• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/cls_u32.c	Ugly (or Universal) 32bit key Packet Classifier.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *
7  *	The filters are packed to hash tables of key nodes
8  *	with a set of 32bit key/mask pairs at every node.
9  *	Nodes reference next level hash tables etc.
10  *
11  *	This scheme is the best universal classifier I managed to
12  *	invent; it is not super-fast, but it is not slow (provided you
13  *	program it correctly), and general enough.  And its relative
14  *	speed grows as the number of rules becomes larger.
15  *
16  *	It seems that it represents the best middle point between
17  *	speed and manageability both by human and by machine.
18  *
19  *	It is especially useful for link sharing combined with QoS;
20  *	pure RSVP doesn't need such a general approach and can use
21  *	much simpler (and faster) schemes, sort of cls_rsvp.c.
22  *
23  *	nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24  */
25 
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/types.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/errno.h>
32 #include <linux/percpu.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitmap.h>
36 #include <linux/netdevice.h>
37 #include <linux/hash.h>
38 #include <net/netlink.h>
39 #include <net/act_api.h>
40 #include <net/pkt_cls.h>
41 #include <linux/idr.h>
42 
43 struct tc_u_knode {
44 	struct tc_u_knode __rcu	*next;
45 	u32			handle;
46 	struct tc_u_hnode __rcu	*ht_up;
47 	struct tcf_exts		exts;
48 	int			ifindex;
49 	u8			fshift;
50 	struct tcf_result	res;
51 	struct tc_u_hnode __rcu	*ht_down;
52 #ifdef CONFIG_CLS_U32_PERF
53 	struct tc_u32_pcnt __percpu *pf;
54 #endif
55 	u32			flags;
56 	unsigned int		in_hw_count;
57 #ifdef CONFIG_CLS_U32_MARK
58 	u32			val;
59 	u32			mask;
60 	u32 __percpu		*pcpu_success;
61 #endif
62 	struct rcu_work		rwork;
63 	/* The 'sel' field MUST be the last field in structure to allow for
64 	 * tc_u32_keys allocated at end of structure.
65 	 */
66 	struct tc_u32_sel	sel;
67 };
68 
69 struct tc_u_hnode {
70 	struct tc_u_hnode __rcu	*next;
71 	u32			handle;
72 	u32			prio;
73 	int			refcnt;
74 	unsigned int		divisor;
75 	struct idr		handle_idr;
76 	bool			is_root;
77 	struct rcu_head		rcu;
78 	u32			flags;
79 	/* The 'ht' field MUST be the last field in structure to allow for
80 	 * more entries allocated at end of structure.
81 	 */
82 	struct tc_u_knode __rcu	*ht[];
83 };
84 
85 struct tc_u_common {
86 	struct tc_u_hnode __rcu	*hlist;
87 	void			*ptr;
88 	int			refcnt;
89 	struct idr		handle_idr;
90 	struct hlist_node	hnode;
91 	long			knodes;
92 };
93 
u32_hash_fold(__be32 key,const struct tc_u32_sel * sel,u8 fshift)94 static inline unsigned int u32_hash_fold(__be32 key,
95 					 const struct tc_u32_sel *sel,
96 					 u8 fshift)
97 {
98 	unsigned int h = ntohl(key & sel->hmask) >> fshift;
99 
100 	return h;
101 }
102 
u32_classify(struct sk_buff * skb,const struct tcf_proto * tp,struct tcf_result * res)103 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
104 			struct tcf_result *res)
105 {
106 	struct {
107 		struct tc_u_knode *knode;
108 		unsigned int	  off;
109 	} stack[TC_U32_MAXDEPTH];
110 
111 	struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
112 	unsigned int off = skb_network_offset(skb);
113 	struct tc_u_knode *n;
114 	int sdepth = 0;
115 	int off2 = 0;
116 	int sel = 0;
117 #ifdef CONFIG_CLS_U32_PERF
118 	int j;
119 #endif
120 	int i, r;
121 
122 next_ht:
123 	n = rcu_dereference_bh(ht->ht[sel]);
124 
125 next_knode:
126 	if (n) {
127 		struct tc_u32_key *key = n->sel.keys;
128 
129 #ifdef CONFIG_CLS_U32_PERF
130 		__this_cpu_inc(n->pf->rcnt);
131 		j = 0;
132 #endif
133 
134 		if (tc_skip_sw(n->flags)) {
135 			n = rcu_dereference_bh(n->next);
136 			goto next_knode;
137 		}
138 
139 #ifdef CONFIG_CLS_U32_MARK
140 		if ((skb->mark & n->mask) != n->val) {
141 			n = rcu_dereference_bh(n->next);
142 			goto next_knode;
143 		} else {
144 			__this_cpu_inc(*n->pcpu_success);
145 		}
146 #endif
147 
148 		for (i = n->sel.nkeys; i > 0; i--, key++) {
149 			int toff = off + key->off + (off2 & key->offmask);
150 			__be32 *data, hdata;
151 
152 			if (skb_headroom(skb) + toff > INT_MAX)
153 				goto out;
154 
155 			data = skb_header_pointer(skb, toff, 4, &hdata);
156 			if (!data)
157 				goto out;
158 			if ((*data ^ key->val) & key->mask) {
159 				n = rcu_dereference_bh(n->next);
160 				goto next_knode;
161 			}
162 #ifdef CONFIG_CLS_U32_PERF
163 			__this_cpu_inc(n->pf->kcnts[j]);
164 			j++;
165 #endif
166 		}
167 
168 		ht = rcu_dereference_bh(n->ht_down);
169 		if (!ht) {
170 check_terminal:
171 			if (n->sel.flags & TC_U32_TERMINAL) {
172 
173 				*res = n->res;
174 				if (!tcf_match_indev(skb, n->ifindex)) {
175 					n = rcu_dereference_bh(n->next);
176 					goto next_knode;
177 				}
178 #ifdef CONFIG_CLS_U32_PERF
179 				__this_cpu_inc(n->pf->rhit);
180 #endif
181 				r = tcf_exts_exec(skb, &n->exts, res);
182 				if (r < 0) {
183 					n = rcu_dereference_bh(n->next);
184 					goto next_knode;
185 				}
186 
187 				return r;
188 			}
189 			n = rcu_dereference_bh(n->next);
190 			goto next_knode;
191 		}
192 
193 		/* PUSH */
194 		if (sdepth >= TC_U32_MAXDEPTH)
195 			goto deadloop;
196 		stack[sdepth].knode = n;
197 		stack[sdepth].off = off;
198 		sdepth++;
199 
200 		ht = rcu_dereference_bh(n->ht_down);
201 		sel = 0;
202 		if (ht->divisor) {
203 			__be32 *data, hdata;
204 
205 			data = skb_header_pointer(skb, off + n->sel.hoff, 4,
206 						  &hdata);
207 			if (!data)
208 				goto out;
209 			sel = ht->divisor & u32_hash_fold(*data, &n->sel,
210 							  n->fshift);
211 		}
212 		if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
213 			goto next_ht;
214 
215 		if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
216 			off2 = n->sel.off + 3;
217 			if (n->sel.flags & TC_U32_VAROFFSET) {
218 				__be16 *data, hdata;
219 
220 				data = skb_header_pointer(skb,
221 							  off + n->sel.offoff,
222 							  2, &hdata);
223 				if (!data)
224 					goto out;
225 				off2 += ntohs(n->sel.offmask & *data) >>
226 					n->sel.offshift;
227 			}
228 			off2 &= ~3;
229 		}
230 		if (n->sel.flags & TC_U32_EAT) {
231 			off += off2;
232 			off2 = 0;
233 		}
234 
235 		if (off < skb->len)
236 			goto next_ht;
237 	}
238 
239 	/* POP */
240 	if (sdepth--) {
241 		n = stack[sdepth].knode;
242 		ht = rcu_dereference_bh(n->ht_up);
243 		off = stack[sdepth].off;
244 		goto check_terminal;
245 	}
246 out:
247 	return -1;
248 
249 deadloop:
250 	net_warn_ratelimited("cls_u32: dead loop\n");
251 	return -1;
252 }
253 
u32_lookup_ht(struct tc_u_common * tp_c,u32 handle)254 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
255 {
256 	struct tc_u_hnode *ht;
257 
258 	for (ht = rtnl_dereference(tp_c->hlist);
259 	     ht;
260 	     ht = rtnl_dereference(ht->next))
261 		if (ht->handle == handle)
262 			break;
263 
264 	return ht;
265 }
266 
u32_lookup_key(struct tc_u_hnode * ht,u32 handle)267 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
268 {
269 	unsigned int sel;
270 	struct tc_u_knode *n = NULL;
271 
272 	sel = TC_U32_HASH(handle);
273 	if (sel > ht->divisor)
274 		goto out;
275 
276 	for (n = rtnl_dereference(ht->ht[sel]);
277 	     n;
278 	     n = rtnl_dereference(n->next))
279 		if (n->handle == handle)
280 			break;
281 out:
282 	return n;
283 }
284 
285 
u32_get(struct tcf_proto * tp,u32 handle)286 static void *u32_get(struct tcf_proto *tp, u32 handle)
287 {
288 	struct tc_u_hnode *ht;
289 	struct tc_u_common *tp_c = tp->data;
290 
291 	if (TC_U32_HTID(handle) == TC_U32_ROOT)
292 		ht = rtnl_dereference(tp->root);
293 	else
294 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
295 
296 	if (!ht)
297 		return NULL;
298 
299 	if (TC_U32_KEY(handle) == 0)
300 		return ht;
301 
302 	return u32_lookup_key(ht, handle);
303 }
304 
305 /* Protected by rtnl lock */
gen_new_htid(struct tc_u_common * tp_c,struct tc_u_hnode * ptr)306 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
307 {
308 	int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
309 	if (id < 0)
310 		return 0;
311 	return (id | 0x800U) << 20;
312 }
313 
314 static struct hlist_head *tc_u_common_hash;
315 
316 #define U32_HASH_SHIFT 10
317 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
318 
tc_u_common_ptr(const struct tcf_proto * tp)319 static void *tc_u_common_ptr(const struct tcf_proto *tp)
320 {
321 	struct tcf_block *block = tp->chain->block;
322 
323 	/* The block sharing is currently supported only
324 	 * for classless qdiscs. In that case we use block
325 	 * for tc_u_common identification. In case the
326 	 * block is not shared, block->q is a valid pointer
327 	 * and we can use that. That works for classful qdiscs.
328 	 */
329 	if (tcf_block_shared(block))
330 		return block;
331 	else
332 		return block->q;
333 }
334 
tc_u_hash(void * key)335 static struct hlist_head *tc_u_hash(void *key)
336 {
337 	return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
338 }
339 
tc_u_common_find(void * key)340 static struct tc_u_common *tc_u_common_find(void *key)
341 {
342 	struct tc_u_common *tc;
343 	hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
344 		if (tc->ptr == key)
345 			return tc;
346 	}
347 	return NULL;
348 }
349 
u32_init(struct tcf_proto * tp)350 static int u32_init(struct tcf_proto *tp)
351 {
352 	struct tc_u_hnode *root_ht;
353 	void *key = tc_u_common_ptr(tp);
354 	struct tc_u_common *tp_c = tc_u_common_find(key);
355 
356 	root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
357 	if (root_ht == NULL)
358 		return -ENOBUFS;
359 
360 	root_ht->refcnt++;
361 	root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
362 	root_ht->prio = tp->prio;
363 	root_ht->is_root = true;
364 	idr_init(&root_ht->handle_idr);
365 
366 	if (tp_c == NULL) {
367 		tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
368 		if (tp_c == NULL) {
369 			kfree(root_ht);
370 			return -ENOBUFS;
371 		}
372 		tp_c->ptr = key;
373 		INIT_HLIST_NODE(&tp_c->hnode);
374 		idr_init(&tp_c->handle_idr);
375 
376 		hlist_add_head(&tp_c->hnode, tc_u_hash(key));
377 	}
378 
379 	tp_c->refcnt++;
380 	RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
381 	rcu_assign_pointer(tp_c->hlist, root_ht);
382 
383 	root_ht->refcnt++;
384 	rcu_assign_pointer(tp->root, root_ht);
385 	tp->data = tp_c;
386 	return 0;
387 }
388 
__u32_destroy_key(struct tc_u_knode * n)389 static void __u32_destroy_key(struct tc_u_knode *n)
390 {
391 	struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
392 
393 	tcf_exts_destroy(&n->exts);
394 	if (ht && --ht->refcnt == 0)
395 		kfree(ht);
396 	kfree(n);
397 }
398 
u32_destroy_key(struct tc_u_knode * n,bool free_pf)399 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
400 {
401 	tcf_exts_put_net(&n->exts);
402 #ifdef CONFIG_CLS_U32_PERF
403 	if (free_pf)
404 		free_percpu(n->pf);
405 #endif
406 #ifdef CONFIG_CLS_U32_MARK
407 	if (free_pf)
408 		free_percpu(n->pcpu_success);
409 #endif
410 	__u32_destroy_key(n);
411 }
412 
413 /* u32_delete_key_rcu should be called when free'ing a copied
414  * version of a tc_u_knode obtained from u32_init_knode(). When
415  * copies are obtained from u32_init_knode() the statistics are
416  * shared between the old and new copies to allow readers to
417  * continue to update the statistics during the copy. To support
418  * this the u32_delete_key_rcu variant does not free the percpu
419  * statistics.
420  */
u32_delete_key_work(struct work_struct * work)421 static void u32_delete_key_work(struct work_struct *work)
422 {
423 	struct tc_u_knode *key = container_of(to_rcu_work(work),
424 					      struct tc_u_knode,
425 					      rwork);
426 	rtnl_lock();
427 	u32_destroy_key(key, false);
428 	rtnl_unlock();
429 }
430 
431 /* u32_delete_key_freepf_rcu is the rcu callback variant
432  * that free's the entire structure including the statistics
433  * percpu variables. Only use this if the key is not a copy
434  * returned by u32_init_knode(). See u32_delete_key_rcu()
435  * for the variant that should be used with keys return from
436  * u32_init_knode()
437  */
u32_delete_key_freepf_work(struct work_struct * work)438 static void u32_delete_key_freepf_work(struct work_struct *work)
439 {
440 	struct tc_u_knode *key = container_of(to_rcu_work(work),
441 					      struct tc_u_knode,
442 					      rwork);
443 	rtnl_lock();
444 	u32_destroy_key(key, true);
445 	rtnl_unlock();
446 }
447 
u32_delete_key(struct tcf_proto * tp,struct tc_u_knode * key)448 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
449 {
450 	struct tc_u_common *tp_c = tp->data;
451 	struct tc_u_knode __rcu **kp;
452 	struct tc_u_knode *pkp;
453 	struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
454 
455 	if (ht) {
456 		kp = &ht->ht[TC_U32_HASH(key->handle)];
457 		for (pkp = rtnl_dereference(*kp); pkp;
458 		     kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
459 			if (pkp == key) {
460 				RCU_INIT_POINTER(*kp, key->next);
461 				tp_c->knodes--;
462 
463 				tcf_unbind_filter(tp, &key->res);
464 				idr_remove(&ht->handle_idr, key->handle);
465 				tcf_exts_get_net(&key->exts);
466 				tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
467 				return 0;
468 			}
469 		}
470 	}
471 	WARN_ON(1);
472 	return 0;
473 }
474 
u32_clear_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,struct netlink_ext_ack * extack)475 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
476 			       struct netlink_ext_ack *extack)
477 {
478 	struct tcf_block *block = tp->chain->block;
479 	struct tc_cls_u32_offload cls_u32 = {};
480 
481 	tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
482 	cls_u32.command = TC_CLSU32_DELETE_HNODE;
483 	cls_u32.hnode.divisor = h->divisor;
484 	cls_u32.hnode.handle = h->handle;
485 	cls_u32.hnode.prio = h->prio;
486 
487 	tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
488 }
489 
u32_replace_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,u32 flags,struct netlink_ext_ack * extack)490 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
491 				u32 flags, struct netlink_ext_ack *extack)
492 {
493 	struct tcf_block *block = tp->chain->block;
494 	struct tc_cls_u32_offload cls_u32 = {};
495 	bool skip_sw = tc_skip_sw(flags);
496 	bool offloaded = false;
497 	int err;
498 
499 	tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
500 	cls_u32.command = TC_CLSU32_NEW_HNODE;
501 	cls_u32.hnode.divisor = h->divisor;
502 	cls_u32.hnode.handle = h->handle;
503 	cls_u32.hnode.prio = h->prio;
504 
505 	err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
506 	if (err < 0) {
507 		u32_clear_hw_hnode(tp, h, NULL);
508 		return err;
509 	} else if (err > 0) {
510 		offloaded = true;
511 	}
512 
513 	if (skip_sw && !offloaded)
514 		return -EINVAL;
515 
516 	return 0;
517 }
518 
u32_remove_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,struct netlink_ext_ack * extack)519 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
520 				struct netlink_ext_ack *extack)
521 {
522 	struct tcf_block *block = tp->chain->block;
523 	struct tc_cls_u32_offload cls_u32 = {};
524 
525 	tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
526 	cls_u32.command = TC_CLSU32_DELETE_KNODE;
527 	cls_u32.knode.handle = n->handle;
528 
529 	tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
530 			    &n->flags, &n->in_hw_count, true);
531 }
532 
u32_replace_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,u32 flags,struct netlink_ext_ack * extack)533 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
534 				u32 flags, struct netlink_ext_ack *extack)
535 {
536 	struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
537 	struct tcf_block *block = tp->chain->block;
538 	struct tc_cls_u32_offload cls_u32 = {};
539 	bool skip_sw = tc_skip_sw(flags);
540 	int err;
541 
542 	tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
543 	cls_u32.command = TC_CLSU32_REPLACE_KNODE;
544 	cls_u32.knode.handle = n->handle;
545 	cls_u32.knode.fshift = n->fshift;
546 #ifdef CONFIG_CLS_U32_MARK
547 	cls_u32.knode.val = n->val;
548 	cls_u32.knode.mask = n->mask;
549 #else
550 	cls_u32.knode.val = 0;
551 	cls_u32.knode.mask = 0;
552 #endif
553 	cls_u32.knode.sel = &n->sel;
554 	cls_u32.knode.res = &n->res;
555 	cls_u32.knode.exts = &n->exts;
556 	if (n->ht_down)
557 		cls_u32.knode.link_handle = ht->handle;
558 
559 	err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
560 			      &n->flags, &n->in_hw_count, true);
561 	if (err) {
562 		u32_remove_hw_knode(tp, n, NULL);
563 		return err;
564 	}
565 
566 	if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
567 		return -EINVAL;
568 
569 	return 0;
570 }
571 
u32_clear_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)572 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
573 			    struct netlink_ext_ack *extack)
574 {
575 	struct tc_u_common *tp_c = tp->data;
576 	struct tc_u_knode *n;
577 	unsigned int h;
578 
579 	for (h = 0; h <= ht->divisor; h++) {
580 		while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
581 			RCU_INIT_POINTER(ht->ht[h],
582 					 rtnl_dereference(n->next));
583 			tp_c->knodes--;
584 			tcf_unbind_filter(tp, &n->res);
585 			u32_remove_hw_knode(tp, n, extack);
586 			idr_remove(&ht->handle_idr, n->handle);
587 			if (tcf_exts_get_net(&n->exts))
588 				tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
589 			else
590 				u32_destroy_key(n, true);
591 		}
592 	}
593 }
594 
u32_destroy_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)595 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
596 			     struct netlink_ext_ack *extack)
597 {
598 	struct tc_u_common *tp_c = tp->data;
599 	struct tc_u_hnode __rcu **hn;
600 	struct tc_u_hnode *phn;
601 
602 	WARN_ON(--ht->refcnt);
603 
604 	u32_clear_hnode(tp, ht, extack);
605 
606 	hn = &tp_c->hlist;
607 	for (phn = rtnl_dereference(*hn);
608 	     phn;
609 	     hn = &phn->next, phn = rtnl_dereference(*hn)) {
610 		if (phn == ht) {
611 			u32_clear_hw_hnode(tp, ht, extack);
612 			idr_destroy(&ht->handle_idr);
613 			idr_remove(&tp_c->handle_idr, ht->handle);
614 			RCU_INIT_POINTER(*hn, ht->next);
615 			kfree_rcu(ht, rcu);
616 			return 0;
617 		}
618 	}
619 
620 	return -ENOENT;
621 }
622 
u32_destroy(struct tcf_proto * tp,bool rtnl_held,struct netlink_ext_ack * extack)623 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
624 			struct netlink_ext_ack *extack)
625 {
626 	struct tc_u_common *tp_c = tp->data;
627 	struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
628 
629 	WARN_ON(root_ht == NULL);
630 
631 	if (root_ht && --root_ht->refcnt == 1)
632 		u32_destroy_hnode(tp, root_ht, extack);
633 
634 	if (--tp_c->refcnt == 0) {
635 		struct tc_u_hnode *ht;
636 
637 		hlist_del(&tp_c->hnode);
638 
639 		while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
640 			u32_clear_hnode(tp, ht, extack);
641 			RCU_INIT_POINTER(tp_c->hlist, ht->next);
642 
643 			/* u32_destroy_key() will later free ht for us, if it's
644 			 * still referenced by some knode
645 			 */
646 			if (--ht->refcnt == 0)
647 				kfree_rcu(ht, rcu);
648 		}
649 
650 		idr_destroy(&tp_c->handle_idr);
651 		kfree(tp_c);
652 	}
653 
654 	tp->data = NULL;
655 }
656 
u32_delete(struct tcf_proto * tp,void * arg,bool * last,bool rtnl_held,struct netlink_ext_ack * extack)657 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
658 		      bool rtnl_held, struct netlink_ext_ack *extack)
659 {
660 	struct tc_u_hnode *ht = arg;
661 	struct tc_u_common *tp_c = tp->data;
662 	int ret = 0;
663 
664 	if (TC_U32_KEY(ht->handle)) {
665 		u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
666 		ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
667 		goto out;
668 	}
669 
670 	if (ht->is_root) {
671 		NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
672 		return -EINVAL;
673 	}
674 
675 	if (ht->refcnt == 1) {
676 		u32_destroy_hnode(tp, ht, extack);
677 	} else {
678 		NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
679 		return -EBUSY;
680 	}
681 
682 out:
683 	*last = tp_c->refcnt == 1 && tp_c->knodes == 0;
684 	return ret;
685 }
686 
gen_new_kid(struct tc_u_hnode * ht,u32 htid)687 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
688 {
689 	u32 index = htid | 0x800;
690 	u32 max = htid | 0xFFF;
691 
692 	if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
693 		index = htid + 1;
694 		if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
695 				 GFP_KERNEL))
696 			index = max;
697 	}
698 
699 	return index;
700 }
701 
702 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
703 	[TCA_U32_CLASSID]	= { .type = NLA_U32 },
704 	[TCA_U32_HASH]		= { .type = NLA_U32 },
705 	[TCA_U32_LINK]		= { .type = NLA_U32 },
706 	[TCA_U32_DIVISOR]	= { .type = NLA_U32 },
707 	[TCA_U32_SEL]		= { .len = sizeof(struct tc_u32_sel) },
708 	[TCA_U32_INDEV]		= { .type = NLA_STRING, .len = IFNAMSIZ },
709 	[TCA_U32_MARK]		= { .len = sizeof(struct tc_u32_mark) },
710 	[TCA_U32_FLAGS]		= { .type = NLA_U32 },
711 };
712 
u32_set_parms(struct net * net,struct tcf_proto * tp,unsigned long base,struct tc_u_knode * n,struct nlattr ** tb,struct nlattr * est,bool ovr,struct netlink_ext_ack * extack)713 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
714 			 unsigned long base,
715 			 struct tc_u_knode *n, struct nlattr **tb,
716 			 struct nlattr *est, bool ovr,
717 			 struct netlink_ext_ack *extack)
718 {
719 	int err, ifindex = -1;
720 
721 	err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr, true, extack);
722 	if (err < 0)
723 		return err;
724 
725 	if (tb[TCA_U32_INDEV]) {
726 		ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
727 		if (ifindex < 0)
728 			return -EINVAL;
729 	}
730 
731 	if (tb[TCA_U32_LINK]) {
732 		u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
733 		struct tc_u_hnode *ht_down = NULL, *ht_old;
734 
735 		if (TC_U32_KEY(handle)) {
736 			NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
737 			return -EINVAL;
738 		}
739 
740 		if (handle) {
741 			ht_down = u32_lookup_ht(tp->data, handle);
742 
743 			if (!ht_down) {
744 				NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
745 				return -EINVAL;
746 			}
747 			if (ht_down->is_root) {
748 				NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
749 				return -EINVAL;
750 			}
751 			ht_down->refcnt++;
752 		}
753 
754 		ht_old = rtnl_dereference(n->ht_down);
755 		rcu_assign_pointer(n->ht_down, ht_down);
756 
757 		if (ht_old)
758 			ht_old->refcnt--;
759 	}
760 	if (tb[TCA_U32_CLASSID]) {
761 		n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
762 		tcf_bind_filter(tp, &n->res, base);
763 	}
764 
765 	if (ifindex >= 0)
766 		n->ifindex = ifindex;
767 
768 	return 0;
769 }
770 
u32_replace_knode(struct tcf_proto * tp,struct tc_u_common * tp_c,struct tc_u_knode * n)771 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
772 			      struct tc_u_knode *n)
773 {
774 	struct tc_u_knode __rcu **ins;
775 	struct tc_u_knode *pins;
776 	struct tc_u_hnode *ht;
777 
778 	if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
779 		ht = rtnl_dereference(tp->root);
780 	else
781 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
782 
783 	ins = &ht->ht[TC_U32_HASH(n->handle)];
784 
785 	/* The node must always exist for it to be replaced if this is not the
786 	 * case then something went very wrong elsewhere.
787 	 */
788 	for (pins = rtnl_dereference(*ins); ;
789 	     ins = &pins->next, pins = rtnl_dereference(*ins))
790 		if (pins->handle == n->handle)
791 			break;
792 
793 	idr_replace(&ht->handle_idr, n, n->handle);
794 	RCU_INIT_POINTER(n->next, pins->next);
795 	rcu_assign_pointer(*ins, n);
796 }
797 
u32_init_knode(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n)798 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
799 					 struct tc_u_knode *n)
800 {
801 	struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
802 	struct tc_u32_sel *s = &n->sel;
803 	struct tc_u_knode *new;
804 
805 	new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
806 	if (!new)
807 		return NULL;
808 
809 	RCU_INIT_POINTER(new->next, n->next);
810 	new->handle = n->handle;
811 	RCU_INIT_POINTER(new->ht_up, n->ht_up);
812 
813 	new->ifindex = n->ifindex;
814 	new->fshift = n->fshift;
815 	new->flags = n->flags;
816 	RCU_INIT_POINTER(new->ht_down, ht);
817 
818 #ifdef CONFIG_CLS_U32_PERF
819 	/* Statistics may be incremented by readers during update
820 	 * so we must keep them in tact. When the node is later destroyed
821 	 * a special destroy call must be made to not free the pf memory.
822 	 */
823 	new->pf = n->pf;
824 #endif
825 
826 #ifdef CONFIG_CLS_U32_MARK
827 	new->val = n->val;
828 	new->mask = n->mask;
829 	/* Similarly success statistics must be moved as pointers */
830 	new->pcpu_success = n->pcpu_success;
831 #endif
832 	memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
833 
834 	if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
835 		kfree(new);
836 		return NULL;
837 	}
838 
839 	/* bump reference count as long as we hold pointer to structure */
840 	if (ht)
841 		ht->refcnt++;
842 
843 	return new;
844 }
845 
u32_change(struct net * net,struct sk_buff * in_skb,struct tcf_proto * tp,unsigned long base,u32 handle,struct nlattr ** tca,void ** arg,bool ovr,bool rtnl_held,struct netlink_ext_ack * extack)846 static int u32_change(struct net *net, struct sk_buff *in_skb,
847 		      struct tcf_proto *tp, unsigned long base, u32 handle,
848 		      struct nlattr **tca, void **arg, bool ovr, bool rtnl_held,
849 		      struct netlink_ext_ack *extack)
850 {
851 	struct tc_u_common *tp_c = tp->data;
852 	struct tc_u_hnode *ht;
853 	struct tc_u_knode *n;
854 	struct tc_u32_sel *s;
855 	struct nlattr *opt = tca[TCA_OPTIONS];
856 	struct nlattr *tb[TCA_U32_MAX + 1];
857 	u32 htid, flags = 0;
858 	size_t sel_size;
859 	int err;
860 
861 	if (!opt) {
862 		if (handle) {
863 			NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
864 			return -EINVAL;
865 		} else {
866 			return 0;
867 		}
868 	}
869 
870 	err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
871 					  extack);
872 	if (err < 0)
873 		return err;
874 
875 	if (tb[TCA_U32_FLAGS]) {
876 		flags = nla_get_u32(tb[TCA_U32_FLAGS]);
877 		if (!tc_flags_valid(flags)) {
878 			NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
879 			return -EINVAL;
880 		}
881 	}
882 
883 	n = *arg;
884 	if (n) {
885 		struct tc_u_knode *new;
886 
887 		if (TC_U32_KEY(n->handle) == 0) {
888 			NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
889 			return -EINVAL;
890 		}
891 
892 		if ((n->flags ^ flags) &
893 		    ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
894 			NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
895 			return -EINVAL;
896 		}
897 
898 		new = u32_init_knode(net, tp, n);
899 		if (!new)
900 			return -ENOMEM;
901 
902 		err = u32_set_parms(net, tp, base, new, tb,
903 				    tca[TCA_RATE], ovr, extack);
904 
905 		if (err) {
906 			__u32_destroy_key(new);
907 			return err;
908 		}
909 
910 		err = u32_replace_hw_knode(tp, new, flags, extack);
911 		if (err) {
912 			__u32_destroy_key(new);
913 			return err;
914 		}
915 
916 		if (!tc_in_hw(new->flags))
917 			new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
918 
919 		u32_replace_knode(tp, tp_c, new);
920 		tcf_unbind_filter(tp, &n->res);
921 		tcf_exts_get_net(&n->exts);
922 		tcf_queue_work(&n->rwork, u32_delete_key_work);
923 		return 0;
924 	}
925 
926 	if (tb[TCA_U32_DIVISOR]) {
927 		unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
928 
929 		if (!is_power_of_2(divisor)) {
930 			NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
931 			return -EINVAL;
932 		}
933 		if (divisor-- > 0x100) {
934 			NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
935 			return -EINVAL;
936 		}
937 		if (TC_U32_KEY(handle)) {
938 			NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
939 			return -EINVAL;
940 		}
941 		ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
942 		if (ht == NULL)
943 			return -ENOBUFS;
944 		if (handle == 0) {
945 			handle = gen_new_htid(tp->data, ht);
946 			if (handle == 0) {
947 				kfree(ht);
948 				return -ENOMEM;
949 			}
950 		} else {
951 			err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
952 					    handle, GFP_KERNEL);
953 			if (err) {
954 				kfree(ht);
955 				return err;
956 			}
957 		}
958 		ht->refcnt = 1;
959 		ht->divisor = divisor;
960 		ht->handle = handle;
961 		ht->prio = tp->prio;
962 		idr_init(&ht->handle_idr);
963 		ht->flags = flags;
964 
965 		err = u32_replace_hw_hnode(tp, ht, flags, extack);
966 		if (err) {
967 			idr_remove(&tp_c->handle_idr, handle);
968 			kfree(ht);
969 			return err;
970 		}
971 
972 		RCU_INIT_POINTER(ht->next, tp_c->hlist);
973 		rcu_assign_pointer(tp_c->hlist, ht);
974 		*arg = ht;
975 
976 		return 0;
977 	}
978 
979 	if (tb[TCA_U32_HASH]) {
980 		htid = nla_get_u32(tb[TCA_U32_HASH]);
981 		if (TC_U32_HTID(htid) == TC_U32_ROOT) {
982 			ht = rtnl_dereference(tp->root);
983 			htid = ht->handle;
984 		} else {
985 			ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
986 			if (!ht) {
987 				NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
988 				return -EINVAL;
989 			}
990 		}
991 	} else {
992 		ht = rtnl_dereference(tp->root);
993 		htid = ht->handle;
994 	}
995 
996 	if (ht->divisor < TC_U32_HASH(htid)) {
997 		NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
998 		return -EINVAL;
999 	}
1000 
1001 	/* At this point, we need to derive the new handle that will be used to
1002 	 * uniquely map the identity of this table match entry. The
1003 	 * identity of the entry that we need to construct is 32 bits made of:
1004 	 *     htid(12b):bucketid(8b):node/entryid(12b)
1005 	 *
1006 	 * At this point _we have the table(ht)_ in which we will insert this
1007 	 * entry. We carry the table's id in variable "htid".
1008 	 * Note that earlier code picked the ht selection either by a) the user
1009 	 * providing the htid specified via TCA_U32_HASH attribute or b) when
1010 	 * no such attribute is passed then the root ht, is default to at ID
1011 	 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1012 	 * If OTOH the user passed us the htid, they may also pass a bucketid of
1013 	 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1014 	 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1015 	 * passed via the htid, so even if it was non-zero it will be ignored.
1016 	 *
1017 	 * We may also have a handle, if the user passed one. The handle also
1018 	 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1019 	 * Rule: the bucketid on the handle is ignored even if one was passed;
1020 	 * rather the value on "htid" is always assumed to be the bucketid.
1021 	 */
1022 	if (handle) {
1023 		/* Rule: The htid from handle and tableid from htid must match */
1024 		if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1025 			NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1026 			return -EINVAL;
1027 		}
1028 		/* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1029 		 * need to finalize the table entry identification with the last
1030 		 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1031 		 * entries. Rule: nodeid of 0 is reserved only for tables(see
1032 		 * earlier code which processes TC_U32_DIVISOR attribute).
1033 		 * Rule: The nodeid can only be derived from the handle (and not
1034 		 * htid).
1035 		 * Rule: if the handle specified zero for the node id example
1036 		 * 0x60000000, then pick a new nodeid from the pool of IDs
1037 		 * this hash table has been allocating from.
1038 		 * If OTOH it is specified (i.e for example the user passed a
1039 		 * handle such as 0x60000123), then we use it generate our final
1040 		 * handle which is used to uniquely identify the match entry.
1041 		 */
1042 		if (!TC_U32_NODE(handle)) {
1043 			handle = gen_new_kid(ht, htid);
1044 		} else {
1045 			handle = htid | TC_U32_NODE(handle);
1046 			err = idr_alloc_u32(&ht->handle_idr, NULL, &handle,
1047 					    handle, GFP_KERNEL);
1048 			if (err)
1049 				return err;
1050 		}
1051 	} else {
1052 		/* The user did not give us a handle; lets just generate one
1053 		 * from the table's pool of nodeids.
1054 		 */
1055 		handle = gen_new_kid(ht, htid);
1056 	}
1057 
1058 	if (tb[TCA_U32_SEL] == NULL) {
1059 		NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1060 		err = -EINVAL;
1061 		goto erridr;
1062 	}
1063 
1064 	s = nla_data(tb[TCA_U32_SEL]);
1065 	sel_size = struct_size(s, keys, s->nkeys);
1066 	if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
1067 		err = -EINVAL;
1068 		goto erridr;
1069 	}
1070 
1071 	n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1072 	if (n == NULL) {
1073 		err = -ENOBUFS;
1074 		goto erridr;
1075 	}
1076 
1077 #ifdef CONFIG_CLS_U32_PERF
1078 	n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1079 			       __alignof__(struct tc_u32_pcnt));
1080 	if (!n->pf) {
1081 		err = -ENOBUFS;
1082 		goto errfree;
1083 	}
1084 #endif
1085 
1086 	memcpy(&n->sel, s, sel_size);
1087 	RCU_INIT_POINTER(n->ht_up, ht);
1088 	n->handle = handle;
1089 	n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1090 	n->flags = flags;
1091 
1092 	err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
1093 	if (err < 0)
1094 		goto errout;
1095 
1096 #ifdef CONFIG_CLS_U32_MARK
1097 	n->pcpu_success = alloc_percpu(u32);
1098 	if (!n->pcpu_success) {
1099 		err = -ENOMEM;
1100 		goto errout;
1101 	}
1102 
1103 	if (tb[TCA_U32_MARK]) {
1104 		struct tc_u32_mark *mark;
1105 
1106 		mark = nla_data(tb[TCA_U32_MARK]);
1107 		n->val = mark->val;
1108 		n->mask = mark->mask;
1109 	}
1110 #endif
1111 
1112 	err = u32_set_parms(net, tp, base, n, tb, tca[TCA_RATE], ovr,
1113 			    extack);
1114 	if (err == 0) {
1115 		struct tc_u_knode __rcu **ins;
1116 		struct tc_u_knode *pins;
1117 
1118 		err = u32_replace_hw_knode(tp, n, flags, extack);
1119 		if (err)
1120 			goto errhw;
1121 
1122 		if (!tc_in_hw(n->flags))
1123 			n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1124 
1125 		ins = &ht->ht[TC_U32_HASH(handle)];
1126 		for (pins = rtnl_dereference(*ins); pins;
1127 		     ins = &pins->next, pins = rtnl_dereference(*ins))
1128 			if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1129 				break;
1130 
1131 		RCU_INIT_POINTER(n->next, pins);
1132 		rcu_assign_pointer(*ins, n);
1133 		tp_c->knodes++;
1134 		*arg = n;
1135 		return 0;
1136 	}
1137 
1138 errhw:
1139 #ifdef CONFIG_CLS_U32_MARK
1140 	free_percpu(n->pcpu_success);
1141 #endif
1142 
1143 errout:
1144 	tcf_exts_destroy(&n->exts);
1145 #ifdef CONFIG_CLS_U32_PERF
1146 errfree:
1147 	free_percpu(n->pf);
1148 #endif
1149 	kfree(n);
1150 erridr:
1151 	idr_remove(&ht->handle_idr, handle);
1152 	return err;
1153 }
1154 
u32_walk(struct tcf_proto * tp,struct tcf_walker * arg,bool rtnl_held)1155 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1156 		     bool rtnl_held)
1157 {
1158 	struct tc_u_common *tp_c = tp->data;
1159 	struct tc_u_hnode *ht;
1160 	struct tc_u_knode *n;
1161 	unsigned int h;
1162 
1163 	if (arg->stop)
1164 		return;
1165 
1166 	for (ht = rtnl_dereference(tp_c->hlist);
1167 	     ht;
1168 	     ht = rtnl_dereference(ht->next)) {
1169 		if (ht->prio != tp->prio)
1170 			continue;
1171 		if (arg->count >= arg->skip) {
1172 			if (arg->fn(tp, ht, arg) < 0) {
1173 				arg->stop = 1;
1174 				return;
1175 			}
1176 		}
1177 		arg->count++;
1178 		for (h = 0; h <= ht->divisor; h++) {
1179 			for (n = rtnl_dereference(ht->ht[h]);
1180 			     n;
1181 			     n = rtnl_dereference(n->next)) {
1182 				if (arg->count < arg->skip) {
1183 					arg->count++;
1184 					continue;
1185 				}
1186 				if (arg->fn(tp, n, arg) < 0) {
1187 					arg->stop = 1;
1188 					return;
1189 				}
1190 				arg->count++;
1191 			}
1192 		}
1193 	}
1194 }
1195 
u32_reoffload_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1196 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1197 			       bool add, flow_setup_cb_t *cb, void *cb_priv,
1198 			       struct netlink_ext_ack *extack)
1199 {
1200 	struct tc_cls_u32_offload cls_u32 = {};
1201 	int err;
1202 
1203 	tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
1204 	cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1205 	cls_u32.hnode.divisor = ht->divisor;
1206 	cls_u32.hnode.handle = ht->handle;
1207 	cls_u32.hnode.prio = ht->prio;
1208 
1209 	err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1210 	if (err && add && tc_skip_sw(ht->flags))
1211 		return err;
1212 
1213 	return 0;
1214 }
1215 
u32_reoffload_knode(struct tcf_proto * tp,struct tc_u_knode * n,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1216 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1217 			       bool add, flow_setup_cb_t *cb, void *cb_priv,
1218 			       struct netlink_ext_ack *extack)
1219 {
1220 	struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1221 	struct tcf_block *block = tp->chain->block;
1222 	struct tc_cls_u32_offload cls_u32 = {};
1223 	int err;
1224 
1225 	tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
1226 	cls_u32.command = add ?
1227 		TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1228 	cls_u32.knode.handle = n->handle;
1229 
1230 	if (add) {
1231 		cls_u32.knode.fshift = n->fshift;
1232 #ifdef CONFIG_CLS_U32_MARK
1233 		cls_u32.knode.val = n->val;
1234 		cls_u32.knode.mask = n->mask;
1235 #else
1236 		cls_u32.knode.val = 0;
1237 		cls_u32.knode.mask = 0;
1238 #endif
1239 		cls_u32.knode.sel = &n->sel;
1240 		cls_u32.knode.res = &n->res;
1241 		cls_u32.knode.exts = &n->exts;
1242 		if (n->ht_down)
1243 			cls_u32.knode.link_handle = ht->handle;
1244 	}
1245 
1246 	err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
1247 				    &cls_u32, cb_priv, &n->flags,
1248 				    &n->in_hw_count);
1249 	if (err)
1250 		return err;
1251 
1252 	return 0;
1253 }
1254 
u32_reoffload(struct tcf_proto * tp,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1255 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1256 			 void *cb_priv, struct netlink_ext_ack *extack)
1257 {
1258 	struct tc_u_common *tp_c = tp->data;
1259 	struct tc_u_hnode *ht;
1260 	struct tc_u_knode *n;
1261 	unsigned int h;
1262 	int err;
1263 
1264 	for (ht = rtnl_dereference(tp_c->hlist);
1265 	     ht;
1266 	     ht = rtnl_dereference(ht->next)) {
1267 		if (ht->prio != tp->prio)
1268 			continue;
1269 
1270 		/* When adding filters to a new dev, try to offload the
1271 		 * hashtable first. When removing, do the filters before the
1272 		 * hashtable.
1273 		 */
1274 		if (add && !tc_skip_hw(ht->flags)) {
1275 			err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1276 						  extack);
1277 			if (err)
1278 				return err;
1279 		}
1280 
1281 		for (h = 0; h <= ht->divisor; h++) {
1282 			for (n = rtnl_dereference(ht->ht[h]);
1283 			     n;
1284 			     n = rtnl_dereference(n->next)) {
1285 				if (tc_skip_hw(n->flags))
1286 					continue;
1287 
1288 				err = u32_reoffload_knode(tp, n, add, cb,
1289 							  cb_priv, extack);
1290 				if (err)
1291 					return err;
1292 			}
1293 		}
1294 
1295 		if (!add && !tc_skip_hw(ht->flags))
1296 			u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1297 	}
1298 
1299 	return 0;
1300 }
1301 
u32_bind_class(void * fh,u32 classid,unsigned long cl,void * q,unsigned long base)1302 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1303 			   unsigned long base)
1304 {
1305 	struct tc_u_knode *n = fh;
1306 
1307 	if (n && n->res.classid == classid) {
1308 		if (cl)
1309 			__tcf_bind_filter(q, &n->res, base);
1310 		else
1311 			__tcf_unbind_filter(q, &n->res);
1312 	}
1313 }
1314 
u32_dump(struct net * net,struct tcf_proto * tp,void * fh,struct sk_buff * skb,struct tcmsg * t,bool rtnl_held)1315 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1316 		    struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1317 {
1318 	struct tc_u_knode *n = fh;
1319 	struct tc_u_hnode *ht_up, *ht_down;
1320 	struct nlattr *nest;
1321 
1322 	if (n == NULL)
1323 		return skb->len;
1324 
1325 	t->tcm_handle = n->handle;
1326 
1327 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1328 	if (nest == NULL)
1329 		goto nla_put_failure;
1330 
1331 	if (TC_U32_KEY(n->handle) == 0) {
1332 		struct tc_u_hnode *ht = fh;
1333 		u32 divisor = ht->divisor + 1;
1334 
1335 		if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1336 			goto nla_put_failure;
1337 	} else {
1338 #ifdef CONFIG_CLS_U32_PERF
1339 		struct tc_u32_pcnt *gpf;
1340 		int cpu;
1341 #endif
1342 
1343 		if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1344 			    &n->sel))
1345 			goto nla_put_failure;
1346 
1347 		ht_up = rtnl_dereference(n->ht_up);
1348 		if (ht_up) {
1349 			u32 htid = n->handle & 0xFFFFF000;
1350 			if (nla_put_u32(skb, TCA_U32_HASH, htid))
1351 				goto nla_put_failure;
1352 		}
1353 		if (n->res.classid &&
1354 		    nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1355 			goto nla_put_failure;
1356 
1357 		ht_down = rtnl_dereference(n->ht_down);
1358 		if (ht_down &&
1359 		    nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1360 			goto nla_put_failure;
1361 
1362 		if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1363 			goto nla_put_failure;
1364 
1365 #ifdef CONFIG_CLS_U32_MARK
1366 		if ((n->val || n->mask)) {
1367 			struct tc_u32_mark mark = {.val = n->val,
1368 						   .mask = n->mask,
1369 						   .success = 0};
1370 			int cpum;
1371 
1372 			for_each_possible_cpu(cpum) {
1373 				__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1374 
1375 				mark.success += cnt;
1376 			}
1377 
1378 			if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1379 				goto nla_put_failure;
1380 		}
1381 #endif
1382 
1383 		if (tcf_exts_dump(skb, &n->exts) < 0)
1384 			goto nla_put_failure;
1385 
1386 		if (n->ifindex) {
1387 			struct net_device *dev;
1388 			dev = __dev_get_by_index(net, n->ifindex);
1389 			if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1390 				goto nla_put_failure;
1391 		}
1392 #ifdef CONFIG_CLS_U32_PERF
1393 		gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1394 		if (!gpf)
1395 			goto nla_put_failure;
1396 
1397 		for_each_possible_cpu(cpu) {
1398 			int i;
1399 			struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1400 
1401 			gpf->rcnt += pf->rcnt;
1402 			gpf->rhit += pf->rhit;
1403 			for (i = 0; i < n->sel.nkeys; i++)
1404 				gpf->kcnts[i] += pf->kcnts[i];
1405 		}
1406 
1407 		if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1408 				  gpf, TCA_U32_PAD)) {
1409 			kfree(gpf);
1410 			goto nla_put_failure;
1411 		}
1412 		kfree(gpf);
1413 #endif
1414 	}
1415 
1416 	nla_nest_end(skb, nest);
1417 
1418 	if (TC_U32_KEY(n->handle))
1419 		if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1420 			goto nla_put_failure;
1421 	return skb->len;
1422 
1423 nla_put_failure:
1424 	nla_nest_cancel(skb, nest);
1425 	return -1;
1426 }
1427 
1428 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1429 	.kind		=	"u32",
1430 	.classify	=	u32_classify,
1431 	.init		=	u32_init,
1432 	.destroy	=	u32_destroy,
1433 	.get		=	u32_get,
1434 	.change		=	u32_change,
1435 	.delete		=	u32_delete,
1436 	.walk		=	u32_walk,
1437 	.reoffload	=	u32_reoffload,
1438 	.dump		=	u32_dump,
1439 	.bind_class	=	u32_bind_class,
1440 	.owner		=	THIS_MODULE,
1441 };
1442 
init_u32(void)1443 static int __init init_u32(void)
1444 {
1445 	int i, ret;
1446 
1447 	pr_info("u32 classifier\n");
1448 #ifdef CONFIG_CLS_U32_PERF
1449 	pr_info("    Performance counters on\n");
1450 #endif
1451 	pr_info("    input device check on\n");
1452 #ifdef CONFIG_NET_CLS_ACT
1453 	pr_info("    Actions configured\n");
1454 #endif
1455 	tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1456 					  sizeof(struct hlist_head),
1457 					  GFP_KERNEL);
1458 	if (!tc_u_common_hash)
1459 		return -ENOMEM;
1460 
1461 	for (i = 0; i < U32_HASH_SIZE; i++)
1462 		INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1463 
1464 	ret = register_tcf_proto_ops(&cls_u32_ops);
1465 	if (ret)
1466 		kvfree(tc_u_common_hash);
1467 	return ret;
1468 }
1469 
exit_u32(void)1470 static void __exit exit_u32(void)
1471 {
1472 	unregister_tcf_proto_ops(&cls_u32_ops);
1473 	kvfree(tc_u_common_hash);
1474 }
1475 
1476 module_init(init_u32)
1477 module_exit(exit_u32)
1478 MODULE_LICENSE("GPL");
1479