1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL (5 * HZ)
28
29 #define RFKILL_BLOCK_HW BIT(0)
30 #define RFKILL_BLOCK_SW BIT(1)
31 #define RFKILL_BLOCK_SW_PREV BIT(2)
32 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43
44 u32 idx;
45
46 bool registered;
47 bool persistent;
48 bool polling_paused;
49 bool suspended;
50
51 const struct rfkill_ops *ops;
52 void *data;
53
54 #ifdef CONFIG_RFKILL_LEDS
55 struct led_trigger led_trigger;
56 const char *ledtrigname;
57 #endif
58
59 struct device dev;
60 struct list_head node;
61
62 struct delayed_work poll_work;
63 struct work_struct uevent_work;
64 struct work_struct sync_work;
65 char name[];
66 };
67 #define to_rfkill(d) container_of(d, struct rfkill, dev)
68
69 struct rfkill_int_event {
70 struct list_head list;
71 struct rfkill_event ev;
72 };
73
74 struct rfkill_data {
75 struct list_head list;
76 struct list_head events;
77 struct mutex mtx;
78 wait_queue_head_t read_wait;
79 bool input_handler;
80 };
81
82
83 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
84 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
85 MODULE_DESCRIPTION("RF switch support");
86 MODULE_LICENSE("GPL");
87
88
89 /*
90 * The locking here should be made much smarter, we currently have
91 * a bit of a stupid situation because drivers might want to register
92 * the rfkill struct under their own lock, and take this lock during
93 * rfkill method calls -- which will cause an AB-BA deadlock situation.
94 *
95 * To fix that, we need to rework this code here to be mostly lock-free
96 * and only use the mutex for list manipulations, not to protect the
97 * various other global variables. Then we can avoid holding the mutex
98 * around driver operations, and all is happy.
99 */
100 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
101 static DEFINE_MUTEX(rfkill_global_mutex);
102 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
103
104 static unsigned int rfkill_default_state = 1;
105 module_param_named(default_state, rfkill_default_state, uint, 0444);
106 MODULE_PARM_DESC(default_state,
107 "Default initial state for all radio types, 0 = radio off");
108
109 static struct {
110 bool cur, sav;
111 } rfkill_global_states[NUM_RFKILL_TYPES];
112
113 static bool rfkill_epo_lock_active;
114
115
116 #ifdef CONFIG_RFKILL_LEDS
rfkill_led_trigger_event(struct rfkill * rfkill)117 static void rfkill_led_trigger_event(struct rfkill *rfkill)
118 {
119 struct led_trigger *trigger;
120
121 if (!rfkill->registered)
122 return;
123
124 trigger = &rfkill->led_trigger;
125
126 if (rfkill->state & RFKILL_BLOCK_ANY)
127 led_trigger_event(trigger, LED_OFF);
128 else
129 led_trigger_event(trigger, LED_FULL);
130 }
131
rfkill_led_trigger_activate(struct led_classdev * led)132 static int rfkill_led_trigger_activate(struct led_classdev *led)
133 {
134 struct rfkill *rfkill;
135
136 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137
138 rfkill_led_trigger_event(rfkill);
139
140 return 0;
141 }
142
rfkill_get_led_trigger_name(struct rfkill * rfkill)143 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144 {
145 return rfkill->led_trigger.name;
146 }
147 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148
rfkill_set_led_trigger_name(struct rfkill * rfkill,const char * name)149 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150 {
151 BUG_ON(!rfkill);
152
153 rfkill->ledtrigname = name;
154 }
155 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156
rfkill_led_trigger_register(struct rfkill * rfkill)157 static int rfkill_led_trigger_register(struct rfkill *rfkill)
158 {
159 rfkill->led_trigger.name = rfkill->ledtrigname
160 ? : dev_name(&rfkill->dev);
161 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162 return led_trigger_register(&rfkill->led_trigger);
163 }
164
rfkill_led_trigger_unregister(struct rfkill * rfkill)165 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166 {
167 led_trigger_unregister(&rfkill->led_trigger);
168 }
169
170 static struct led_trigger rfkill_any_led_trigger;
171 static struct led_trigger rfkill_none_led_trigger;
172 static struct work_struct rfkill_global_led_trigger_work;
173
rfkill_global_led_trigger_worker(struct work_struct * work)174 static void rfkill_global_led_trigger_worker(struct work_struct *work)
175 {
176 enum led_brightness brightness = LED_OFF;
177 struct rfkill *rfkill;
178
179 mutex_lock(&rfkill_global_mutex);
180 list_for_each_entry(rfkill, &rfkill_list, node) {
181 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182 brightness = LED_FULL;
183 break;
184 }
185 }
186 mutex_unlock(&rfkill_global_mutex);
187
188 led_trigger_event(&rfkill_any_led_trigger, brightness);
189 led_trigger_event(&rfkill_none_led_trigger,
190 brightness == LED_OFF ? LED_FULL : LED_OFF);
191 }
192
rfkill_global_led_trigger_event(void)193 static void rfkill_global_led_trigger_event(void)
194 {
195 schedule_work(&rfkill_global_led_trigger_work);
196 }
197
rfkill_global_led_trigger_register(void)198 static int rfkill_global_led_trigger_register(void)
199 {
200 int ret;
201
202 INIT_WORK(&rfkill_global_led_trigger_work,
203 rfkill_global_led_trigger_worker);
204
205 rfkill_any_led_trigger.name = "rfkill-any";
206 ret = led_trigger_register(&rfkill_any_led_trigger);
207 if (ret)
208 return ret;
209
210 rfkill_none_led_trigger.name = "rfkill-none";
211 ret = led_trigger_register(&rfkill_none_led_trigger);
212 if (ret)
213 led_trigger_unregister(&rfkill_any_led_trigger);
214 else
215 /* Delay activation until all global triggers are registered */
216 rfkill_global_led_trigger_event();
217
218 return ret;
219 }
220
rfkill_global_led_trigger_unregister(void)221 static void rfkill_global_led_trigger_unregister(void)
222 {
223 led_trigger_unregister(&rfkill_none_led_trigger);
224 led_trigger_unregister(&rfkill_any_led_trigger);
225 cancel_work_sync(&rfkill_global_led_trigger_work);
226 }
227 #else
rfkill_led_trigger_event(struct rfkill * rfkill)228 static void rfkill_led_trigger_event(struct rfkill *rfkill)
229 {
230 }
231
rfkill_led_trigger_register(struct rfkill * rfkill)232 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233 {
234 return 0;
235 }
236
rfkill_led_trigger_unregister(struct rfkill * rfkill)237 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238 {
239 }
240
rfkill_global_led_trigger_event(void)241 static void rfkill_global_led_trigger_event(void)
242 {
243 }
244
rfkill_global_led_trigger_register(void)245 static int rfkill_global_led_trigger_register(void)
246 {
247 return 0;
248 }
249
rfkill_global_led_trigger_unregister(void)250 static void rfkill_global_led_trigger_unregister(void)
251 {
252 }
253 #endif /* CONFIG_RFKILL_LEDS */
254
rfkill_fill_event(struct rfkill_event * ev,struct rfkill * rfkill,enum rfkill_operation op)255 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256 enum rfkill_operation op)
257 {
258 unsigned long flags;
259
260 ev->idx = rfkill->idx;
261 ev->type = rfkill->type;
262 ev->op = op;
263
264 spin_lock_irqsave(&rfkill->lock, flags);
265 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267 RFKILL_BLOCK_SW_PREV));
268 spin_unlock_irqrestore(&rfkill->lock, flags);
269 }
270
rfkill_send_events(struct rfkill * rfkill,enum rfkill_operation op)271 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272 {
273 struct rfkill_data *data;
274 struct rfkill_int_event *ev;
275
276 list_for_each_entry(data, &rfkill_fds, list) {
277 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278 if (!ev)
279 continue;
280 rfkill_fill_event(&ev->ev, rfkill, op);
281 mutex_lock(&data->mtx);
282 list_add_tail(&ev->list, &data->events);
283 mutex_unlock(&data->mtx);
284 wake_up_interruptible(&data->read_wait);
285 }
286 }
287
rfkill_event(struct rfkill * rfkill)288 static void rfkill_event(struct rfkill *rfkill)
289 {
290 if (!rfkill->registered)
291 return;
292
293 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294
295 /* also send event to /dev/rfkill */
296 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297 }
298
299 /**
300 * rfkill_set_block - wrapper for set_block method
301 *
302 * @rfkill: the rfkill struct to use
303 * @blocked: the new software state
304 *
305 * Calls the set_block method (when applicable) and handles notifications
306 * etc. as well.
307 */
rfkill_set_block(struct rfkill * rfkill,bool blocked)308 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309 {
310 unsigned long flags;
311 bool prev, curr;
312 int err;
313
314 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315 return;
316
317 /*
318 * Some platforms (...!) generate input events which affect the
319 * _hard_ kill state -- whenever something tries to change the
320 * current software state query the hardware state too.
321 */
322 if (rfkill->ops->query)
323 rfkill->ops->query(rfkill, rfkill->data);
324
325 spin_lock_irqsave(&rfkill->lock, flags);
326 prev = rfkill->state & RFKILL_BLOCK_SW;
327
328 if (prev)
329 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330 else
331 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332
333 if (blocked)
334 rfkill->state |= RFKILL_BLOCK_SW;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW;
337
338 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339 spin_unlock_irqrestore(&rfkill->lock, flags);
340
341 err = rfkill->ops->set_block(rfkill->data, blocked);
342
343 spin_lock_irqsave(&rfkill->lock, flags);
344 if (err) {
345 /*
346 * Failed -- reset status to _PREV, which may be different
347 * from what we have set _PREV to earlier in this function
348 * if rfkill_set_sw_state was invoked.
349 */
350 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351 rfkill->state |= RFKILL_BLOCK_SW;
352 else
353 rfkill->state &= ~RFKILL_BLOCK_SW;
354 }
355 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357 curr = rfkill->state & RFKILL_BLOCK_SW;
358 spin_unlock_irqrestore(&rfkill->lock, flags);
359
360 rfkill_led_trigger_event(rfkill);
361 rfkill_global_led_trigger_event();
362
363 if (prev != curr)
364 rfkill_event(rfkill);
365 }
366
rfkill_update_global_state(enum rfkill_type type,bool blocked)367 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368 {
369 int i;
370
371 if (type != RFKILL_TYPE_ALL) {
372 rfkill_global_states[type].cur = blocked;
373 return;
374 }
375
376 for (i = 0; i < NUM_RFKILL_TYPES; i++)
377 rfkill_global_states[i].cur = blocked;
378 }
379
380 #ifdef CONFIG_RFKILL_INPUT
381 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382
383 /**
384 * __rfkill_switch_all - Toggle state of all switches of given type
385 * @type: type of interfaces to be affected
386 * @blocked: the new state
387 *
388 * This function sets the state of all switches of given type,
389 * unless a specific switch is suspended.
390 *
391 * Caller must have acquired rfkill_global_mutex.
392 */
__rfkill_switch_all(const enum rfkill_type type,bool blocked)393 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394 {
395 struct rfkill *rfkill;
396
397 rfkill_update_global_state(type, blocked);
398 list_for_each_entry(rfkill, &rfkill_list, node) {
399 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400 continue;
401
402 rfkill_set_block(rfkill, blocked);
403 }
404 }
405
406 /**
407 * rfkill_switch_all - Toggle state of all switches of given type
408 * @type: type of interfaces to be affected
409 * @blocked: the new state
410 *
411 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412 * Please refer to __rfkill_switch_all() for details.
413 *
414 * Does nothing if the EPO lock is active.
415 */
rfkill_switch_all(enum rfkill_type type,bool blocked)416 void rfkill_switch_all(enum rfkill_type type, bool blocked)
417 {
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422
423 if (!rfkill_epo_lock_active)
424 __rfkill_switch_all(type, blocked);
425
426 mutex_unlock(&rfkill_global_mutex);
427 }
428
429 /**
430 * rfkill_epo - emergency power off all transmitters
431 *
432 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434 *
435 * The global state before the EPO is saved and can be restored later
436 * using rfkill_restore_states().
437 */
rfkill_epo(void)438 void rfkill_epo(void)
439 {
440 struct rfkill *rfkill;
441 int i;
442
443 if (atomic_read(&rfkill_input_disabled))
444 return;
445
446 mutex_lock(&rfkill_global_mutex);
447
448 rfkill_epo_lock_active = true;
449 list_for_each_entry(rfkill, &rfkill_list, node)
450 rfkill_set_block(rfkill, true);
451
452 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454 rfkill_global_states[i].cur = true;
455 }
456
457 mutex_unlock(&rfkill_global_mutex);
458 }
459
460 /**
461 * rfkill_restore_states - restore global states
462 *
463 * Restore (and sync switches to) the global state from the
464 * states in rfkill_default_states. This can undo the effects of
465 * a call to rfkill_epo().
466 */
rfkill_restore_states(void)467 void rfkill_restore_states(void)
468 {
469 int i;
470
471 if (atomic_read(&rfkill_input_disabled))
472 return;
473
474 mutex_lock(&rfkill_global_mutex);
475
476 rfkill_epo_lock_active = false;
477 for (i = 0; i < NUM_RFKILL_TYPES; i++)
478 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479 mutex_unlock(&rfkill_global_mutex);
480 }
481
482 /**
483 * rfkill_remove_epo_lock - unlock state changes
484 *
485 * Used by rfkill-input manually unlock state changes, when
486 * the EPO switch is deactivated.
487 */
rfkill_remove_epo_lock(void)488 void rfkill_remove_epo_lock(void)
489 {
490 if (atomic_read(&rfkill_input_disabled))
491 return;
492
493 mutex_lock(&rfkill_global_mutex);
494 rfkill_epo_lock_active = false;
495 mutex_unlock(&rfkill_global_mutex);
496 }
497
498 /**
499 * rfkill_is_epo_lock_active - returns true EPO is active
500 *
501 * Returns 0 (false) if there is NOT an active EPO condition,
502 * and 1 (true) if there is an active EPO condition, which
503 * locks all radios in one of the BLOCKED states.
504 *
505 * Can be called in atomic context.
506 */
rfkill_is_epo_lock_active(void)507 bool rfkill_is_epo_lock_active(void)
508 {
509 return rfkill_epo_lock_active;
510 }
511
512 /**
513 * rfkill_get_global_sw_state - returns global state for a type
514 * @type: the type to get the global state of
515 *
516 * Returns the current global state for a given wireless
517 * device type.
518 */
rfkill_get_global_sw_state(const enum rfkill_type type)519 bool rfkill_get_global_sw_state(const enum rfkill_type type)
520 {
521 return rfkill_global_states[type].cur;
522 }
523 #endif
524
rfkill_set_hw_state(struct rfkill * rfkill,bool blocked)525 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526 {
527 unsigned long flags;
528 bool ret, prev;
529
530 BUG_ON(!rfkill);
531
532 spin_lock_irqsave(&rfkill->lock, flags);
533 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534 if (blocked)
535 rfkill->state |= RFKILL_BLOCK_HW;
536 else
537 rfkill->state &= ~RFKILL_BLOCK_HW;
538 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539 spin_unlock_irqrestore(&rfkill->lock, flags);
540
541 rfkill_led_trigger_event(rfkill);
542 rfkill_global_led_trigger_event();
543
544 if (rfkill->registered && prev != blocked)
545 schedule_work(&rfkill->uevent_work);
546
547 return ret;
548 }
549 EXPORT_SYMBOL(rfkill_set_hw_state);
550
__rfkill_set_sw_state(struct rfkill * rfkill,bool blocked)551 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552 {
553 u32 bit = RFKILL_BLOCK_SW;
554
555 /* if in a ops->set_block right now, use other bit */
556 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557 bit = RFKILL_BLOCK_SW_PREV;
558
559 if (blocked)
560 rfkill->state |= bit;
561 else
562 rfkill->state &= ~bit;
563 }
564
rfkill_set_sw_state(struct rfkill * rfkill,bool blocked)565 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567 unsigned long flags;
568 bool prev, hwblock;
569
570 BUG_ON(!rfkill);
571
572 spin_lock_irqsave(&rfkill->lock, flags);
573 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574 __rfkill_set_sw_state(rfkill, blocked);
575 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576 blocked = blocked || hwblock;
577 spin_unlock_irqrestore(&rfkill->lock, flags);
578
579 if (!rfkill->registered)
580 return blocked;
581
582 if (prev != blocked && !hwblock)
583 schedule_work(&rfkill->uevent_work);
584
585 rfkill_led_trigger_event(rfkill);
586 rfkill_global_led_trigger_event();
587
588 return blocked;
589 }
590 EXPORT_SYMBOL(rfkill_set_sw_state);
591
rfkill_init_sw_state(struct rfkill * rfkill,bool blocked)592 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593 {
594 unsigned long flags;
595
596 BUG_ON(!rfkill);
597 BUG_ON(rfkill->registered);
598
599 spin_lock_irqsave(&rfkill->lock, flags);
600 __rfkill_set_sw_state(rfkill, blocked);
601 rfkill->persistent = true;
602 spin_unlock_irqrestore(&rfkill->lock, flags);
603 }
604 EXPORT_SYMBOL(rfkill_init_sw_state);
605
rfkill_set_states(struct rfkill * rfkill,bool sw,bool hw)606 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607 {
608 unsigned long flags;
609 bool swprev, hwprev;
610
611 BUG_ON(!rfkill);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614
615 /*
616 * No need to care about prev/setblock ... this is for uevent only
617 * and that will get triggered by rfkill_set_block anyway.
618 */
619 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621 __rfkill_set_sw_state(rfkill, sw);
622 if (hw)
623 rfkill->state |= RFKILL_BLOCK_HW;
624 else
625 rfkill->state &= ~RFKILL_BLOCK_HW;
626
627 spin_unlock_irqrestore(&rfkill->lock, flags);
628
629 if (!rfkill->registered) {
630 rfkill->persistent = true;
631 } else {
632 if (swprev != sw || hwprev != hw)
633 schedule_work(&rfkill->uevent_work);
634
635 rfkill_led_trigger_event(rfkill);
636 rfkill_global_led_trigger_event();
637 }
638 }
639 EXPORT_SYMBOL(rfkill_set_states);
640
641 static const char * const rfkill_types[] = {
642 NULL, /* RFKILL_TYPE_ALL */
643 "wlan",
644 "bluetooth",
645 "ultrawideband",
646 "wimax",
647 "wwan",
648 "gps",
649 "fm",
650 "nfc",
651 };
652
rfkill_find_type(const char * name)653 enum rfkill_type rfkill_find_type(const char *name)
654 {
655 int i;
656
657 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658
659 if (!name)
660 return RFKILL_TYPE_ALL;
661
662 for (i = 1; i < NUM_RFKILL_TYPES; i++)
663 if (!strcmp(name, rfkill_types[i]))
664 return i;
665 return RFKILL_TYPE_ALL;
666 }
667 EXPORT_SYMBOL(rfkill_find_type);
668
name_show(struct device * dev,struct device_attribute * attr,char * buf)669 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670 char *buf)
671 {
672 struct rfkill *rfkill = to_rfkill(dev);
673
674 return sprintf(buf, "%s\n", rfkill->name);
675 }
676 static DEVICE_ATTR_RO(name);
677
type_show(struct device * dev,struct device_attribute * attr,char * buf)678 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680 {
681 struct rfkill *rfkill = to_rfkill(dev);
682
683 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684 }
685 static DEVICE_ATTR_RO(type);
686
index_show(struct device * dev,struct device_attribute * attr,char * buf)687 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688 char *buf)
689 {
690 struct rfkill *rfkill = to_rfkill(dev);
691
692 return sprintf(buf, "%d\n", rfkill->idx);
693 }
694 static DEVICE_ATTR_RO(index);
695
persistent_show(struct device * dev,struct device_attribute * attr,char * buf)696 static ssize_t persistent_show(struct device *dev,
697 struct device_attribute *attr, char *buf)
698 {
699 struct rfkill *rfkill = to_rfkill(dev);
700
701 return sprintf(buf, "%d\n", rfkill->persistent);
702 }
703 static DEVICE_ATTR_RO(persistent);
704
hard_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706 char *buf)
707 {
708 struct rfkill *rfkill = to_rfkill(dev);
709
710 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711 }
712 static DEVICE_ATTR_RO(hard);
713
soft_show(struct device * dev,struct device_attribute * attr,char * buf)714 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715 char *buf)
716 {
717 struct rfkill *rfkill = to_rfkill(dev);
718
719 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720 }
721
soft_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)722 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723 const char *buf, size_t count)
724 {
725 struct rfkill *rfkill = to_rfkill(dev);
726 unsigned long state;
727 int err;
728
729 if (!capable(CAP_NET_ADMIN))
730 return -EPERM;
731
732 err = kstrtoul(buf, 0, &state);
733 if (err)
734 return err;
735
736 if (state > 1 )
737 return -EINVAL;
738
739 mutex_lock(&rfkill_global_mutex);
740 rfkill_set_block(rfkill, state);
741 mutex_unlock(&rfkill_global_mutex);
742
743 return count;
744 }
745 static DEVICE_ATTR_RW(soft);
746
user_state_from_blocked(unsigned long state)747 static u8 user_state_from_blocked(unsigned long state)
748 {
749 if (state & RFKILL_BLOCK_HW)
750 return RFKILL_USER_STATE_HARD_BLOCKED;
751 if (state & RFKILL_BLOCK_SW)
752 return RFKILL_USER_STATE_SOFT_BLOCKED;
753
754 return RFKILL_USER_STATE_UNBLOCKED;
755 }
756
state_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758 char *buf)
759 {
760 struct rfkill *rfkill = to_rfkill(dev);
761
762 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763 }
764
state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)765 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766 const char *buf, size_t count)
767 {
768 struct rfkill *rfkill = to_rfkill(dev);
769 unsigned long state;
770 int err;
771
772 if (!capable(CAP_NET_ADMIN))
773 return -EPERM;
774
775 err = kstrtoul(buf, 0, &state);
776 if (err)
777 return err;
778
779 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780 state != RFKILL_USER_STATE_UNBLOCKED)
781 return -EINVAL;
782
783 mutex_lock(&rfkill_global_mutex);
784 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785 mutex_unlock(&rfkill_global_mutex);
786
787 return count;
788 }
789 static DEVICE_ATTR_RW(state);
790
791 static struct attribute *rfkill_dev_attrs[] = {
792 &dev_attr_name.attr,
793 &dev_attr_type.attr,
794 &dev_attr_index.attr,
795 &dev_attr_persistent.attr,
796 &dev_attr_state.attr,
797 &dev_attr_soft.attr,
798 &dev_attr_hard.attr,
799 NULL,
800 };
801 ATTRIBUTE_GROUPS(rfkill_dev);
802
rfkill_release(struct device * dev)803 static void rfkill_release(struct device *dev)
804 {
805 struct rfkill *rfkill = to_rfkill(dev);
806
807 kfree(rfkill);
808 }
809
rfkill_dev_uevent(struct device * dev,struct kobj_uevent_env * env)810 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811 {
812 struct rfkill *rfkill = to_rfkill(dev);
813 unsigned long flags;
814 u32 state;
815 int error;
816
817 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818 if (error)
819 return error;
820 error = add_uevent_var(env, "RFKILL_TYPE=%s",
821 rfkill_types[rfkill->type]);
822 if (error)
823 return error;
824 spin_lock_irqsave(&rfkill->lock, flags);
825 state = rfkill->state;
826 spin_unlock_irqrestore(&rfkill->lock, flags);
827 error = add_uevent_var(env, "RFKILL_STATE=%d",
828 user_state_from_blocked(state));
829 return error;
830 }
831
rfkill_pause_polling(struct rfkill * rfkill)832 void rfkill_pause_polling(struct rfkill *rfkill)
833 {
834 BUG_ON(!rfkill);
835
836 if (!rfkill->ops->poll)
837 return;
838
839 rfkill->polling_paused = true;
840 cancel_delayed_work_sync(&rfkill->poll_work);
841 }
842 EXPORT_SYMBOL(rfkill_pause_polling);
843
rfkill_resume_polling(struct rfkill * rfkill)844 void rfkill_resume_polling(struct rfkill *rfkill)
845 {
846 BUG_ON(!rfkill);
847
848 if (!rfkill->ops->poll)
849 return;
850
851 rfkill->polling_paused = false;
852
853 if (rfkill->suspended)
854 return;
855
856 queue_delayed_work(system_power_efficient_wq,
857 &rfkill->poll_work, 0);
858 }
859 EXPORT_SYMBOL(rfkill_resume_polling);
860
861 #ifdef CONFIG_PM_SLEEP
rfkill_suspend(struct device * dev)862 static int rfkill_suspend(struct device *dev)
863 {
864 struct rfkill *rfkill = to_rfkill(dev);
865
866 rfkill->suspended = true;
867 cancel_delayed_work_sync(&rfkill->poll_work);
868
869 return 0;
870 }
871
rfkill_resume(struct device * dev)872 static int rfkill_resume(struct device *dev)
873 {
874 struct rfkill *rfkill = to_rfkill(dev);
875 bool cur;
876
877 rfkill->suspended = false;
878
879 if (!rfkill->registered)
880 return 0;
881
882 if (!rfkill->persistent) {
883 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
884 rfkill_set_block(rfkill, cur);
885 }
886
887 if (rfkill->ops->poll && !rfkill->polling_paused)
888 queue_delayed_work(system_power_efficient_wq,
889 &rfkill->poll_work, 0);
890
891 return 0;
892 }
893
894 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
895 #define RFKILL_PM_OPS (&rfkill_pm_ops)
896 #else
897 #define RFKILL_PM_OPS NULL
898 #endif
899
900 static struct class rfkill_class = {
901 .name = "rfkill",
902 .dev_release = rfkill_release,
903 .dev_groups = rfkill_dev_groups,
904 .dev_uevent = rfkill_dev_uevent,
905 .pm = RFKILL_PM_OPS,
906 };
907
rfkill_blocked(struct rfkill * rfkill)908 bool rfkill_blocked(struct rfkill *rfkill)
909 {
910 unsigned long flags;
911 u32 state;
912
913 spin_lock_irqsave(&rfkill->lock, flags);
914 state = rfkill->state;
915 spin_unlock_irqrestore(&rfkill->lock, flags);
916
917 return !!(state & RFKILL_BLOCK_ANY);
918 }
919 EXPORT_SYMBOL(rfkill_blocked);
920
921
rfkill_alloc(const char * name,struct device * parent,const enum rfkill_type type,const struct rfkill_ops * ops,void * ops_data)922 struct rfkill * __must_check rfkill_alloc(const char *name,
923 struct device *parent,
924 const enum rfkill_type type,
925 const struct rfkill_ops *ops,
926 void *ops_data)
927 {
928 struct rfkill *rfkill;
929 struct device *dev;
930
931 if (WARN_ON(!ops))
932 return NULL;
933
934 if (WARN_ON(!ops->set_block))
935 return NULL;
936
937 if (WARN_ON(!name))
938 return NULL;
939
940 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
941 return NULL;
942
943 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
944 if (!rfkill)
945 return NULL;
946
947 spin_lock_init(&rfkill->lock);
948 INIT_LIST_HEAD(&rfkill->node);
949 rfkill->type = type;
950 strcpy(rfkill->name, name);
951 rfkill->ops = ops;
952 rfkill->data = ops_data;
953
954 dev = &rfkill->dev;
955 dev->class = &rfkill_class;
956 dev->parent = parent;
957 device_initialize(dev);
958
959 return rfkill;
960 }
961 EXPORT_SYMBOL(rfkill_alloc);
962
rfkill_poll(struct work_struct * work)963 static void rfkill_poll(struct work_struct *work)
964 {
965 struct rfkill *rfkill;
966
967 rfkill = container_of(work, struct rfkill, poll_work.work);
968
969 /*
970 * Poll hardware state -- driver will use one of the
971 * rfkill_set{,_hw,_sw}_state functions and use its
972 * return value to update the current status.
973 */
974 rfkill->ops->poll(rfkill, rfkill->data);
975
976 queue_delayed_work(system_power_efficient_wq,
977 &rfkill->poll_work,
978 round_jiffies_relative(POLL_INTERVAL));
979 }
980
rfkill_uevent_work(struct work_struct * work)981 static void rfkill_uevent_work(struct work_struct *work)
982 {
983 struct rfkill *rfkill;
984
985 rfkill = container_of(work, struct rfkill, uevent_work);
986
987 mutex_lock(&rfkill_global_mutex);
988 rfkill_event(rfkill);
989 mutex_unlock(&rfkill_global_mutex);
990 }
991
rfkill_sync_work(struct work_struct * work)992 static void rfkill_sync_work(struct work_struct *work)
993 {
994 struct rfkill *rfkill;
995 bool cur;
996
997 rfkill = container_of(work, struct rfkill, sync_work);
998
999 mutex_lock(&rfkill_global_mutex);
1000 cur = rfkill_global_states[rfkill->type].cur;
1001 rfkill_set_block(rfkill, cur);
1002 mutex_unlock(&rfkill_global_mutex);
1003 }
1004
rfkill_register(struct rfkill * rfkill)1005 int __must_check rfkill_register(struct rfkill *rfkill)
1006 {
1007 static unsigned long rfkill_no;
1008 struct device *dev;
1009 int error;
1010
1011 if (!rfkill)
1012 return -EINVAL;
1013
1014 dev = &rfkill->dev;
1015
1016 mutex_lock(&rfkill_global_mutex);
1017
1018 if (rfkill->registered) {
1019 error = -EALREADY;
1020 goto unlock;
1021 }
1022
1023 rfkill->idx = rfkill_no;
1024 dev_set_name(dev, "rfkill%lu", rfkill_no);
1025 rfkill_no++;
1026
1027 list_add_tail(&rfkill->node, &rfkill_list);
1028
1029 error = device_add(dev);
1030 if (error)
1031 goto remove;
1032
1033 error = rfkill_led_trigger_register(rfkill);
1034 if (error)
1035 goto devdel;
1036
1037 rfkill->registered = true;
1038
1039 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1040 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1041 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1042
1043 if (rfkill->ops->poll)
1044 queue_delayed_work(system_power_efficient_wq,
1045 &rfkill->poll_work,
1046 round_jiffies_relative(POLL_INTERVAL));
1047
1048 if (!rfkill->persistent || rfkill_epo_lock_active) {
1049 schedule_work(&rfkill->sync_work);
1050 } else {
1051 #ifdef CONFIG_RFKILL_INPUT
1052 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1053
1054 if (!atomic_read(&rfkill_input_disabled))
1055 __rfkill_switch_all(rfkill->type, soft_blocked);
1056 #endif
1057 }
1058
1059 rfkill_global_led_trigger_event();
1060 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1061
1062 mutex_unlock(&rfkill_global_mutex);
1063 return 0;
1064
1065 devdel:
1066 device_del(&rfkill->dev);
1067 remove:
1068 list_del_init(&rfkill->node);
1069 unlock:
1070 mutex_unlock(&rfkill_global_mutex);
1071 return error;
1072 }
1073 EXPORT_SYMBOL(rfkill_register);
1074
rfkill_unregister(struct rfkill * rfkill)1075 void rfkill_unregister(struct rfkill *rfkill)
1076 {
1077 BUG_ON(!rfkill);
1078
1079 if (rfkill->ops->poll)
1080 cancel_delayed_work_sync(&rfkill->poll_work);
1081
1082 cancel_work_sync(&rfkill->uevent_work);
1083 cancel_work_sync(&rfkill->sync_work);
1084
1085 rfkill->registered = false;
1086
1087 device_del(&rfkill->dev);
1088
1089 mutex_lock(&rfkill_global_mutex);
1090 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1091 list_del_init(&rfkill->node);
1092 rfkill_global_led_trigger_event();
1093 mutex_unlock(&rfkill_global_mutex);
1094
1095 rfkill_led_trigger_unregister(rfkill);
1096 }
1097 EXPORT_SYMBOL(rfkill_unregister);
1098
rfkill_destroy(struct rfkill * rfkill)1099 void rfkill_destroy(struct rfkill *rfkill)
1100 {
1101 if (rfkill)
1102 put_device(&rfkill->dev);
1103 }
1104 EXPORT_SYMBOL(rfkill_destroy);
1105
rfkill_fop_open(struct inode * inode,struct file * file)1106 static int rfkill_fop_open(struct inode *inode, struct file *file)
1107 {
1108 struct rfkill_data *data;
1109 struct rfkill *rfkill;
1110 struct rfkill_int_event *ev, *tmp;
1111
1112 data = kzalloc(sizeof(*data), GFP_KERNEL);
1113 if (!data)
1114 return -ENOMEM;
1115
1116 INIT_LIST_HEAD(&data->events);
1117 mutex_init(&data->mtx);
1118 init_waitqueue_head(&data->read_wait);
1119
1120 mutex_lock(&rfkill_global_mutex);
1121 mutex_lock(&data->mtx);
1122 /*
1123 * start getting events from elsewhere but hold mtx to get
1124 * startup events added first
1125 */
1126
1127 list_for_each_entry(rfkill, &rfkill_list, node) {
1128 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1129 if (!ev)
1130 goto free;
1131 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1132 list_add_tail(&ev->list, &data->events);
1133 }
1134 list_add(&data->list, &rfkill_fds);
1135 mutex_unlock(&data->mtx);
1136 mutex_unlock(&rfkill_global_mutex);
1137
1138 file->private_data = data;
1139
1140 return stream_open(inode, file);
1141
1142 free:
1143 mutex_unlock(&data->mtx);
1144 mutex_unlock(&rfkill_global_mutex);
1145 mutex_destroy(&data->mtx);
1146 list_for_each_entry_safe(ev, tmp, &data->events, list)
1147 kfree(ev);
1148 kfree(data);
1149 return -ENOMEM;
1150 }
1151
rfkill_fop_poll(struct file * file,poll_table * wait)1152 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1153 {
1154 struct rfkill_data *data = file->private_data;
1155 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1156
1157 poll_wait(file, &data->read_wait, wait);
1158
1159 mutex_lock(&data->mtx);
1160 if (!list_empty(&data->events))
1161 res = EPOLLIN | EPOLLRDNORM;
1162 mutex_unlock(&data->mtx);
1163
1164 return res;
1165 }
1166
rfkill_fop_read(struct file * file,char __user * buf,size_t count,loff_t * pos)1167 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1168 size_t count, loff_t *pos)
1169 {
1170 struct rfkill_data *data = file->private_data;
1171 struct rfkill_int_event *ev;
1172 unsigned long sz;
1173 int ret;
1174
1175 mutex_lock(&data->mtx);
1176
1177 while (list_empty(&data->events)) {
1178 if (file->f_flags & O_NONBLOCK) {
1179 ret = -EAGAIN;
1180 goto out;
1181 }
1182 mutex_unlock(&data->mtx);
1183 /* since we re-check and it just compares pointers,
1184 * using !list_empty() without locking isn't a problem
1185 */
1186 ret = wait_event_interruptible(data->read_wait,
1187 !list_empty(&data->events));
1188 mutex_lock(&data->mtx);
1189
1190 if (ret)
1191 goto out;
1192 }
1193
1194 ev = list_first_entry(&data->events, struct rfkill_int_event,
1195 list);
1196
1197 sz = min_t(unsigned long, sizeof(ev->ev), count);
1198 ret = sz;
1199 if (copy_to_user(buf, &ev->ev, sz))
1200 ret = -EFAULT;
1201
1202 list_del(&ev->list);
1203 kfree(ev);
1204 out:
1205 mutex_unlock(&data->mtx);
1206 return ret;
1207 }
1208
rfkill_fop_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)1209 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1210 size_t count, loff_t *pos)
1211 {
1212 struct rfkill *rfkill;
1213 struct rfkill_event ev;
1214 int ret;
1215
1216 /* we don't need the 'hard' variable but accept it */
1217 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1218 return -EINVAL;
1219
1220 /*
1221 * Copy as much data as we can accept into our 'ev' buffer,
1222 * but tell userspace how much we've copied so it can determine
1223 * our API version even in a write() call, if it cares.
1224 */
1225 count = min(count, sizeof(ev));
1226 if (copy_from_user(&ev, buf, count))
1227 return -EFAULT;
1228
1229 if (ev.type >= NUM_RFKILL_TYPES)
1230 return -EINVAL;
1231
1232 mutex_lock(&rfkill_global_mutex);
1233
1234 switch (ev.op) {
1235 case RFKILL_OP_CHANGE_ALL:
1236 rfkill_update_global_state(ev.type, ev.soft);
1237 list_for_each_entry(rfkill, &rfkill_list, node)
1238 if (rfkill->type == ev.type ||
1239 ev.type == RFKILL_TYPE_ALL)
1240 rfkill_set_block(rfkill, ev.soft);
1241 ret = 0;
1242 break;
1243 case RFKILL_OP_CHANGE:
1244 list_for_each_entry(rfkill, &rfkill_list, node)
1245 if (rfkill->idx == ev.idx &&
1246 (rfkill->type == ev.type ||
1247 ev.type == RFKILL_TYPE_ALL))
1248 rfkill_set_block(rfkill, ev.soft);
1249 ret = 0;
1250 break;
1251 default:
1252 ret = -EINVAL;
1253 break;
1254 }
1255
1256 mutex_unlock(&rfkill_global_mutex);
1257
1258 return ret ?: count;
1259 }
1260
rfkill_fop_release(struct inode * inode,struct file * file)1261 static int rfkill_fop_release(struct inode *inode, struct file *file)
1262 {
1263 struct rfkill_data *data = file->private_data;
1264 struct rfkill_int_event *ev, *tmp;
1265
1266 mutex_lock(&rfkill_global_mutex);
1267 list_del(&data->list);
1268 mutex_unlock(&rfkill_global_mutex);
1269
1270 mutex_destroy(&data->mtx);
1271 list_for_each_entry_safe(ev, tmp, &data->events, list)
1272 kfree(ev);
1273
1274 #ifdef CONFIG_RFKILL_INPUT
1275 if (data->input_handler)
1276 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1277 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1278 #endif
1279
1280 kfree(data);
1281
1282 return 0;
1283 }
1284
1285 #ifdef CONFIG_RFKILL_INPUT
rfkill_fop_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1286 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1287 unsigned long arg)
1288 {
1289 struct rfkill_data *data = file->private_data;
1290
1291 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1292 return -ENOSYS;
1293
1294 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1295 return -ENOSYS;
1296
1297 mutex_lock(&data->mtx);
1298
1299 if (!data->input_handler) {
1300 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1301 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1302 data->input_handler = true;
1303 }
1304
1305 mutex_unlock(&data->mtx);
1306
1307 return 0;
1308 }
1309 #endif
1310
1311 static const struct file_operations rfkill_fops = {
1312 .owner = THIS_MODULE,
1313 .open = rfkill_fop_open,
1314 .read = rfkill_fop_read,
1315 .write = rfkill_fop_write,
1316 .poll = rfkill_fop_poll,
1317 .release = rfkill_fop_release,
1318 #ifdef CONFIG_RFKILL_INPUT
1319 .unlocked_ioctl = rfkill_fop_ioctl,
1320 .compat_ioctl = compat_ptr_ioctl,
1321 #endif
1322 .llseek = no_llseek,
1323 };
1324
1325 #define RFKILL_NAME "rfkill"
1326
1327 static struct miscdevice rfkill_miscdev = {
1328 .fops = &rfkill_fops,
1329 .name = RFKILL_NAME,
1330 .minor = RFKILL_MINOR,
1331 };
1332
rfkill_init(void)1333 static int __init rfkill_init(void)
1334 {
1335 int error;
1336
1337 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1338
1339 error = class_register(&rfkill_class);
1340 if (error)
1341 goto error_class;
1342
1343 error = misc_register(&rfkill_miscdev);
1344 if (error)
1345 goto error_misc;
1346
1347 error = rfkill_global_led_trigger_register();
1348 if (error)
1349 goto error_led_trigger;
1350
1351 #ifdef CONFIG_RFKILL_INPUT
1352 error = rfkill_handler_init();
1353 if (error)
1354 goto error_input;
1355 #endif
1356
1357 return 0;
1358
1359 #ifdef CONFIG_RFKILL_INPUT
1360 error_input:
1361 rfkill_global_led_trigger_unregister();
1362 #endif
1363 error_led_trigger:
1364 misc_deregister(&rfkill_miscdev);
1365 error_misc:
1366 class_unregister(&rfkill_class);
1367 error_class:
1368 return error;
1369 }
1370 subsys_initcall(rfkill_init);
1371
rfkill_exit(void)1372 static void __exit rfkill_exit(void)
1373 {
1374 #ifdef CONFIG_RFKILL_INPUT
1375 rfkill_handler_exit();
1376 #endif
1377 rfkill_global_led_trigger_unregister();
1378 misc_deregister(&rfkill_miscdev);
1379 class_unregister(&rfkill_class);
1380 }
1381 module_exit(rfkill_exit);
1382
1383 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1384 MODULE_ALIAS("devname:" RFKILL_NAME);
1385