1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
3
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
9
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
12
thermal_load_avg(struct rq * rq)13 static inline u64 thermal_load_avg(struct rq *rq)
14 {
15 return READ_ONCE(rq->avg_thermal.load_avg);
16 }
17 #else
18 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
20 {
21 return 0;
22 }
23
thermal_load_avg(struct rq * rq)24 static inline u64 thermal_load_avg(struct rq *rq)
25 {
26 return 0;
27 }
28 #endif
29
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
32 #else
33 static inline int
update_irq_load_avg(struct rq * rq,u64 running)34 update_irq_load_avg(struct rq *rq, u64 running)
35 {
36 return 0;
37 }
38 #endif
39
40 #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)
41
get_pelt_divider(struct sched_avg * avg)42 static inline u32 get_pelt_divider(struct sched_avg *avg)
43 {
44 return PELT_MIN_DIVIDER + avg->period_contrib;
45 }
46
cfs_se_util_change(struct sched_avg * avg)47 static inline void cfs_se_util_change(struct sched_avg *avg)
48 {
49 unsigned int enqueued;
50
51 if (!sched_feat(UTIL_EST))
52 return;
53
54 /* Avoid store if the flag has been already reset */
55 enqueued = avg->util_est.enqueued;
56 if (!(enqueued & UTIL_AVG_UNCHANGED))
57 return;
58
59 /* Reset flag to report util_avg has been updated */
60 enqueued &= ~UTIL_AVG_UNCHANGED;
61 WRITE_ONCE(avg->util_est.enqueued, enqueued);
62 }
63
64 extern unsigned int sched_pelt_lshift;
65
66 /*
67 * The clock_pelt scales the time to reflect the effective amount of
68 * computation done during the running delta time but then sync back to
69 * clock_task when rq is idle.
70 *
71 *
72 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
73 * @ max capacity ------******---------------******---------------
74 * @ half capacity ------************---------************---------
75 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
76 *
77 */
update_rq_clock_pelt(struct rq * rq,s64 delta)78 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
79 {
80 delta <<= READ_ONCE(sched_pelt_lshift);
81
82 per_cpu(clock_task_mult, rq->cpu) += delta;
83
84 if (unlikely(is_idle_task(rq->curr))) {
85 /* The rq is idle, we can sync to clock_task */
86 rq->clock_pelt = rq_clock_task_mult(rq);
87 return;
88 }
89
90 /*
91 * When a rq runs at a lower compute capacity, it will need
92 * more time to do the same amount of work than at max
93 * capacity. In order to be invariant, we scale the delta to
94 * reflect how much work has been really done.
95 * Running longer results in stealing idle time that will
96 * disturb the load signal compared to max capacity. This
97 * stolen idle time will be automatically reflected when the
98 * rq will be idle and the clock will be synced with
99 * rq_clock_task.
100 */
101
102 /*
103 * Scale the elapsed time to reflect the real amount of
104 * computation
105 */
106 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
107 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
108
109 rq->clock_pelt += delta;
110 }
111
112 /*
113 * When rq becomes idle, we have to check if it has lost idle time
114 * because it was fully busy. A rq is fully used when the /Sum util_sum
115 * is greater or equal to:
116 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
117 * For optimization and computing rounding purpose, we don't take into account
118 * the position in the current window (period_contrib) and we use the higher
119 * bound of util_sum to decide.
120 */
update_idle_rq_clock_pelt(struct rq * rq)121 static inline void update_idle_rq_clock_pelt(struct rq *rq)
122 {
123 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
124 u32 util_sum = rq->cfs.avg.util_sum;
125 util_sum += rq->avg_rt.util_sum;
126 util_sum += rq->avg_dl.util_sum;
127
128 /*
129 * Reflecting stolen time makes sense only if the idle
130 * phase would be present at max capacity. As soon as the
131 * utilization of a rq has reached the maximum value, it is
132 * considered as an always runnig rq without idle time to
133 * steal. This potential idle time is considered as lost in
134 * this case. We keep track of this lost idle time compare to
135 * rq's clock_task.
136 */
137 if (util_sum >= divider)
138 rq->lost_idle_time += rq_clock_task_mult(rq) -
139 rq->clock_pelt;
140 }
141
rq_clock_pelt(struct rq * rq)142 static inline u64 rq_clock_pelt(struct rq *rq)
143 {
144 lockdep_assert_held(&rq->lock);
145 assert_clock_updated(rq);
146
147 return rq->clock_pelt - rq->lost_idle_time;
148 }
149
150 #ifdef CONFIG_CFS_BANDWIDTH
151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)152 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
153 {
154 if (unlikely(cfs_rq->throttle_count))
155 return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
156
157 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
158 }
159 #else
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)160 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
161 {
162 return rq_clock_pelt(rq_of(cfs_rq));
163 }
164 #endif
165
166 #else
167
168 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)169 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
170 {
171 return 0;
172 }
173
174 static inline int
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)175 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
176 {
177 return 0;
178 }
179
180 static inline int
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)181 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
182 {
183 return 0;
184 }
185
186 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)187 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
188 {
189 return 0;
190 }
191
thermal_load_avg(struct rq * rq)192 static inline u64 thermal_load_avg(struct rq *rq)
193 {
194 return 0;
195 }
196
197 static inline int
update_irq_load_avg(struct rq * rq,u64 running)198 update_irq_load_avg(struct rq *rq, u64 running)
199 {
200 return 0;
201 }
202
rq_clock_pelt(struct rq * rq)203 static inline u64 rq_clock_pelt(struct rq *rq)
204 {
205 return rq_clock_task(rq);
206 }
207
208 static inline void
update_rq_clock_pelt(struct rq * rq,s64 delta)209 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
210
211 static inline void
update_idle_rq_clock_pelt(struct rq * rq)212 update_idle_rq_clock_pelt(struct rq *rq) { }
213
214 #endif
215
216
217