• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similarto hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corperation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30 
31 #include "posix-timers.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35 
36 #undef CREATE_TRACE_POINTS
37 #include <trace/hooks/wakeupbypass.h>
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:		Lock for syncrhonized access to the base
41  * @timerqueue:		Timerqueue head managing the list of events
42  * @get_ktime:		Function to read the time correlating to the base
43  * @get_timespec:	Function to read the namespace time correlating to the base
44  * @base_clockid:	clockid for the base
45  */
46 static struct alarm_base {
47 	spinlock_t		lock;
48 	struct timerqueue_head	timerqueue;
49 	ktime_t			(*get_ktime)(void);
50 	void			(*get_timespec)(struct timespec64 *tp);
51 	clockid_t		base_clockid;
52 } alarm_bases[ALARM_NUMTYPE];
53 
54 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
55 /* freezer information to handle clock_nanosleep triggered wakeups */
56 static enum alarmtimer_type freezer_alarmtype;
57 static ktime_t freezer_expires;
58 static ktime_t freezer_delta;
59 static DEFINE_SPINLOCK(freezer_delta_lock);
60 #endif
61 
62 #ifdef CONFIG_RTC_CLASS
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer		rtctimer;
65 static struct rtc_device	*rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67 
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  */
alarmtimer_get_rtcdev(void)73 struct rtc_device *alarmtimer_get_rtcdev(void)
74 {
75 	unsigned long flags;
76 	struct rtc_device *ret;
77 
78 	spin_lock_irqsave(&rtcdev_lock, flags);
79 	ret = rtcdev;
80 	spin_unlock_irqrestore(&rtcdev_lock, flags);
81 
82 	return ret;
83 }
84 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
85 
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)86 static int alarmtimer_rtc_add_device(struct device *dev,
87 				struct class_interface *class_intf)
88 {
89 	unsigned long flags;
90 	struct rtc_device *rtc = to_rtc_device(dev);
91 	struct platform_device *pdev;
92 	int ret = 0;
93 
94 	if (rtcdev)
95 		return -EBUSY;
96 
97 	if (!rtc->ops->set_alarm)
98 		return -1;
99 	if (!device_may_wakeup(rtc->dev.parent))
100 		return -1;
101 
102 	pdev = platform_device_register_data(dev, "alarmtimer",
103 					     PLATFORM_DEVID_AUTO, NULL, 0);
104 	if (!IS_ERR(pdev))
105 		device_init_wakeup(&pdev->dev, true);
106 
107 	spin_lock_irqsave(&rtcdev_lock, flags);
108 	if (!IS_ERR(pdev) && !rtcdev) {
109 		if (!try_module_get(rtc->owner)) {
110 			ret = -1;
111 			goto unlock;
112 		}
113 
114 		rtcdev = rtc;
115 		/* hold a reference so it doesn't go away */
116 		get_device(dev);
117 		pdev = NULL;
118 	} else {
119 		ret = -1;
120 	}
121 unlock:
122 	spin_unlock_irqrestore(&rtcdev_lock, flags);
123 
124 	platform_device_unregister(pdev);
125 
126 	return ret;
127 }
128 
alarmtimer_rtc_timer_init(void)129 static inline void alarmtimer_rtc_timer_init(void)
130 {
131 	rtc_timer_init(&rtctimer, NULL, NULL);
132 }
133 
134 static struct class_interface alarmtimer_rtc_interface = {
135 	.add_dev = &alarmtimer_rtc_add_device,
136 };
137 
alarmtimer_rtc_interface_setup(void)138 static int alarmtimer_rtc_interface_setup(void)
139 {
140 	alarmtimer_rtc_interface.class = rtc_class;
141 	return class_interface_register(&alarmtimer_rtc_interface);
142 }
alarmtimer_rtc_interface_remove(void)143 static void alarmtimer_rtc_interface_remove(void)
144 {
145 	class_interface_unregister(&alarmtimer_rtc_interface);
146 }
147 #else
alarmtimer_rtc_interface_setup(void)148 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)149 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)150 static inline void alarmtimer_rtc_timer_init(void) { }
151 #endif
152 
153 /**
154  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
155  * @base: pointer to the base where the timer is being run
156  * @alarm: pointer to alarm being enqueued.
157  *
158  * Adds alarm to a alarm_base timerqueue
159  *
160  * Must hold base->lock when calling.
161  */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)162 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
163 {
164 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
165 		timerqueue_del(&base->timerqueue, &alarm->node);
166 
167 	timerqueue_add(&base->timerqueue, &alarm->node);
168 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
169 }
170 
171 /**
172  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
173  * @base: pointer to the base where the timer is running
174  * @alarm: pointer to alarm being removed
175  *
176  * Removes alarm to a alarm_base timerqueue
177  *
178  * Must hold base->lock when calling.
179  */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)180 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
181 {
182 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
183 		return;
184 
185 	timerqueue_del(&base->timerqueue, &alarm->node);
186 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
187 }
188 
189 
190 /**
191  * alarmtimer_fired - Handles alarm hrtimer being fired.
192  * @timer: pointer to hrtimer being run
193  *
194  * When a alarm timer fires, this runs through the timerqueue to
195  * see which alarms expired, and runs those. If there are more alarm
196  * timers queued for the future, we set the hrtimer to fire when
197  * the next future alarm timer expires.
198  */
alarmtimer_fired(struct hrtimer * timer)199 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
200 {
201 	struct alarm *alarm = container_of(timer, struct alarm, timer);
202 	struct alarm_base *base = &alarm_bases[alarm->type];
203 	unsigned long flags;
204 	int ret = HRTIMER_NORESTART;
205 	int restart = ALARMTIMER_NORESTART;
206 
207 	spin_lock_irqsave(&base->lock, flags);
208 	alarmtimer_dequeue(base, alarm);
209 	spin_unlock_irqrestore(&base->lock, flags);
210 
211 	if (alarm->function)
212 		restart = alarm->function(alarm, base->get_ktime());
213 
214 	spin_lock_irqsave(&base->lock, flags);
215 	if (restart != ALARMTIMER_NORESTART) {
216 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
217 		alarmtimer_enqueue(base, alarm);
218 		ret = HRTIMER_RESTART;
219 	}
220 	spin_unlock_irqrestore(&base->lock, flags);
221 
222 	trace_alarmtimer_fired(alarm, base->get_ktime());
223 	return ret;
224 
225 }
226 
alarm_expires_remaining(const struct alarm * alarm)227 ktime_t alarm_expires_remaining(const struct alarm *alarm)
228 {
229 	struct alarm_base *base = &alarm_bases[alarm->type];
230 	return ktime_sub(alarm->node.expires, base->get_ktime());
231 }
232 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
233 
234 #ifdef CONFIG_RTC_CLASS
235 /**
236  * alarmtimer_suspend - Suspend time callback
237  * @dev: unused
238  *
239  * When we are going into suspend, we look through the bases
240  * to see which is the soonest timer to expire. We then
241  * set an rtc timer to fire that far into the future, which
242  * will wake us from suspend.
243  */
alarmtimer_suspend(struct device * dev)244 static int alarmtimer_suspend(struct device *dev)
245 {
246 	ktime_t min, now, expires;
247 	int i, ret, type;
248 	struct rtc_device *rtc;
249 	unsigned long flags;
250 	struct rtc_time tm;
251 	int wakeup_bypass_enabled = 0;
252 
253 	spin_lock_irqsave(&freezer_delta_lock, flags);
254 	min = freezer_delta;
255 	expires = freezer_expires;
256 	type = freezer_alarmtype;
257 	freezer_delta = 0;
258 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
259 
260 	trace_android_vh_wakeup_bypass(&wakeup_bypass_enabled);
261 	if (wakeup_bypass_enabled)
262 		return 0;
263 
264 	rtc = alarmtimer_get_rtcdev();
265 	/* If we have no rtcdev, just return */
266 	if (!rtc)
267 		return 0;
268 
269 	/* Find the soonest timer to expire*/
270 	for (i = 0; i < ALARM_NUMTYPE; i++) {
271 		struct alarm_base *base = &alarm_bases[i];
272 		struct timerqueue_node *next;
273 		ktime_t delta;
274 
275 		spin_lock_irqsave(&base->lock, flags);
276 		next = timerqueue_getnext(&base->timerqueue);
277 		spin_unlock_irqrestore(&base->lock, flags);
278 		if (!next)
279 			continue;
280 		delta = ktime_sub(next->expires, base->get_ktime());
281 		if (!min || (delta < min)) {
282 			expires = next->expires;
283 			min = delta;
284 			type = i;
285 		}
286 	}
287 	if (min == 0)
288 		return 0;
289 
290 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
291 		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
292 		return -EBUSY;
293 	}
294 
295 	trace_alarmtimer_suspend(expires, type);
296 
297 	/* Setup an rtc timer to fire that far in the future */
298 	rtc_timer_cancel(rtc, &rtctimer);
299 	rtc_read_time(rtc, &tm);
300 	now = rtc_tm_to_ktime(tm);
301 	now = ktime_add(now, min);
302 
303 	/* Set alarm, if in the past reject suspend briefly to handle */
304 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
305 	if (ret < 0)
306 		pm_wakeup_event(dev, MSEC_PER_SEC);
307 	return ret;
308 }
309 
alarmtimer_resume(struct device * dev)310 static int alarmtimer_resume(struct device *dev)
311 {
312 	struct rtc_device *rtc;
313 
314 	rtc = alarmtimer_get_rtcdev();
315 	if (rtc)
316 		rtc_timer_cancel(rtc, &rtctimer);
317 	return 0;
318 }
319 
320 #else
alarmtimer_suspend(struct device * dev)321 static int alarmtimer_suspend(struct device *dev)
322 {
323 	return 0;
324 }
325 
alarmtimer_resume(struct device * dev)326 static int alarmtimer_resume(struct device *dev)
327 {
328 	return 0;
329 }
330 #endif
331 
332 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))333 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
334 	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
335 {
336 	timerqueue_init(&alarm->node);
337 	alarm->timer.function = alarmtimer_fired;
338 	alarm->function = function;
339 	alarm->type = type;
340 	alarm->state = ALARMTIMER_STATE_INACTIVE;
341 }
342 
343 /**
344  * alarm_init - Initialize an alarm structure
345  * @alarm: ptr to alarm to be initialized
346  * @type: the type of the alarm
347  * @function: callback that is run when the alarm fires
348  */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))349 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
350 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
351 {
352 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
353 		     HRTIMER_MODE_ABS);
354 	__alarm_init(alarm, type, function);
355 }
356 EXPORT_SYMBOL_GPL(alarm_init);
357 
358 /**
359  * alarm_start - Sets an absolute alarm to fire
360  * @alarm: ptr to alarm to set
361  * @start: time to run the alarm
362  */
alarm_start(struct alarm * alarm,ktime_t start)363 void alarm_start(struct alarm *alarm, ktime_t start)
364 {
365 	struct alarm_base *base = &alarm_bases[alarm->type];
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&base->lock, flags);
369 	alarm->node.expires = start;
370 	alarmtimer_enqueue(base, alarm);
371 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
372 	spin_unlock_irqrestore(&base->lock, flags);
373 
374 	trace_alarmtimer_start(alarm, base->get_ktime());
375 }
376 EXPORT_SYMBOL_GPL(alarm_start);
377 
378 /**
379  * alarm_start_relative - Sets a relative alarm to fire
380  * @alarm: ptr to alarm to set
381  * @start: time relative to now to run the alarm
382  */
alarm_start_relative(struct alarm * alarm,ktime_t start)383 void alarm_start_relative(struct alarm *alarm, ktime_t start)
384 {
385 	struct alarm_base *base = &alarm_bases[alarm->type];
386 
387 	start = ktime_add_safe(start, base->get_ktime());
388 	alarm_start(alarm, start);
389 }
390 EXPORT_SYMBOL_GPL(alarm_start_relative);
391 
alarm_restart(struct alarm * alarm)392 void alarm_restart(struct alarm *alarm)
393 {
394 	struct alarm_base *base = &alarm_bases[alarm->type];
395 	unsigned long flags;
396 
397 	spin_lock_irqsave(&base->lock, flags);
398 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
399 	hrtimer_restart(&alarm->timer);
400 	alarmtimer_enqueue(base, alarm);
401 	spin_unlock_irqrestore(&base->lock, flags);
402 }
403 EXPORT_SYMBOL_GPL(alarm_restart);
404 
405 /**
406  * alarm_try_to_cancel - Tries to cancel an alarm timer
407  * @alarm: ptr to alarm to be canceled
408  *
409  * Returns 1 if the timer was canceled, 0 if it was not running,
410  * and -1 if the callback was running
411  */
alarm_try_to_cancel(struct alarm * alarm)412 int alarm_try_to_cancel(struct alarm *alarm)
413 {
414 	struct alarm_base *base = &alarm_bases[alarm->type];
415 	unsigned long flags;
416 	int ret;
417 
418 	spin_lock_irqsave(&base->lock, flags);
419 	ret = hrtimer_try_to_cancel(&alarm->timer);
420 	if (ret >= 0)
421 		alarmtimer_dequeue(base, alarm);
422 	spin_unlock_irqrestore(&base->lock, flags);
423 
424 	trace_alarmtimer_cancel(alarm, base->get_ktime());
425 	return ret;
426 }
427 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
428 
429 
430 /**
431  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
432  * @alarm: ptr to alarm to be canceled
433  *
434  * Returns 1 if the timer was canceled, 0 if it was not active.
435  */
alarm_cancel(struct alarm * alarm)436 int alarm_cancel(struct alarm *alarm)
437 {
438 	for (;;) {
439 		int ret = alarm_try_to_cancel(alarm);
440 		if (ret >= 0)
441 			return ret;
442 		hrtimer_cancel_wait_running(&alarm->timer);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(alarm_cancel);
446 
447 
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)448 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
449 {
450 	u64 overrun = 1;
451 	ktime_t delta;
452 
453 	delta = ktime_sub(now, alarm->node.expires);
454 
455 	if (delta < 0)
456 		return 0;
457 
458 	if (unlikely(delta >= interval)) {
459 		s64 incr = ktime_to_ns(interval);
460 
461 		overrun = ktime_divns(delta, incr);
462 
463 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
464 							incr*overrun);
465 
466 		if (alarm->node.expires > now)
467 			return overrun;
468 		/*
469 		 * This (and the ktime_add() below) is the
470 		 * correction for exact:
471 		 */
472 		overrun++;
473 	}
474 
475 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
476 	return overrun;
477 }
478 EXPORT_SYMBOL_GPL(alarm_forward);
479 
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)480 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
481 {
482 	struct alarm_base *base = &alarm_bases[alarm->type];
483 	ktime_t now = base->get_ktime();
484 
485 	if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
486 		/*
487 		 * Same issue as with posix_timer_fn(). Timers which are
488 		 * periodic but the signal is ignored can starve the system
489 		 * with a very small interval. The real fix which was
490 		 * promised in the context of posix_timer_fn() never
491 		 * materialized, but someone should really work on it.
492 		 *
493 		 * To prevent DOS fake @now to be 1 jiffie out which keeps
494 		 * the overrun accounting correct but creates an
495 		 * inconsistency vs. timer_gettime(2).
496 		 */
497 		ktime_t kj = NSEC_PER_SEC / HZ;
498 
499 		if (interval < kj)
500 			now = ktime_add(now, kj);
501 	}
502 
503 	return alarm_forward(alarm, now, interval);
504 }
505 
alarm_forward_now(struct alarm * alarm,ktime_t interval)506 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
507 {
508 	return __alarm_forward_now(alarm, interval, false);
509 }
510 EXPORT_SYMBOL_GPL(alarm_forward_now);
511 
512 #ifdef CONFIG_POSIX_TIMERS
513 
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)514 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
515 {
516 	struct alarm_base *base;
517 	unsigned long flags;
518 	ktime_t delta;
519 
520 	switch(type) {
521 	case ALARM_REALTIME:
522 		base = &alarm_bases[ALARM_REALTIME];
523 		type = ALARM_REALTIME_FREEZER;
524 		break;
525 	case ALARM_BOOTTIME:
526 		base = &alarm_bases[ALARM_BOOTTIME];
527 		type = ALARM_BOOTTIME_FREEZER;
528 		break;
529 	default:
530 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
531 		return;
532 	}
533 
534 	delta = ktime_sub(absexp, base->get_ktime());
535 
536 	spin_lock_irqsave(&freezer_delta_lock, flags);
537 	if (!freezer_delta || (delta < freezer_delta)) {
538 		freezer_delta = delta;
539 		freezer_expires = absexp;
540 		freezer_alarmtype = type;
541 	}
542 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
543 }
544 
545 /**
546  * clock2alarm - helper that converts from clockid to alarmtypes
547  * @clockid: clockid.
548  */
clock2alarm(clockid_t clockid)549 static enum alarmtimer_type clock2alarm(clockid_t clockid)
550 {
551 	if (clockid == CLOCK_REALTIME_ALARM)
552 		return ALARM_REALTIME;
553 	if (clockid == CLOCK_BOOTTIME_ALARM)
554 		return ALARM_BOOTTIME;
555 	return -1;
556 }
557 
558 /**
559  * alarm_handle_timer - Callback for posix timers
560  * @alarm: alarm that fired
561  *
562  * Posix timer callback for expired alarm timers.
563  */
alarm_handle_timer(struct alarm * alarm,ktime_t now)564 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
565 							ktime_t now)
566 {
567 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
568 					    it.alarm.alarmtimer);
569 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
570 	unsigned long flags;
571 	int si_private = 0;
572 
573 	spin_lock_irqsave(&ptr->it_lock, flags);
574 
575 	ptr->it_active = 0;
576 	if (ptr->it_interval)
577 		si_private = ++ptr->it_requeue_pending;
578 
579 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
580 		/*
581 		 * Handle ignored signals and rearm the timer. This will go
582 		 * away once we handle ignored signals proper. Ensure that
583 		 * small intervals cannot starve the system.
584 		 */
585 		ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
586 		++ptr->it_requeue_pending;
587 		ptr->it_active = 1;
588 		result = ALARMTIMER_RESTART;
589 	}
590 	spin_unlock_irqrestore(&ptr->it_lock, flags);
591 
592 	return result;
593 }
594 
595 /**
596  * alarm_timer_rearm - Posix timer callback for rearming timer
597  * @timr:	Pointer to the posixtimer data struct
598  */
alarm_timer_rearm(struct k_itimer * timr)599 static void alarm_timer_rearm(struct k_itimer *timr)
600 {
601 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
602 
603 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
604 	alarm_start(alarm, alarm->node.expires);
605 }
606 
607 /**
608  * alarm_timer_forward - Posix timer callback for forwarding timer
609  * @timr:	Pointer to the posixtimer data struct
610  * @now:	Current time to forward the timer against
611  */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)612 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
613 {
614 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
615 
616 	return alarm_forward(alarm, timr->it_interval, now);
617 }
618 
619 /**
620  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
621  * @timr:	Pointer to the posixtimer data struct
622  * @now:	Current time to calculate against
623  */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)624 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
625 {
626 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
627 
628 	return ktime_sub(alarm->node.expires, now);
629 }
630 
631 /**
632  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
633  * @timr:	Pointer to the posixtimer data struct
634  */
alarm_timer_try_to_cancel(struct k_itimer * timr)635 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
636 {
637 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
638 }
639 
640 /**
641  * alarm_timer_wait_running - Posix timer callback to wait for a timer
642  * @timr:	Pointer to the posixtimer data struct
643  *
644  * Called from the core code when timer cancel detected that the callback
645  * is running. @timr is unlocked and rcu read lock is held to prevent it
646  * from being freed.
647  */
alarm_timer_wait_running(struct k_itimer * timr)648 static void alarm_timer_wait_running(struct k_itimer *timr)
649 {
650 	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
651 }
652 
653 /**
654  * alarm_timer_arm - Posix timer callback to arm a timer
655  * @timr:	Pointer to the posixtimer data struct
656  * @expires:	The new expiry time
657  * @absolute:	Expiry value is absolute time
658  * @sigev_none:	Posix timer does not deliver signals
659  */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)660 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
661 			    bool absolute, bool sigev_none)
662 {
663 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
664 	struct alarm_base *base = &alarm_bases[alarm->type];
665 
666 	if (!absolute)
667 		expires = ktime_add_safe(expires, base->get_ktime());
668 	if (sigev_none)
669 		alarm->node.expires = expires;
670 	else
671 		alarm_start(&timr->it.alarm.alarmtimer, expires);
672 }
673 
674 /**
675  * alarm_clock_getres - posix getres interface
676  * @which_clock: clockid
677  * @tp: timespec to fill
678  *
679  * Returns the granularity of underlying alarm base clock
680  */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)681 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
682 {
683 	if (!alarmtimer_get_rtcdev())
684 		return -EINVAL;
685 
686 	tp->tv_sec = 0;
687 	tp->tv_nsec = hrtimer_resolution;
688 	return 0;
689 }
690 
691 /**
692  * alarm_clock_get_timespec - posix clock_get_timespec interface
693  * @which_clock: clockid
694  * @tp: timespec to fill.
695  *
696  * Provides the underlying alarm base time in a tasks time namespace.
697  */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)698 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
699 {
700 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
701 
702 	if (!alarmtimer_get_rtcdev())
703 		return -EINVAL;
704 
705 	base->get_timespec(tp);
706 
707 	return 0;
708 }
709 
710 /**
711  * alarm_clock_get_ktime - posix clock_get_ktime interface
712  * @which_clock: clockid
713  *
714  * Provides the underlying alarm base time in the root namespace.
715  */
alarm_clock_get_ktime(clockid_t which_clock)716 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
717 {
718 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
719 
720 	if (!alarmtimer_get_rtcdev())
721 		return -EINVAL;
722 
723 	return base->get_ktime();
724 }
725 
726 /**
727  * alarm_timer_create - posix timer_create interface
728  * @new_timer: k_itimer pointer to manage
729  *
730  * Initializes the k_itimer structure.
731  */
alarm_timer_create(struct k_itimer * new_timer)732 static int alarm_timer_create(struct k_itimer *new_timer)
733 {
734 	enum  alarmtimer_type type;
735 
736 	if (!alarmtimer_get_rtcdev())
737 		return -EOPNOTSUPP;
738 
739 	if (!capable(CAP_WAKE_ALARM))
740 		return -EPERM;
741 
742 	type = clock2alarm(new_timer->it_clock);
743 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
744 	return 0;
745 }
746 
747 /**
748  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
749  * @alarm: ptr to alarm that fired
750  *
751  * Wakes up the task that set the alarmtimer
752  */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)753 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
754 								ktime_t now)
755 {
756 	struct task_struct *task = (struct task_struct *)alarm->data;
757 
758 	alarm->data = NULL;
759 	if (task)
760 		wake_up_process(task);
761 	return ALARMTIMER_NORESTART;
762 }
763 
764 /**
765  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
766  * @alarm: ptr to alarmtimer
767  * @absexp: absolute expiration time
768  *
769  * Sets the alarm timer and sleeps until it is fired or interrupted.
770  */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)771 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
772 				enum alarmtimer_type type)
773 {
774 	struct restart_block *restart;
775 	alarm->data = (void *)current;
776 	do {
777 		set_current_state(TASK_INTERRUPTIBLE);
778 		alarm_start(alarm, absexp);
779 		if (likely(alarm->data))
780 			schedule();
781 
782 		alarm_cancel(alarm);
783 	} while (alarm->data && !signal_pending(current));
784 
785 	__set_current_state(TASK_RUNNING);
786 
787 	destroy_hrtimer_on_stack(&alarm->timer);
788 
789 	if (!alarm->data)
790 		return 0;
791 
792 	if (freezing(current))
793 		alarmtimer_freezerset(absexp, type);
794 	restart = &current->restart_block;
795 	if (restart->nanosleep.type != TT_NONE) {
796 		struct timespec64 rmt;
797 		ktime_t rem;
798 
799 		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
800 
801 		if (rem <= 0)
802 			return 0;
803 		rmt = ktime_to_timespec64(rem);
804 
805 		return nanosleep_copyout(restart, &rmt);
806 	}
807 	return -ERESTART_RESTARTBLOCK;
808 }
809 
810 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))811 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
812 		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
813 {
814 	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
815 			      HRTIMER_MODE_ABS);
816 	__alarm_init(alarm, type, function);
817 }
818 
819 /**
820  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
821  * @restart: ptr to restart block
822  *
823  * Handles restarted clock_nanosleep calls
824  */
alarm_timer_nsleep_restart(struct restart_block * restart)825 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
826 {
827 	enum  alarmtimer_type type = restart->nanosleep.clockid;
828 	ktime_t exp = restart->nanosleep.expires;
829 	struct alarm alarm;
830 
831 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832 
833 	return alarmtimer_do_nsleep(&alarm, exp, type);
834 }
835 
836 /**
837  * alarm_timer_nsleep - alarmtimer nanosleep
838  * @which_clock: clockid
839  * @flags: determins abstime or relative
840  * @tsreq: requested sleep time (abs or rel)
841  * @rmtp: remaining sleep time saved
842  *
843  * Handles clock_nanosleep calls against _ALARM clockids
844  */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)845 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
846 			      const struct timespec64 *tsreq)
847 {
848 	enum  alarmtimer_type type = clock2alarm(which_clock);
849 	struct restart_block *restart = &current->restart_block;
850 	struct alarm alarm;
851 	ktime_t exp;
852 	int ret = 0;
853 
854 	if (!alarmtimer_get_rtcdev())
855 		return -EOPNOTSUPP;
856 
857 	if (flags & ~TIMER_ABSTIME)
858 		return -EINVAL;
859 
860 	if (!capable(CAP_WAKE_ALARM))
861 		return -EPERM;
862 
863 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
864 
865 	exp = timespec64_to_ktime(*tsreq);
866 	/* Convert (if necessary) to absolute time */
867 	if (flags != TIMER_ABSTIME) {
868 		ktime_t now = alarm_bases[type].get_ktime();
869 
870 		exp = ktime_add_safe(now, exp);
871 	} else {
872 		exp = timens_ktime_to_host(which_clock, exp);
873 	}
874 
875 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
876 	if (ret != -ERESTART_RESTARTBLOCK)
877 		return ret;
878 
879 	/* abs timers don't set remaining time or restart */
880 	if (flags == TIMER_ABSTIME)
881 		return -ERESTARTNOHAND;
882 
883 	restart->nanosleep.clockid = type;
884 	restart->nanosleep.expires = exp;
885 	set_restart_fn(restart, alarm_timer_nsleep_restart);
886 	return ret;
887 }
888 
889 const struct k_clock alarm_clock = {
890 	.clock_getres		= alarm_clock_getres,
891 	.clock_get_ktime	= alarm_clock_get_ktime,
892 	.clock_get_timespec	= alarm_clock_get_timespec,
893 	.timer_create		= alarm_timer_create,
894 	.timer_set		= common_timer_set,
895 	.timer_del		= common_timer_del,
896 	.timer_get		= common_timer_get,
897 	.timer_arm		= alarm_timer_arm,
898 	.timer_rearm		= alarm_timer_rearm,
899 	.timer_forward		= alarm_timer_forward,
900 	.timer_remaining	= alarm_timer_remaining,
901 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
902 	.timer_wait_running	= alarm_timer_wait_running,
903 	.nsleep			= alarm_timer_nsleep,
904 };
905 #endif /* CONFIG_POSIX_TIMERS */
906 
907 
908 /* Suspend hook structures */
909 static const struct dev_pm_ops alarmtimer_pm_ops = {
910 	.suspend = alarmtimer_suspend,
911 	.resume = alarmtimer_resume,
912 };
913 
914 static struct platform_driver alarmtimer_driver = {
915 	.driver = {
916 		.name = "alarmtimer",
917 		.pm = &alarmtimer_pm_ops,
918 	}
919 };
920 
get_boottime_timespec(struct timespec64 * tp)921 static void get_boottime_timespec(struct timespec64 *tp)
922 {
923 	ktime_get_boottime_ts64(tp);
924 	timens_add_boottime(tp);
925 }
926 
927 /**
928  * alarmtimer_init - Initialize alarm timer code
929  *
930  * This function initializes the alarm bases and registers
931  * the posix clock ids.
932  */
alarmtimer_init(void)933 static int __init alarmtimer_init(void)
934 {
935 	int error;
936 	int i;
937 
938 	alarmtimer_rtc_timer_init();
939 
940 	/* Initialize alarm bases */
941 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
942 	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
943 	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
944 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
945 	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
946 	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
947 	for (i = 0; i < ALARM_NUMTYPE; i++) {
948 		timerqueue_init_head(&alarm_bases[i].timerqueue);
949 		spin_lock_init(&alarm_bases[i].lock);
950 	}
951 
952 	error = alarmtimer_rtc_interface_setup();
953 	if (error)
954 		return error;
955 
956 	error = platform_driver_register(&alarmtimer_driver);
957 	if (error)
958 		goto out_if;
959 
960 	return 0;
961 out_if:
962 	alarmtimer_rtc_interface_remove();
963 	return error;
964 }
965 device_initcall(alarmtimer_init);
966