• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 
25 #include "rfkill.h"
26 
27 #define POLL_INTERVAL		(5 * HZ)
28 
29 #define RFKILL_BLOCK_HW		BIT(0)
30 #define RFKILL_BLOCK_SW		BIT(1)
31 #define RFKILL_BLOCK_SW_PREV	BIT(2)
32 #define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
33 				 RFKILL_BLOCK_SW |\
34 				 RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL	BIT(31)
36 
37 struct rfkill {
38 	spinlock_t		lock;
39 
40 	enum rfkill_type	type;
41 
42 	unsigned long		state;
43 
44 	u32			idx;
45 
46 	bool			registered;
47 	bool			persistent;
48 	bool			polling_paused;
49 	bool			suspended;
50 
51 	const struct rfkill_ops	*ops;
52 	void			*data;
53 
54 #ifdef CONFIG_RFKILL_LEDS
55 	struct led_trigger	led_trigger;
56 	const char		*ledtrigname;
57 #endif
58 
59 	struct device		dev;
60 	struct list_head	node;
61 
62 	struct delayed_work	poll_work;
63 	struct work_struct	uevent_work;
64 	struct work_struct	sync_work;
65 	char			name[];
66 };
67 #define to_rfkill(d)	container_of(d, struct rfkill, dev)
68 
69 struct rfkill_int_event {
70 	struct list_head	list;
71 	struct rfkill_event	ev;
72 };
73 
74 struct rfkill_data {
75 	struct list_head	list;
76 	struct list_head	events;
77 	struct mutex		mtx;
78 	wait_queue_head_t	read_wait;
79 	bool			input_handler;
80 };
81 
82 
83 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85 MODULE_DESCRIPTION("RF switch support");
86 MODULE_LICENSE("GPL");
87 
88 
89 /*
90  * The locking here should be made much smarter, we currently have
91  * a bit of a stupid situation because drivers might want to register
92  * the rfkill struct under their own lock, and take this lock during
93  * rfkill method calls -- which will cause an AB-BA deadlock situation.
94  *
95  * To fix that, we need to rework this code here to be mostly lock-free
96  * and only use the mutex for list manipulations, not to protect the
97  * various other global variables. Then we can avoid holding the mutex
98  * around driver operations, and all is happy.
99  */
100 static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
101 static DEFINE_MUTEX(rfkill_global_mutex);
102 static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
103 
104 static unsigned int rfkill_default_state = 1;
105 module_param_named(default_state, rfkill_default_state, uint, 0444);
106 MODULE_PARM_DESC(default_state,
107 		 "Default initial state for all radio types, 0 = radio off");
108 
109 static struct {
110 	bool cur, sav;
111 } rfkill_global_states[NUM_RFKILL_TYPES];
112 
113 static bool rfkill_epo_lock_active;
114 
115 
116 #ifdef CONFIG_RFKILL_LEDS
rfkill_led_trigger_event(struct rfkill * rfkill)117 static void rfkill_led_trigger_event(struct rfkill *rfkill)
118 {
119 	struct led_trigger *trigger;
120 
121 	if (!rfkill->registered)
122 		return;
123 
124 	trigger = &rfkill->led_trigger;
125 
126 	if (rfkill->state & RFKILL_BLOCK_ANY)
127 		led_trigger_event(trigger, LED_OFF);
128 	else
129 		led_trigger_event(trigger, LED_FULL);
130 }
131 
rfkill_led_trigger_activate(struct led_classdev * led)132 static int rfkill_led_trigger_activate(struct led_classdev *led)
133 {
134 	struct rfkill *rfkill;
135 
136 	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137 
138 	rfkill_led_trigger_event(rfkill);
139 
140 	return 0;
141 }
142 
rfkill_get_led_trigger_name(struct rfkill * rfkill)143 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144 {
145 	return rfkill->led_trigger.name;
146 }
147 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148 
rfkill_set_led_trigger_name(struct rfkill * rfkill,const char * name)149 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150 {
151 	BUG_ON(!rfkill);
152 
153 	rfkill->ledtrigname = name;
154 }
155 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156 
rfkill_led_trigger_register(struct rfkill * rfkill)157 static int rfkill_led_trigger_register(struct rfkill *rfkill)
158 {
159 	rfkill->led_trigger.name = rfkill->ledtrigname
160 					? : dev_name(&rfkill->dev);
161 	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162 	return led_trigger_register(&rfkill->led_trigger);
163 }
164 
rfkill_led_trigger_unregister(struct rfkill * rfkill)165 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166 {
167 	led_trigger_unregister(&rfkill->led_trigger);
168 }
169 
170 static struct led_trigger rfkill_any_led_trigger;
171 static struct led_trigger rfkill_none_led_trigger;
172 static struct work_struct rfkill_global_led_trigger_work;
173 
rfkill_global_led_trigger_worker(struct work_struct * work)174 static void rfkill_global_led_trigger_worker(struct work_struct *work)
175 {
176 	enum led_brightness brightness = LED_OFF;
177 	struct rfkill *rfkill;
178 
179 	mutex_lock(&rfkill_global_mutex);
180 	list_for_each_entry(rfkill, &rfkill_list, node) {
181 		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182 			brightness = LED_FULL;
183 			break;
184 		}
185 	}
186 	mutex_unlock(&rfkill_global_mutex);
187 
188 	led_trigger_event(&rfkill_any_led_trigger, brightness);
189 	led_trigger_event(&rfkill_none_led_trigger,
190 			  brightness == LED_OFF ? LED_FULL : LED_OFF);
191 }
192 
rfkill_global_led_trigger_event(void)193 static void rfkill_global_led_trigger_event(void)
194 {
195 	schedule_work(&rfkill_global_led_trigger_work);
196 }
197 
rfkill_global_led_trigger_register(void)198 static int rfkill_global_led_trigger_register(void)
199 {
200 	int ret;
201 
202 	INIT_WORK(&rfkill_global_led_trigger_work,
203 			rfkill_global_led_trigger_worker);
204 
205 	rfkill_any_led_trigger.name = "rfkill-any";
206 	ret = led_trigger_register(&rfkill_any_led_trigger);
207 	if (ret)
208 		return ret;
209 
210 	rfkill_none_led_trigger.name = "rfkill-none";
211 	ret = led_trigger_register(&rfkill_none_led_trigger);
212 	if (ret)
213 		led_trigger_unregister(&rfkill_any_led_trigger);
214 	else
215 		/* Delay activation until all global triggers are registered */
216 		rfkill_global_led_trigger_event();
217 
218 	return ret;
219 }
220 
rfkill_global_led_trigger_unregister(void)221 static void rfkill_global_led_trigger_unregister(void)
222 {
223 	led_trigger_unregister(&rfkill_none_led_trigger);
224 	led_trigger_unregister(&rfkill_any_led_trigger);
225 	cancel_work_sync(&rfkill_global_led_trigger_work);
226 }
227 #else
rfkill_led_trigger_event(struct rfkill * rfkill)228 static void rfkill_led_trigger_event(struct rfkill *rfkill)
229 {
230 }
231 
rfkill_led_trigger_register(struct rfkill * rfkill)232 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233 {
234 	return 0;
235 }
236 
rfkill_led_trigger_unregister(struct rfkill * rfkill)237 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238 {
239 }
240 
rfkill_global_led_trigger_event(void)241 static void rfkill_global_led_trigger_event(void)
242 {
243 }
244 
rfkill_global_led_trigger_register(void)245 static int rfkill_global_led_trigger_register(void)
246 {
247 	return 0;
248 }
249 
rfkill_global_led_trigger_unregister(void)250 static void rfkill_global_led_trigger_unregister(void)
251 {
252 }
253 #endif /* CONFIG_RFKILL_LEDS */
254 
rfkill_fill_event(struct rfkill_event * ev,struct rfkill * rfkill,enum rfkill_operation op)255 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256 			      enum rfkill_operation op)
257 {
258 	unsigned long flags;
259 
260 	ev->idx = rfkill->idx;
261 	ev->type = rfkill->type;
262 	ev->op = op;
263 
264 	spin_lock_irqsave(&rfkill->lock, flags);
265 	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266 	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267 					RFKILL_BLOCK_SW_PREV));
268 	spin_unlock_irqrestore(&rfkill->lock, flags);
269 }
270 
rfkill_send_events(struct rfkill * rfkill,enum rfkill_operation op)271 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272 {
273 	struct rfkill_data *data;
274 	struct rfkill_int_event *ev;
275 
276 	list_for_each_entry(data, &rfkill_fds, list) {
277 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278 		if (!ev)
279 			continue;
280 		rfkill_fill_event(&ev->ev, rfkill, op);
281 		mutex_lock(&data->mtx);
282 		list_add_tail(&ev->list, &data->events);
283 		mutex_unlock(&data->mtx);
284 		wake_up_interruptible(&data->read_wait);
285 	}
286 }
287 
rfkill_event(struct rfkill * rfkill)288 static void rfkill_event(struct rfkill *rfkill)
289 {
290 	if (!rfkill->registered)
291 		return;
292 
293 	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294 
295 	/* also send event to /dev/rfkill */
296 	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297 }
298 
299 /**
300  * rfkill_set_block - wrapper for set_block method
301  *
302  * @rfkill: the rfkill struct to use
303  * @blocked: the new software state
304  *
305  * Calls the set_block method (when applicable) and handles notifications
306  * etc. as well.
307  */
rfkill_set_block(struct rfkill * rfkill,bool blocked)308 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309 {
310 	unsigned long flags;
311 	bool prev, curr;
312 	int err;
313 
314 	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315 		return;
316 
317 	/*
318 	 * Some platforms (...!) generate input events which affect the
319 	 * _hard_ kill state -- whenever something tries to change the
320 	 * current software state query the hardware state too.
321 	 */
322 	if (rfkill->ops->query)
323 		rfkill->ops->query(rfkill, rfkill->data);
324 
325 	spin_lock_irqsave(&rfkill->lock, flags);
326 	prev = rfkill->state & RFKILL_BLOCK_SW;
327 
328 	if (prev)
329 		rfkill->state |= RFKILL_BLOCK_SW_PREV;
330 	else
331 		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332 
333 	if (blocked)
334 		rfkill->state |= RFKILL_BLOCK_SW;
335 	else
336 		rfkill->state &= ~RFKILL_BLOCK_SW;
337 
338 	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339 	spin_unlock_irqrestore(&rfkill->lock, flags);
340 
341 	err = rfkill->ops->set_block(rfkill->data, blocked);
342 
343 	spin_lock_irqsave(&rfkill->lock, flags);
344 	if (err) {
345 		/*
346 		 * Failed -- reset status to _PREV, which may be different
347 		 * from what we have set _PREV to earlier in this function
348 		 * if rfkill_set_sw_state was invoked.
349 		 */
350 		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351 			rfkill->state |= RFKILL_BLOCK_SW;
352 		else
353 			rfkill->state &= ~RFKILL_BLOCK_SW;
354 	}
355 	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356 	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357 	curr = rfkill->state & RFKILL_BLOCK_SW;
358 	spin_unlock_irqrestore(&rfkill->lock, flags);
359 
360 	rfkill_led_trigger_event(rfkill);
361 	rfkill_global_led_trigger_event();
362 
363 	if (prev != curr)
364 		rfkill_event(rfkill);
365 }
366 
rfkill_update_global_state(enum rfkill_type type,bool blocked)367 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368 {
369 	int i;
370 
371 	if (type != RFKILL_TYPE_ALL) {
372 		rfkill_global_states[type].cur = blocked;
373 		return;
374 	}
375 
376 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
377 		rfkill_global_states[i].cur = blocked;
378 }
379 
380 #ifdef CONFIG_RFKILL_INPUT
381 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382 
383 /**
384  * __rfkill_switch_all - Toggle state of all switches of given type
385  * @type: type of interfaces to be affected
386  * @blocked: the new state
387  *
388  * This function sets the state of all switches of given type,
389  * unless a specific switch is suspended.
390  *
391  * Caller must have acquired rfkill_global_mutex.
392  */
__rfkill_switch_all(const enum rfkill_type type,bool blocked)393 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394 {
395 	struct rfkill *rfkill;
396 
397 	rfkill_update_global_state(type, blocked);
398 	list_for_each_entry(rfkill, &rfkill_list, node) {
399 		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400 			continue;
401 
402 		rfkill_set_block(rfkill, blocked);
403 	}
404 }
405 
406 /**
407  * rfkill_switch_all - Toggle state of all switches of given type
408  * @type: type of interfaces to be affected
409  * @blocked: the new state
410  *
411  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412  * Please refer to __rfkill_switch_all() for details.
413  *
414  * Does nothing if the EPO lock is active.
415  */
rfkill_switch_all(enum rfkill_type type,bool blocked)416 void rfkill_switch_all(enum rfkill_type type, bool blocked)
417 {
418 	if (atomic_read(&rfkill_input_disabled))
419 		return;
420 
421 	mutex_lock(&rfkill_global_mutex);
422 
423 	if (!rfkill_epo_lock_active)
424 		__rfkill_switch_all(type, blocked);
425 
426 	mutex_unlock(&rfkill_global_mutex);
427 }
428 
429 /**
430  * rfkill_epo - emergency power off all transmitters
431  *
432  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434  *
435  * The global state before the EPO is saved and can be restored later
436  * using rfkill_restore_states().
437  */
rfkill_epo(void)438 void rfkill_epo(void)
439 {
440 	struct rfkill *rfkill;
441 	int i;
442 
443 	if (atomic_read(&rfkill_input_disabled))
444 		return;
445 
446 	mutex_lock(&rfkill_global_mutex);
447 
448 	rfkill_epo_lock_active = true;
449 	list_for_each_entry(rfkill, &rfkill_list, node)
450 		rfkill_set_block(rfkill, true);
451 
452 	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453 		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454 		rfkill_global_states[i].cur = true;
455 	}
456 
457 	mutex_unlock(&rfkill_global_mutex);
458 }
459 
460 /**
461  * rfkill_restore_states - restore global states
462  *
463  * Restore (and sync switches to) the global state from the
464  * states in rfkill_default_states.  This can undo the effects of
465  * a call to rfkill_epo().
466  */
rfkill_restore_states(void)467 void rfkill_restore_states(void)
468 {
469 	int i;
470 
471 	if (atomic_read(&rfkill_input_disabled))
472 		return;
473 
474 	mutex_lock(&rfkill_global_mutex);
475 
476 	rfkill_epo_lock_active = false;
477 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
478 		__rfkill_switch_all(i, rfkill_global_states[i].sav);
479 	mutex_unlock(&rfkill_global_mutex);
480 }
481 
482 /**
483  * rfkill_remove_epo_lock - unlock state changes
484  *
485  * Used by rfkill-input manually unlock state changes, when
486  * the EPO switch is deactivated.
487  */
rfkill_remove_epo_lock(void)488 void rfkill_remove_epo_lock(void)
489 {
490 	if (atomic_read(&rfkill_input_disabled))
491 		return;
492 
493 	mutex_lock(&rfkill_global_mutex);
494 	rfkill_epo_lock_active = false;
495 	mutex_unlock(&rfkill_global_mutex);
496 }
497 
498 /**
499  * rfkill_is_epo_lock_active - returns true EPO is active
500  *
501  * Returns 0 (false) if there is NOT an active EPO condition,
502  * and 1 (true) if there is an active EPO condition, which
503  * locks all radios in one of the BLOCKED states.
504  *
505  * Can be called in atomic context.
506  */
rfkill_is_epo_lock_active(void)507 bool rfkill_is_epo_lock_active(void)
508 {
509 	return rfkill_epo_lock_active;
510 }
511 
512 /**
513  * rfkill_get_global_sw_state - returns global state for a type
514  * @type: the type to get the global state of
515  *
516  * Returns the current global state for a given wireless
517  * device type.
518  */
rfkill_get_global_sw_state(const enum rfkill_type type)519 bool rfkill_get_global_sw_state(const enum rfkill_type type)
520 {
521 	return rfkill_global_states[type].cur;
522 }
523 #endif
524 
rfkill_set_hw_state(struct rfkill * rfkill,bool blocked)525 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526 {
527 	unsigned long flags;
528 	bool ret, prev;
529 
530 	BUG_ON(!rfkill);
531 
532 	spin_lock_irqsave(&rfkill->lock, flags);
533 	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534 	if (blocked)
535 		rfkill->state |= RFKILL_BLOCK_HW;
536 	else
537 		rfkill->state &= ~RFKILL_BLOCK_HW;
538 	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539 	spin_unlock_irqrestore(&rfkill->lock, flags);
540 
541 	rfkill_led_trigger_event(rfkill);
542 	rfkill_global_led_trigger_event();
543 
544 	if (rfkill->registered && prev != blocked)
545 		schedule_work(&rfkill->uevent_work);
546 
547 	return ret;
548 }
549 EXPORT_SYMBOL(rfkill_set_hw_state);
550 
__rfkill_set_sw_state(struct rfkill * rfkill,bool blocked)551 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552 {
553 	u32 bit = RFKILL_BLOCK_SW;
554 
555 	/* if in a ops->set_block right now, use other bit */
556 	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557 		bit = RFKILL_BLOCK_SW_PREV;
558 
559 	if (blocked)
560 		rfkill->state |= bit;
561 	else
562 		rfkill->state &= ~bit;
563 }
564 
rfkill_set_sw_state(struct rfkill * rfkill,bool blocked)565 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567 	unsigned long flags;
568 	bool prev, hwblock;
569 
570 	BUG_ON(!rfkill);
571 
572 	spin_lock_irqsave(&rfkill->lock, flags);
573 	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574 	__rfkill_set_sw_state(rfkill, blocked);
575 	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576 	blocked = blocked || hwblock;
577 	spin_unlock_irqrestore(&rfkill->lock, flags);
578 
579 	if (!rfkill->registered)
580 		return blocked;
581 
582 	if (prev != blocked && !hwblock)
583 		schedule_work(&rfkill->uevent_work);
584 
585 	rfkill_led_trigger_event(rfkill);
586 	rfkill_global_led_trigger_event();
587 
588 	return blocked;
589 }
590 EXPORT_SYMBOL(rfkill_set_sw_state);
591 
rfkill_init_sw_state(struct rfkill * rfkill,bool blocked)592 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593 {
594 	unsigned long flags;
595 
596 	BUG_ON(!rfkill);
597 	BUG_ON(rfkill->registered);
598 
599 	spin_lock_irqsave(&rfkill->lock, flags);
600 	__rfkill_set_sw_state(rfkill, blocked);
601 	rfkill->persistent = true;
602 	spin_unlock_irqrestore(&rfkill->lock, flags);
603 }
604 EXPORT_SYMBOL(rfkill_init_sw_state);
605 
rfkill_set_states(struct rfkill * rfkill,bool sw,bool hw)606 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607 {
608 	unsigned long flags;
609 	bool swprev, hwprev;
610 
611 	BUG_ON(!rfkill);
612 
613 	spin_lock_irqsave(&rfkill->lock, flags);
614 
615 	/*
616 	 * No need to care about prev/setblock ... this is for uevent only
617 	 * and that will get triggered by rfkill_set_block anyway.
618 	 */
619 	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620 	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621 	__rfkill_set_sw_state(rfkill, sw);
622 	if (hw)
623 		rfkill->state |= RFKILL_BLOCK_HW;
624 	else
625 		rfkill->state &= ~RFKILL_BLOCK_HW;
626 
627 	spin_unlock_irqrestore(&rfkill->lock, flags);
628 
629 	if (!rfkill->registered) {
630 		rfkill->persistent = true;
631 	} else {
632 		if (swprev != sw || hwprev != hw)
633 			schedule_work(&rfkill->uevent_work);
634 
635 		rfkill_led_trigger_event(rfkill);
636 		rfkill_global_led_trigger_event();
637 	}
638 }
639 EXPORT_SYMBOL(rfkill_set_states);
640 
641 static const char * const rfkill_types[] = {
642 	NULL, /* RFKILL_TYPE_ALL */
643 	"wlan",
644 	"bluetooth",
645 	"ultrawideband",
646 	"wimax",
647 	"wwan",
648 	"gps",
649 	"fm",
650 	"nfc",
651 };
652 
rfkill_find_type(const char * name)653 enum rfkill_type rfkill_find_type(const char *name)
654 {
655 	int i;
656 
657 	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658 
659 	if (!name)
660 		return RFKILL_TYPE_ALL;
661 
662 	for (i = 1; i < NUM_RFKILL_TYPES; i++)
663 		if (!strcmp(name, rfkill_types[i]))
664 			return i;
665 	return RFKILL_TYPE_ALL;
666 }
667 EXPORT_SYMBOL(rfkill_find_type);
668 
name_show(struct device * dev,struct device_attribute * attr,char * buf)669 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670 			 char *buf)
671 {
672 	struct rfkill *rfkill = to_rfkill(dev);
673 
674 	return sprintf(buf, "%s\n", rfkill->name);
675 }
676 static DEVICE_ATTR_RO(name);
677 
type_show(struct device * dev,struct device_attribute * attr,char * buf)678 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679 			 char *buf)
680 {
681 	struct rfkill *rfkill = to_rfkill(dev);
682 
683 	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684 }
685 static DEVICE_ATTR_RO(type);
686 
index_show(struct device * dev,struct device_attribute * attr,char * buf)687 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688 			  char *buf)
689 {
690 	struct rfkill *rfkill = to_rfkill(dev);
691 
692 	return sprintf(buf, "%d\n", rfkill->idx);
693 }
694 static DEVICE_ATTR_RO(index);
695 
persistent_show(struct device * dev,struct device_attribute * attr,char * buf)696 static ssize_t persistent_show(struct device *dev,
697 			       struct device_attribute *attr, char *buf)
698 {
699 	struct rfkill *rfkill = to_rfkill(dev);
700 
701 	return sprintf(buf, "%d\n", rfkill->persistent);
702 }
703 static DEVICE_ATTR_RO(persistent);
704 
hard_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706 			 char *buf)
707 {
708 	struct rfkill *rfkill = to_rfkill(dev);
709 
710 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711 }
712 static DEVICE_ATTR_RO(hard);
713 
soft_show(struct device * dev,struct device_attribute * attr,char * buf)714 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715 			 char *buf)
716 {
717 	struct rfkill *rfkill = to_rfkill(dev);
718 
719 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720 }
721 
soft_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)722 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723 			  const char *buf, size_t count)
724 {
725 	struct rfkill *rfkill = to_rfkill(dev);
726 	unsigned long state;
727 	int err;
728 
729 	if (!capable(CAP_NET_ADMIN))
730 		return -EPERM;
731 
732 	err = kstrtoul(buf, 0, &state);
733 	if (err)
734 		return err;
735 
736 	if (state > 1 )
737 		return -EINVAL;
738 
739 	mutex_lock(&rfkill_global_mutex);
740 	rfkill_set_block(rfkill, state);
741 	mutex_unlock(&rfkill_global_mutex);
742 
743 	return count;
744 }
745 static DEVICE_ATTR_RW(soft);
746 
user_state_from_blocked(unsigned long state)747 static u8 user_state_from_blocked(unsigned long state)
748 {
749 	if (state & RFKILL_BLOCK_HW)
750 		return RFKILL_USER_STATE_HARD_BLOCKED;
751 	if (state & RFKILL_BLOCK_SW)
752 		return RFKILL_USER_STATE_SOFT_BLOCKED;
753 
754 	return RFKILL_USER_STATE_UNBLOCKED;
755 }
756 
state_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758 			  char *buf)
759 {
760 	struct rfkill *rfkill = to_rfkill(dev);
761 
762 	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763 }
764 
state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)765 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766 			   const char *buf, size_t count)
767 {
768 	struct rfkill *rfkill = to_rfkill(dev);
769 	unsigned long state;
770 	int err;
771 
772 	if (!capable(CAP_NET_ADMIN))
773 		return -EPERM;
774 
775 	err = kstrtoul(buf, 0, &state);
776 	if (err)
777 		return err;
778 
779 	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780 	    state != RFKILL_USER_STATE_UNBLOCKED)
781 		return -EINVAL;
782 
783 	mutex_lock(&rfkill_global_mutex);
784 	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785 	mutex_unlock(&rfkill_global_mutex);
786 
787 	return count;
788 }
789 static DEVICE_ATTR_RW(state);
790 
791 static struct attribute *rfkill_dev_attrs[] = {
792 	&dev_attr_name.attr,
793 	&dev_attr_type.attr,
794 	&dev_attr_index.attr,
795 	&dev_attr_persistent.attr,
796 	&dev_attr_state.attr,
797 	&dev_attr_soft.attr,
798 	&dev_attr_hard.attr,
799 	NULL,
800 };
801 ATTRIBUTE_GROUPS(rfkill_dev);
802 
rfkill_release(struct device * dev)803 static void rfkill_release(struct device *dev)
804 {
805 	struct rfkill *rfkill = to_rfkill(dev);
806 
807 	kfree(rfkill);
808 }
809 
rfkill_dev_uevent(struct device * dev,struct kobj_uevent_env * env)810 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811 {
812 	struct rfkill *rfkill = to_rfkill(dev);
813 	unsigned long flags;
814 	u32 state;
815 	int error;
816 
817 	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818 	if (error)
819 		return error;
820 	error = add_uevent_var(env, "RFKILL_TYPE=%s",
821 			       rfkill_types[rfkill->type]);
822 	if (error)
823 		return error;
824 	spin_lock_irqsave(&rfkill->lock, flags);
825 	state = rfkill->state;
826 	spin_unlock_irqrestore(&rfkill->lock, flags);
827 	error = add_uevent_var(env, "RFKILL_STATE=%d",
828 			       user_state_from_blocked(state));
829 	return error;
830 }
831 
rfkill_pause_polling(struct rfkill * rfkill)832 void rfkill_pause_polling(struct rfkill *rfkill)
833 {
834 	BUG_ON(!rfkill);
835 
836 	if (!rfkill->ops->poll)
837 		return;
838 
839 	rfkill->polling_paused = true;
840 	cancel_delayed_work_sync(&rfkill->poll_work);
841 }
842 EXPORT_SYMBOL(rfkill_pause_polling);
843 
rfkill_resume_polling(struct rfkill * rfkill)844 void rfkill_resume_polling(struct rfkill *rfkill)
845 {
846 	BUG_ON(!rfkill);
847 
848 	if (!rfkill->ops->poll)
849 		return;
850 
851 	rfkill->polling_paused = false;
852 
853 	if (rfkill->suspended)
854 		return;
855 
856 	queue_delayed_work(system_power_efficient_wq,
857 			   &rfkill->poll_work, 0);
858 }
859 EXPORT_SYMBOL(rfkill_resume_polling);
860 
861 #ifdef CONFIG_PM_SLEEP
rfkill_suspend(struct device * dev)862 static int rfkill_suspend(struct device *dev)
863 {
864 	struct rfkill *rfkill = to_rfkill(dev);
865 
866 	rfkill->suspended = true;
867 	cancel_delayed_work_sync(&rfkill->poll_work);
868 
869 	return 0;
870 }
871 
rfkill_resume(struct device * dev)872 static int rfkill_resume(struct device *dev)
873 {
874 	struct rfkill *rfkill = to_rfkill(dev);
875 	bool cur;
876 
877 	rfkill->suspended = false;
878 
879 	if (!rfkill->registered)
880 		return 0;
881 
882 	if (!rfkill->persistent) {
883 		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
884 		rfkill_set_block(rfkill, cur);
885 	}
886 
887 	if (rfkill->ops->poll && !rfkill->polling_paused)
888 		queue_delayed_work(system_power_efficient_wq,
889 				   &rfkill->poll_work, 0);
890 
891 	return 0;
892 }
893 
894 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
895 #define RFKILL_PM_OPS (&rfkill_pm_ops)
896 #else
897 #define RFKILL_PM_OPS NULL
898 #endif
899 
900 static struct class rfkill_class = {
901 	.name		= "rfkill",
902 	.dev_release	= rfkill_release,
903 	.dev_groups	= rfkill_dev_groups,
904 	.dev_uevent	= rfkill_dev_uevent,
905 	.pm		= RFKILL_PM_OPS,
906 };
907 
rfkill_blocked(struct rfkill * rfkill)908 bool rfkill_blocked(struct rfkill *rfkill)
909 {
910 	unsigned long flags;
911 	u32 state;
912 
913 	spin_lock_irqsave(&rfkill->lock, flags);
914 	state = rfkill->state;
915 	spin_unlock_irqrestore(&rfkill->lock, flags);
916 
917 	return !!(state & RFKILL_BLOCK_ANY);
918 }
919 EXPORT_SYMBOL(rfkill_blocked);
920 
921 
rfkill_alloc(const char * name,struct device * parent,const enum rfkill_type type,const struct rfkill_ops * ops,void * ops_data)922 struct rfkill * __must_check rfkill_alloc(const char *name,
923 					  struct device *parent,
924 					  const enum rfkill_type type,
925 					  const struct rfkill_ops *ops,
926 					  void *ops_data)
927 {
928 	struct rfkill *rfkill;
929 	struct device *dev;
930 
931 	if (WARN_ON(!ops))
932 		return NULL;
933 
934 	if (WARN_ON(!ops->set_block))
935 		return NULL;
936 
937 	if (WARN_ON(!name))
938 		return NULL;
939 
940 	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
941 		return NULL;
942 
943 	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
944 	if (!rfkill)
945 		return NULL;
946 
947 	spin_lock_init(&rfkill->lock);
948 	INIT_LIST_HEAD(&rfkill->node);
949 	rfkill->type = type;
950 	strcpy(rfkill->name, name);
951 	rfkill->ops = ops;
952 	rfkill->data = ops_data;
953 
954 	dev = &rfkill->dev;
955 	dev->class = &rfkill_class;
956 	dev->parent = parent;
957 	device_initialize(dev);
958 
959 	return rfkill;
960 }
961 EXPORT_SYMBOL(rfkill_alloc);
962 
rfkill_poll(struct work_struct * work)963 static void rfkill_poll(struct work_struct *work)
964 {
965 	struct rfkill *rfkill;
966 
967 	rfkill = container_of(work, struct rfkill, poll_work.work);
968 
969 	/*
970 	 * Poll hardware state -- driver will use one of the
971 	 * rfkill_set{,_hw,_sw}_state functions and use its
972 	 * return value to update the current status.
973 	 */
974 	rfkill->ops->poll(rfkill, rfkill->data);
975 
976 	queue_delayed_work(system_power_efficient_wq,
977 		&rfkill->poll_work,
978 		round_jiffies_relative(POLL_INTERVAL));
979 }
980 
rfkill_uevent_work(struct work_struct * work)981 static void rfkill_uevent_work(struct work_struct *work)
982 {
983 	struct rfkill *rfkill;
984 
985 	rfkill = container_of(work, struct rfkill, uevent_work);
986 
987 	mutex_lock(&rfkill_global_mutex);
988 	rfkill_event(rfkill);
989 	mutex_unlock(&rfkill_global_mutex);
990 }
991 
rfkill_sync_work(struct work_struct * work)992 static void rfkill_sync_work(struct work_struct *work)
993 {
994 	struct rfkill *rfkill;
995 	bool cur;
996 
997 	rfkill = container_of(work, struct rfkill, sync_work);
998 
999 	mutex_lock(&rfkill_global_mutex);
1000 	cur = rfkill_global_states[rfkill->type].cur;
1001 	rfkill_set_block(rfkill, cur);
1002 	mutex_unlock(&rfkill_global_mutex);
1003 }
1004 
rfkill_register(struct rfkill * rfkill)1005 int __must_check rfkill_register(struct rfkill *rfkill)
1006 {
1007 	static unsigned long rfkill_no;
1008 	struct device *dev;
1009 	int error;
1010 
1011 	if (!rfkill)
1012 		return -EINVAL;
1013 
1014 	dev = &rfkill->dev;
1015 
1016 	mutex_lock(&rfkill_global_mutex);
1017 
1018 	if (rfkill->registered) {
1019 		error = -EALREADY;
1020 		goto unlock;
1021 	}
1022 
1023 	rfkill->idx = rfkill_no;
1024 	dev_set_name(dev, "rfkill%lu", rfkill_no);
1025 	rfkill_no++;
1026 
1027 	list_add_tail(&rfkill->node, &rfkill_list);
1028 
1029 	error = device_add(dev);
1030 	if (error)
1031 		goto remove;
1032 
1033 	error = rfkill_led_trigger_register(rfkill);
1034 	if (error)
1035 		goto devdel;
1036 
1037 	rfkill->registered = true;
1038 
1039 	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1040 	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1041 	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1042 
1043 	if (rfkill->ops->poll)
1044 		queue_delayed_work(system_power_efficient_wq,
1045 			&rfkill->poll_work,
1046 			round_jiffies_relative(POLL_INTERVAL));
1047 
1048 	if (!rfkill->persistent || rfkill_epo_lock_active) {
1049 		schedule_work(&rfkill->sync_work);
1050 	} else {
1051 #ifdef CONFIG_RFKILL_INPUT
1052 		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1053 
1054 		if (!atomic_read(&rfkill_input_disabled))
1055 			__rfkill_switch_all(rfkill->type, soft_blocked);
1056 #endif
1057 	}
1058 
1059 	rfkill_global_led_trigger_event();
1060 	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1061 
1062 	mutex_unlock(&rfkill_global_mutex);
1063 	return 0;
1064 
1065  devdel:
1066 	device_del(&rfkill->dev);
1067  remove:
1068 	list_del_init(&rfkill->node);
1069  unlock:
1070 	mutex_unlock(&rfkill_global_mutex);
1071 	return error;
1072 }
1073 EXPORT_SYMBOL(rfkill_register);
1074 
rfkill_unregister(struct rfkill * rfkill)1075 void rfkill_unregister(struct rfkill *rfkill)
1076 {
1077 	BUG_ON(!rfkill);
1078 
1079 	if (rfkill->ops->poll)
1080 		cancel_delayed_work_sync(&rfkill->poll_work);
1081 
1082 	cancel_work_sync(&rfkill->uevent_work);
1083 	cancel_work_sync(&rfkill->sync_work);
1084 
1085 	rfkill->registered = false;
1086 
1087 	device_del(&rfkill->dev);
1088 
1089 	mutex_lock(&rfkill_global_mutex);
1090 	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1091 	list_del_init(&rfkill->node);
1092 	rfkill_global_led_trigger_event();
1093 	mutex_unlock(&rfkill_global_mutex);
1094 
1095 	rfkill_led_trigger_unregister(rfkill);
1096 }
1097 EXPORT_SYMBOL(rfkill_unregister);
1098 
rfkill_destroy(struct rfkill * rfkill)1099 void rfkill_destroy(struct rfkill *rfkill)
1100 {
1101 	if (rfkill)
1102 		put_device(&rfkill->dev);
1103 }
1104 EXPORT_SYMBOL(rfkill_destroy);
1105 
rfkill_fop_open(struct inode * inode,struct file * file)1106 static int rfkill_fop_open(struct inode *inode, struct file *file)
1107 {
1108 	struct rfkill_data *data;
1109 	struct rfkill *rfkill;
1110 	struct rfkill_int_event *ev, *tmp;
1111 
1112 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1113 	if (!data)
1114 		return -ENOMEM;
1115 
1116 	INIT_LIST_HEAD(&data->events);
1117 	mutex_init(&data->mtx);
1118 	init_waitqueue_head(&data->read_wait);
1119 
1120 	mutex_lock(&rfkill_global_mutex);
1121 	mutex_lock(&data->mtx);
1122 	/*
1123 	 * start getting events from elsewhere but hold mtx to get
1124 	 * startup events added first
1125 	 */
1126 
1127 	list_for_each_entry(rfkill, &rfkill_list, node) {
1128 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1129 		if (!ev)
1130 			goto free;
1131 		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1132 		list_add_tail(&ev->list, &data->events);
1133 	}
1134 	list_add(&data->list, &rfkill_fds);
1135 	mutex_unlock(&data->mtx);
1136 	mutex_unlock(&rfkill_global_mutex);
1137 
1138 	file->private_data = data;
1139 
1140 	return stream_open(inode, file);
1141 
1142  free:
1143 	mutex_unlock(&data->mtx);
1144 	mutex_unlock(&rfkill_global_mutex);
1145 	mutex_destroy(&data->mtx);
1146 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1147 		kfree(ev);
1148 	kfree(data);
1149 	return -ENOMEM;
1150 }
1151 
rfkill_fop_poll(struct file * file,poll_table * wait)1152 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1153 {
1154 	struct rfkill_data *data = file->private_data;
1155 	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1156 
1157 	poll_wait(file, &data->read_wait, wait);
1158 
1159 	mutex_lock(&data->mtx);
1160 	if (!list_empty(&data->events))
1161 		res = EPOLLIN | EPOLLRDNORM;
1162 	mutex_unlock(&data->mtx);
1163 
1164 	return res;
1165 }
1166 
rfkill_fop_read(struct file * file,char __user * buf,size_t count,loff_t * pos)1167 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1168 			       size_t count, loff_t *pos)
1169 {
1170 	struct rfkill_data *data = file->private_data;
1171 	struct rfkill_int_event *ev;
1172 	unsigned long sz;
1173 	int ret;
1174 
1175 	mutex_lock(&data->mtx);
1176 
1177 	while (list_empty(&data->events)) {
1178 		if (file->f_flags & O_NONBLOCK) {
1179 			ret = -EAGAIN;
1180 			goto out;
1181 		}
1182 		mutex_unlock(&data->mtx);
1183 		/* since we re-check and it just compares pointers,
1184 		 * using !list_empty() without locking isn't a problem
1185 		 */
1186 		ret = wait_event_interruptible(data->read_wait,
1187 					       !list_empty(&data->events));
1188 		mutex_lock(&data->mtx);
1189 
1190 		if (ret)
1191 			goto out;
1192 	}
1193 
1194 	ev = list_first_entry(&data->events, struct rfkill_int_event,
1195 				list);
1196 
1197 	sz = min_t(unsigned long, sizeof(ev->ev), count);
1198 	ret = sz;
1199 	if (copy_to_user(buf, &ev->ev, sz))
1200 		ret = -EFAULT;
1201 
1202 	list_del(&ev->list);
1203 	kfree(ev);
1204  out:
1205 	mutex_unlock(&data->mtx);
1206 	return ret;
1207 }
1208 
rfkill_fop_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)1209 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1210 				size_t count, loff_t *pos)
1211 {
1212 	struct rfkill *rfkill;
1213 	struct rfkill_event ev;
1214 	int ret;
1215 
1216 	/* we don't need the 'hard' variable but accept it */
1217 	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1218 		return -EINVAL;
1219 
1220 	/*
1221 	 * Copy as much data as we can accept into our 'ev' buffer,
1222 	 * but tell userspace how much we've copied so it can determine
1223 	 * our API version even in a write() call, if it cares.
1224 	 */
1225 	count = min(count, sizeof(ev));
1226 	if (copy_from_user(&ev, buf, count))
1227 		return -EFAULT;
1228 
1229 	if (ev.type >= NUM_RFKILL_TYPES)
1230 		return -EINVAL;
1231 
1232 	mutex_lock(&rfkill_global_mutex);
1233 
1234 	switch (ev.op) {
1235 	case RFKILL_OP_CHANGE_ALL:
1236 		rfkill_update_global_state(ev.type, ev.soft);
1237 		list_for_each_entry(rfkill, &rfkill_list, node)
1238 			if (rfkill->type == ev.type ||
1239 			    ev.type == RFKILL_TYPE_ALL)
1240 				rfkill_set_block(rfkill, ev.soft);
1241 		ret = 0;
1242 		break;
1243 	case RFKILL_OP_CHANGE:
1244 		list_for_each_entry(rfkill, &rfkill_list, node)
1245 			if (rfkill->idx == ev.idx &&
1246 			    (rfkill->type == ev.type ||
1247 			     ev.type == RFKILL_TYPE_ALL))
1248 				rfkill_set_block(rfkill, ev.soft);
1249 		ret = 0;
1250 		break;
1251 	default:
1252 		ret = -EINVAL;
1253 		break;
1254 	}
1255 
1256 	mutex_unlock(&rfkill_global_mutex);
1257 
1258 	return ret ?: count;
1259 }
1260 
rfkill_fop_release(struct inode * inode,struct file * file)1261 static int rfkill_fop_release(struct inode *inode, struct file *file)
1262 {
1263 	struct rfkill_data *data = file->private_data;
1264 	struct rfkill_int_event *ev, *tmp;
1265 
1266 	mutex_lock(&rfkill_global_mutex);
1267 	list_del(&data->list);
1268 	mutex_unlock(&rfkill_global_mutex);
1269 
1270 	mutex_destroy(&data->mtx);
1271 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1272 		kfree(ev);
1273 
1274 #ifdef CONFIG_RFKILL_INPUT
1275 	if (data->input_handler)
1276 		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1277 			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1278 #endif
1279 
1280 	kfree(data);
1281 
1282 	return 0;
1283 }
1284 
1285 #ifdef CONFIG_RFKILL_INPUT
rfkill_fop_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1286 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1287 			     unsigned long arg)
1288 {
1289 	struct rfkill_data *data = file->private_data;
1290 
1291 	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1292 		return -ENOSYS;
1293 
1294 	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1295 		return -ENOSYS;
1296 
1297 	mutex_lock(&data->mtx);
1298 
1299 	if (!data->input_handler) {
1300 		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1301 			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1302 		data->input_handler = true;
1303 	}
1304 
1305 	mutex_unlock(&data->mtx);
1306 
1307 	return 0;
1308 }
1309 #endif
1310 
1311 static const struct file_operations rfkill_fops = {
1312 	.owner		= THIS_MODULE,
1313 	.open		= rfkill_fop_open,
1314 	.read		= rfkill_fop_read,
1315 	.write		= rfkill_fop_write,
1316 	.poll		= rfkill_fop_poll,
1317 	.release	= rfkill_fop_release,
1318 #ifdef CONFIG_RFKILL_INPUT
1319 	.unlocked_ioctl	= rfkill_fop_ioctl,
1320 	.compat_ioctl	= compat_ptr_ioctl,
1321 #endif
1322 	.llseek		= no_llseek,
1323 };
1324 
1325 #define RFKILL_NAME "rfkill"
1326 
1327 static struct miscdevice rfkill_miscdev = {
1328 	.fops	= &rfkill_fops,
1329 	.name	= RFKILL_NAME,
1330 	.minor	= RFKILL_MINOR,
1331 };
1332 
rfkill_init(void)1333 static int __init rfkill_init(void)
1334 {
1335 	int error;
1336 
1337 	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1338 
1339 	error = class_register(&rfkill_class);
1340 	if (error)
1341 		goto error_class;
1342 
1343 	error = misc_register(&rfkill_miscdev);
1344 	if (error)
1345 		goto error_misc;
1346 
1347 	error = rfkill_global_led_trigger_register();
1348 	if (error)
1349 		goto error_led_trigger;
1350 
1351 #ifdef CONFIG_RFKILL_INPUT
1352 	error = rfkill_handler_init();
1353 	if (error)
1354 		goto error_input;
1355 #endif
1356 
1357 	return 0;
1358 
1359 #ifdef CONFIG_RFKILL_INPUT
1360 error_input:
1361 	rfkill_global_led_trigger_unregister();
1362 #endif
1363 error_led_trigger:
1364 	misc_deregister(&rfkill_miscdev);
1365 error_misc:
1366 	class_unregister(&rfkill_class);
1367 error_class:
1368 	return error;
1369 }
1370 subsys_initcall(rfkill_init);
1371 
rfkill_exit(void)1372 static void __exit rfkill_exit(void)
1373 {
1374 #ifdef CONFIG_RFKILL_INPUT
1375 	rfkill_handler_exit();
1376 #endif
1377 	rfkill_global_led_trigger_unregister();
1378 	misc_deregister(&rfkill_miscdev);
1379 	class_unregister(&rfkill_class);
1380 }
1381 module_exit(rfkill_exit);
1382 
1383 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1384 MODULE_ALIAS("devname:" RFKILL_NAME);
1385