcu_struct * ssp)1028 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1029 {
1030 	// Any prior manipulation of SRCU-protected data must happen
1031 	// before the load from ->srcu_gp_seq.
1032 	smp_mb();
1033 	return rcu_seq_snap(&ssp->srcu_gp_seq);
1034 }
1035 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1036 
1037 /**
1038  * start_poll_synchronize_srcu - Provide cookie and start grace period
1039  * @ssp: srcu_struct to provide cookie for.
1040  *
1041  * This function returns a cookie that can be passed to
1042  * poll_state_synchronize_srcu(), which will return true if a full grace
1043  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1044  * this function also ensures that any needed SRCU grace period will be
1045  * started.  This convenience does come at a cost in terms of CPU overhead.
1046  */
start_poll_synchronize_srcu(struct srcu_struct * ssp)1047 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1048 {
1049 	return srcu_gp_start_if_needed(ssp, NULL, true);
1050 }
1051 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1052 
1053 /**
1054  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1055  * @ssp: srcu_struct to provide cookie for.
1056  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1057  *
1058  * This function takes the cookie that was returned from either
1059  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1060  * returns @true if an SRCU grace period elapsed since the time that the
1061  * cookie was created.
1062  */
poll_state_synchronize_srcu(struct srcu_struct * ssp,unsigned long cookie)1063 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1064 {
1065 	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1066 		return false;
1067 	// Ensure that the end of the SRCU grace period happens before
1068 	// any subsequent code that the caller might execute.
1069 	smp_mb(); // ^^^
1070 	return true;
1071 }
1072 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1073 
1074 /*
1075  * Callback function for srcu_barrier() use.
1076  */
srcu_barrier_cb(struct rcu_head * rhp)1077 static void srcu_barrier_cb(struct rcu_head *rhp)
1078 {
1079 	struct srcu_data *sdp;
1080 	struct srcu_struct *ssp;
1081 
1082 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1083 	ssp = sdp->ssp;
1084 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1085 		complete(&ssp->srcu_barrier_completion);
1086 }
1087 
1088 /**
1089  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1090  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1091  */
srcu_barrier(struct srcu_struct * ssp)1092 void srcu_barrier(struct srcu_struct *ssp)
1093 {
1094 	int cpu;
1095 	struct srcu_data *sdp;
1096 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1097 
1098 	check_init_srcu_struct(ssp);
1099 	mutex_lock(&ssp->srcu_barrier_mutex);
1100 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1101 		smp_mb(); /* Force ordering following return. */
1102 		mutex_unlock(&ssp->srcu_barrier_mutex);
1103 		return; /* Someone else did our work for us. */
1104 	}
1105 	rcu_seq_start(&ssp->srcu_barrier_seq);
1106 	init_completion(&ssp->srcu_barrier_completion);
1107 
1108 	/* Initial count prevents reaching zero until all CBs are posted. */
1109 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1110 
1111 	/*
1112 	 * Each pass through this loop enqueues a callback, but only
1113 	 * on CPUs already having callbacks enqueued.  Note that if
1114 	 * a CPU already has callbacks enqueue, it must have already
1115 	 * registered the need for a future grace period, so all we
1116 	 * need do is enqueue a callback that will use the same
1117 	 * grace period as the last callback already in the queue.
1118 	 */
1119 	for_each_possible_cpu(cpu) {
1120 		sdp = per_cpu_ptr(ssp->sda, cpu);
1121 		spin_lock_irq_rcu_node(sdp);
1122 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1123 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1124 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1125 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1126 					   &sdp->srcu_barrier_head)) {
1127 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1128 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1129 		}
1130 		spin_unlock_irq_rcu_node(sdp);
1131 	}
1132 
1133 	/* Remove the initial count, at which point reaching zero can happen. */
1134 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1135 		complete(&ssp->srcu_barrier_completion);
1136 	wait_for_completion(&ssp->srcu_barrier_completion);
1137 
1138 	rcu_seq_end(&ssp->srcu_barrier_seq);
1139 	mutex_unlock(&ssp->srcu_barrier_mutex);
1140 }
1141 EXPORT_SYMBOL_GPL(srcu_barrier);
1142 
1143 /**
1144  * srcu_batches_completed - return batches completed.
1145  * @ssp: srcu_struct on which to report batch completion.
1146  *
1147  * Report the number of batches, correlated with, but not necessarily
1148  * precisely the same as, the number of grace periods that have elapsed.
1149  */
srcu_batches_completed(struct srcu_struct * ssp)1150 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1151 {
1152 	return READ_ONCE(ssp->srcu_idx);
1153 }
1154 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1155 
1156 /*
1157  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1158  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1159  * completed in that state.
1160  */
srcu_advance_state(struct srcu_struct * ssp)1161 static void srcu_advance_state(struct srcu_struct *ssp)
1162 {
1163 	int idx;
1164 
1165 	mutex_lock(&ssp->srcu_gp_mutex);
1166 
1167 	/*
1168 	 * Because readers might be delayed for an extended period after
1169 	 * fetching ->srcu_idx for their index, at any point in time there
1170 	 * might well be readers using both idx=0 and idx=1.  We therefore
1171 	 * need to wait for readers to clear from both index values before
1172 	 * invoking a callback.
1173 	 *
1174 	 * The load-acquire ensures that we see the accesses performed
1175 	 * by the prior grace period.
1176 	 */
1177 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1178 	if (idx == SRCU_STATE_IDLE) {
1179 		spin_lock_irq_rcu_node(ssp);
1180 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1181 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1182 			spin_unlock_irq_rcu_node(ssp);
1183 			mutex_unlock(&ssp->srcu_gp_mutex);
1184 			return;
1185 		}
1186 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1187 		if (idx == SRCU_STATE_IDLE)
1188 			srcu_gp_start(ssp);
1189 		spin_unlock_irq_rcu_node(ssp);
1190 		if (idx != SRCU_STATE_IDLE) {
1191 			mutex_unlock(&ssp->srcu_gp_mutex);
1192 			return; /* Someone else started the grace period. */
1193 		}
1194 	}
1195 
1196 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1197 		idx = 1 ^ (ssp->srcu_idx & 1);
1198 		if (!try_check_zero(ssp, idx, 1)) {
1199 			mutex_unlock(&ssp->srcu_gp_mutex);
1200 			return; /* readers present, retry later. */
1201 		}
1202 		srcu_flip(ssp);
1203 		spin_lock_irq_rcu_node(ssp);
1204 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1205 		spin_unlock_irq_rcu_node(ssp);
1206 	}
1207 
1208 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1209 
1210 		/*
1211 		 * SRCU read-side critical sections are normally short,
1212 		 * so check at least twice in quick succession after a flip.
1213 		 */
1214 		idx = 1 ^ (ssp->srcu_idx & 1);
1215 		if (!try_check_zero(ssp, idx, 2)) {
1216 			mutex_unlock(&ssp->srcu_gp_mutex);
1217 			return; /* readers present, retry later. */
1218 		}
1219 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1220 	}
1221 }
1222 
1223 /*
1224  * Invoke a limited number of SRCU callbacks that have passed through
1225  * their grace period.  If there are more to do, SRCU will reschedule
1226  * the workqueue.  Note that needed memory barriers have been executed
1227  * in this task's context by srcu_readers_active_idx_check().
1228  */
srcu_invoke_callbacks(struct work_struct * work)1229 static void srcu_invoke_callbacks(struct work_struct *work)
1230 {
1231 	bool more;
1232 	struct rcu_cblist ready_cbs;
1233 	struct rcu_head *rhp;
1234 	struct srcu_data *sdp;
1235 	struct srcu_struct *ssp;
1236 
1237 	sdp = container_of(work, struct srcu_data, work);
1238 
1239 	ssp = sdp->ssp;
1240 	rcu_cblist_init(&ready_cbs);
1241 	spin_lock_irq_rcu_node(sdp);
1242 	rcu_segcblist_advance(&sdp->srcu_cblist,
1243 			      rcu_seq_current(&ssp->srcu_gp_seq));
1244 	if (sdp->srcu_cblist_invoking ||
1245 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1246 		spin_unlock_irq_rcu_node(sdp);
1247 		return;  /* Someone else on the job or nothing to do. */
1248 	}
1249 
1250 	/* We are on the job!  Extract and invoke ready callbacks. */
1251 	sdp->srcu_cblist_invoking = true;
1252 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1253 	spin_unlock_irq_rcu_node(sdp);
1254 	rhp = rcu_cblist_dequeue(&ready_cbs);
1255 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1256 		debug_rcu_head_unqueue(rhp);
1257 		local_bh_disable();
1258 		rhp->func(rhp);
1259 		local_bh_enable();
1260 	}
1261 
1262 	/*
1263 	 * Update counts, accelerate new callbacks, and if needed,
1264 	 * schedule another round of callback invocation.
1265 	 */
1266 	spin_lock_irq_rcu_node(sdp);
1267 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1268 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1269 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1270 	sdp->srcu_cblist_invoking = false;
1271 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1272 	spin_unlock_irq_rcu_node(sdp);
1273 	if (more)
1274 		srcu_schedule_cbs_sdp(sdp, 0);
1275 }
1276 
1277 /*
1278  * Finished one round of SRCU grace period.  Start another if there are
1279  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1280  */
srcu_reschedule(struct srcu_struct * ssp,unsigned long delay)1281 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1282 {
1283 	bool pushgp = true;
1284 
1285 	spin_lock_irq_rcu_node(ssp);
1286 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1287 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1288 			/* All requests fulfilled, time to go idle. */
1289 			pushgp = false;
1290 		}
1291 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1292 		/* Outstanding request and no GP.  Start one. */
1293 		srcu_gp_start(ssp);
1294 	}
1295 	spin_unlock_irq_rcu_node(ssp);
1296 
1297 	if (pushgp)
1298 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1299 }
1300 
1301 /*
1302  * This is the work-queue function that handles SRCU grace periods.
1303  */
process_srcu(struct work_struct * work)1304 static void process_srcu(struct work_struct *work)
1305 {
1306 	struct srcu_struct *ssp;
1307 
1308 	ssp = container_of(work, struct srcu_struct, work.work);
1309 
1310 	srcu_advance_state(ssp);
1311 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1312 }
1313 
srcutorture_get_gp_data(enum rcutorture_type test_type,struct srcu_struct * ssp,int * flags,unsigned long * gp_seq)1314 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1315 			     struct srcu_struct *ssp, int *flags,
1316 			     unsigned long *gp_seq)
1317 {
1318 	if (test_type != SRCU_FLAVOR)
1319 		return;
1320 	*flags = 0;
1321 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1322 }
1323 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1324 
srcu_torture_stats_print(struct srcu_struct * ssp,char * tt,char * tf)1325 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1326 {
1327 	int cpu;
1328 	int idx;
1329 	unsigned long s0 = 0, s1 = 0;
1330 
1331 	idx = ssp->srcu_idx & 0x1;
1332 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1333 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1334 	for_each_possible_cpu(cpu) {
1335 		unsigned long l0, l1;
1336 		unsigned long u0, u1;
1337 		long c0, c1;
1338 		struct srcu_data *sdp;
1339 
1340 		sdp = per_cpu_ptr(ssp->sda, cpu);
1341 		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1342 		u1 = data_race(sdp->srcu_unlock_count[idx]);
1343 
1344 		/*
1345 		 * Make sure that a lock is always counted if the corresponding
1346 		 * unlock is counted.
1347 		 */
1348 		smp_rmb();
1349 
1350 		l0 = data_race(sdp->srcu_lock_count[!idx]);
1351 		l1 = data_race(sdp->srcu_lock_count[idx]);
1352 
1353 		c0 = l0 - u0;
1354 		c1 = l1 - u1;
1355 		pr_cont(" %d(%ld,%ld %c)",
1356 			cpu, c0, c1,
1357 			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1358 		s0 += c0;
1359 		s1 += c1;
1360 	}
1361 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1362 }
1363 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1364 
srcu_bootup_announce(void)1365 static int __init srcu_bootup_announce(void)
1366 {
1367 	pr_info("Hierarchical SRCU implementation.\n");
1368 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1369 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1370 	return 0;
1371 }
1372 early_initcall(srcu_bootup_announce);
1373 
srcu_init(void)1374 void __init srcu_init(void)
1375 {
1376 	struct srcu_struct *ssp;
1377 
1378 	srcu_init_done = true;
1379 	while (!list_empty(&srcu_boot_list)) {
1380 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1381 				      work.work.entry);
1382 		check_init_srcu_struct(ssp);
1383 		list_del_init(&ssp->work.work.entry);
1384 		queue_work(rcu_gp_wq, &ssp->work.work);
1385 	}
1386 }
1387 
1388 #ifdef CONFIG_MODULES
1389 
1390 /* Initialize any global-scope srcu_struct structures used by this module. */
srcu_module_coming(struct module * mod)1391 static int srcu_module_coming(struct module *mod)
1392 {
1393 	int i;
1394 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1395 	int ret;
1396 
1397 	for (i = 0; i < mod->num_srcu_structs; i++) {
1398 		ret = init_srcu_struct(*(sspp++));
1399 		if (WARN_ON_ONCE(ret))
1400 			return ret;
1401 	}
1402 	return 0;
1403 }
1404 
1405 /* Clean up any global-scope srcu_struct structures used by this module. */
srcu_module_going(struct module * mod)1406 static void srcu_module_going(struct module *mod)
1407 {
1408 	int i;
1409 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1410 
1411 	for (i = 0; i < mod->num_srcu_structs; i++)
1412 		cleanup_srcu_struct(*(sspp++));
1413 }
1414 
1415 /* Handle one module, either coming or going. */
srcu_module_notify(struct notifier_block * self,unsigned long val,void * data)1416 static int srcu_module_notify(struct notifier_block *self,
1417 			      unsigned long val, void *data)
1418 {
1419 	struct module *mod = data;
1420 	int ret = 0;
1421 
1422 	switch (val) {
1423 	case MODULE_STATE_COMING:
1424 		ret = srcu_module_coming(mod);
1425 		break;
1426 	case MODULE_STATE_GOING:
1427 		srcu_module_going(mod);
1428 		break;
1429 	default:
1430 		break;
1431 	}
1432 	return ret;
1433 }
1434 
1435 static struct notifier_block srcu_module_nb = {
1436 	.notifier_call = srcu_module_notify,
1437 	.priority = 0,
1438 };
1439 
init_srcu_module_notifier(void)1440 static __init int init_srcu_module_notifier(void)
1441 {
1442 	int ret;
1443 
1444 	ret = register_module_notifier(&srcu_module_nb);
1445 	if (ret)
1446 		pr_warn("Failed to register srcu module notifier\n");
1447 	return ret;
1448 }
1449 late_initcall(init_srcu_module_notifier);
1450 
1451 #endif /* #ifdef CONFIG_MODULES */
1452