• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
key_to_nfproto(const struct sw_flow_key * key)105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
ovs_ct_get_state(enum ip_conntrack_info ctinfo)118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
ovs_ct_get_mark(const struct nf_conn * ct)150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? READ_ONCE(ct->mark) : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
ovs_ct_get_labels(const struct nf_conn * ct,struct ovs_key_ct_labels * labels)164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
__ovs_ct_update_key_orig_tp(struct sw_flow_key * key,const struct nf_conntrack_tuple * orig,u8 icmp_proto)175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
__ovs_ct_update_key(struct sw_flow_key * key,u8 state,const struct nf_conntrack_zone * zone,const struct nf_conn * ct)189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
ovs_ct_update_key(const struct sk_buff * skb,const struct ovs_conntrack_info * info,struct sw_flow_key * key,bool post_ct,bool keep_nat_flags)233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
ovs_ct_fill_key(const struct sk_buff * skb,struct sw_flow_key * key)274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
ovs_ct_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,struct sk_buff * skb)279 int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 		   const struct sw_flow_key *output, struct sk_buff *skb)
281 {
282 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 		return -EMSGSIZE;
284 
285 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 		    &output->ct.labels))
296 		return -EMSGSIZE;
297 
298 	if (swkey->ct_orig_proto) {
299 		if (swkey->eth.type == htons(ETH_P_IP)) {
300 			struct ovs_key_ct_tuple_ipv4 orig;
301 
302 			memset(&orig, 0, sizeof(orig));
303 			orig.ipv4_src = output->ipv4.ct_orig.src;
304 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 			orig.src_port = output->ct.orig_tp.src;
306 			orig.dst_port = output->ct.orig_tp.dst;
307 			orig.ipv4_proto = output->ct_orig_proto;
308 
309 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 				    sizeof(orig), &orig))
311 				return -EMSGSIZE;
312 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 			struct ovs_key_ct_tuple_ipv6 orig;
314 
315 			memset(&orig, 0, sizeof(orig));
316 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 			       sizeof(orig.ipv6_src));
318 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 			       sizeof(orig.ipv6_dst));
320 			orig.src_port = output->ct.orig_tp.src;
321 			orig.dst_port = output->ct.orig_tp.dst;
322 			orig.ipv6_proto = output->ct_orig_proto;
323 
324 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 				    sizeof(orig), &orig))
326 				return -EMSGSIZE;
327 		}
328 	}
329 
330 	return 0;
331 }
332 
ovs_ct_set_mark(struct nf_conn * ct,struct sw_flow_key * key,u32 ct_mark,u32 mask)333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 			   u32 ct_mark, u32 mask)
335 {
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 	u32 new_mark;
338 
339 	new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask));
340 	if (READ_ONCE(ct->mark) != new_mark) {
341 		WRITE_ONCE(ct->mark, new_mark);
342 		if (nf_ct_is_confirmed(ct))
343 			nf_conntrack_event_cache(IPCT_MARK, ct);
344 		key->ct.mark = new_mark;
345 	}
346 
347 	return 0;
348 #else
349 	return -ENOTSUPP;
350 #endif
351 }
352 
ovs_ct_get_conn_labels(struct nf_conn * ct)353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
354 {
355 	struct nf_conn_labels *cl;
356 
357 	cl = nf_ct_labels_find(ct);
358 	if (!cl) {
359 		nf_ct_labels_ext_add(ct);
360 		cl = nf_ct_labels_find(ct);
361 	}
362 
363 	return cl;
364 }
365 
366 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
367  * since the new connection is not yet confirmed, and thus no-one else has
368  * access to it's labels, we simply write them over.
369  */
ovs_ct_init_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 			      const struct ovs_key_ct_labels *labels,
372 			      const struct ovs_key_ct_labels *mask)
373 {
374 	struct nf_conn_labels *cl, *master_cl;
375 	bool have_mask = labels_nonzero(mask);
376 
377 	/* Inherit master's labels to the related connection? */
378 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
379 
380 	if (!master_cl && !have_mask)
381 		return 0;   /* Nothing to do. */
382 
383 	cl = ovs_ct_get_conn_labels(ct);
384 	if (!cl)
385 		return -ENOSPC;
386 
387 	/* Inherit the master's labels, if any. */
388 	if (master_cl)
389 		*cl = *master_cl;
390 
391 	if (have_mask) {
392 		u32 *dst = (u32 *)cl->bits;
393 		int i;
394 
395 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 				(labels->ct_labels_32[i]
398 				 & mask->ct_labels_32[i]);
399 	}
400 
401 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 	 * IPCT_LABEL bit is set in the event cache.
403 	 */
404 	nf_conntrack_event_cache(IPCT_LABEL, ct);
405 
406 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
407 
408 	return 0;
409 }
410 
ovs_ct_set_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 			     const struct ovs_key_ct_labels *labels,
413 			     const struct ovs_key_ct_labels *mask)
414 {
415 	struct nf_conn_labels *cl;
416 	int err;
417 
418 	cl = ovs_ct_get_conn_labels(ct);
419 	if (!cl)
420 		return -ENOSPC;
421 
422 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 				    mask->ct_labels_32,
424 				    OVS_CT_LABELS_LEN_32);
425 	if (err)
426 		return err;
427 
428 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
429 
430 	return 0;
431 }
432 
433 /* 'skb' should already be pulled to nh_ofs. */
ovs_ct_helper(struct sk_buff * skb,u16 proto)434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
435 {
436 	const struct nf_conntrack_helper *helper;
437 	const struct nf_conn_help *help;
438 	enum ip_conntrack_info ctinfo;
439 	unsigned int protoff;
440 	struct nf_conn *ct;
441 	int err;
442 
443 	ct = nf_ct_get(skb, &ctinfo);
444 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 		return NF_ACCEPT;
446 
447 	help = nfct_help(ct);
448 	if (!help)
449 		return NF_ACCEPT;
450 
451 	helper = rcu_dereference(help->helper);
452 	if (!helper)
453 		return NF_ACCEPT;
454 
455 	switch (proto) {
456 	case NFPROTO_IPV4:
457 		protoff = ip_hdrlen(skb);
458 		break;
459 	case NFPROTO_IPV6: {
460 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 		__be16 frag_off;
462 		int ofs;
463 
464 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 				       &frag_off);
466 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 			pr_debug("proto header not found\n");
468 			return NF_ACCEPT;
469 		}
470 		protoff = ofs;
471 		break;
472 	}
473 	default:
474 		WARN_ONCE(1, "helper invoked on non-IP family!");
475 		return NF_DROP;
476 	}
477 
478 	err = helper->help(skb, protoff, ct, ctinfo);
479 	if (err != NF_ACCEPT)
480 		return err;
481 
482 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
483 	 * FTP with NAT) adusting the TCP payload size when mangling IP
484 	 * addresses and/or port numbers in the text-based control connection.
485 	 */
486 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 		return NF_DROP;
489 	return NF_ACCEPT;
490 }
491 
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493  * value if 'skb' is freed.
494  */
handle_fragments(struct net * net,struct sw_flow_key * key,u16 zone,struct sk_buff * skb)495 static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 			    u16 zone, struct sk_buff *skb)
497 {
498 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 	int err;
500 
501 	if (key->eth.type == htons(ETH_P_IP)) {
502 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
503 
504 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 		err = ip_defrag(net, skb, user);
506 		if (err)
507 			return err;
508 
509 		ovs_cb.mru = IPCB(skb)->frag_max_size;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
512 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
513 
514 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 		err = nf_ct_frag6_gather(net, skb, user);
516 		if (err) {
517 			if (err != -EINPROGRESS)
518 				kfree_skb(skb);
519 			return err;
520 		}
521 
522 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
524 #endif
525 	} else {
526 		kfree_skb(skb);
527 		return -EPFNOSUPPORT;
528 	}
529 
530 	/* The key extracted from the fragment that completed this datagram
531 	 * likely didn't have an L4 header, so regenerate it.
532 	 */
533 	ovs_flow_key_update_l3l4(skb, key);
534 
535 	key->ip.frag = OVS_FRAG_TYPE_NONE;
536 	skb_clear_hash(skb);
537 	skb->ignore_df = 1;
538 	*OVS_CB(skb) = ovs_cb;
539 
540 	return 0;
541 }
542 
543 static struct nf_conntrack_expect *
ovs_ct_expect_find(struct net * net,const struct nf_conntrack_zone * zone,u16 proto,const struct sk_buff * skb)544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 		   u16 proto, const struct sk_buff *skb)
546 {
547 	struct nf_conntrack_tuple tuple;
548 	struct nf_conntrack_expect *exp;
549 
550 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 		return NULL;
552 
553 	exp = __nf_ct_expect_find(net, zone, &tuple);
554 	if (exp) {
555 		struct nf_conntrack_tuple_hash *h;
556 
557 		/* Delete existing conntrack entry, if it clashes with the
558 		 * expectation.  This can happen since conntrack ALGs do not
559 		 * check for clashes between (new) expectations and existing
560 		 * conntrack entries.  nf_conntrack_in() will check the
561 		 * expectations only if a conntrack entry can not be found,
562 		 * which can lead to OVS finding the expectation (here) in the
563 		 * init direction, but which will not be removed by the
564 		 * nf_conntrack_in() call, if a matching conntrack entry is
565 		 * found instead.  In this case all init direction packets
566 		 * would be reported as new related packets, while reply
567 		 * direction packets would be reported as un-related
568 		 * established packets.
569 		 */
570 		h = nf_conntrack_find_get(net, zone, &tuple);
571 		if (h) {
572 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573 
574 			nf_ct_delete(ct, 0, 0);
575 			nf_conntrack_put(&ct->ct_general);
576 		}
577 	}
578 
579 	return exp;
580 }
581 
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
ovs_ct_get_info(const struct nf_conntrack_tuple_hash * h)584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585 {
586 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587 
588 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 		return IP_CT_ESTABLISHED_REPLY;
590 	/* Once we've had two way comms, always ESTABLISHED. */
591 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 		return IP_CT_ESTABLISHED;
593 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 		return IP_CT_RELATED;
595 	return IP_CT_NEW;
596 }
597 
598 /* Find an existing connection which this packet belongs to without
599  * re-attributing statistics or modifying the connection state.  This allows an
600  * skb->_nfct lost due to an upcall to be recovered during actions execution.
601  *
602  * Must be called with rcu_read_lock.
603  *
604  * On success, populates skb->_nfct and returns the connection.  Returns NULL
605  * if there is no existing entry.
606  */
607 static struct nf_conn *
ovs_ct_find_existing(struct net * net,const struct nf_conntrack_zone * zone,u8 l3num,struct sk_buff * skb,bool natted)608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 		     u8 l3num, struct sk_buff *skb, bool natted)
610 {
611 	struct nf_conntrack_tuple tuple;
612 	struct nf_conntrack_tuple_hash *h;
613 	struct nf_conn *ct;
614 
615 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 			       net, &tuple)) {
617 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 		return NULL;
619 	}
620 
621 	/* Must invert the tuple if skb has been transformed by NAT. */
622 	if (natted) {
623 		struct nf_conntrack_tuple inverse;
624 
625 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 			return NULL;
628 		}
629 		tuple = inverse;
630 	}
631 
632 	/* look for tuple match */
633 	h = nf_conntrack_find_get(net, zone, &tuple);
634 	if (!h)
635 		return NULL;   /* Not found. */
636 
637 	ct = nf_ct_tuplehash_to_ctrack(h);
638 
639 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
640 	 * select the other tuplehash to get the right 'ctinfo' bits for this
641 	 * packet.
642 	 */
643 	if (natted)
644 		h = &ct->tuplehash[!h->tuple.dst.dir];
645 
646 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 	return ct;
648 }
649 
650 static
ovs_ct_executed(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,bool * ct_executed)651 struct nf_conn *ovs_ct_executed(struct net *net,
652 				const struct sw_flow_key *key,
653 				const struct ovs_conntrack_info *info,
654 				struct sk_buff *skb,
655 				bool *ct_executed)
656 {
657 	struct nf_conn *ct = NULL;
658 
659 	/* If no ct, check if we have evidence that an existing conntrack entry
660 	 * might be found for this skb.  This happens when we lose a skb->_nfct
661 	 * due to an upcall, or if the direction is being forced.  If the
662 	 * connection was not confirmed, it is not cached and needs to be run
663 	 * through conntrack again.
664 	 */
665 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 		       !(key->ct_state & OVS_CS_F_INVALID) &&
667 		       (key->ct_zone == info->zone.id);
668 
669 	if (*ct_executed || (!key->ct_state && info->force)) {
670 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 					  !!(key->ct_state &
672 					  OVS_CS_F_NAT_MASK));
673 	}
674 
675 	return ct;
676 }
677 
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
skb_nfct_cached(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)679 static bool skb_nfct_cached(struct net *net,
680 			    const struct sw_flow_key *key,
681 			    const struct ovs_conntrack_info *info,
682 			    struct sk_buff *skb)
683 {
684 	enum ip_conntrack_info ctinfo;
685 	struct nf_conn *ct;
686 	bool ct_executed = true;
687 
688 	ct = nf_ct_get(skb, &ctinfo);
689 	if (!ct)
690 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691 
692 	if (ct)
693 		nf_ct_get(skb, &ctinfo);
694 	else
695 		return false;
696 
697 	if (!net_eq(net, read_pnet(&ct->ct_net)))
698 		return false;
699 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 		return false;
701 	if (info->helper) {
702 		struct nf_conn_help *help;
703 
704 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 		if (help && rcu_access_pointer(help->helper) != info->helper)
706 			return false;
707 	}
708 	if (info->nf_ct_timeout) {
709 		struct nf_conn_timeout *timeout_ext;
710 
711 		timeout_ext = nf_ct_timeout_find(ct);
712 		if (!timeout_ext || info->nf_ct_timeout !=
713 		    rcu_dereference(timeout_ext->timeout))
714 			return false;
715 	}
716 	/* Force conntrack entry direction to the current packet? */
717 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 		/* Delete the conntrack entry if confirmed, else just release
719 		 * the reference.
720 		 */
721 		if (nf_ct_is_confirmed(ct))
722 			nf_ct_delete(ct, 0, 0);
723 
724 		nf_conntrack_put(&ct->ct_general);
725 		nf_ct_set(skb, NULL, 0);
726 		return false;
727 	}
728 
729 	return ct_executed;
730 }
731 
732 #if IS_ENABLED(CONFIG_NF_NAT)
ovs_nat_update_key(struct sw_flow_key * key,const struct sk_buff * skb,enum nf_nat_manip_type maniptype)733 static void ovs_nat_update_key(struct sw_flow_key *key,
734 			       const struct sk_buff *skb,
735 			       enum nf_nat_manip_type maniptype)
736 {
737 	if (maniptype == NF_NAT_MANIP_SRC) {
738 		__be16 src;
739 
740 		key->ct_state |= OVS_CS_F_SRC_NAT;
741 		if (key->eth.type == htons(ETH_P_IP))
742 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
743 		else if (key->eth.type == htons(ETH_P_IPV6))
744 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
745 			       sizeof(key->ipv6.addr.src));
746 		else
747 			return;
748 
749 		if (key->ip.proto == IPPROTO_UDP)
750 			src = udp_hdr(skb)->source;
751 		else if (key->ip.proto == IPPROTO_TCP)
752 			src = tcp_hdr(skb)->source;
753 		else if (key->ip.proto == IPPROTO_SCTP)
754 			src = sctp_hdr(skb)->source;
755 		else
756 			return;
757 
758 		key->tp.src = src;
759 	} else {
760 		__be16 dst;
761 
762 		key->ct_state |= OVS_CS_F_DST_NAT;
763 		if (key->eth.type == htons(ETH_P_IP))
764 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
765 		else if (key->eth.type == htons(ETH_P_IPV6))
766 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
767 			       sizeof(key->ipv6.addr.dst));
768 		else
769 			return;
770 
771 		if (key->ip.proto == IPPROTO_UDP)
772 			dst = udp_hdr(skb)->dest;
773 		else if (key->ip.proto == IPPROTO_TCP)
774 			dst = tcp_hdr(skb)->dest;
775 		else if (key->ip.proto == IPPROTO_SCTP)
776 			dst = sctp_hdr(skb)->dest;
777 		else
778 			return;
779 
780 		key->tp.dst = dst;
781 	}
782 }
783 
784 /* Modelled after nf_nat_ipv[46]_fn().
785  * range is only used for new, uninitialized NAT state.
786  * Returns either NF_ACCEPT or NF_DROP.
787  */
ovs_ct_nat_execute(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype,struct sw_flow_key * key)788 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
789 			      enum ip_conntrack_info ctinfo,
790 			      const struct nf_nat_range2 *range,
791 			      enum nf_nat_manip_type maniptype, struct sw_flow_key *key)
792 {
793 	int hooknum, nh_off, err = NF_ACCEPT;
794 
795 	nh_off = skb_network_offset(skb);
796 	skb_pull_rcsum(skb, nh_off);
797 
798 	/* See HOOK2MANIP(). */
799 	if (maniptype == NF_NAT_MANIP_SRC)
800 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
801 	else
802 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
803 
804 	switch (ctinfo) {
805 	case IP_CT_RELATED:
806 	case IP_CT_RELATED_REPLY:
807 		if (IS_ENABLED(CONFIG_NF_NAT) &&
808 		    skb->protocol == htons(ETH_P_IP) &&
809 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
810 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
811 							   hooknum))
812 				err = NF_DROP;
813 			goto push;
814 		} else if (IS_ENABLED(CONFIG_IPV6) &&
815 			   skb->protocol == htons(ETH_P_IPV6)) {
816 			__be16 frag_off;
817 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
818 			int hdrlen = ipv6_skip_exthdr(skb,
819 						      sizeof(struct ipv6hdr),
820 						      &nexthdr, &frag_off);
821 
822 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
823 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
824 								     ctinfo,
825 								     hooknum,
826 								     hdrlen))
827 					err = NF_DROP;
828 				goto push;
829 			}
830 		}
831 		/* Non-ICMP, fall thru to initialize if needed. */
832 		fallthrough;
833 	case IP_CT_NEW:
834 		/* Seen it before?  This can happen for loopback, retrans,
835 		 * or local packets.
836 		 */
837 		if (!nf_nat_initialized(ct, maniptype)) {
838 			/* Initialize according to the NAT action. */
839 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
840 				/* Action is set up to establish a new
841 				 * mapping.
842 				 */
843 				? nf_nat_setup_info(ct, range, maniptype)
844 				: nf_nat_alloc_null_binding(ct, hooknum);
845 			if (err != NF_ACCEPT)
846 				goto push;
847 		}
848 		break;
849 
850 	case IP_CT_ESTABLISHED:
851 	case IP_CT_ESTABLISHED_REPLY:
852 		break;
853 
854 	default:
855 		err = NF_DROP;
856 		goto push;
857 	}
858 
859 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
860 push:
861 	skb_push(skb, nh_off);
862 	skb_postpush_rcsum(skb, skb->data, nh_off);
863 
864 	/* Update the flow key if NAT successful. */
865 	if (err == NF_ACCEPT)
866 		ovs_nat_update_key(key, skb, maniptype);
867 
868 	return err;
869 }
870 
871 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)872 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
873 		      const struct ovs_conntrack_info *info,
874 		      struct sk_buff *skb, struct nf_conn *ct,
875 		      enum ip_conntrack_info ctinfo)
876 {
877 	enum nf_nat_manip_type maniptype;
878 	int err;
879 
880 	/* Add NAT extension if not confirmed yet. */
881 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
882 		return NF_ACCEPT;   /* Can't NAT. */
883 
884 	/* Determine NAT type.
885 	 * Check if the NAT type can be deduced from the tracked connection.
886 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
887 	 * when committing.
888 	 */
889 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
890 	    ct->status & IPS_NAT_MASK &&
891 	    (ctinfo != IP_CT_RELATED || info->commit)) {
892 		/* NAT an established or related connection like before. */
893 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
894 			/* This is the REPLY direction for a connection
895 			 * for which NAT was applied in the forward
896 			 * direction.  Do the reverse NAT.
897 			 */
898 			maniptype = ct->status & IPS_SRC_NAT
899 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
900 		else
901 			maniptype = ct->status & IPS_SRC_NAT
902 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
903 	} else if (info->nat & OVS_CT_SRC_NAT) {
904 		maniptype = NF_NAT_MANIP_SRC;
905 	} else if (info->nat & OVS_CT_DST_NAT) {
906 		maniptype = NF_NAT_MANIP_DST;
907 	} else {
908 		return NF_ACCEPT; /* Connection is not NATed. */
909 	}
910 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype, key);
911 
912 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
913 		if (ct->status & IPS_SRC_NAT) {
914 			if (maniptype == NF_NAT_MANIP_SRC)
915 				maniptype = NF_NAT_MANIP_DST;
916 			else
917 				maniptype = NF_NAT_MANIP_SRC;
918 
919 			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
920 						 maniptype, key);
921 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
922 			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
923 						 NF_NAT_MANIP_SRC, key);
924 		}
925 	}
926 
927 	return err;
928 }
929 #else /* !CONFIG_NF_NAT */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)930 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
931 		      const struct ovs_conntrack_info *info,
932 		      struct sk_buff *skb, struct nf_conn *ct,
933 		      enum ip_conntrack_info ctinfo)
934 {
935 	return NF_ACCEPT;
936 }
937 #endif
938 
939 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
940  * not done already.  Update key with new CT state after passing the packet
941  * through conntrack.
942  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
943  * set to NULL and 0 will be returned.
944  */
__ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)945 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
946 			   const struct ovs_conntrack_info *info,
947 			   struct sk_buff *skb)
948 {
949 	/* If we are recirculating packets to match on conntrack fields and
950 	 * committing with a separate conntrack action,  then we don't need to
951 	 * actually run the packet through conntrack twice unless it's for a
952 	 * different zone.
953 	 */
954 	bool cached = skb_nfct_cached(net, key, info, skb);
955 	enum ip_conntrack_info ctinfo;
956 	struct nf_conn *ct;
957 
958 	if (!cached) {
959 		struct nf_hook_state state = {
960 			.hook = NF_INET_PRE_ROUTING,
961 			.pf = info->family,
962 			.net = net,
963 		};
964 		struct nf_conn *tmpl = info->ct;
965 		int err;
966 
967 		/* Associate skb with specified zone. */
968 		if (tmpl) {
969 			if (skb_nfct(skb))
970 				nf_conntrack_put(skb_nfct(skb));
971 			nf_conntrack_get(&tmpl->ct_general);
972 			nf_ct_set(skb, tmpl, IP_CT_NEW);
973 		}
974 
975 		err = nf_conntrack_in(skb, &state);
976 		if (err != NF_ACCEPT)
977 			return -ENOENT;
978 
979 		/* Clear CT state NAT flags to mark that we have not yet done
980 		 * NAT after the nf_conntrack_in() call.  We can actually clear
981 		 * the whole state, as it will be re-initialized below.
982 		 */
983 		key->ct_state = 0;
984 
985 		/* Update the key, but keep the NAT flags. */
986 		ovs_ct_update_key(skb, info, key, true, true);
987 	}
988 
989 	ct = nf_ct_get(skb, &ctinfo);
990 	if (ct) {
991 		bool add_helper = false;
992 
993 		/* Packets starting a new connection must be NATted before the
994 		 * helper, so that the helper knows about the NAT.  We enforce
995 		 * this by delaying both NAT and helper calls for unconfirmed
996 		 * connections until the committing CT action.  For later
997 		 * packets NAT and Helper may be called in either order.
998 		 *
999 		 * NAT will be done only if the CT action has NAT, and only
1000 		 * once per packet (per zone), as guarded by the NAT bits in
1001 		 * the key->ct_state.
1002 		 */
1003 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1004 		    (nf_ct_is_confirmed(ct) || info->commit) &&
1005 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1006 			return -EINVAL;
1007 		}
1008 
1009 		/* Userspace may decide to perform a ct lookup without a helper
1010 		 * specified followed by a (recirculate and) commit with one,
1011 		 * or attach a helper in a later commit.  Therefore, for
1012 		 * connections which we will commit, we may need to attach
1013 		 * the helper here.
1014 		 */
1015 		if (info->commit && info->helper && !nfct_help(ct)) {
1016 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1017 							    GFP_ATOMIC);
1018 			if (err)
1019 				return err;
1020 			add_helper = true;
1021 
1022 			/* helper installed, add seqadj if NAT is required */
1023 			if (info->nat && !nfct_seqadj(ct)) {
1024 				if (!nfct_seqadj_ext_add(ct))
1025 					return -EINVAL;
1026 			}
1027 		}
1028 
1029 		/* Call the helper only if:
1030 		 * - nf_conntrack_in() was executed above ("!cached") or a
1031 		 *   helper was just attached ("add_helper") for a confirmed
1032 		 *   connection, or
1033 		 * - When committing an unconfirmed connection.
1034 		 */
1035 		if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
1036 					      info->commit) &&
1037 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1038 			return -EINVAL;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /* Lookup connection and read fields into key. */
ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1046 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1047 			 const struct ovs_conntrack_info *info,
1048 			 struct sk_buff *skb)
1049 {
1050 	struct nf_conntrack_expect *exp;
1051 
1052 	/* If we pass an expected packet through nf_conntrack_in() the
1053 	 * expectation is typically removed, but the packet could still be
1054 	 * lost in upcall processing.  To prevent this from happening we
1055 	 * perform an explicit expectation lookup.  Expected connections are
1056 	 * always new, and will be passed through conntrack only when they are
1057 	 * committed, as it is OK to remove the expectation at that time.
1058 	 */
1059 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1060 	if (exp) {
1061 		u8 state;
1062 
1063 		/* NOTE: New connections are NATted and Helped only when
1064 		 * committed, so we are not calling into NAT here.
1065 		 */
1066 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1067 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1068 	} else {
1069 		struct nf_conn *ct;
1070 		int err;
1071 
1072 		err = __ovs_ct_lookup(net, key, info, skb);
1073 		if (err)
1074 			return err;
1075 
1076 		ct = (struct nf_conn *)skb_nfct(skb);
1077 		if (ct)
1078 			nf_ct_deliver_cached_events(ct);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
labels_nonzero(const struct ovs_key_ct_labels * labels)1084 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1085 {
1086 	size_t i;
1087 
1088 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1089 		if (labels->ct_labels_32[i])
1090 			return true;
1091 
1092 	return false;
1093 }
1094 
1095 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ct_limit_hash_bucket(const struct ovs_ct_limit_info * info,u16 zone)1096 static struct hlist_head *ct_limit_hash_bucket(
1097 	const struct ovs_ct_limit_info *info, u16 zone)
1098 {
1099 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1100 }
1101 
1102 /* Call with ovs_mutex */
ct_limit_set(const struct ovs_ct_limit_info * info,struct ovs_ct_limit * new_ct_limit)1103 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1104 			 struct ovs_ct_limit *new_ct_limit)
1105 {
1106 	struct ovs_ct_limit *ct_limit;
1107 	struct hlist_head *head;
1108 
1109 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1110 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1111 		if (ct_limit->zone == new_ct_limit->zone) {
1112 			hlist_replace_rcu(&ct_limit->hlist_node,
1113 					  &new_ct_limit->hlist_node);
1114 			kfree_rcu(ct_limit, rcu);
1115 			return;
1116 		}
1117 	}
1118 
1119 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1120 }
1121 
1122 /* Call with ovs_mutex */
ct_limit_del(const struct ovs_ct_limit_info * info,u16 zone)1123 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1124 {
1125 	struct ovs_ct_limit *ct_limit;
1126 	struct hlist_head *head;
1127 	struct hlist_node *n;
1128 
1129 	head = ct_limit_hash_bucket(info, zone);
1130 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1131 		if (ct_limit->zone == zone) {
1132 			hlist_del_rcu(&ct_limit->hlist_node);
1133 			kfree_rcu(ct_limit, rcu);
1134 			return;
1135 		}
1136 	}
1137 }
1138 
1139 /* Call with RCU read lock */
ct_limit_get(const struct ovs_ct_limit_info * info,u16 zone)1140 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1141 {
1142 	struct ovs_ct_limit *ct_limit;
1143 	struct hlist_head *head;
1144 
1145 	head = ct_limit_hash_bucket(info, zone);
1146 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1147 		if (ct_limit->zone == zone)
1148 			return ct_limit->limit;
1149 	}
1150 
1151 	return info->default_limit;
1152 }
1153 
ovs_ct_check_limit(struct net * net,const struct ovs_conntrack_info * info,const struct nf_conntrack_tuple * tuple)1154 static int ovs_ct_check_limit(struct net *net,
1155 			      const struct ovs_conntrack_info *info,
1156 			      const struct nf_conntrack_tuple *tuple)
1157 {
1158 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1159 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1160 	u32 per_zone_limit, connections;
1161 	u32 conncount_key;
1162 
1163 	conncount_key = info->zone.id;
1164 
1165 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1166 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1167 		return 0;
1168 
1169 	connections = nf_conncount_count(net, ct_limit_info->data,
1170 					 &conncount_key, tuple, &info->zone);
1171 	if (connections > per_zone_limit)
1172 		return -ENOMEM;
1173 
1174 	return 0;
1175 }
1176 #endif
1177 
1178 /* Lookup connection and confirm if unconfirmed. */
ovs_ct_commit(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1179 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1180 			 const struct ovs_conntrack_info *info,
1181 			 struct sk_buff *skb)
1182 {
1183 	enum ip_conntrack_info ctinfo;
1184 	struct nf_conn *ct;
1185 	int err;
1186 
1187 	err = __ovs_ct_lookup(net, key, info, skb);
1188 	if (err)
1189 		return err;
1190 
1191 	/* The connection could be invalid, in which case this is a no-op.*/
1192 	ct = nf_ct_get(skb, &ctinfo);
1193 	if (!ct)
1194 		return 0;
1195 
1196 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1197 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1198 		if (!nf_ct_is_confirmed(ct)) {
1199 			err = ovs_ct_check_limit(net, info,
1200 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1201 			if (err) {
1202 				net_warn_ratelimited("openvswitch: zone: %u "
1203 					"exceeds conntrack limit\n",
1204 					info->zone.id);
1205 				return err;
1206 			}
1207 		}
1208 	}
1209 #endif
1210 
1211 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1212 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1213 	 * typically would receive many kinds of updates.  Setting the event
1214 	 * mask allows those events to be filtered.  The set event mask will
1215 	 * remain in effect for the lifetime of the connection unless changed
1216 	 * by a further CT action with both the commit flag and the eventmask
1217 	 * option. */
1218 	if (info->have_eventmask) {
1219 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1220 
1221 		if (cache)
1222 			cache->ctmask = info->eventmask;
1223 	}
1224 
1225 	/* Apply changes before confirming the connection so that the initial
1226 	 * conntrack NEW netlink event carries the values given in the CT
1227 	 * action.
1228 	 */
1229 	if (info->mark.mask) {
1230 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1231 				      info->mark.mask);
1232 		if (err)
1233 			return err;
1234 	}
1235 	if (!nf_ct_is_confirmed(ct)) {
1236 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1237 					 &info->labels.mask);
1238 		if (err)
1239 			return err;
1240 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1241 		   labels_nonzero(&info->labels.mask)) {
1242 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1243 					&info->labels.mask);
1244 		if (err)
1245 			return err;
1246 	}
1247 	/* This will take care of sending queued events even if the connection
1248 	 * is already confirmed.
1249 	 */
1250 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1251 		return -EINVAL;
1252 
1253 	return 0;
1254 }
1255 
1256 /* Trim the skb to the length specified by the IP/IPv6 header,
1257  * removing any trailing lower-layer padding. This prepares the skb
1258  * for higher-layer processing that assumes skb->len excludes padding
1259  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1260  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1261  */
ovs_skb_network_trim(struct sk_buff * skb)1262 static int ovs_skb_network_trim(struct sk_buff *skb)
1263 {
1264 	unsigned int len;
1265 	int err;
1266 
1267 	switch (skb->protocol) {
1268 	case htons(ETH_P_IP):
1269 		len = ntohs(ip_hdr(skb)->tot_len);
1270 		break;
1271 	case htons(ETH_P_IPV6):
1272 		len = sizeof(struct ipv6hdr)
1273 			+ ntohs(ipv6_hdr(skb)->payload_len);
1274 		break;
1275 	default:
1276 		len = skb->len;
1277 	}
1278 
1279 	err = pskb_trim_rcsum(skb, len);
1280 	if (err)
1281 		kfree_skb(skb);
1282 
1283 	return err;
1284 }
1285 
1286 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1287  * value if 'skb' is freed.
1288  */
ovs_ct_execute(struct net * net,struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_conntrack_info * info)1289 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1290 		   struct sw_flow_key *key,
1291 		   const struct ovs_conntrack_info *info)
1292 {
1293 	int nh_ofs;
1294 	int err;
1295 
1296 	/* The conntrack module expects to be working at L3. */
1297 	nh_ofs = skb_network_offset(skb);
1298 	skb_pull_rcsum(skb, nh_ofs);
1299 
1300 	err = ovs_skb_network_trim(skb);
1301 	if (err)
1302 		return err;
1303 
1304 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1305 		err = handle_fragments(net, key, info->zone.id, skb);
1306 		if (err)
1307 			return err;
1308 	}
1309 
1310 	if (info->commit)
1311 		err = ovs_ct_commit(net, key, info, skb);
1312 	else
1313 		err = ovs_ct_lookup(net, key, info, skb);
1314 
1315 	skb_push(skb, nh_ofs);
1316 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1317 	if (err)
1318 		kfree_skb(skb);
1319 	return err;
1320 }
1321 
ovs_ct_clear(struct sk_buff * skb,struct sw_flow_key * key)1322 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1323 {
1324 	if (skb_nfct(skb)) {
1325 		nf_conntrack_put(skb_nfct(skb));
1326 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1327 		if (key)
1328 			ovs_ct_fill_key(skb, key);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
ovs_ct_add_helper(struct ovs_conntrack_info * info,const char * name,const struct sw_flow_key * key,bool log)1334 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1335 			     const struct sw_flow_key *key, bool log)
1336 {
1337 	struct nf_conntrack_helper *helper;
1338 	struct nf_conn_help *help;
1339 	int ret = 0;
1340 
1341 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1342 						    key->ip.proto);
1343 	if (!helper) {
1344 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1345 		return -EINVAL;
1346 	}
1347 
1348 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1349 	if (!help) {
1350 		nf_conntrack_helper_put(helper);
1351 		return -ENOMEM;
1352 	}
1353 
1354 #if IS_ENABLED(CONFIG_NF_NAT)
1355 	if (info->nat) {
1356 		ret = nf_nat_helper_try_module_get(name, info->family,
1357 						   key->ip.proto);
1358 		if (ret) {
1359 			nf_conntrack_helper_put(helper);
1360 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1361 				  name, ret);
1362 			return ret;
1363 		}
1364 	}
1365 #endif
1366 	rcu_assign_pointer(help->helper, helper);
1367 	info->helper = helper;
1368 	return ret;
1369 }
1370 
1371 #if IS_ENABLED(CONFIG_NF_NAT)
parse_nat(const struct nlattr * attr,struct ovs_conntrack_info * info,bool log)1372 static int parse_nat(const struct nlattr *attr,
1373 		     struct ovs_conntrack_info *info, bool log)
1374 {
1375 	struct nlattr *a;
1376 	int rem;
1377 	bool have_ip_max = false;
1378 	bool have_proto_max = false;
1379 	bool ip_vers = (info->family == NFPROTO_IPV6);
1380 
1381 	nla_for_each_nested(a, attr, rem) {
1382 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1383 			[OVS_NAT_ATTR_SRC] = {0, 0},
1384 			[OVS_NAT_ATTR_DST] = {0, 0},
1385 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1386 						 sizeof(struct in6_addr)},
1387 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1388 						 sizeof(struct in6_addr)},
1389 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1390 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1391 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1392 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1393 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1394 		};
1395 		int type = nla_type(a);
1396 
1397 		if (type > OVS_NAT_ATTR_MAX) {
1398 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1399 				  type, OVS_NAT_ATTR_MAX);
1400 			return -EINVAL;
1401 		}
1402 
1403 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1404 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1405 				  type, nla_len(a),
1406 				  ovs_nat_attr_lens[type][ip_vers]);
1407 			return -EINVAL;
1408 		}
1409 
1410 		switch (type) {
1411 		case OVS_NAT_ATTR_SRC:
1412 		case OVS_NAT_ATTR_DST:
1413 			if (info->nat) {
1414 				OVS_NLERR(log, "Only one type of NAT may be specified");
1415 				return -ERANGE;
1416 			}
1417 			info->nat |= OVS_CT_NAT;
1418 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1419 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1420 			break;
1421 
1422 		case OVS_NAT_ATTR_IP_MIN:
1423 			nla_memcpy(&info->range.min_addr, a,
1424 				   sizeof(info->range.min_addr));
1425 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1426 			break;
1427 
1428 		case OVS_NAT_ATTR_IP_MAX:
1429 			have_ip_max = true;
1430 			nla_memcpy(&info->range.max_addr, a,
1431 				   sizeof(info->range.max_addr));
1432 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1433 			break;
1434 
1435 		case OVS_NAT_ATTR_PROTO_MIN:
1436 			info->range.min_proto.all = htons(nla_get_u16(a));
1437 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1438 			break;
1439 
1440 		case OVS_NAT_ATTR_PROTO_MAX:
1441 			have_proto_max = true;
1442 			info->range.max_proto.all = htons(nla_get_u16(a));
1443 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1444 			break;
1445 
1446 		case OVS_NAT_ATTR_PERSISTENT:
1447 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1448 			break;
1449 
1450 		case OVS_NAT_ATTR_PROTO_HASH:
1451 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1452 			break;
1453 
1454 		case OVS_NAT_ATTR_PROTO_RANDOM:
1455 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1456 			break;
1457 
1458 		default:
1459 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1460 			return -EINVAL;
1461 		}
1462 	}
1463 
1464 	if (rem > 0) {
1465 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1466 		return -EINVAL;
1467 	}
1468 	if (!info->nat) {
1469 		/* Do not allow flags if no type is given. */
1470 		if (info->range.flags) {
1471 			OVS_NLERR(log,
1472 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1473 				  );
1474 			return -EINVAL;
1475 		}
1476 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1477 	} else if (!info->commit) {
1478 		OVS_NLERR(log,
1479 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1480 			  );
1481 		return -EINVAL;
1482 	}
1483 	/* Allow missing IP_MAX. */
1484 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1485 		memcpy(&info->range.max_addr, &info->range.min_addr,
1486 		       sizeof(info->range.max_addr));
1487 	}
1488 	/* Allow missing PROTO_MAX. */
1489 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1490 	    !have_proto_max) {
1491 		info->range.max_proto.all = info->range.min_proto.all;
1492 	}
1493 	return 0;
1494 }
1495 #endif
1496 
1497 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1498 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1499 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1500 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1501 				    .maxlen = sizeof(u16) },
1502 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1503 				    .maxlen = sizeof(struct md_mark) },
1504 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1505 				    .maxlen = sizeof(struct md_labels) },
1506 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1507 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1508 #if IS_ENABLED(CONFIG_NF_NAT)
1509 	/* NAT length is checked when parsing the nested attributes. */
1510 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1511 #endif
1512 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1513 				    .maxlen = sizeof(u32) },
1514 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1515 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1516 };
1517 
parse_ct(const struct nlattr * attr,struct ovs_conntrack_info * info,const char ** helper,bool log)1518 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1519 		    const char **helper, bool log)
1520 {
1521 	struct nlattr *a;
1522 	int rem;
1523 
1524 	nla_for_each_nested(a, attr, rem) {
1525 		int type = nla_type(a);
1526 		int maxlen;
1527 		int minlen;
1528 
1529 		if (type > OVS_CT_ATTR_MAX) {
1530 			OVS_NLERR(log,
1531 				  "Unknown conntrack attr (type=%d, max=%d)",
1532 				  type, OVS_CT_ATTR_MAX);
1533 			return -EINVAL;
1534 		}
1535 
1536 		maxlen = ovs_ct_attr_lens[type].maxlen;
1537 		minlen = ovs_ct_attr_lens[type].minlen;
1538 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1539 			OVS_NLERR(log,
1540 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1541 				  type, nla_len(a), maxlen);
1542 			return -EINVAL;
1543 		}
1544 
1545 		switch (type) {
1546 		case OVS_CT_ATTR_FORCE_COMMIT:
1547 			info->force = true;
1548 			fallthrough;
1549 		case OVS_CT_ATTR_COMMIT:
1550 			info->commit = true;
1551 			break;
1552 #ifdef CONFIG_NF_CONNTRACK_ZONES
1553 		case OVS_CT_ATTR_ZONE:
1554 			info->zone.id = nla_get_u16(a);
1555 			break;
1556 #endif
1557 #ifdef CONFIG_NF_CONNTRACK_MARK
1558 		case OVS_CT_ATTR_MARK: {
1559 			struct md_mark *mark = nla_data(a);
1560 
1561 			if (!mark->mask) {
1562 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1563 				return -EINVAL;
1564 			}
1565 			info->mark = *mark;
1566 			break;
1567 		}
1568 #endif
1569 #ifdef CONFIG_NF_CONNTRACK_LABELS
1570 		case OVS_CT_ATTR_LABELS: {
1571 			struct md_labels *labels = nla_data(a);
1572 
1573 			if (!labels_nonzero(&labels->mask)) {
1574 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1575 				return -EINVAL;
1576 			}
1577 			info->labels = *labels;
1578 			break;
1579 		}
1580 #endif
1581 		case OVS_CT_ATTR_HELPER:
1582 			*helper = nla_data(a);
1583 			if (!memchr(*helper, '\0', nla_len(a))) {
1584 				OVS_NLERR(log, "Invalid conntrack helper");
1585 				return -EINVAL;
1586 			}
1587 			break;
1588 #if IS_ENABLED(CONFIG_NF_NAT)
1589 		case OVS_CT_ATTR_NAT: {
1590 			int err = parse_nat(a, info, log);
1591 
1592 			if (err)
1593 				return err;
1594 			break;
1595 		}
1596 #endif
1597 		case OVS_CT_ATTR_EVENTMASK:
1598 			info->have_eventmask = true;
1599 			info->eventmask = nla_get_u32(a);
1600 			break;
1601 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1602 		case OVS_CT_ATTR_TIMEOUT:
1603 			memcpy(info->timeout, nla_data(a), nla_len(a));
1604 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1605 				OVS_NLERR(log, "Invalid conntrack timeout");
1606 				return -EINVAL;
1607 			}
1608 			break;
1609 #endif
1610 
1611 		default:
1612 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1613 				  type);
1614 			return -EINVAL;
1615 		}
1616 	}
1617 
1618 #ifdef CONFIG_NF_CONNTRACK_MARK
1619 	if (!info->commit && info->mark.mask) {
1620 		OVS_NLERR(log,
1621 			  "Setting conntrack mark requires 'commit' flag.");
1622 		return -EINVAL;
1623 	}
1624 #endif
1625 #ifdef CONFIG_NF_CONNTRACK_LABELS
1626 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1627 		OVS_NLERR(log,
1628 			  "Setting conntrack labels requires 'commit' flag.");
1629 		return -EINVAL;
1630 	}
1631 #endif
1632 	if (rem > 0) {
1633 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1634 		return -EINVAL;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
ovs_ct_verify(struct net * net,enum ovs_key_attr attr)1640 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1641 {
1642 	if (attr == OVS_KEY_ATTR_CT_STATE)
1643 		return true;
1644 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1645 	    attr == OVS_KEY_ATTR_CT_ZONE)
1646 		return true;
1647 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1648 	    attr == OVS_KEY_ATTR_CT_MARK)
1649 		return true;
1650 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1651 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1652 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1653 
1654 		return ovs_net->xt_label;
1655 	}
1656 
1657 	return false;
1658 }
1659 
ovs_ct_copy_action(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)1660 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1661 		       const struct sw_flow_key *key,
1662 		       struct sw_flow_actions **sfa,  bool log)
1663 {
1664 	struct ovs_conntrack_info ct_info;
1665 	const char *helper = NULL;
1666 	u16 family;
1667 	int err;
1668 
1669 	family = key_to_nfproto(key);
1670 	if (family == NFPROTO_UNSPEC) {
1671 		OVS_NLERR(log, "ct family unspecified");
1672 		return -EINVAL;
1673 	}
1674 
1675 	memset(&ct_info, 0, sizeof(ct_info));
1676 	ct_info.family = family;
1677 
1678 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1679 			NF_CT_DEFAULT_ZONE_DIR, 0);
1680 
1681 	err = parse_ct(attr, &ct_info, &helper, log);
1682 	if (err)
1683 		return err;
1684 
1685 	/* Set up template for tracking connections in specific zones. */
1686 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1687 	if (!ct_info.ct) {
1688 		OVS_NLERR(log, "Failed to allocate conntrack template");
1689 		return -ENOMEM;
1690 	}
1691 
1692 	if (ct_info.timeout[0]) {
1693 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1694 				      ct_info.timeout))
1695 			pr_info_ratelimited("Failed to associated timeout "
1696 					    "policy `%s'\n", ct_info.timeout);
1697 		else
1698 			ct_info.nf_ct_timeout = rcu_dereference(
1699 				nf_ct_timeout_find(ct_info.ct)->timeout);
1700 
1701 	}
1702 
1703 	if (helper) {
1704 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1705 		if (err)
1706 			goto err_free_ct;
1707 	}
1708 
1709 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1710 				 sizeof(ct_info), log);
1711 	if (err)
1712 		goto err_free_ct;
1713 
1714 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1715 	nf_conntrack_get(&ct_info.ct->ct_general);
1716 	return 0;
1717 err_free_ct:
1718 	__ovs_ct_free_action(&ct_info);
1719 	return err;
1720 }
1721 
1722 #if IS_ENABLED(CONFIG_NF_NAT)
ovs_ct_nat_to_attr(const struct ovs_conntrack_info * info,struct sk_buff * skb)1723 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1724 			       struct sk_buff *skb)
1725 {
1726 	struct nlattr *start;
1727 
1728 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1729 	if (!start)
1730 		return false;
1731 
1732 	if (info->nat & OVS_CT_SRC_NAT) {
1733 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1734 			return false;
1735 	} else if (info->nat & OVS_CT_DST_NAT) {
1736 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1737 			return false;
1738 	} else {
1739 		goto out;
1740 	}
1741 
1742 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1743 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1744 		    info->family == NFPROTO_IPV4) {
1745 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1746 					    info->range.min_addr.ip) ||
1747 			    (info->range.max_addr.ip
1748 			     != info->range.min_addr.ip &&
1749 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1750 					      info->range.max_addr.ip))))
1751 				return false;
1752 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1753 			   info->family == NFPROTO_IPV6) {
1754 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1755 					     &info->range.min_addr.in6) ||
1756 			    (memcmp(&info->range.max_addr.in6,
1757 				    &info->range.min_addr.in6,
1758 				    sizeof(info->range.max_addr.in6)) &&
1759 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1760 					       &info->range.max_addr.in6))))
1761 				return false;
1762 		} else {
1763 			return false;
1764 		}
1765 	}
1766 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1767 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1768 			 ntohs(info->range.min_proto.all)) ||
1769 	     (info->range.max_proto.all != info->range.min_proto.all &&
1770 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1771 			  ntohs(info->range.max_proto.all)))))
1772 		return false;
1773 
1774 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1775 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1776 		return false;
1777 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1778 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1779 		return false;
1780 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1781 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1782 		return false;
1783 out:
1784 	nla_nest_end(skb, start);
1785 
1786 	return true;
1787 }
1788 #endif
1789 
ovs_ct_action_to_attr(const struct ovs_conntrack_info * ct_info,struct sk_buff * skb)1790 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1791 			  struct sk_buff *skb)
1792 {
1793 	struct nlattr *start;
1794 
1795 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1796 	if (!start)
1797 		return -EMSGSIZE;
1798 
1799 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1800 					    ? OVS_CT_ATTR_FORCE_COMMIT
1801 					    : OVS_CT_ATTR_COMMIT))
1802 		return -EMSGSIZE;
1803 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1804 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1805 		return -EMSGSIZE;
1806 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1807 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1808 		    &ct_info->mark))
1809 		return -EMSGSIZE;
1810 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1811 	    labels_nonzero(&ct_info->labels.mask) &&
1812 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1813 		    &ct_info->labels))
1814 		return -EMSGSIZE;
1815 	if (ct_info->helper) {
1816 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1817 				   ct_info->helper->name))
1818 			return -EMSGSIZE;
1819 	}
1820 	if (ct_info->have_eventmask &&
1821 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1822 		return -EMSGSIZE;
1823 	if (ct_info->timeout[0]) {
1824 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1825 			return -EMSGSIZE;
1826 	}
1827 
1828 #if IS_ENABLED(CONFIG_NF_NAT)
1829 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1830 		return -EMSGSIZE;
1831 #endif
1832 	nla_nest_end(skb, start);
1833 
1834 	return 0;
1835 }
1836 
ovs_ct_free_action(const struct nlattr * a)1837 void ovs_ct_free_action(const struct nlattr *a)
1838 {
1839 	struct ovs_conntrack_info *ct_info = nla_data(a);
1840 
1841 	__ovs_ct_free_action(ct_info);
1842 }
1843 
__ovs_ct_free_action(struct ovs_conntrack_info * ct_info)1844 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1845 {
1846 	if (ct_info->helper) {
1847 #if IS_ENABLED(CONFIG_NF_NAT)
1848 		if (ct_info->nat)
1849 			nf_nat_helper_put(ct_info->helper);
1850 #endif
1851 		nf_conntrack_helper_put(ct_info->helper);
1852 	}
1853 	if (ct_info->ct) {
1854 		if (ct_info->timeout[0])
1855 			nf_ct_destroy_timeout(ct_info->ct);
1856 		nf_ct_tmpl_free(ct_info->ct);
1857 	}
1858 }
1859 
1860 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ovs_ct_limit_init(struct net * net,struct ovs_net * ovs_net)1861 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1862 {
1863 	int i, err;
1864 
1865 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1866 					 GFP_KERNEL);
1867 	if (!ovs_net->ct_limit_info)
1868 		return -ENOMEM;
1869 
1870 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1871 	ovs_net->ct_limit_info->limits =
1872 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1873 			      GFP_KERNEL);
1874 	if (!ovs_net->ct_limit_info->limits) {
1875 		kfree(ovs_net->ct_limit_info);
1876 		return -ENOMEM;
1877 	}
1878 
1879 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1880 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1881 
1882 	ovs_net->ct_limit_info->data =
1883 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1884 
1885 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1886 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1887 		kfree(ovs_net->ct_limit_info->limits);
1888 		kfree(ovs_net->ct_limit_info);
1889 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1890 		return err;
1891 	}
1892 	return 0;
1893 }
1894 
ovs_ct_limit_exit(struct net * net,struct ovs_net * ovs_net)1895 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1896 {
1897 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1898 	int i;
1899 
1900 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1901 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1902 		struct hlist_head *head = &info->limits[i];
1903 		struct ovs_ct_limit *ct_limit;
1904 
1905 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1906 					 lockdep_ovsl_is_held())
1907 			kfree_rcu(ct_limit, rcu);
1908 	}
1909 	kfree(info->limits);
1910 	kfree(info);
1911 }
1912 
1913 static struct sk_buff *
ovs_ct_limit_cmd_reply_start(struct genl_info * info,u8 cmd,struct ovs_header ** ovs_reply_header)1914 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1915 			     struct ovs_header **ovs_reply_header)
1916 {
1917 	struct ovs_header *ovs_header = info->userhdr;
1918 	struct sk_buff *skb;
1919 
1920 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1921 	if (!skb)
1922 		return ERR_PTR(-ENOMEM);
1923 
1924 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1925 					info->snd_seq,
1926 					&dp_ct_limit_genl_family, 0, cmd);
1927 
1928 	if (!*ovs_reply_header) {
1929 		nlmsg_free(skb);
1930 		return ERR_PTR(-EMSGSIZE);
1931 	}
1932 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1933 
1934 	return skb;
1935 }
1936 
check_zone_id(int zone_id,u16 * pzone)1937 static bool check_zone_id(int zone_id, u16 *pzone)
1938 {
1939 	if (zone_id >= 0 && zone_id <= 65535) {
1940 		*pzone = (u16)zone_id;
1941 		return true;
1942 	}
1943 	return false;
1944 }
1945 
ovs_ct_limit_set_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1946 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1947 				       struct ovs_ct_limit_info *info)
1948 {
1949 	struct ovs_zone_limit *zone_limit;
1950 	int rem;
1951 	u16 zone;
1952 
1953 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1954 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1955 
1956 	while (rem >= sizeof(*zone_limit)) {
1957 		if (unlikely(zone_limit->zone_id ==
1958 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1959 			ovs_lock();
1960 			info->default_limit = zone_limit->limit;
1961 			ovs_unlock();
1962 		} else if (unlikely(!check_zone_id(
1963 				zone_limit->zone_id, &zone))) {
1964 			OVS_NLERR(true, "zone id is out of range");
1965 		} else {
1966 			struct ovs_ct_limit *ct_limit;
1967 
1968 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1969 			if (!ct_limit)
1970 				return -ENOMEM;
1971 
1972 			ct_limit->zone = zone;
1973 			ct_limit->limit = zone_limit->limit;
1974 
1975 			ovs_lock();
1976 			ct_limit_set(info, ct_limit);
1977 			ovs_unlock();
1978 		}
1979 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1980 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1981 				NLA_ALIGN(sizeof(*zone_limit)));
1982 	}
1983 
1984 	if (rem)
1985 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1986 
1987 	return 0;
1988 }
1989 
ovs_ct_limit_del_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1990 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1991 				       struct ovs_ct_limit_info *info)
1992 {
1993 	struct ovs_zone_limit *zone_limit;
1994 	int rem;
1995 	u16 zone;
1996 
1997 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1998 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1999 
2000 	while (rem >= sizeof(*zone_limit)) {
2001 		if (unlikely(zone_limit->zone_id ==
2002 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2003 			ovs_lock();
2004 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2005 			ovs_unlock();
2006 		} else if (unlikely(!check_zone_id(
2007 				zone_limit->zone_id, &zone))) {
2008 			OVS_NLERR(true, "zone id is out of range");
2009 		} else {
2010 			ovs_lock();
2011 			ct_limit_del(info, zone);
2012 			ovs_unlock();
2013 		}
2014 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2015 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2016 				NLA_ALIGN(sizeof(*zone_limit)));
2017 	}
2018 
2019 	if (rem)
2020 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2021 
2022 	return 0;
2023 }
2024 
ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info * info,struct sk_buff * reply)2025 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2026 					  struct sk_buff *reply)
2027 {
2028 	struct ovs_zone_limit zone_limit = {
2029 		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
2030 		.limit   = info->default_limit,
2031 	};
2032 
2033 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2034 }
2035 
__ovs_ct_limit_get_zone_limit(struct net * net,struct nf_conncount_data * data,u16 zone_id,u32 limit,struct sk_buff * reply)2036 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2037 					 struct nf_conncount_data *data,
2038 					 u16 zone_id, u32 limit,
2039 					 struct sk_buff *reply)
2040 {
2041 	struct nf_conntrack_zone ct_zone;
2042 	struct ovs_zone_limit zone_limit;
2043 	u32 conncount_key = zone_id;
2044 
2045 	zone_limit.zone_id = zone_id;
2046 	zone_limit.limit = limit;
2047 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2048 
2049 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2050 					      &ct_zone);
2051 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2052 }
2053 
ovs_ct_limit_get_zone_limit(struct net * net,struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info,struct sk_buff * reply)2054 static int ovs_ct_limit_get_zone_limit(struct net *net,
2055 				       struct nlattr *nla_zone_limit,
2056 				       struct ovs_ct_limit_info *info,
2057 				       struct sk_buff *reply)
2058 {
2059 	struct ovs_zone_limit *zone_limit;
2060 	int rem, err;
2061 	u32 limit;
2062 	u16 zone;
2063 
2064 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2065 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2066 
2067 	while (rem >= sizeof(*zone_limit)) {
2068 		if (unlikely(zone_limit->zone_id ==
2069 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2070 			err = ovs_ct_limit_get_default_limit(info, reply);
2071 			if (err)
2072 				return err;
2073 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2074 							&zone))) {
2075 			OVS_NLERR(true, "zone id is out of range");
2076 		} else {
2077 			rcu_read_lock();
2078 			limit = ct_limit_get(info, zone);
2079 			rcu_read_unlock();
2080 
2081 			err = __ovs_ct_limit_get_zone_limit(
2082 				net, info->data, zone, limit, reply);
2083 			if (err)
2084 				return err;
2085 		}
2086 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2087 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2088 				NLA_ALIGN(sizeof(*zone_limit)));
2089 	}
2090 
2091 	if (rem)
2092 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2093 
2094 	return 0;
2095 }
2096 
ovs_ct_limit_get_all_zone_limit(struct net * net,struct ovs_ct_limit_info * info,struct sk_buff * reply)2097 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2098 					   struct ovs_ct_limit_info *info,
2099 					   struct sk_buff *reply)
2100 {
2101 	struct ovs_ct_limit *ct_limit;
2102 	struct hlist_head *head;
2103 	int i, err = 0;
2104 
2105 	err = ovs_ct_limit_get_default_limit(info, reply);
2106 	if (err)
2107 		return err;
2108 
2109 	rcu_read_lock();
2110 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2111 		head = &info->limits[i];
2112 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2113 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2114 				ct_limit->zone, ct_limit->limit, reply);
2115 			if (err)
2116 				goto exit_err;
2117 		}
2118 	}
2119 
2120 exit_err:
2121 	rcu_read_unlock();
2122 	return err;
2123 }
2124 
ovs_ct_limit_cmd_set(struct sk_buff * skb,struct genl_info * info)2125 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2126 {
2127 	struct nlattr **a = info->attrs;
2128 	struct sk_buff *reply;
2129 	struct ovs_header *ovs_reply_header;
2130 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2131 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2132 	int err;
2133 
2134 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2135 					     &ovs_reply_header);
2136 	if (IS_ERR(reply))
2137 		return PTR_ERR(reply);
2138 
2139 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2140 		err = -EINVAL;
2141 		goto exit_err;
2142 	}
2143 
2144 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2145 					  ct_limit_info);
2146 	if (err)
2147 		goto exit_err;
2148 
2149 	static_branch_enable(&ovs_ct_limit_enabled);
2150 
2151 	genlmsg_end(reply, ovs_reply_header);
2152 	return genlmsg_reply(reply, info);
2153 
2154 exit_err:
2155 	nlmsg_free(reply);
2156 	return err;
2157 }
2158 
ovs_ct_limit_cmd_del(struct sk_buff * skb,struct genl_info * info)2159 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2160 {
2161 	struct nlattr **a = info->attrs;
2162 	struct sk_buff *reply;
2163 	struct ovs_header *ovs_reply_header;
2164 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2165 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2166 	int err;
2167 
2168 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2169 					     &ovs_reply_header);
2170 	if (IS_ERR(reply))
2171 		return PTR_ERR(reply);
2172 
2173 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2174 		err = -EINVAL;
2175 		goto exit_err;
2176 	}
2177 
2178 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2179 					  ct_limit_info);
2180 	if (err)
2181 		goto exit_err;
2182 
2183 	genlmsg_end(reply, ovs_reply_header);
2184 	return genlmsg_reply(reply, info);
2185 
2186 exit_err:
2187 	nlmsg_free(reply);
2188 	return err;
2189 }
2190 
ovs_ct_limit_cmd_get(struct sk_buff * skb,struct genl_info * info)2191 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2192 {
2193 	struct nlattr **a = info->attrs;
2194 	struct nlattr *nla_reply;
2195 	struct sk_buff *reply;
2196 	struct ovs_header *ovs_reply_header;
2197 	struct net *net = sock_net(skb->sk);
2198 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2199 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2200 	int err;
2201 
2202 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2203 					     &ovs_reply_header);
2204 	if (IS_ERR(reply))
2205 		return PTR_ERR(reply);
2206 
2207 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2208 	if (!nla_reply) {
2209 		err = -EMSGSIZE;
2210 		goto exit_err;
2211 	}
2212 
2213 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2214 		err = ovs_ct_limit_get_zone_limit(
2215 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2216 			reply);
2217 		if (err)
2218 			goto exit_err;
2219 	} else {
2220 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2221 						      reply);
2222 		if (err)
2223 			goto exit_err;
2224 	}
2225 
2226 	nla_nest_end(reply, nla_reply);
2227 	genlmsg_end(reply, ovs_reply_header);
2228 	return genlmsg_reply(reply, info);
2229 
2230 exit_err:
2231 	nlmsg_free(reply);
2232 	return err;
2233 }
2234 
2235 static const struct genl_small_ops ct_limit_genl_ops[] = {
2236 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2237 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2238 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2239 					   * privilege. */
2240 		.doit = ovs_ct_limit_cmd_set,
2241 	},
2242 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2243 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2244 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2245 					   * privilege. */
2246 		.doit = ovs_ct_limit_cmd_del,
2247 	},
2248 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2249 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2250 		.flags = 0,		  /* OK for unprivileged users. */
2251 		.doit = ovs_ct_limit_cmd_get,
2252 	},
2253 };
2254 
2255 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2256 	.name = OVS_CT_LIMIT_MCGROUP,
2257 };
2258 
2259 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2260 	.hdrsize = sizeof(struct ovs_header),
2261 	.name = OVS_CT_LIMIT_FAMILY,
2262 	.version = OVS_CT_LIMIT_VERSION,
2263 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2264 	.policy = ct_limit_policy,
2265 	.netnsok = true,
2266 	.parallel_ops = true,
2267 	.small_ops = ct_limit_genl_ops,
2268 	.n_small_ops = ARRAY_SIZE(ct_limit_genl_ops),
2269 	.mcgrps = &ovs_ct_limit_multicast_group,
2270 	.n_mcgrps = 1,
2271 	.module = THIS_MODULE,
2272 };
2273 #endif
2274 
ovs_ct_init(struct net * net)2275 int ovs_ct_init(struct net *net)
2276 {
2277 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2278 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2279 
2280 	if (nf_connlabels_get(net, n_bits - 1)) {
2281 		ovs_net->xt_label = false;
2282 		OVS_NLERR(true, "Failed to set connlabel length");
2283 	} else {
2284 		ovs_net->xt_label = true;
2285 	}
2286 
2287 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2288 	return ovs_ct_limit_init(net, ovs_net);
2289 #else
2290 	return 0;
2291 #endif
2292 }
2293 
ovs_ct_exit(struct net * net)2294 void ovs_ct_exit(struct net *net)
2295 {
2296 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2297 
2298 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2299 	ovs_ct_limit_exit(net, ovs_net);
2300 #endif
2301 
2302 	if (ovs_net->xt_label)
2303 		nf_connlabels_put(net);
2304 }
2305