• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 	unsigned int seq;
123 
124 	do {
125 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126 
127 		*low = net->ipv4.ip_local_ports.range[0];
128 		*high = net->ipv4.ip_local_ports.range[1];
129 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132 
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)133 static int inet_csk_bind_conflict(const struct sock *sk,
134 				  const struct inet_bind_bucket *tb,
135 				  bool relax, bool reuseport_ok)
136 {
137 	struct sock *sk2;
138 	bool reuse = sk->sk_reuse;
139 	bool reuseport = !!sk->sk_reuseport;
140 	kuid_t uid = sock_i_uid((struct sock *)sk);
141 
142 	/*
143 	 * Unlike other sk lookup places we do not check
144 	 * for sk_net here, since _all_ the socks listed
145 	 * in tb->owners list belong to the same net - the
146 	 * one this bucket belongs to.
147 	 */
148 
149 	sk_for_each_bound(sk2, &tb->owners) {
150 		int bound_dev_if2;
151 
152 		if (sk == sk2)
153 			continue;
154 		bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
155 		if ((!sk->sk_bound_dev_if ||
156 		     !bound_dev_if2 ||
157 		     sk->sk_bound_dev_if == bound_dev_if2)) {
158 			if (reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if ((!relax ||
161 				     (!reuseport_ok &&
162 				      reuseport && sk2->sk_reuseport &&
163 				      !rcu_access_pointer(sk->sk_reuseport_cb) &&
164 				      (sk2->sk_state == TCP_TIME_WAIT ||
165 				       uid_eq(uid, sock_i_uid(sk2))))) &&
166 				    inet_rcv_saddr_equal(sk, sk2, true))
167 					break;
168 			} else if (!reuseport_ok ||
169 				   !reuseport || !sk2->sk_reuseport ||
170 				   rcu_access_pointer(sk->sk_reuseport_cb) ||
171 				   (sk2->sk_state != TCP_TIME_WAIT &&
172 				    !uid_eq(uid, sock_i_uid(sk2)))) {
173 				if (inet_rcv_saddr_equal(sk, sk2, true))
174 					break;
175 			}
176 		}
177 	}
178 	return sk2 != NULL;
179 }
180 
181 /*
182  * Find an open port number for the socket.  Returns with the
183  * inet_bind_hashbucket lock held.
184  */
185 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)186 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
187 {
188 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
189 	int port = 0;
190 	struct inet_bind_hashbucket *head;
191 	struct net *net = sock_net(sk);
192 	bool relax = false;
193 	int i, low, high, attempt_half;
194 	struct inet_bind_bucket *tb;
195 	u32 remaining, offset;
196 	int l3mdev;
197 
198 	l3mdev = inet_sk_bound_l3mdev(sk);
199 ports_exhausted:
200 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
201 other_half_scan:
202 	inet_get_local_port_range(net, &low, &high);
203 	high++; /* [32768, 60999] -> [32768, 61000[ */
204 	if (high - low < 4)
205 		attempt_half = 0;
206 	if (attempt_half) {
207 		int half = low + (((high - low) >> 2) << 1);
208 
209 		if (attempt_half == 1)
210 			high = half;
211 		else
212 			low = half;
213 	}
214 	remaining = high - low;
215 	if (likely(remaining > 1))
216 		remaining &= ~1U;
217 
218 	offset = prandom_u32() % remaining;
219 	/* __inet_hash_connect() favors ports having @low parity
220 	 * We do the opposite to not pollute connect() users.
221 	 */
222 	offset |= 1U;
223 
224 other_parity_scan:
225 	port = low + offset;
226 	for (i = 0; i < remaining; i += 2, port += 2) {
227 		if (unlikely(port >= high))
228 			port -= remaining;
229 		if (inet_is_local_reserved_port(net, port))
230 			continue;
231 		head = &hinfo->bhash[inet_bhashfn(net, port,
232 						  hinfo->bhash_size)];
233 		spin_lock_bh(&head->lock);
234 		inet_bind_bucket_for_each(tb, &head->chain)
235 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
236 			    tb->port == port) {
237 				if (!inet_csk_bind_conflict(sk, tb, relax, false))
238 					goto success;
239 				goto next_port;
240 			}
241 		tb = NULL;
242 		goto success;
243 next_port:
244 		spin_unlock_bh(&head->lock);
245 		cond_resched();
246 	}
247 
248 	offset--;
249 	if (!(offset & 1))
250 		goto other_parity_scan;
251 
252 	if (attempt_half == 1) {
253 		/* OK we now try the upper half of the range */
254 		attempt_half = 2;
255 		goto other_half_scan;
256 	}
257 
258 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
259 		/* We still have a chance to connect to different destinations */
260 		relax = true;
261 		goto ports_exhausted;
262 	}
263 	return NULL;
264 success:
265 	*port_ret = port;
266 	*tb_ret = tb;
267 	return head;
268 }
269 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)270 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
271 				     struct sock *sk)
272 {
273 	kuid_t uid = sock_i_uid(sk);
274 
275 	if (tb->fastreuseport <= 0)
276 		return 0;
277 	if (!sk->sk_reuseport)
278 		return 0;
279 	if (rcu_access_pointer(sk->sk_reuseport_cb))
280 		return 0;
281 	if (!uid_eq(tb->fastuid, uid))
282 		return 0;
283 	/* We only need to check the rcv_saddr if this tb was once marked
284 	 * without fastreuseport and then was reset, as we can only know that
285 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
286 	 * owners list.
287 	 */
288 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
289 		return 1;
290 #if IS_ENABLED(CONFIG_IPV6)
291 	if (tb->fast_sk_family == AF_INET6)
292 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
293 					    inet6_rcv_saddr(sk),
294 					    tb->fast_rcv_saddr,
295 					    sk->sk_rcv_saddr,
296 					    tb->fast_ipv6_only,
297 					    ipv6_only_sock(sk), true, false);
298 #endif
299 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
300 				    ipv6_only_sock(sk), true, false);
301 }
302 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)303 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
304 			       struct sock *sk)
305 {
306 	kuid_t uid = sock_i_uid(sk);
307 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
308 
309 	if (hlist_empty(&tb->owners)) {
310 		tb->fastreuse = reuse;
311 		if (sk->sk_reuseport) {
312 			tb->fastreuseport = FASTREUSEPORT_ANY;
313 			tb->fastuid = uid;
314 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
315 			tb->fast_ipv6_only = ipv6_only_sock(sk);
316 			tb->fast_sk_family = sk->sk_family;
317 #if IS_ENABLED(CONFIG_IPV6)
318 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
319 #endif
320 		} else {
321 			tb->fastreuseport = 0;
322 		}
323 	} else {
324 		if (!reuse)
325 			tb->fastreuse = 0;
326 		if (sk->sk_reuseport) {
327 			/* We didn't match or we don't have fastreuseport set on
328 			 * the tb, but we have sk_reuseport set on this socket
329 			 * and we know that there are no bind conflicts with
330 			 * this socket in this tb, so reset our tb's reuseport
331 			 * settings so that any subsequent sockets that match
332 			 * our current socket will be put on the fast path.
333 			 *
334 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
335 			 * do extra checking for all subsequent sk_reuseport
336 			 * socks.
337 			 */
338 			if (!sk_reuseport_match(tb, sk)) {
339 				tb->fastreuseport = FASTREUSEPORT_STRICT;
340 				tb->fastuid = uid;
341 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
342 				tb->fast_ipv6_only = ipv6_only_sock(sk);
343 				tb->fast_sk_family = sk->sk_family;
344 #if IS_ENABLED(CONFIG_IPV6)
345 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
346 #endif
347 			}
348 		} else {
349 			tb->fastreuseport = 0;
350 		}
351 	}
352 }
353 
354 /* Obtain a reference to a local port for the given sock,
355  * if snum is zero it means select any available local port.
356  * We try to allocate an odd port (and leave even ports for connect())
357  */
inet_csk_get_port(struct sock * sk,unsigned short snum)358 int inet_csk_get_port(struct sock *sk, unsigned short snum)
359 {
360 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
361 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
362 	int ret = 1, port = snum;
363 	struct inet_bind_hashbucket *head;
364 	struct net *net = sock_net(sk);
365 	struct inet_bind_bucket *tb = NULL;
366 	int l3mdev;
367 
368 	l3mdev = inet_sk_bound_l3mdev(sk);
369 
370 	if (!port) {
371 		head = inet_csk_find_open_port(sk, &tb, &port);
372 		if (!head)
373 			return ret;
374 		if (!tb)
375 			goto tb_not_found;
376 		goto success;
377 	}
378 	head = &hinfo->bhash[inet_bhashfn(net, port,
379 					  hinfo->bhash_size)];
380 	spin_lock_bh(&head->lock);
381 	inet_bind_bucket_for_each(tb, &head->chain)
382 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
383 		    tb->port == port)
384 			goto tb_found;
385 tb_not_found:
386 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
387 				     net, head, port, l3mdev);
388 	if (!tb)
389 		goto fail_unlock;
390 tb_found:
391 	if (!hlist_empty(&tb->owners)) {
392 		if (sk->sk_reuse == SK_FORCE_REUSE)
393 			goto success;
394 
395 		if ((tb->fastreuse > 0 && reuse) ||
396 		    sk_reuseport_match(tb, sk))
397 			goto success;
398 		if (inet_csk_bind_conflict(sk, tb, true, true))
399 			goto fail_unlock;
400 	}
401 success:
402 	inet_csk_update_fastreuse(tb, sk);
403 
404 	if (!inet_csk(sk)->icsk_bind_hash)
405 		inet_bind_hash(sk, tb, port);
406 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
407 	ret = 0;
408 
409 fail_unlock:
410 	spin_unlock_bh(&head->lock);
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(inet_csk_get_port);
414 
415 /*
416  * Wait for an incoming connection, avoid race conditions. This must be called
417  * with the socket locked.
418  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)419 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
420 {
421 	struct inet_connection_sock *icsk = inet_csk(sk);
422 	DEFINE_WAIT(wait);
423 	int err;
424 
425 	/*
426 	 * True wake-one mechanism for incoming connections: only
427 	 * one process gets woken up, not the 'whole herd'.
428 	 * Since we do not 'race & poll' for established sockets
429 	 * anymore, the common case will execute the loop only once.
430 	 *
431 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
432 	 * after any current non-exclusive waiters, and we know that
433 	 * it will always _stay_ after any new non-exclusive waiters
434 	 * because all non-exclusive waiters are added at the
435 	 * beginning of the wait-queue. As such, it's ok to "drop"
436 	 * our exclusiveness temporarily when we get woken up without
437 	 * having to remove and re-insert us on the wait queue.
438 	 */
439 	for (;;) {
440 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
441 					  TASK_INTERRUPTIBLE);
442 		release_sock(sk);
443 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
444 			timeo = schedule_timeout(timeo);
445 		sched_annotate_sleep();
446 		lock_sock(sk);
447 		err = 0;
448 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
449 			break;
450 		err = -EINVAL;
451 		if (sk->sk_state != TCP_LISTEN)
452 			break;
453 		err = sock_intr_errno(timeo);
454 		if (signal_pending(current))
455 			break;
456 		err = -EAGAIN;
457 		if (!timeo)
458 			break;
459 	}
460 	finish_wait(sk_sleep(sk), &wait);
461 	return err;
462 }
463 
464 /*
465  * This will accept the next outstanding connection.
466  */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)467 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
468 {
469 	struct inet_connection_sock *icsk = inet_csk(sk);
470 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
471 	struct request_sock *req;
472 	struct sock *newsk;
473 	int error;
474 
475 	lock_sock(sk);
476 
477 	/* We need to make sure that this socket is listening,
478 	 * and that it has something pending.
479 	 */
480 	error = -EINVAL;
481 	if (sk->sk_state != TCP_LISTEN)
482 		goto out_err;
483 
484 	/* Find already established connection */
485 	if (reqsk_queue_empty(queue)) {
486 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
487 
488 		/* If this is a non blocking socket don't sleep */
489 		error = -EAGAIN;
490 		if (!timeo)
491 			goto out_err;
492 
493 		error = inet_csk_wait_for_connect(sk, timeo);
494 		if (error)
495 			goto out_err;
496 	}
497 	req = reqsk_queue_remove(queue, sk);
498 	newsk = req->sk;
499 
500 	if (sk->sk_protocol == IPPROTO_TCP &&
501 	    tcp_rsk(req)->tfo_listener) {
502 		spin_lock_bh(&queue->fastopenq.lock);
503 		if (tcp_rsk(req)->tfo_listener) {
504 			/* We are still waiting for the final ACK from 3WHS
505 			 * so can't free req now. Instead, we set req->sk to
506 			 * NULL to signify that the child socket is taken
507 			 * so reqsk_fastopen_remove() will free the req
508 			 * when 3WHS finishes (or is aborted).
509 			 */
510 			req->sk = NULL;
511 			req = NULL;
512 		}
513 		spin_unlock_bh(&queue->fastopenq.lock);
514 	}
515 
516 out:
517 	release_sock(sk);
518 	if (newsk && mem_cgroup_sockets_enabled) {
519 		int amt;
520 
521 		/* atomically get the memory usage, set and charge the
522 		 * newsk->sk_memcg.
523 		 */
524 		lock_sock(newsk);
525 
526 		/* The socket has not been accepted yet, no need to look at
527 		 * newsk->sk_wmem_queued.
528 		 */
529 		amt = sk_mem_pages(newsk->sk_forward_alloc +
530 				   atomic_read(&newsk->sk_rmem_alloc));
531 		mem_cgroup_sk_alloc(newsk);
532 		if (newsk->sk_memcg && amt)
533 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
534 
535 		release_sock(newsk);
536 	}
537 	if (req)
538 		reqsk_put(req);
539 
540 	if (newsk)
541 		inet_init_csk_locks(newsk);
542 
543 	return newsk;
544 out_err:
545 	newsk = NULL;
546 	req = NULL;
547 	*err = error;
548 	goto out;
549 }
550 EXPORT_SYMBOL(inet_csk_accept);
551 
552 /*
553  * Using different timers for retransmit, delayed acks and probes
554  * We may wish use just one timer maintaining a list of expire jiffies
555  * to optimize.
556  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))557 void inet_csk_init_xmit_timers(struct sock *sk,
558 			       void (*retransmit_handler)(struct timer_list *t),
559 			       void (*delack_handler)(struct timer_list *t),
560 			       void (*keepalive_handler)(struct timer_list *t))
561 {
562 	struct inet_connection_sock *icsk = inet_csk(sk);
563 
564 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
565 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
566 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
567 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
568 }
569 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
570 
inet_csk_clear_xmit_timers(struct sock * sk)571 void inet_csk_clear_xmit_timers(struct sock *sk)
572 {
573 	struct inet_connection_sock *icsk = inet_csk(sk);
574 
575 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
576 
577 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
578 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
579 	sk_stop_timer(sk, &sk->sk_timer);
580 }
581 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
582 
inet_csk_delete_keepalive_timer(struct sock * sk)583 void inet_csk_delete_keepalive_timer(struct sock *sk)
584 {
585 	sk_stop_timer(sk, &sk->sk_timer);
586 }
587 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
588 
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)589 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
590 {
591 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
592 }
593 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
594 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)595 struct dst_entry *inet_csk_route_req(const struct sock *sk,
596 				     struct flowi4 *fl4,
597 				     const struct request_sock *req)
598 {
599 	const struct inet_request_sock *ireq = inet_rsk(req);
600 	struct net *net = read_pnet(&ireq->ireq_net);
601 	struct ip_options_rcu *opt;
602 	struct rtable *rt;
603 
604 	rcu_read_lock();
605 	opt = rcu_dereference(ireq->ireq_opt);
606 
607 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
608 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
609 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
610 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
611 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
612 			   htons(ireq->ir_num), sk->sk_uid);
613 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
614 	rt = ip_route_output_flow(net, fl4, sk);
615 	if (IS_ERR(rt))
616 		goto no_route;
617 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
618 		goto route_err;
619 	rcu_read_unlock();
620 	return &rt->dst;
621 
622 route_err:
623 	ip_rt_put(rt);
624 no_route:
625 	rcu_read_unlock();
626 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
627 	return NULL;
628 }
629 EXPORT_SYMBOL_GPL(inet_csk_route_req);
630 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)631 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
632 					    struct sock *newsk,
633 					    const struct request_sock *req)
634 {
635 	const struct inet_request_sock *ireq = inet_rsk(req);
636 	struct net *net = read_pnet(&ireq->ireq_net);
637 	struct inet_sock *newinet = inet_sk(newsk);
638 	struct ip_options_rcu *opt;
639 	struct flowi4 *fl4;
640 	struct rtable *rt;
641 
642 	opt = rcu_dereference(ireq->ireq_opt);
643 	fl4 = &newinet->cork.fl.u.ip4;
644 
645 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
646 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
647 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
648 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
649 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
650 			   htons(ireq->ir_num), sk->sk_uid);
651 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
652 	rt = ip_route_output_flow(net, fl4, sk);
653 	if (IS_ERR(rt))
654 		goto no_route;
655 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
656 		goto route_err;
657 	return &rt->dst;
658 
659 route_err:
660 	ip_rt_put(rt);
661 no_route:
662 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
663 	return NULL;
664 }
665 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
666 
667 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)668 static void syn_ack_recalc(struct request_sock *req,
669 			   const int max_syn_ack_retries,
670 			   const u8 rskq_defer_accept,
671 			   int *expire, int *resend)
672 {
673 	if (!rskq_defer_accept) {
674 		*expire = req->num_timeout >= max_syn_ack_retries;
675 		*resend = 1;
676 		return;
677 	}
678 	*expire = req->num_timeout >= max_syn_ack_retries &&
679 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
680 	/* Do not resend while waiting for data after ACK,
681 	 * start to resend on end of deferring period to give
682 	 * last chance for data or ACK to create established socket.
683 	 */
684 	*resend = !inet_rsk(req)->acked ||
685 		  req->num_timeout >= rskq_defer_accept - 1;
686 }
687 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)688 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
689 {
690 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
691 
692 	if (!err)
693 		req->num_retrans++;
694 	return err;
695 }
696 EXPORT_SYMBOL(inet_rtx_syn_ack);
697 
698 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)699 static bool reqsk_queue_unlink(struct request_sock *req)
700 {
701 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
702 	bool found = false;
703 
704 	if (sk_hashed(req_to_sk(req))) {
705 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
706 
707 		spin_lock(lock);
708 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
709 		spin_unlock(lock);
710 	}
711 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
712 		reqsk_put(req);
713 	return found;
714 }
715 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)716 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
717 {
718 	bool unlinked = reqsk_queue_unlink(req);
719 
720 	if (unlinked) {
721 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
722 		reqsk_put(req);
723 	}
724 	return unlinked;
725 }
726 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
727 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)728 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
729 {
730 	inet_csk_reqsk_queue_drop(sk, req);
731 	reqsk_put(req);
732 }
733 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
734 
reqsk_timer_handler(struct timer_list * t)735 static void reqsk_timer_handler(struct timer_list *t)
736 {
737 	struct request_sock *req = from_timer(req, t, rsk_timer);
738 	struct sock *sk_listener = req->rsk_listener;
739 	struct net *net = sock_net(sk_listener);
740 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
741 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
742 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
743 
744 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
745 		goto drop;
746 
747 	max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
748 	/* Normally all the openreqs are young and become mature
749 	 * (i.e. converted to established socket) for first timeout.
750 	 * If synack was not acknowledged for 1 second, it means
751 	 * one of the following things: synack was lost, ack was lost,
752 	 * rtt is high or nobody planned to ack (i.e. synflood).
753 	 * When server is a bit loaded, queue is populated with old
754 	 * open requests, reducing effective size of queue.
755 	 * When server is well loaded, queue size reduces to zero
756 	 * after several minutes of work. It is not synflood,
757 	 * it is normal operation. The solution is pruning
758 	 * too old entries overriding normal timeout, when
759 	 * situation becomes dangerous.
760 	 *
761 	 * Essentially, we reserve half of room for young
762 	 * embrions; and abort old ones without pity, if old
763 	 * ones are about to clog our table.
764 	 */
765 	qlen = reqsk_queue_len(queue);
766 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
767 		int young = reqsk_queue_len_young(queue) << 1;
768 
769 		while (max_syn_ack_retries > 2) {
770 			if (qlen < young)
771 				break;
772 			max_syn_ack_retries--;
773 			young <<= 1;
774 		}
775 	}
776 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
777 		       &expire, &resend);
778 	req->rsk_ops->syn_ack_timeout(req);
779 	if (!expire &&
780 	    (!resend ||
781 	     !inet_rtx_syn_ack(sk_listener, req) ||
782 	     inet_rsk(req)->acked)) {
783 		unsigned long timeo;
784 
785 		if (req->num_timeout++ == 0)
786 			atomic_dec(&queue->young);
787 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
788 		mod_timer(&req->rsk_timer, jiffies + timeo);
789 		return;
790 	}
791 drop:
792 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
793 }
794 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)795 static void reqsk_queue_hash_req(struct request_sock *req,
796 				 unsigned long timeout)
797 {
798 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
799 	mod_timer(&req->rsk_timer, jiffies + timeout);
800 
801 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
802 	/* before letting lookups find us, make sure all req fields
803 	 * are committed to memory and refcnt initialized.
804 	 */
805 	smp_wmb();
806 	refcount_set(&req->rsk_refcnt, 2 + 1);
807 }
808 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)809 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
810 				   unsigned long timeout)
811 {
812 	reqsk_queue_hash_req(req, timeout);
813 	inet_csk_reqsk_queue_added(sk);
814 }
815 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
816 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)817 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
818 			   const gfp_t priority)
819 {
820 	struct inet_connection_sock *icsk = inet_csk(newsk);
821 
822 	if (!icsk->icsk_ulp_ops)
823 		return;
824 
825 	if (icsk->icsk_ulp_ops->clone)
826 		icsk->icsk_ulp_ops->clone(req, newsk, priority);
827 }
828 
829 /**
830  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
831  *	@sk: the socket to clone
832  *	@req: request_sock
833  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
834  *
835  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
836  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)837 struct sock *inet_csk_clone_lock(const struct sock *sk,
838 				 const struct request_sock *req,
839 				 const gfp_t priority)
840 {
841 	struct sock *newsk = sk_clone_lock(sk, priority);
842 
843 	if (newsk) {
844 		struct inet_connection_sock *newicsk = inet_csk(newsk);
845 
846 		inet_sk_set_state(newsk, TCP_SYN_RECV);
847 		newicsk->icsk_bind_hash = NULL;
848 
849 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
850 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
851 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
852 
853 		/* listeners have SOCK_RCU_FREE, not the children */
854 		sock_reset_flag(newsk, SOCK_RCU_FREE);
855 
856 		inet_sk(newsk)->mc_list = NULL;
857 
858 		newsk->sk_mark = inet_rsk(req)->ir_mark;
859 		atomic64_set(&newsk->sk_cookie,
860 			     atomic64_read(&inet_rsk(req)->ir_cookie));
861 
862 		newicsk->icsk_retransmits = 0;
863 		newicsk->icsk_backoff	  = 0;
864 		newicsk->icsk_probes_out  = 0;
865 		newicsk->icsk_probes_tstamp = 0;
866 
867 		/* Deinitialize accept_queue to trap illegal accesses. */
868 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
869 
870 		inet_clone_ulp(req, newsk, priority);
871 
872 		security_inet_csk_clone(newsk, req);
873 	}
874 	return newsk;
875 }
876 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
877 
878 /*
879  * At this point, there should be no process reference to this
880  * socket, and thus no user references at all.  Therefore we
881  * can assume the socket waitqueue is inactive and nobody will
882  * try to jump onto it.
883  */
inet_csk_destroy_sock(struct sock * sk)884 void inet_csk_destroy_sock(struct sock *sk)
885 {
886 	WARN_ON(sk->sk_state != TCP_CLOSE);
887 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
888 
889 	/* It cannot be in hash table! */
890 	WARN_ON(!sk_unhashed(sk));
891 
892 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
893 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
894 
895 	sk->sk_prot->destroy(sk);
896 
897 	sk_stream_kill_queues(sk);
898 
899 	xfrm_sk_free_policy(sk);
900 
901 	sk_refcnt_debug_release(sk);
902 
903 	percpu_counter_dec(sk->sk_prot->orphan_count);
904 
905 	sock_put(sk);
906 }
907 EXPORT_SYMBOL(inet_csk_destroy_sock);
908 
909 /* This function allows to force a closure of a socket after the call to
910  * tcp/dccp_create_openreq_child().
911  */
inet_csk_prepare_forced_close(struct sock * sk)912 void inet_csk_prepare_forced_close(struct sock *sk)
913 	__releases(&sk->sk_lock.slock)
914 {
915 	/* sk_clone_lock locked the socket and set refcnt to 2 */
916 	bh_unlock_sock(sk);
917 	sock_put(sk);
918 	inet_csk_prepare_for_destroy_sock(sk);
919 	inet_sk(sk)->inet_num = 0;
920 }
921 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
922 
inet_ulp_can_listen(const struct sock * sk)923 static int inet_ulp_can_listen(const struct sock *sk)
924 {
925 	const struct inet_connection_sock *icsk = inet_csk(sk);
926 
927 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
928 		return -EINVAL;
929 
930 	return 0;
931 }
932 
inet_csk_listen_start(struct sock * sk,int backlog)933 int inet_csk_listen_start(struct sock *sk, int backlog)
934 {
935 	struct inet_connection_sock *icsk = inet_csk(sk);
936 	struct inet_sock *inet = inet_sk(sk);
937 	int err;
938 
939 	err = inet_ulp_can_listen(sk);
940 	if (unlikely(err))
941 		return err;
942 
943 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
944 
945 	sk->sk_ack_backlog = 0;
946 	inet_csk_delack_init(sk);
947 
948 	/* There is race window here: we announce ourselves listening,
949 	 * but this transition is still not validated by get_port().
950 	 * It is OK, because this socket enters to hash table only
951 	 * after validation is complete.
952 	 */
953 	err = -EADDRINUSE;
954 	inet_sk_state_store(sk, TCP_LISTEN);
955 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
956 		inet->inet_sport = htons(inet->inet_num);
957 
958 		sk_dst_reset(sk);
959 		err = sk->sk_prot->hash(sk);
960 
961 		if (likely(!err))
962 			return 0;
963 	}
964 
965 	inet_sk_set_state(sk, TCP_CLOSE);
966 	return err;
967 }
968 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
969 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)970 static void inet_child_forget(struct sock *sk, struct request_sock *req,
971 			      struct sock *child)
972 {
973 	sk->sk_prot->disconnect(child, O_NONBLOCK);
974 
975 	sock_orphan(child);
976 
977 	percpu_counter_inc(sk->sk_prot->orphan_count);
978 
979 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
980 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
981 		BUG_ON(sk != req->rsk_listener);
982 
983 		/* Paranoid, to prevent race condition if
984 		 * an inbound pkt destined for child is
985 		 * blocked by sock lock in tcp_v4_rcv().
986 		 * Also to satisfy an assertion in
987 		 * tcp_v4_destroy_sock().
988 		 */
989 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
990 	}
991 	inet_csk_destroy_sock(child);
992 }
993 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)994 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
995 				      struct request_sock *req,
996 				      struct sock *child)
997 {
998 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
999 
1000 	spin_lock(&queue->rskq_lock);
1001 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1002 		inet_child_forget(sk, req, child);
1003 		child = NULL;
1004 	} else {
1005 		req->sk = child;
1006 		req->dl_next = NULL;
1007 		if (queue->rskq_accept_head == NULL)
1008 			WRITE_ONCE(queue->rskq_accept_head, req);
1009 		else
1010 			queue->rskq_accept_tail->dl_next = req;
1011 		queue->rskq_accept_tail = req;
1012 		sk_acceptq_added(sk);
1013 	}
1014 	spin_unlock(&queue->rskq_lock);
1015 	return child;
1016 }
1017 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1018 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1019 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1020 					 struct request_sock *req, bool own_req)
1021 {
1022 	if (own_req) {
1023 		inet_csk_reqsk_queue_drop(sk, req);
1024 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1025 		if (inet_csk_reqsk_queue_add(sk, req, child))
1026 			return child;
1027 	}
1028 	/* Too bad, another child took ownership of the request, undo. */
1029 	bh_unlock_sock(child);
1030 	sock_put(child);
1031 	return NULL;
1032 }
1033 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1034 
1035 /*
1036  *	This routine closes sockets which have been at least partially
1037  *	opened, but not yet accepted.
1038  */
inet_csk_listen_stop(struct sock * sk)1039 void inet_csk_listen_stop(struct sock *sk)
1040 {
1041 	struct inet_connection_sock *icsk = inet_csk(sk);
1042 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1043 	struct request_sock *next, *req;
1044 
1045 	/* Following specs, it would be better either to send FIN
1046 	 * (and enter FIN-WAIT-1, it is normal close)
1047 	 * or to send active reset (abort).
1048 	 * Certainly, it is pretty dangerous while synflood, but it is
1049 	 * bad justification for our negligence 8)
1050 	 * To be honest, we are not able to make either
1051 	 * of the variants now.			--ANK
1052 	 */
1053 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1054 		struct sock *child = req->sk;
1055 
1056 		local_bh_disable();
1057 		bh_lock_sock(child);
1058 		WARN_ON(sock_owned_by_user(child));
1059 		sock_hold(child);
1060 
1061 		inet_child_forget(sk, req, child);
1062 		reqsk_put(req);
1063 		bh_unlock_sock(child);
1064 		local_bh_enable();
1065 		sock_put(child);
1066 
1067 		cond_resched();
1068 	}
1069 	if (queue->fastopenq.rskq_rst_head) {
1070 		/* Free all the reqs queued in rskq_rst_head. */
1071 		spin_lock_bh(&queue->fastopenq.lock);
1072 		req = queue->fastopenq.rskq_rst_head;
1073 		queue->fastopenq.rskq_rst_head = NULL;
1074 		spin_unlock_bh(&queue->fastopenq.lock);
1075 		while (req != NULL) {
1076 			next = req->dl_next;
1077 			reqsk_put(req);
1078 			req = next;
1079 		}
1080 	}
1081 	WARN_ON_ONCE(sk->sk_ack_backlog);
1082 }
1083 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1084 
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1085 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1086 {
1087 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1088 	const struct inet_sock *inet = inet_sk(sk);
1089 
1090 	sin->sin_family		= AF_INET;
1091 	sin->sin_addr.s_addr	= inet->inet_daddr;
1092 	sin->sin_port		= inet->inet_dport;
1093 }
1094 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1095 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1096 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1097 {
1098 	const struct inet_sock *inet = inet_sk(sk);
1099 	const struct ip_options_rcu *inet_opt;
1100 	__be32 daddr = inet->inet_daddr;
1101 	struct flowi4 *fl4;
1102 	struct rtable *rt;
1103 
1104 	rcu_read_lock();
1105 	inet_opt = rcu_dereference(inet->inet_opt);
1106 	if (inet_opt && inet_opt->opt.srr)
1107 		daddr = inet_opt->opt.faddr;
1108 	fl4 = &fl->u.ip4;
1109 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1110 				   inet->inet_saddr, inet->inet_dport,
1111 				   inet->inet_sport, sk->sk_protocol,
1112 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1113 	if (IS_ERR(rt))
1114 		rt = NULL;
1115 	if (rt)
1116 		sk_setup_caps(sk, &rt->dst);
1117 	rcu_read_unlock();
1118 
1119 	return &rt->dst;
1120 }
1121 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1122 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1123 {
1124 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1125 	struct inet_sock *inet = inet_sk(sk);
1126 
1127 	if (!dst) {
1128 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1129 		if (!dst)
1130 			goto out;
1131 	}
1132 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1133 
1134 	dst = __sk_dst_check(sk, 0);
1135 	if (!dst)
1136 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1137 out:
1138 	return dst;
1139 }
1140 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1141