• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 #include <linux/cpufreq_times.h>
6 #include "sched.h"
7 #include <trace/hooks/sched.h>
8 
9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10 
11 /*
12  * There are no locks covering percpu hardirq/softirq time.
13  * They are only modified in vtime_account, on corresponding CPU
14  * with interrupts disabled. So, writes are safe.
15  * They are read and saved off onto struct rq in update_rq_clock().
16  * This may result in other CPU reading this CPU's irq time and can
17  * race with irq/vtime_account on this CPU. We would either get old
18  * or new value with a side effect of accounting a slice of irq time to wrong
19  * task when irq is in progress while we read rq->clock. That is a worthy
20  * compromise in place of having locks on each irq in account_system_time.
21  */
22 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
23 EXPORT_PER_CPU_SYMBOL_GPL(cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
enable_sched_clock_irqtime(void)27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
disable_sched_clock_irqtime(void)32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called before incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
irqtime_account_irq(struct task_struct * curr)53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	s64 delta;
57 	int cpu;
58 
59 	if (!sched_clock_irqtime)
60 		return;
61 
62 	cpu = smp_processor_id();
63 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 	irqtime->irq_start_time += delta;
65 
66 	/*
67 	 * We do not account for softirq time from ksoftirqd here.
68 	 * We want to continue accounting softirq time to ksoftirqd thread
69 	 * in that case, so as not to confuse scheduler with a special task
70 	 * that do not consume any time, but still wants to run.
71 	 */
72 	if (hardirq_count())
73 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 
77 	trace_android_rvh_account_irq(curr, cpu, delta);
78 }
79 EXPORT_SYMBOL_GPL(irqtime_account_irq);
80 
irqtime_tick_accounted(u64 maxtime)81 static u64 irqtime_tick_accounted(u64 maxtime)
82 {
83 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
84 	u64 delta;
85 
86 	delta = min(irqtime->tick_delta, maxtime);
87 	irqtime->tick_delta -= delta;
88 
89 	return delta;
90 }
91 
92 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
93 
94 #define sched_clock_irqtime	(0)
95 
irqtime_tick_accounted(u64 dummy)96 static u64 irqtime_tick_accounted(u64 dummy)
97 {
98 	return 0;
99 }
100 
101 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
102 
task_group_account_field(struct task_struct * p,int index,u64 tmp)103 static inline void task_group_account_field(struct task_struct *p, int index,
104 					    u64 tmp)
105 {
106 	/*
107 	 * Since all updates are sure to touch the root cgroup, we
108 	 * get ourselves ahead and touch it first. If the root cgroup
109 	 * is the only cgroup, then nothing else should be necessary.
110 	 *
111 	 */
112 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
113 
114 	cgroup_account_cputime_field(p, index, tmp);
115 }
116 
117 /*
118  * Account user CPU time to a process.
119  * @p: the process that the CPU time gets accounted to
120  * @cputime: the CPU time spent in user space since the last update
121  */
account_user_time(struct task_struct * p,u64 cputime)122 void account_user_time(struct task_struct *p, u64 cputime)
123 {
124 	int index;
125 
126 	/* Add user time to process. */
127 	p->utime += cputime;
128 	account_group_user_time(p, cputime);
129 
130 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
131 
132 	/* Add user time to cpustat. */
133 	task_group_account_field(p, index, cputime);
134 
135 	/* Account for user time used */
136 	acct_account_cputime(p);
137 
138 	/* Account power usage for user time */
139 	cpufreq_acct_update_power(p, cputime);
140 }
141 
142 /*
143  * Account guest CPU time to a process.
144  * @p: the process that the CPU time gets accounted to
145  * @cputime: the CPU time spent in virtual machine since the last update
146  */
account_guest_time(struct task_struct * p,u64 cputime)147 void account_guest_time(struct task_struct *p, u64 cputime)
148 {
149 	u64 *cpustat = kcpustat_this_cpu->cpustat;
150 
151 	/* Add guest time to process. */
152 	p->utime += cputime;
153 	account_group_user_time(p, cputime);
154 	p->gtime += cputime;
155 
156 	/* Add guest time to cpustat. */
157 	if (task_nice(p) > 0) {
158 		task_group_account_field(p, CPUTIME_NICE, cputime);
159 		cpustat[CPUTIME_GUEST_NICE] += cputime;
160 	} else {
161 		task_group_account_field(p, CPUTIME_USER, cputime);
162 		cpustat[CPUTIME_GUEST] += cputime;
163 	}
164 }
165 
166 /*
167  * Account system CPU time to a process and desired cpustat field
168  * @p: the process that the CPU time gets accounted to
169  * @cputime: the CPU time spent in kernel space since the last update
170  * @index: pointer to cpustat field that has to be updated
171  */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)172 void account_system_index_time(struct task_struct *p,
173 			       u64 cputime, enum cpu_usage_stat index)
174 {
175 	/* Add system time to process. */
176 	p->stime += cputime;
177 	account_group_system_time(p, cputime);
178 
179 	/* Add system time to cpustat. */
180 	task_group_account_field(p, index, cputime);
181 
182 	/* Account for system time used */
183 	acct_account_cputime(p);
184 
185 	/* Account power usage for system time */
186 	cpufreq_acct_update_power(p, cputime);
187 }
188 
189 /*
190  * Account system CPU time to a process.
191  * @p: the process that the CPU time gets accounted to
192  * @hardirq_offset: the offset to subtract from hardirq_count()
193  * @cputime: the CPU time spent in kernel space since the last update
194  */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)195 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
196 {
197 	int index;
198 
199 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
200 		account_guest_time(p, cputime);
201 		return;
202 	}
203 
204 	if (hardirq_count() - hardirq_offset)
205 		index = CPUTIME_IRQ;
206 	else if (in_serving_softirq())
207 		index = CPUTIME_SOFTIRQ;
208 	else
209 		index = CPUTIME_SYSTEM;
210 
211 	account_system_index_time(p, cputime, index);
212 }
213 
214 /*
215  * Account for involuntary wait time.
216  * @cputime: the CPU time spent in involuntary wait
217  */
account_steal_time(u64 cputime)218 void account_steal_time(u64 cputime)
219 {
220 	u64 *cpustat = kcpustat_this_cpu->cpustat;
221 
222 	cpustat[CPUTIME_STEAL] += cputime;
223 }
224 
225 /*
226  * Account for idle time.
227  * @cputime: the CPU time spent in idle wait
228  */
account_idle_time(u64 cputime)229 void account_idle_time(u64 cputime)
230 {
231 	u64 *cpustat = kcpustat_this_cpu->cpustat;
232 	struct rq *rq = this_rq();
233 
234 	if (atomic_read(&rq->nr_iowait) > 0)
235 		cpustat[CPUTIME_IOWAIT] += cputime;
236 	else
237 		cpustat[CPUTIME_IDLE] += cputime;
238 }
239 
240 /*
241  * When a guest is interrupted for a longer amount of time, missed clock
242  * ticks are not redelivered later. Due to that, this function may on
243  * occasion account more time than the calling functions think elapsed.
244  */
steal_account_process_time(u64 maxtime)245 static __always_inline u64 steal_account_process_time(u64 maxtime)
246 {
247 #ifdef CONFIG_PARAVIRT
248 	if (static_key_false(&paravirt_steal_enabled)) {
249 		u64 steal;
250 
251 		steal = paravirt_steal_clock(smp_processor_id());
252 		steal -= this_rq()->prev_steal_time;
253 		steal = min(steal, maxtime);
254 		account_steal_time(steal);
255 		this_rq()->prev_steal_time += steal;
256 
257 		return steal;
258 	}
259 #endif
260 	return 0;
261 }
262 
263 /*
264  * Account how much elapsed time was spent in steal, irq, or softirq time.
265  */
account_other_time(u64 max)266 static inline u64 account_other_time(u64 max)
267 {
268 	u64 accounted;
269 
270 	lockdep_assert_irqs_disabled();
271 
272 	accounted = steal_account_process_time(max);
273 
274 	if (accounted < max)
275 		accounted += irqtime_tick_accounted(max - accounted);
276 
277 	return accounted;
278 }
279 
280 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)281 static inline u64 read_sum_exec_runtime(struct task_struct *t)
282 {
283 	return t->se.sum_exec_runtime;
284 }
285 #else
read_sum_exec_runtime(struct task_struct * t)286 static u64 read_sum_exec_runtime(struct task_struct *t)
287 {
288 	u64 ns;
289 	struct rq_flags rf;
290 	struct rq *rq;
291 
292 	rq = task_rq_lock(t, &rf);
293 	ns = t->se.sum_exec_runtime;
294 	task_rq_unlock(rq, t, &rf);
295 
296 	return ns;
297 }
298 #endif
299 
300 /*
301  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
302  * tasks (sum on group iteration) belonging to @tsk's group.
303  */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)304 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
305 {
306 	struct signal_struct *sig = tsk->signal;
307 	u64 utime, stime;
308 	struct task_struct *t;
309 	unsigned int seq, nextseq;
310 	unsigned long flags;
311 
312 	/*
313 	 * Update current task runtime to account pending time since last
314 	 * scheduler action or thread_group_cputime() call. This thread group
315 	 * might have other running tasks on different CPUs, but updating
316 	 * their runtime can affect syscall performance, so we skip account
317 	 * those pending times and rely only on values updated on tick or
318 	 * other scheduler action.
319 	 */
320 	if (same_thread_group(current, tsk))
321 		(void) task_sched_runtime(current);
322 
323 	rcu_read_lock();
324 	/* Attempt a lockless read on the first round. */
325 	nextseq = 0;
326 	do {
327 		seq = nextseq;
328 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
329 		times->utime = sig->utime;
330 		times->stime = sig->stime;
331 		times->sum_exec_runtime = sig->sum_sched_runtime;
332 
333 		for_each_thread(tsk, t) {
334 			task_cputime(t, &utime, &stime);
335 			times->utime += utime;
336 			times->stime += stime;
337 			times->sum_exec_runtime += read_sum_exec_runtime(t);
338 		}
339 		/* If lockless access failed, take the lock. */
340 		nextseq = 1;
341 	} while (need_seqretry(&sig->stats_lock, seq));
342 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
343 	rcu_read_unlock();
344 }
345 
346 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
347 /*
348  * Account a tick to a process and cpustat
349  * @p: the process that the CPU time gets accounted to
350  * @user_tick: is the tick from userspace
351  * @rq: the pointer to rq
352  *
353  * Tick demultiplexing follows the order
354  * - pending hardirq update
355  * - pending softirq update
356  * - user_time
357  * - idle_time
358  * - system time
359  *   - check for guest_time
360  *   - else account as system_time
361  *
362  * Check for hardirq is done both for system and user time as there is
363  * no timer going off while we are on hardirq and hence we may never get an
364  * opportunity to update it solely in system time.
365  * p->stime and friends are only updated on system time and not on irq
366  * softirq as those do not count in task exec_runtime any more.
367  */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)368 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
369 					 int ticks)
370 {
371 	u64 other, cputime = TICK_NSEC * ticks;
372 
373 	/*
374 	 * When returning from idle, many ticks can get accounted at
375 	 * once, including some ticks of steal, irq, and softirq time.
376 	 * Subtract those ticks from the amount of time accounted to
377 	 * idle, or potentially user or system time. Due to rounding,
378 	 * other time can exceed ticks occasionally.
379 	 */
380 	other = account_other_time(ULONG_MAX);
381 	if (other >= cputime)
382 		return;
383 
384 	cputime -= other;
385 
386 	if (this_cpu_ksoftirqd() == p) {
387 		/*
388 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
389 		 * So, we have to handle it separately here.
390 		 * Also, p->stime needs to be updated for ksoftirqd.
391 		 */
392 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
393 	} else if (user_tick) {
394 		account_user_time(p, cputime);
395 	} else if (p == this_rq()->idle) {
396 		account_idle_time(cputime);
397 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
398 		account_guest_time(p, cputime);
399 	} else {
400 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
401 	}
402 	trace_android_vh_irqtime_account_process_tick(p, this_rq(), user_tick, ticks);
403 }
404 
irqtime_account_idle_ticks(int ticks)405 static void irqtime_account_idle_ticks(int ticks)
406 {
407 	irqtime_account_process_tick(current, 0, ticks);
408 }
409 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)410 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)411 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
412 						int nr_ticks) { }
413 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
414 
415 /*
416  * Use precise platform statistics if available:
417  */
418 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
419 
420 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)421 void vtime_task_switch(struct task_struct *prev)
422 {
423 	if (is_idle_task(prev))
424 		vtime_account_idle(prev);
425 	else
426 		vtime_account_kernel(prev);
427 
428 	vtime_flush(prev);
429 	arch_vtime_task_switch(prev);
430 }
431 # endif
432 
433 /*
434  * Archs that account the whole time spent in the idle task
435  * (outside irq) as idle time can rely on this and just implement
436  * vtime_account_kernel() and vtime_account_idle(). Archs that
437  * have other meaning of the idle time (s390 only includes the
438  * time spent by the CPU when it's in low power mode) must override
439  * vtime_account().
440  */
441 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)442 void vtime_account_irq_enter(struct task_struct *tsk)
443 {
444 	if (!in_interrupt() && is_idle_task(tsk))
445 		vtime_account_idle(tsk);
446 	else
447 		vtime_account_kernel(tsk);
448 }
449 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
450 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
451 
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)452 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
453 		    u64 *ut, u64 *st)
454 {
455 	*ut = curr->utime;
456 	*st = curr->stime;
457 }
458 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)459 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
460 {
461 	*ut = p->utime;
462 	*st = p->stime;
463 }
464 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
465 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)466 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
467 {
468 	struct task_cputime cputime;
469 
470 	thread_group_cputime(p, &cputime);
471 
472 	*ut = cputime.utime;
473 	*st = cputime.stime;
474 }
475 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
476 
477 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
478 
479 /*
480  * Account a single tick of CPU time.
481  * @p: the process that the CPU time gets accounted to
482  * @user_tick: indicates if the tick is a user or a system tick
483  */
account_process_tick(struct task_struct * p,int user_tick)484 void account_process_tick(struct task_struct *p, int user_tick)
485 {
486 	u64 cputime, steal;
487 
488 	if (vtime_accounting_enabled_this_cpu())
489 		return;
490 	trace_android_vh_account_task_time(p, this_rq(), user_tick);
491 
492 	if (sched_clock_irqtime) {
493 		irqtime_account_process_tick(p, user_tick, 1);
494 		return;
495 	}
496 
497 	cputime = TICK_NSEC;
498 	steal = steal_account_process_time(ULONG_MAX);
499 
500 	if (steal >= cputime)
501 		return;
502 
503 	cputime -= steal;
504 
505 	if (user_tick)
506 		account_user_time(p, cputime);
507 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
508 		account_system_time(p, HARDIRQ_OFFSET, cputime);
509 	else
510 		account_idle_time(cputime);
511 }
512 
513 /*
514  * Account multiple ticks of idle time.
515  * @ticks: number of stolen ticks
516  */
account_idle_ticks(unsigned long ticks)517 void account_idle_ticks(unsigned long ticks)
518 {
519 	u64 cputime, steal;
520 
521 	if (sched_clock_irqtime) {
522 		irqtime_account_idle_ticks(ticks);
523 		return;
524 	}
525 
526 	cputime = ticks * TICK_NSEC;
527 	steal = steal_account_process_time(ULONG_MAX);
528 
529 	if (steal >= cputime)
530 		return;
531 
532 	cputime -= steal;
533 	account_idle_time(cputime);
534 }
535 
536 /*
537  * Adjust tick based cputime random precision against scheduler runtime
538  * accounting.
539  *
540  * Tick based cputime accounting depend on random scheduling timeslices of a
541  * task to be interrupted or not by the timer.  Depending on these
542  * circumstances, the number of these interrupts may be over or
543  * under-optimistic, matching the real user and system cputime with a variable
544  * precision.
545  *
546  * Fix this by scaling these tick based values against the total runtime
547  * accounted by the CFS scheduler.
548  *
549  * This code provides the following guarantees:
550  *
551  *   stime + utime == rtime
552  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
553  *
554  * Assuming that rtime_i+1 >= rtime_i.
555  */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)556 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
557 		    u64 *ut, u64 *st)
558 {
559 	u64 rtime, stime, utime;
560 	unsigned long flags;
561 
562 	/* Serialize concurrent callers such that we can honour our guarantees */
563 	raw_spin_lock_irqsave(&prev->lock, flags);
564 	rtime = curr->sum_exec_runtime;
565 
566 	/*
567 	 * This is possible under two circumstances:
568 	 *  - rtime isn't monotonic after all (a bug);
569 	 *  - we got reordered by the lock.
570 	 *
571 	 * In both cases this acts as a filter such that the rest of the code
572 	 * can assume it is monotonic regardless of anything else.
573 	 */
574 	if (prev->stime + prev->utime >= rtime)
575 		goto out;
576 
577 	stime = curr->stime;
578 	utime = curr->utime;
579 
580 	/*
581 	 * If either stime or utime are 0, assume all runtime is userspace.
582 	 * Once a task gets some ticks, the monotonicy code at 'update:'
583 	 * will ensure things converge to the observed ratio.
584 	 */
585 	if (stime == 0) {
586 		utime = rtime;
587 		goto update;
588 	}
589 
590 	if (utime == 0) {
591 		stime = rtime;
592 		goto update;
593 	}
594 
595 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
596 
597 update:
598 	/*
599 	 * Make sure stime doesn't go backwards; this preserves monotonicity
600 	 * for utime because rtime is monotonic.
601 	 *
602 	 *  utime_i+1 = rtime_i+1 - stime_i
603 	 *            = rtime_i+1 - (rtime_i - utime_i)
604 	 *            = (rtime_i+1 - rtime_i) + utime_i
605 	 *            >= utime_i
606 	 */
607 	if (stime < prev->stime)
608 		stime = prev->stime;
609 	utime = rtime - stime;
610 
611 	/*
612 	 * Make sure utime doesn't go backwards; this still preserves
613 	 * monotonicity for stime, analogous argument to above.
614 	 */
615 	if (utime < prev->utime) {
616 		utime = prev->utime;
617 		stime = rtime - utime;
618 	}
619 
620 	prev->stime = stime;
621 	prev->utime = utime;
622 out:
623 	*ut = prev->utime;
624 	*st = prev->stime;
625 	raw_spin_unlock_irqrestore(&prev->lock, flags);
626 }
627 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)628 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
629 {
630 	struct task_cputime cputime = {
631 		.sum_exec_runtime = p->se.sum_exec_runtime,
632 	};
633 
634 	task_cputime(p, &cputime.utime, &cputime.stime);
635 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
636 }
637 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
638 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)639 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
640 {
641 	struct task_cputime cputime;
642 
643 	thread_group_cputime(p, &cputime);
644 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
645 }
646 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
647 
648 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
649 
650 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)651 static u64 vtime_delta(struct vtime *vtime)
652 {
653 	unsigned long long clock;
654 
655 	clock = sched_clock();
656 	if (clock < vtime->starttime)
657 		return 0;
658 
659 	return clock - vtime->starttime;
660 }
661 
get_vtime_delta(struct vtime * vtime)662 static u64 get_vtime_delta(struct vtime *vtime)
663 {
664 	u64 delta = vtime_delta(vtime);
665 	u64 other;
666 
667 	/*
668 	 * Unlike tick based timing, vtime based timing never has lost
669 	 * ticks, and no need for steal time accounting to make up for
670 	 * lost ticks. Vtime accounts a rounded version of actual
671 	 * elapsed time. Limit account_other_time to prevent rounding
672 	 * errors from causing elapsed vtime to go negative.
673 	 */
674 	other = account_other_time(delta);
675 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
676 	vtime->starttime += delta;
677 
678 	return delta - other;
679 }
680 
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)681 static void vtime_account_system(struct task_struct *tsk,
682 				 struct vtime *vtime)
683 {
684 	vtime->stime += get_vtime_delta(vtime);
685 	if (vtime->stime >= TICK_NSEC) {
686 		account_system_time(tsk, irq_count(), vtime->stime);
687 		vtime->stime = 0;
688 	}
689 }
690 
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)691 static void vtime_account_guest(struct task_struct *tsk,
692 				struct vtime *vtime)
693 {
694 	vtime->gtime += get_vtime_delta(vtime);
695 	if (vtime->gtime >= TICK_NSEC) {
696 		account_guest_time(tsk, vtime->gtime);
697 		vtime->gtime = 0;
698 	}
699 }
700 
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)701 static void __vtime_account_kernel(struct task_struct *tsk,
702 				   struct vtime *vtime)
703 {
704 	/* We might have scheduled out from guest path */
705 	if (vtime->state == VTIME_GUEST)
706 		vtime_account_guest(tsk, vtime);
707 	else
708 		vtime_account_system(tsk, vtime);
709 }
710 
vtime_account_kernel(struct task_struct * tsk)711 void vtime_account_kernel(struct task_struct *tsk)
712 {
713 	struct vtime *vtime = &tsk->vtime;
714 
715 	if (!vtime_delta(vtime))
716 		return;
717 
718 	write_seqcount_begin(&vtime->seqcount);
719 	__vtime_account_kernel(tsk, vtime);
720 	write_seqcount_end(&vtime->seqcount);
721 }
722 
vtime_user_enter(struct task_struct * tsk)723 void vtime_user_enter(struct task_struct *tsk)
724 {
725 	struct vtime *vtime = &tsk->vtime;
726 
727 	write_seqcount_begin(&vtime->seqcount);
728 	vtime_account_system(tsk, vtime);
729 	vtime->state = VTIME_USER;
730 	write_seqcount_end(&vtime->seqcount);
731 }
732 
vtime_user_exit(struct task_struct * tsk)733 void vtime_user_exit(struct task_struct *tsk)
734 {
735 	struct vtime *vtime = &tsk->vtime;
736 
737 	write_seqcount_begin(&vtime->seqcount);
738 	vtime->utime += get_vtime_delta(vtime);
739 	if (vtime->utime >= TICK_NSEC) {
740 		account_user_time(tsk, vtime->utime);
741 		vtime->utime = 0;
742 	}
743 	vtime->state = VTIME_SYS;
744 	write_seqcount_end(&vtime->seqcount);
745 }
746 
vtime_guest_enter(struct task_struct * tsk)747 void vtime_guest_enter(struct task_struct *tsk)
748 {
749 	struct vtime *vtime = &tsk->vtime;
750 	/*
751 	 * The flags must be updated under the lock with
752 	 * the vtime_starttime flush and update.
753 	 * That enforces a right ordering and update sequence
754 	 * synchronization against the reader (task_gtime())
755 	 * that can thus safely catch up with a tickless delta.
756 	 */
757 	write_seqcount_begin(&vtime->seqcount);
758 	vtime_account_system(tsk, vtime);
759 	tsk->flags |= PF_VCPU;
760 	vtime->state = VTIME_GUEST;
761 	write_seqcount_end(&vtime->seqcount);
762 }
763 EXPORT_SYMBOL_GPL(vtime_guest_enter);
764 
vtime_guest_exit(struct task_struct * tsk)765 void vtime_guest_exit(struct task_struct *tsk)
766 {
767 	struct vtime *vtime = &tsk->vtime;
768 
769 	write_seqcount_begin(&vtime->seqcount);
770 	vtime_account_guest(tsk, vtime);
771 	tsk->flags &= ~PF_VCPU;
772 	vtime->state = VTIME_SYS;
773 	write_seqcount_end(&vtime->seqcount);
774 }
775 EXPORT_SYMBOL_GPL(vtime_guest_exit);
776 
vtime_account_idle(struct task_struct * tsk)777 void vtime_account_idle(struct task_struct *tsk)
778 {
779 	account_idle_time(get_vtime_delta(&tsk->vtime));
780 }
781 
vtime_task_switch_generic(struct task_struct * prev)782 void vtime_task_switch_generic(struct task_struct *prev)
783 {
784 	struct vtime *vtime = &prev->vtime;
785 
786 	write_seqcount_begin(&vtime->seqcount);
787 	if (vtime->state == VTIME_IDLE)
788 		vtime_account_idle(prev);
789 	else
790 		__vtime_account_kernel(prev, vtime);
791 	vtime->state = VTIME_INACTIVE;
792 	vtime->cpu = -1;
793 	write_seqcount_end(&vtime->seqcount);
794 
795 	vtime = &current->vtime;
796 
797 	write_seqcount_begin(&vtime->seqcount);
798 	if (is_idle_task(current))
799 		vtime->state = VTIME_IDLE;
800 	else if (current->flags & PF_VCPU)
801 		vtime->state = VTIME_GUEST;
802 	else
803 		vtime->state = VTIME_SYS;
804 	vtime->starttime = sched_clock();
805 	vtime->cpu = smp_processor_id();
806 	write_seqcount_end(&vtime->seqcount);
807 }
808 
vtime_init_idle(struct task_struct * t,int cpu)809 void vtime_init_idle(struct task_struct *t, int cpu)
810 {
811 	struct vtime *vtime = &t->vtime;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	write_seqcount_begin(&vtime->seqcount);
816 	vtime->state = VTIME_IDLE;
817 	vtime->starttime = sched_clock();
818 	vtime->cpu = cpu;
819 	write_seqcount_end(&vtime->seqcount);
820 	local_irq_restore(flags);
821 }
822 
task_gtime(struct task_struct * t)823 u64 task_gtime(struct task_struct *t)
824 {
825 	struct vtime *vtime = &t->vtime;
826 	unsigned int seq;
827 	u64 gtime;
828 
829 	if (!vtime_accounting_enabled())
830 		return t->gtime;
831 
832 	do {
833 		seq = read_seqcount_begin(&vtime->seqcount);
834 
835 		gtime = t->gtime;
836 		if (vtime->state == VTIME_GUEST)
837 			gtime += vtime->gtime + vtime_delta(vtime);
838 
839 	} while (read_seqcount_retry(&vtime->seqcount, seq));
840 
841 	return gtime;
842 }
843 
844 /*
845  * Fetch cputime raw values from fields of task_struct and
846  * add up the pending nohz execution time since the last
847  * cputime snapshot.
848  */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)849 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
850 {
851 	struct vtime *vtime = &t->vtime;
852 	unsigned int seq;
853 	u64 delta;
854 
855 	if (!vtime_accounting_enabled()) {
856 		*utime = t->utime;
857 		*stime = t->stime;
858 		return;
859 	}
860 
861 	do {
862 		seq = read_seqcount_begin(&vtime->seqcount);
863 
864 		*utime = t->utime;
865 		*stime = t->stime;
866 
867 		/* Task is sleeping or idle, nothing to add */
868 		if (vtime->state < VTIME_SYS)
869 			continue;
870 
871 		delta = vtime_delta(vtime);
872 
873 		/*
874 		 * Task runs either in user (including guest) or kernel space,
875 		 * add pending nohz time to the right place.
876 		 */
877 		if (vtime->state == VTIME_SYS)
878 			*stime += vtime->stime + delta;
879 		else
880 			*utime += vtime->utime + delta;
881 	} while (read_seqcount_retry(&vtime->seqcount, seq));
882 }
883 
vtime_state_fetch(struct vtime * vtime,int cpu)884 static int vtime_state_fetch(struct vtime *vtime, int cpu)
885 {
886 	int state = READ_ONCE(vtime->state);
887 
888 	/*
889 	 * We raced against a context switch, fetch the
890 	 * kcpustat task again.
891 	 */
892 	if (vtime->cpu != cpu && vtime->cpu != -1)
893 		return -EAGAIN;
894 
895 	/*
896 	 * Two possible things here:
897 	 * 1) We are seeing the scheduling out task (prev) or any past one.
898 	 * 2) We are seeing the scheduling in task (next) but it hasn't
899 	 *    passed though vtime_task_switch() yet so the pending
900 	 *    cputime of the prev task may not be flushed yet.
901 	 *
902 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
903 	 */
904 	if (state == VTIME_INACTIVE)
905 		return -EAGAIN;
906 
907 	return state;
908 }
909 
kcpustat_user_vtime(struct vtime * vtime)910 static u64 kcpustat_user_vtime(struct vtime *vtime)
911 {
912 	if (vtime->state == VTIME_USER)
913 		return vtime->utime + vtime_delta(vtime);
914 	else if (vtime->state == VTIME_GUEST)
915 		return vtime->gtime + vtime_delta(vtime);
916 	return 0;
917 }
918 
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)919 static int kcpustat_field_vtime(u64 *cpustat,
920 				struct task_struct *tsk,
921 				enum cpu_usage_stat usage,
922 				int cpu, u64 *val)
923 {
924 	struct vtime *vtime = &tsk->vtime;
925 	unsigned int seq;
926 
927 	do {
928 		int state;
929 
930 		seq = read_seqcount_begin(&vtime->seqcount);
931 
932 		state = vtime_state_fetch(vtime, cpu);
933 		if (state < 0)
934 			return state;
935 
936 		*val = cpustat[usage];
937 
938 		/*
939 		 * Nice VS unnice cputime accounting may be inaccurate if
940 		 * the nice value has changed since the last vtime update.
941 		 * But proper fix would involve interrupting target on nice
942 		 * updates which is a no go on nohz_full (although the scheduler
943 		 * may still interrupt the target if rescheduling is needed...)
944 		 */
945 		switch (usage) {
946 		case CPUTIME_SYSTEM:
947 			if (state == VTIME_SYS)
948 				*val += vtime->stime + vtime_delta(vtime);
949 			break;
950 		case CPUTIME_USER:
951 			if (task_nice(tsk) <= 0)
952 				*val += kcpustat_user_vtime(vtime);
953 			break;
954 		case CPUTIME_NICE:
955 			if (task_nice(tsk) > 0)
956 				*val += kcpustat_user_vtime(vtime);
957 			break;
958 		case CPUTIME_GUEST:
959 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
960 				*val += vtime->gtime + vtime_delta(vtime);
961 			break;
962 		case CPUTIME_GUEST_NICE:
963 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
964 				*val += vtime->gtime + vtime_delta(vtime);
965 			break;
966 		default:
967 			break;
968 		}
969 	} while (read_seqcount_retry(&vtime->seqcount, seq));
970 
971 	return 0;
972 }
973 
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)974 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
975 		   enum cpu_usage_stat usage, int cpu)
976 {
977 	u64 *cpustat = kcpustat->cpustat;
978 	u64 val = cpustat[usage];
979 	struct rq *rq;
980 	int err;
981 
982 	if (!vtime_accounting_enabled_cpu(cpu))
983 		return val;
984 
985 	rq = cpu_rq(cpu);
986 
987 	for (;;) {
988 		struct task_struct *curr;
989 
990 		rcu_read_lock();
991 		curr = rcu_dereference(rq->curr);
992 		if (WARN_ON_ONCE(!curr)) {
993 			rcu_read_unlock();
994 			return cpustat[usage];
995 		}
996 
997 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
998 		rcu_read_unlock();
999 
1000 		if (!err)
1001 			return val;
1002 
1003 		cpu_relax();
1004 	}
1005 }
1006 EXPORT_SYMBOL_GPL(kcpustat_field);
1007 
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1008 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1009 				    const struct kernel_cpustat *src,
1010 				    struct task_struct *tsk, int cpu)
1011 {
1012 	struct vtime *vtime = &tsk->vtime;
1013 	unsigned int seq;
1014 
1015 	do {
1016 		u64 *cpustat;
1017 		u64 delta;
1018 		int state;
1019 
1020 		seq = read_seqcount_begin(&vtime->seqcount);
1021 
1022 		state = vtime_state_fetch(vtime, cpu);
1023 		if (state < 0)
1024 			return state;
1025 
1026 		*dst = *src;
1027 		cpustat = dst->cpustat;
1028 
1029 		/* Task is sleeping, dead or idle, nothing to add */
1030 		if (state < VTIME_SYS)
1031 			continue;
1032 
1033 		delta = vtime_delta(vtime);
1034 
1035 		/*
1036 		 * Task runs either in user (including guest) or kernel space,
1037 		 * add pending nohz time to the right place.
1038 		 */
1039 		if (state == VTIME_SYS) {
1040 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1041 		} else if (state == VTIME_USER) {
1042 			if (task_nice(tsk) > 0)
1043 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1044 			else
1045 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1046 		} else {
1047 			WARN_ON_ONCE(state != VTIME_GUEST);
1048 			if (task_nice(tsk) > 0) {
1049 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1050 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1051 			} else {
1052 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1053 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1054 			}
1055 		}
1056 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1057 
1058 	return 0;
1059 }
1060 
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1061 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1062 {
1063 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1064 	struct rq *rq;
1065 	int err;
1066 
1067 	if (!vtime_accounting_enabled_cpu(cpu)) {
1068 		*dst = *src;
1069 		return;
1070 	}
1071 
1072 	rq = cpu_rq(cpu);
1073 
1074 	for (;;) {
1075 		struct task_struct *curr;
1076 
1077 		rcu_read_lock();
1078 		curr = rcu_dereference(rq->curr);
1079 		if (WARN_ON_ONCE(!curr)) {
1080 			rcu_read_unlock();
1081 			*dst = *src;
1082 			return;
1083 		}
1084 
1085 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1086 		rcu_read_unlock();
1087 
1088 		if (!err)
1089 			return;
1090 
1091 		cpu_relax();
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1095 
1096 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1097