• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
3 
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
9 
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
12 
thermal_load_avg(struct rq * rq)13 static inline u64 thermal_load_avg(struct rq *rq)
14 {
15 	return READ_ONCE(rq->avg_thermal.load_avg);
16 }
17 #else
18 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
20 {
21 	return 0;
22 }
23 
thermal_load_avg(struct rq * rq)24 static inline u64 thermal_load_avg(struct rq *rq)
25 {
26 	return 0;
27 }
28 #endif
29 
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
32 #else
33 static inline int
update_irq_load_avg(struct rq * rq,u64 running)34 update_irq_load_avg(struct rq *rq, u64 running)
35 {
36 	return 0;
37 }
38 #endif
39 
40 #define PELT_MIN_DIVIDER	(LOAD_AVG_MAX - 1024)
41 
get_pelt_divider(struct sched_avg * avg)42 static inline u32 get_pelt_divider(struct sched_avg *avg)
43 {
44 	return PELT_MIN_DIVIDER + avg->period_contrib;
45 }
46 
cfs_se_util_change(struct sched_avg * avg)47 static inline void cfs_se_util_change(struct sched_avg *avg)
48 {
49 	unsigned int enqueued;
50 
51 	if (!sched_feat(UTIL_EST))
52 		return;
53 
54 	/* Avoid store if the flag has been already reset */
55 	enqueued = avg->util_est.enqueued;
56 	if (!(enqueued & UTIL_AVG_UNCHANGED))
57 		return;
58 
59 	/* Reset flag to report util_avg has been updated */
60 	enqueued &= ~UTIL_AVG_UNCHANGED;
61 	WRITE_ONCE(avg->util_est.enqueued, enqueued);
62 }
63 
64 extern unsigned int sched_pelt_lshift;
65 
66 /*
67  * The clock_pelt scales the time to reflect the effective amount of
68  * computation done during the running delta time but then sync back to
69  * clock_task when rq is idle.
70  *
71  *
72  * absolute time   | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
73  * @ max capacity  ------******---------------******---------------
74  * @ half capacity ------************---------************---------
75  * clock pelt      | 1| 2|    3|    4| 7| 8| 9|   10|   11|14|15|16
76  *
77  */
update_rq_clock_pelt(struct rq * rq,s64 delta)78 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
79 {
80 	delta <<= READ_ONCE(sched_pelt_lshift);
81 
82 	per_cpu(clock_task_mult, rq->cpu) += delta;
83 
84 	if (unlikely(is_idle_task(rq->curr))) {
85 		/* The rq is idle, we can sync to clock_task */
86 		rq->clock_pelt = rq_clock_task_mult(rq);
87 		return;
88 	}
89 
90 	/*
91 	 * When a rq runs at a lower compute capacity, it will need
92 	 * more time to do the same amount of work than at max
93 	 * capacity. In order to be invariant, we scale the delta to
94 	 * reflect how much work has been really done.
95 	 * Running longer results in stealing idle time that will
96 	 * disturb the load signal compared to max capacity. This
97 	 * stolen idle time will be automatically reflected when the
98 	 * rq will be idle and the clock will be synced with
99 	 * rq_clock_task.
100 	 */
101 
102 	/*
103 	 * Scale the elapsed time to reflect the real amount of
104 	 * computation
105 	 */
106 	delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
107 	delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
108 
109 	rq->clock_pelt += delta;
110 }
111 
112 /*
113  * When rq becomes idle, we have to check if it has lost idle time
114  * because it was fully busy. A rq is fully used when the /Sum util_sum
115  * is greater or equal to:
116  * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
117  * For optimization and computing rounding purpose, we don't take into account
118  * the position in the current window (period_contrib) and we use the higher
119  * bound of util_sum to decide.
120  */
update_idle_rq_clock_pelt(struct rq * rq)121 static inline void update_idle_rq_clock_pelt(struct rq *rq)
122 {
123 	u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
124 	u32 util_sum = rq->cfs.avg.util_sum;
125 	util_sum += rq->avg_rt.util_sum;
126 	util_sum += rq->avg_dl.util_sum;
127 
128 	/*
129 	 * Reflecting stolen time makes sense only if the idle
130 	 * phase would be present at max capacity. As soon as the
131 	 * utilization of a rq has reached the maximum value, it is
132 	 * considered as an always runnig rq without idle time to
133 	 * steal. This potential idle time is considered as lost in
134 	 * this case. We keep track of this lost idle time compare to
135 	 * rq's clock_task.
136 	 */
137 	if (util_sum >= divider)
138 		rq->lost_idle_time += rq_clock_task_mult(rq) -
139 				      rq->clock_pelt;
140 }
141 
rq_clock_pelt(struct rq * rq)142 static inline u64 rq_clock_pelt(struct rq *rq)
143 {
144 	lockdep_assert_held(&rq->lock);
145 	assert_clock_updated(rq);
146 
147 	return rq->clock_pelt - rq->lost_idle_time;
148 }
149 
150 #ifdef CONFIG_CFS_BANDWIDTH
151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)152 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
153 {
154 	if (unlikely(cfs_rq->throttle_count))
155 		return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
156 
157 	return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
158 }
159 #else
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)160 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
161 {
162 	return rq_clock_pelt(rq_of(cfs_rq));
163 }
164 #endif
165 
166 #else
167 
168 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)169 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
170 {
171 	return 0;
172 }
173 
174 static inline int
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)175 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
176 {
177 	return 0;
178 }
179 
180 static inline int
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)181 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
182 {
183 	return 0;
184 }
185 
186 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)187 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
188 {
189 	return 0;
190 }
191 
thermal_load_avg(struct rq * rq)192 static inline u64 thermal_load_avg(struct rq *rq)
193 {
194 	return 0;
195 }
196 
197 static inline int
update_irq_load_avg(struct rq * rq,u64 running)198 update_irq_load_avg(struct rq *rq, u64 running)
199 {
200 	return 0;
201 }
202 
rq_clock_pelt(struct rq * rq)203 static inline u64 rq_clock_pelt(struct rq *rq)
204 {
205 	return rq_clock_task(rq);
206 }
207 
208 static inline void
update_rq_clock_pelt(struct rq * rq,s64 delta)209 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
210 
211 static inline void
update_idle_rq_clock_pelt(struct rq * rq)212 update_idle_rq_clock_pelt(struct rq *rq) { }
213 
214 #endif
215 
216 
217