1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 #undef CREATE_TRACE_POINTS
37 #include <trace/hooks/wakeupbypass.h>
38 /**
39 * struct alarm_base - Alarm timer bases
40 * @lock: Lock for syncrhonized access to the base
41 * @timerqueue: Timerqueue head managing the list of events
42 * @get_ktime: Function to read the time correlating to the base
43 * @get_timespec: Function to read the namespace time correlating to the base
44 * @base_clockid: clockid for the base
45 */
46 static struct alarm_base {
47 spinlock_t lock;
48 struct timerqueue_head timerqueue;
49 ktime_t (*get_ktime)(void);
50 void (*get_timespec)(struct timespec64 *tp);
51 clockid_t base_clockid;
52 } alarm_bases[ALARM_NUMTYPE];
53
54 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
55 /* freezer information to handle clock_nanosleep triggered wakeups */
56 static enum alarmtimer_type freezer_alarmtype;
57 static ktime_t freezer_expires;
58 static ktime_t freezer_delta;
59 static DEFINE_SPINLOCK(freezer_delta_lock);
60 #endif
61
62 #ifdef CONFIG_RTC_CLASS
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer rtctimer;
65 static struct rtc_device *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69 * alarmtimer_get_rtcdev - Return selected rtcdevice
70 *
71 * This function returns the rtc device to use for wakealarms.
72 */
alarmtimer_get_rtcdev(void)73 struct rtc_device *alarmtimer_get_rtcdev(void)
74 {
75 unsigned long flags;
76 struct rtc_device *ret;
77
78 spin_lock_irqsave(&rtcdev_lock, flags);
79 ret = rtcdev;
80 spin_unlock_irqrestore(&rtcdev_lock, flags);
81
82 return ret;
83 }
84 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
85
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)86 static int alarmtimer_rtc_add_device(struct device *dev,
87 struct class_interface *class_intf)
88 {
89 unsigned long flags;
90 struct rtc_device *rtc = to_rtc_device(dev);
91 struct platform_device *pdev;
92 int ret = 0;
93
94 if (rtcdev)
95 return -EBUSY;
96
97 if (!rtc->ops->set_alarm)
98 return -1;
99 if (!device_may_wakeup(rtc->dev.parent))
100 return -1;
101
102 pdev = platform_device_register_data(dev, "alarmtimer",
103 PLATFORM_DEVID_AUTO, NULL, 0);
104 if (!IS_ERR(pdev))
105 device_init_wakeup(&pdev->dev, true);
106
107 spin_lock_irqsave(&rtcdev_lock, flags);
108 if (!IS_ERR(pdev) && !rtcdev) {
109 if (!try_module_get(rtc->owner)) {
110 ret = -1;
111 goto unlock;
112 }
113
114 rtcdev = rtc;
115 /* hold a reference so it doesn't go away */
116 get_device(dev);
117 pdev = NULL;
118 } else {
119 ret = -1;
120 }
121 unlock:
122 spin_unlock_irqrestore(&rtcdev_lock, flags);
123
124 platform_device_unregister(pdev);
125
126 return ret;
127 }
128
alarmtimer_rtc_timer_init(void)129 static inline void alarmtimer_rtc_timer_init(void)
130 {
131 rtc_timer_init(&rtctimer, NULL, NULL);
132 }
133
134 static struct class_interface alarmtimer_rtc_interface = {
135 .add_dev = &alarmtimer_rtc_add_device,
136 };
137
alarmtimer_rtc_interface_setup(void)138 static int alarmtimer_rtc_interface_setup(void)
139 {
140 alarmtimer_rtc_interface.class = rtc_class;
141 return class_interface_register(&alarmtimer_rtc_interface);
142 }
alarmtimer_rtc_interface_remove(void)143 static void alarmtimer_rtc_interface_remove(void)
144 {
145 class_interface_unregister(&alarmtimer_rtc_interface);
146 }
147 #else
alarmtimer_rtc_interface_setup(void)148 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)149 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)150 static inline void alarmtimer_rtc_timer_init(void) { }
151 #endif
152
153 /**
154 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
155 * @base: pointer to the base where the timer is being run
156 * @alarm: pointer to alarm being enqueued.
157 *
158 * Adds alarm to a alarm_base timerqueue
159 *
160 * Must hold base->lock when calling.
161 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)162 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
163 {
164 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
165 timerqueue_del(&base->timerqueue, &alarm->node);
166
167 timerqueue_add(&base->timerqueue, &alarm->node);
168 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
169 }
170
171 /**
172 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
173 * @base: pointer to the base where the timer is running
174 * @alarm: pointer to alarm being removed
175 *
176 * Removes alarm to a alarm_base timerqueue
177 *
178 * Must hold base->lock when calling.
179 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)180 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
181 {
182 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
183 return;
184
185 timerqueue_del(&base->timerqueue, &alarm->node);
186 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
187 }
188
189
190 /**
191 * alarmtimer_fired - Handles alarm hrtimer being fired.
192 * @timer: pointer to hrtimer being run
193 *
194 * When a alarm timer fires, this runs through the timerqueue to
195 * see which alarms expired, and runs those. If there are more alarm
196 * timers queued for the future, we set the hrtimer to fire when
197 * the next future alarm timer expires.
198 */
alarmtimer_fired(struct hrtimer * timer)199 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
200 {
201 struct alarm *alarm = container_of(timer, struct alarm, timer);
202 struct alarm_base *base = &alarm_bases[alarm->type];
203 unsigned long flags;
204 int ret = HRTIMER_NORESTART;
205 int restart = ALARMTIMER_NORESTART;
206
207 spin_lock_irqsave(&base->lock, flags);
208 alarmtimer_dequeue(base, alarm);
209 spin_unlock_irqrestore(&base->lock, flags);
210
211 if (alarm->function)
212 restart = alarm->function(alarm, base->get_ktime());
213
214 spin_lock_irqsave(&base->lock, flags);
215 if (restart != ALARMTIMER_NORESTART) {
216 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
217 alarmtimer_enqueue(base, alarm);
218 ret = HRTIMER_RESTART;
219 }
220 spin_unlock_irqrestore(&base->lock, flags);
221
222 trace_alarmtimer_fired(alarm, base->get_ktime());
223 return ret;
224
225 }
226
alarm_expires_remaining(const struct alarm * alarm)227 ktime_t alarm_expires_remaining(const struct alarm *alarm)
228 {
229 struct alarm_base *base = &alarm_bases[alarm->type];
230 return ktime_sub(alarm->node.expires, base->get_ktime());
231 }
232 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
233
234 #ifdef CONFIG_RTC_CLASS
235 /**
236 * alarmtimer_suspend - Suspend time callback
237 * @dev: unused
238 *
239 * When we are going into suspend, we look through the bases
240 * to see which is the soonest timer to expire. We then
241 * set an rtc timer to fire that far into the future, which
242 * will wake us from suspend.
243 */
alarmtimer_suspend(struct device * dev)244 static int alarmtimer_suspend(struct device *dev)
245 {
246 ktime_t min, now, expires;
247 int i, ret, type;
248 struct rtc_device *rtc;
249 unsigned long flags;
250 struct rtc_time tm;
251 int wakeup_bypass_enabled = 0;
252
253 spin_lock_irqsave(&freezer_delta_lock, flags);
254 min = freezer_delta;
255 expires = freezer_expires;
256 type = freezer_alarmtype;
257 freezer_delta = 0;
258 spin_unlock_irqrestore(&freezer_delta_lock, flags);
259
260 trace_android_vh_wakeup_bypass(&wakeup_bypass_enabled);
261 if (wakeup_bypass_enabled)
262 return 0;
263
264 rtc = alarmtimer_get_rtcdev();
265 /* If we have no rtcdev, just return */
266 if (!rtc)
267 return 0;
268
269 /* Find the soonest timer to expire*/
270 for (i = 0; i < ALARM_NUMTYPE; i++) {
271 struct alarm_base *base = &alarm_bases[i];
272 struct timerqueue_node *next;
273 ktime_t delta;
274
275 spin_lock_irqsave(&base->lock, flags);
276 next = timerqueue_getnext(&base->timerqueue);
277 spin_unlock_irqrestore(&base->lock, flags);
278 if (!next)
279 continue;
280 delta = ktime_sub(next->expires, base->get_ktime());
281 if (!min || (delta < min)) {
282 expires = next->expires;
283 min = delta;
284 type = i;
285 }
286 }
287 if (min == 0)
288 return 0;
289
290 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
291 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
292 return -EBUSY;
293 }
294
295 trace_alarmtimer_suspend(expires, type);
296
297 /* Setup an rtc timer to fire that far in the future */
298 rtc_timer_cancel(rtc, &rtctimer);
299 rtc_read_time(rtc, &tm);
300 now = rtc_tm_to_ktime(tm);
301 now = ktime_add(now, min);
302
303 /* Set alarm, if in the past reject suspend briefly to handle */
304 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
305 if (ret < 0)
306 pm_wakeup_event(dev, MSEC_PER_SEC);
307 return ret;
308 }
309
alarmtimer_resume(struct device * dev)310 static int alarmtimer_resume(struct device *dev)
311 {
312 struct rtc_device *rtc;
313
314 rtc = alarmtimer_get_rtcdev();
315 if (rtc)
316 rtc_timer_cancel(rtc, &rtctimer);
317 return 0;
318 }
319
320 #else
alarmtimer_suspend(struct device * dev)321 static int alarmtimer_suspend(struct device *dev)
322 {
323 return 0;
324 }
325
alarmtimer_resume(struct device * dev)326 static int alarmtimer_resume(struct device *dev)
327 {
328 return 0;
329 }
330 #endif
331
332 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))333 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
334 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
335 {
336 timerqueue_init(&alarm->node);
337 alarm->timer.function = alarmtimer_fired;
338 alarm->function = function;
339 alarm->type = type;
340 alarm->state = ALARMTIMER_STATE_INACTIVE;
341 }
342
343 /**
344 * alarm_init - Initialize an alarm structure
345 * @alarm: ptr to alarm to be initialized
346 * @type: the type of the alarm
347 * @function: callback that is run when the alarm fires
348 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))349 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
350 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
351 {
352 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
353 HRTIMER_MODE_ABS);
354 __alarm_init(alarm, type, function);
355 }
356 EXPORT_SYMBOL_GPL(alarm_init);
357
358 /**
359 * alarm_start - Sets an absolute alarm to fire
360 * @alarm: ptr to alarm to set
361 * @start: time to run the alarm
362 */
alarm_start(struct alarm * alarm,ktime_t start)363 void alarm_start(struct alarm *alarm, ktime_t start)
364 {
365 struct alarm_base *base = &alarm_bases[alarm->type];
366 unsigned long flags;
367
368 spin_lock_irqsave(&base->lock, flags);
369 alarm->node.expires = start;
370 alarmtimer_enqueue(base, alarm);
371 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
372 spin_unlock_irqrestore(&base->lock, flags);
373
374 trace_alarmtimer_start(alarm, base->get_ktime());
375 }
376 EXPORT_SYMBOL_GPL(alarm_start);
377
378 /**
379 * alarm_start_relative - Sets a relative alarm to fire
380 * @alarm: ptr to alarm to set
381 * @start: time relative to now to run the alarm
382 */
alarm_start_relative(struct alarm * alarm,ktime_t start)383 void alarm_start_relative(struct alarm *alarm, ktime_t start)
384 {
385 struct alarm_base *base = &alarm_bases[alarm->type];
386
387 start = ktime_add_safe(start, base->get_ktime());
388 alarm_start(alarm, start);
389 }
390 EXPORT_SYMBOL_GPL(alarm_start_relative);
391
alarm_restart(struct alarm * alarm)392 void alarm_restart(struct alarm *alarm)
393 {
394 struct alarm_base *base = &alarm_bases[alarm->type];
395 unsigned long flags;
396
397 spin_lock_irqsave(&base->lock, flags);
398 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
399 hrtimer_restart(&alarm->timer);
400 alarmtimer_enqueue(base, alarm);
401 spin_unlock_irqrestore(&base->lock, flags);
402 }
403 EXPORT_SYMBOL_GPL(alarm_restart);
404
405 /**
406 * alarm_try_to_cancel - Tries to cancel an alarm timer
407 * @alarm: ptr to alarm to be canceled
408 *
409 * Returns 1 if the timer was canceled, 0 if it was not running,
410 * and -1 if the callback was running
411 */
alarm_try_to_cancel(struct alarm * alarm)412 int alarm_try_to_cancel(struct alarm *alarm)
413 {
414 struct alarm_base *base = &alarm_bases[alarm->type];
415 unsigned long flags;
416 int ret;
417
418 spin_lock_irqsave(&base->lock, flags);
419 ret = hrtimer_try_to_cancel(&alarm->timer);
420 if (ret >= 0)
421 alarmtimer_dequeue(base, alarm);
422 spin_unlock_irqrestore(&base->lock, flags);
423
424 trace_alarmtimer_cancel(alarm, base->get_ktime());
425 return ret;
426 }
427 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
428
429
430 /**
431 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
432 * @alarm: ptr to alarm to be canceled
433 *
434 * Returns 1 if the timer was canceled, 0 if it was not active.
435 */
alarm_cancel(struct alarm * alarm)436 int alarm_cancel(struct alarm *alarm)
437 {
438 for (;;) {
439 int ret = alarm_try_to_cancel(alarm);
440 if (ret >= 0)
441 return ret;
442 hrtimer_cancel_wait_running(&alarm->timer);
443 }
444 }
445 EXPORT_SYMBOL_GPL(alarm_cancel);
446
447
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)448 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
449 {
450 u64 overrun = 1;
451 ktime_t delta;
452
453 delta = ktime_sub(now, alarm->node.expires);
454
455 if (delta < 0)
456 return 0;
457
458 if (unlikely(delta >= interval)) {
459 s64 incr = ktime_to_ns(interval);
460
461 overrun = ktime_divns(delta, incr);
462
463 alarm->node.expires = ktime_add_ns(alarm->node.expires,
464 incr*overrun);
465
466 if (alarm->node.expires > now)
467 return overrun;
468 /*
469 * This (and the ktime_add() below) is the
470 * correction for exact:
471 */
472 overrun++;
473 }
474
475 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
476 return overrun;
477 }
478 EXPORT_SYMBOL_GPL(alarm_forward);
479
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)480 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
481 {
482 struct alarm_base *base = &alarm_bases[alarm->type];
483 ktime_t now = base->get_ktime();
484
485 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
486 /*
487 * Same issue as with posix_timer_fn(). Timers which are
488 * periodic but the signal is ignored can starve the system
489 * with a very small interval. The real fix which was
490 * promised in the context of posix_timer_fn() never
491 * materialized, but someone should really work on it.
492 *
493 * To prevent DOS fake @now to be 1 jiffie out which keeps
494 * the overrun accounting correct but creates an
495 * inconsistency vs. timer_gettime(2).
496 */
497 ktime_t kj = NSEC_PER_SEC / HZ;
498
499 if (interval < kj)
500 now = ktime_add(now, kj);
501 }
502
503 return alarm_forward(alarm, now, interval);
504 }
505
alarm_forward_now(struct alarm * alarm,ktime_t interval)506 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
507 {
508 return __alarm_forward_now(alarm, interval, false);
509 }
510 EXPORT_SYMBOL_GPL(alarm_forward_now);
511
512 #ifdef CONFIG_POSIX_TIMERS
513
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)514 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
515 {
516 struct alarm_base *base;
517 unsigned long flags;
518 ktime_t delta;
519
520 switch(type) {
521 case ALARM_REALTIME:
522 base = &alarm_bases[ALARM_REALTIME];
523 type = ALARM_REALTIME_FREEZER;
524 break;
525 case ALARM_BOOTTIME:
526 base = &alarm_bases[ALARM_BOOTTIME];
527 type = ALARM_BOOTTIME_FREEZER;
528 break;
529 default:
530 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
531 return;
532 }
533
534 delta = ktime_sub(absexp, base->get_ktime());
535
536 spin_lock_irqsave(&freezer_delta_lock, flags);
537 if (!freezer_delta || (delta < freezer_delta)) {
538 freezer_delta = delta;
539 freezer_expires = absexp;
540 freezer_alarmtype = type;
541 }
542 spin_unlock_irqrestore(&freezer_delta_lock, flags);
543 }
544
545 /**
546 * clock2alarm - helper that converts from clockid to alarmtypes
547 * @clockid: clockid.
548 */
clock2alarm(clockid_t clockid)549 static enum alarmtimer_type clock2alarm(clockid_t clockid)
550 {
551 if (clockid == CLOCK_REALTIME_ALARM)
552 return ALARM_REALTIME;
553 if (clockid == CLOCK_BOOTTIME_ALARM)
554 return ALARM_BOOTTIME;
555 return -1;
556 }
557
558 /**
559 * alarm_handle_timer - Callback for posix timers
560 * @alarm: alarm that fired
561 *
562 * Posix timer callback for expired alarm timers.
563 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)564 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
565 ktime_t now)
566 {
567 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
568 it.alarm.alarmtimer);
569 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
570 unsigned long flags;
571 int si_private = 0;
572
573 spin_lock_irqsave(&ptr->it_lock, flags);
574
575 ptr->it_active = 0;
576 if (ptr->it_interval)
577 si_private = ++ptr->it_requeue_pending;
578
579 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
580 /*
581 * Handle ignored signals and rearm the timer. This will go
582 * away once we handle ignored signals proper. Ensure that
583 * small intervals cannot starve the system.
584 */
585 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
586 ++ptr->it_requeue_pending;
587 ptr->it_active = 1;
588 result = ALARMTIMER_RESTART;
589 }
590 spin_unlock_irqrestore(&ptr->it_lock, flags);
591
592 return result;
593 }
594
595 /**
596 * alarm_timer_rearm - Posix timer callback for rearming timer
597 * @timr: Pointer to the posixtimer data struct
598 */
alarm_timer_rearm(struct k_itimer * timr)599 static void alarm_timer_rearm(struct k_itimer *timr)
600 {
601 struct alarm *alarm = &timr->it.alarm.alarmtimer;
602
603 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
604 alarm_start(alarm, alarm->node.expires);
605 }
606
607 /**
608 * alarm_timer_forward - Posix timer callback for forwarding timer
609 * @timr: Pointer to the posixtimer data struct
610 * @now: Current time to forward the timer against
611 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)612 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
613 {
614 struct alarm *alarm = &timr->it.alarm.alarmtimer;
615
616 return alarm_forward(alarm, timr->it_interval, now);
617 }
618
619 /**
620 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
621 * @timr: Pointer to the posixtimer data struct
622 * @now: Current time to calculate against
623 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)624 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
625 {
626 struct alarm *alarm = &timr->it.alarm.alarmtimer;
627
628 return ktime_sub(alarm->node.expires, now);
629 }
630
631 /**
632 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
633 * @timr: Pointer to the posixtimer data struct
634 */
alarm_timer_try_to_cancel(struct k_itimer * timr)635 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
636 {
637 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
638 }
639
640 /**
641 * alarm_timer_wait_running - Posix timer callback to wait for a timer
642 * @timr: Pointer to the posixtimer data struct
643 *
644 * Called from the core code when timer cancel detected that the callback
645 * is running. @timr is unlocked and rcu read lock is held to prevent it
646 * from being freed.
647 */
alarm_timer_wait_running(struct k_itimer * timr)648 static void alarm_timer_wait_running(struct k_itimer *timr)
649 {
650 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
651 }
652
653 /**
654 * alarm_timer_arm - Posix timer callback to arm a timer
655 * @timr: Pointer to the posixtimer data struct
656 * @expires: The new expiry time
657 * @absolute: Expiry value is absolute time
658 * @sigev_none: Posix timer does not deliver signals
659 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)660 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
661 bool absolute, bool sigev_none)
662 {
663 struct alarm *alarm = &timr->it.alarm.alarmtimer;
664 struct alarm_base *base = &alarm_bases[alarm->type];
665
666 if (!absolute)
667 expires = ktime_add_safe(expires, base->get_ktime());
668 if (sigev_none)
669 alarm->node.expires = expires;
670 else
671 alarm_start(&timr->it.alarm.alarmtimer, expires);
672 }
673
674 /**
675 * alarm_clock_getres - posix getres interface
676 * @which_clock: clockid
677 * @tp: timespec to fill
678 *
679 * Returns the granularity of underlying alarm base clock
680 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)681 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
682 {
683 if (!alarmtimer_get_rtcdev())
684 return -EINVAL;
685
686 tp->tv_sec = 0;
687 tp->tv_nsec = hrtimer_resolution;
688 return 0;
689 }
690
691 /**
692 * alarm_clock_get_timespec - posix clock_get_timespec interface
693 * @which_clock: clockid
694 * @tp: timespec to fill.
695 *
696 * Provides the underlying alarm base time in a tasks time namespace.
697 */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)698 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
699 {
700 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
701
702 if (!alarmtimer_get_rtcdev())
703 return -EINVAL;
704
705 base->get_timespec(tp);
706
707 return 0;
708 }
709
710 /**
711 * alarm_clock_get_ktime - posix clock_get_ktime interface
712 * @which_clock: clockid
713 *
714 * Provides the underlying alarm base time in the root namespace.
715 */
alarm_clock_get_ktime(clockid_t which_clock)716 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
717 {
718 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
719
720 if (!alarmtimer_get_rtcdev())
721 return -EINVAL;
722
723 return base->get_ktime();
724 }
725
726 /**
727 * alarm_timer_create - posix timer_create interface
728 * @new_timer: k_itimer pointer to manage
729 *
730 * Initializes the k_itimer structure.
731 */
alarm_timer_create(struct k_itimer * new_timer)732 static int alarm_timer_create(struct k_itimer *new_timer)
733 {
734 enum alarmtimer_type type;
735
736 if (!alarmtimer_get_rtcdev())
737 return -EOPNOTSUPP;
738
739 if (!capable(CAP_WAKE_ALARM))
740 return -EPERM;
741
742 type = clock2alarm(new_timer->it_clock);
743 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
744 return 0;
745 }
746
747 /**
748 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
749 * @alarm: ptr to alarm that fired
750 *
751 * Wakes up the task that set the alarmtimer
752 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)753 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
754 ktime_t now)
755 {
756 struct task_struct *task = (struct task_struct *)alarm->data;
757
758 alarm->data = NULL;
759 if (task)
760 wake_up_process(task);
761 return ALARMTIMER_NORESTART;
762 }
763
764 /**
765 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
766 * @alarm: ptr to alarmtimer
767 * @absexp: absolute expiration time
768 *
769 * Sets the alarm timer and sleeps until it is fired or interrupted.
770 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)771 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
772 enum alarmtimer_type type)
773 {
774 struct restart_block *restart;
775 alarm->data = (void *)current;
776 do {
777 set_current_state(TASK_INTERRUPTIBLE);
778 alarm_start(alarm, absexp);
779 if (likely(alarm->data))
780 schedule();
781
782 alarm_cancel(alarm);
783 } while (alarm->data && !signal_pending(current));
784
785 __set_current_state(TASK_RUNNING);
786
787 destroy_hrtimer_on_stack(&alarm->timer);
788
789 if (!alarm->data)
790 return 0;
791
792 if (freezing(current))
793 alarmtimer_freezerset(absexp, type);
794 restart = ¤t->restart_block;
795 if (restart->nanosleep.type != TT_NONE) {
796 struct timespec64 rmt;
797 ktime_t rem;
798
799 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
800
801 if (rem <= 0)
802 return 0;
803 rmt = ktime_to_timespec64(rem);
804
805 return nanosleep_copyout(restart, &rmt);
806 }
807 return -ERESTART_RESTARTBLOCK;
808 }
809
810 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))811 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
812 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
813 {
814 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
815 HRTIMER_MODE_ABS);
816 __alarm_init(alarm, type, function);
817 }
818
819 /**
820 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
821 * @restart: ptr to restart block
822 *
823 * Handles restarted clock_nanosleep calls
824 */
alarm_timer_nsleep_restart(struct restart_block * restart)825 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
826 {
827 enum alarmtimer_type type = restart->nanosleep.clockid;
828 ktime_t exp = restart->nanosleep.expires;
829 struct alarm alarm;
830
831 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833 return alarmtimer_do_nsleep(&alarm, exp, type);
834 }
835
836 /**
837 * alarm_timer_nsleep - alarmtimer nanosleep
838 * @which_clock: clockid
839 * @flags: determins abstime or relative
840 * @tsreq: requested sleep time (abs or rel)
841 * @rmtp: remaining sleep time saved
842 *
843 * Handles clock_nanosleep calls against _ALARM clockids
844 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)845 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
846 const struct timespec64 *tsreq)
847 {
848 enum alarmtimer_type type = clock2alarm(which_clock);
849 struct restart_block *restart = ¤t->restart_block;
850 struct alarm alarm;
851 ktime_t exp;
852 int ret = 0;
853
854 if (!alarmtimer_get_rtcdev())
855 return -EOPNOTSUPP;
856
857 if (flags & ~TIMER_ABSTIME)
858 return -EINVAL;
859
860 if (!capable(CAP_WAKE_ALARM))
861 return -EPERM;
862
863 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
864
865 exp = timespec64_to_ktime(*tsreq);
866 /* Convert (if necessary) to absolute time */
867 if (flags != TIMER_ABSTIME) {
868 ktime_t now = alarm_bases[type].get_ktime();
869
870 exp = ktime_add_safe(now, exp);
871 } else {
872 exp = timens_ktime_to_host(which_clock, exp);
873 }
874
875 ret = alarmtimer_do_nsleep(&alarm, exp, type);
876 if (ret != -ERESTART_RESTARTBLOCK)
877 return ret;
878
879 /* abs timers don't set remaining time or restart */
880 if (flags == TIMER_ABSTIME)
881 return -ERESTARTNOHAND;
882
883 restart->nanosleep.clockid = type;
884 restart->nanosleep.expires = exp;
885 set_restart_fn(restart, alarm_timer_nsleep_restart);
886 return ret;
887 }
888
889 const struct k_clock alarm_clock = {
890 .clock_getres = alarm_clock_getres,
891 .clock_get_ktime = alarm_clock_get_ktime,
892 .clock_get_timespec = alarm_clock_get_timespec,
893 .timer_create = alarm_timer_create,
894 .timer_set = common_timer_set,
895 .timer_del = common_timer_del,
896 .timer_get = common_timer_get,
897 .timer_arm = alarm_timer_arm,
898 .timer_rearm = alarm_timer_rearm,
899 .timer_forward = alarm_timer_forward,
900 .timer_remaining = alarm_timer_remaining,
901 .timer_try_to_cancel = alarm_timer_try_to_cancel,
902 .timer_wait_running = alarm_timer_wait_running,
903 .nsleep = alarm_timer_nsleep,
904 };
905 #endif /* CONFIG_POSIX_TIMERS */
906
907
908 /* Suspend hook structures */
909 static const struct dev_pm_ops alarmtimer_pm_ops = {
910 .suspend = alarmtimer_suspend,
911 .resume = alarmtimer_resume,
912 };
913
914 static struct platform_driver alarmtimer_driver = {
915 .driver = {
916 .name = "alarmtimer",
917 .pm = &alarmtimer_pm_ops,
918 }
919 };
920
get_boottime_timespec(struct timespec64 * tp)921 static void get_boottime_timespec(struct timespec64 *tp)
922 {
923 ktime_get_boottime_ts64(tp);
924 timens_add_boottime(tp);
925 }
926
927 /**
928 * alarmtimer_init - Initialize alarm timer code
929 *
930 * This function initializes the alarm bases and registers
931 * the posix clock ids.
932 */
alarmtimer_init(void)933 static int __init alarmtimer_init(void)
934 {
935 int error;
936 int i;
937
938 alarmtimer_rtc_timer_init();
939
940 /* Initialize alarm bases */
941 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
942 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
943 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
944 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
945 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
946 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
947 for (i = 0; i < ALARM_NUMTYPE; i++) {
948 timerqueue_init_head(&alarm_bases[i].timerqueue);
949 spin_lock_init(&alarm_bases[i].lock);
950 }
951
952 error = alarmtimer_rtc_interface_setup();
953 if (error)
954 return error;
955
956 error = platform_driver_register(&alarmtimer_driver);
957 if (error)
958 goto out_if;
959
960 return 0;
961 out_if:
962 alarmtimer_rtc_interface_remove();
963 return error;
964 }
965 device_initcall(alarmtimer_init);
966