1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *
7 * The filters are packed to hash tables of key nodes
8 * with a set of 32bit key/mask pairs at every node.
9 * Nodes reference next level hash tables etc.
10 *
11 * This scheme is the best universal classifier I managed to
12 * invent; it is not super-fast, but it is not slow (provided you
13 * program it correctly), and general enough. And its relative
14 * speed grows as the number of rules becomes larger.
15 *
16 * It seems that it represents the best middle point between
17 * speed and manageability both by human and by machine.
18 *
19 * It is especially useful for link sharing combined with QoS;
20 * pure RSVP doesn't need such a general approach and can use
21 * much simpler (and faster) schemes, sort of cls_rsvp.c.
22 *
23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24 */
25
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/types.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/errno.h>
32 #include <linux/percpu.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitmap.h>
36 #include <linux/netdevice.h>
37 #include <linux/hash.h>
38 #include <net/netlink.h>
39 #include <net/act_api.h>
40 #include <net/pkt_cls.h>
41 #include <linux/idr.h>
42
43 struct tc_u_knode {
44 struct tc_u_knode __rcu *next;
45 u32 handle;
46 struct tc_u_hnode __rcu *ht_up;
47 struct tcf_exts exts;
48 int ifindex;
49 u8 fshift;
50 struct tcf_result res;
51 struct tc_u_hnode __rcu *ht_down;
52 #ifdef CONFIG_CLS_U32_PERF
53 struct tc_u32_pcnt __percpu *pf;
54 #endif
55 u32 flags;
56 unsigned int in_hw_count;
57 #ifdef CONFIG_CLS_U32_MARK
58 u32 val;
59 u32 mask;
60 u32 __percpu *pcpu_success;
61 #endif
62 struct rcu_work rwork;
63 /* The 'sel' field MUST be the last field in structure to allow for
64 * tc_u32_keys allocated at end of structure.
65 */
66 struct tc_u32_sel sel;
67 };
68
69 struct tc_u_hnode {
70 struct tc_u_hnode __rcu *next;
71 u32 handle;
72 u32 prio;
73 int refcnt;
74 unsigned int divisor;
75 struct idr handle_idr;
76 bool is_root;
77 struct rcu_head rcu;
78 u32 flags;
79 /* The 'ht' field MUST be the last field in structure to allow for
80 * more entries allocated at end of structure.
81 */
82 struct tc_u_knode __rcu *ht[];
83 };
84
85 struct tc_u_common {
86 struct tc_u_hnode __rcu *hlist;
87 void *ptr;
88 int refcnt;
89 struct idr handle_idr;
90 struct hlist_node hnode;
91 long knodes;
92 };
93
u32_hash_fold(__be32 key,const struct tc_u32_sel * sel,u8 fshift)94 static inline unsigned int u32_hash_fold(__be32 key,
95 const struct tc_u32_sel *sel,
96 u8 fshift)
97 {
98 unsigned int h = ntohl(key & sel->hmask) >> fshift;
99
100 return h;
101 }
102
u32_classify(struct sk_buff * skb,const struct tcf_proto * tp,struct tcf_result * res)103 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
104 struct tcf_result *res)
105 {
106 struct {
107 struct tc_u_knode *knode;
108 unsigned int off;
109 } stack[TC_U32_MAXDEPTH];
110
111 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
112 unsigned int off = skb_network_offset(skb);
113 struct tc_u_knode *n;
114 int sdepth = 0;
115 int off2 = 0;
116 int sel = 0;
117 #ifdef CONFIG_CLS_U32_PERF
118 int j;
119 #endif
120 int i, r;
121
122 next_ht:
123 n = rcu_dereference_bh(ht->ht[sel]);
124
125 next_knode:
126 if (n) {
127 struct tc_u32_key *key = n->sel.keys;
128
129 #ifdef CONFIG_CLS_U32_PERF
130 __this_cpu_inc(n->pf->rcnt);
131 j = 0;
132 #endif
133
134 if (tc_skip_sw(n->flags)) {
135 n = rcu_dereference_bh(n->next);
136 goto next_knode;
137 }
138
139 #ifdef CONFIG_CLS_U32_MARK
140 if ((skb->mark & n->mask) != n->val) {
141 n = rcu_dereference_bh(n->next);
142 goto next_knode;
143 } else {
144 __this_cpu_inc(*n->pcpu_success);
145 }
146 #endif
147
148 for (i = n->sel.nkeys; i > 0; i--, key++) {
149 int toff = off + key->off + (off2 & key->offmask);
150 __be32 *data, hdata;
151
152 if (skb_headroom(skb) + toff > INT_MAX)
153 goto out;
154
155 data = skb_header_pointer(skb, toff, 4, &hdata);
156 if (!data)
157 goto out;
158 if ((*data ^ key->val) & key->mask) {
159 n = rcu_dereference_bh(n->next);
160 goto next_knode;
161 }
162 #ifdef CONFIG_CLS_U32_PERF
163 __this_cpu_inc(n->pf->kcnts[j]);
164 j++;
165 #endif
166 }
167
168 ht = rcu_dereference_bh(n->ht_down);
169 if (!ht) {
170 check_terminal:
171 if (n->sel.flags & TC_U32_TERMINAL) {
172
173 *res = n->res;
174 if (!tcf_match_indev(skb, n->ifindex)) {
175 n = rcu_dereference_bh(n->next);
176 goto next_knode;
177 }
178 #ifdef CONFIG_CLS_U32_PERF
179 __this_cpu_inc(n->pf->rhit);
180 #endif
181 r = tcf_exts_exec(skb, &n->exts, res);
182 if (r < 0) {
183 n = rcu_dereference_bh(n->next);
184 goto next_knode;
185 }
186
187 return r;
188 }
189 n = rcu_dereference_bh(n->next);
190 goto next_knode;
191 }
192
193 /* PUSH */
194 if (sdepth >= TC_U32_MAXDEPTH)
195 goto deadloop;
196 stack[sdepth].knode = n;
197 stack[sdepth].off = off;
198 sdepth++;
199
200 ht = rcu_dereference_bh(n->ht_down);
201 sel = 0;
202 if (ht->divisor) {
203 __be32 *data, hdata;
204
205 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
206 &hdata);
207 if (!data)
208 goto out;
209 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
210 n->fshift);
211 }
212 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
213 goto next_ht;
214
215 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
216 off2 = n->sel.off + 3;
217 if (n->sel.flags & TC_U32_VAROFFSET) {
218 __be16 *data, hdata;
219
220 data = skb_header_pointer(skb,
221 off + n->sel.offoff,
222 2, &hdata);
223 if (!data)
224 goto out;
225 off2 += ntohs(n->sel.offmask & *data) >>
226 n->sel.offshift;
227 }
228 off2 &= ~3;
229 }
230 if (n->sel.flags & TC_U32_EAT) {
231 off += off2;
232 off2 = 0;
233 }
234
235 if (off < skb->len)
236 goto next_ht;
237 }
238
239 /* POP */
240 if (sdepth--) {
241 n = stack[sdepth].knode;
242 ht = rcu_dereference_bh(n->ht_up);
243 off = stack[sdepth].off;
244 goto check_terminal;
245 }
246 out:
247 return -1;
248
249 deadloop:
250 net_warn_ratelimited("cls_u32: dead loop\n");
251 return -1;
252 }
253
u32_lookup_ht(struct tc_u_common * tp_c,u32 handle)254 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
255 {
256 struct tc_u_hnode *ht;
257
258 for (ht = rtnl_dereference(tp_c->hlist);
259 ht;
260 ht = rtnl_dereference(ht->next))
261 if (ht->handle == handle)
262 break;
263
264 return ht;
265 }
266
u32_lookup_key(struct tc_u_hnode * ht,u32 handle)267 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
268 {
269 unsigned int sel;
270 struct tc_u_knode *n = NULL;
271
272 sel = TC_U32_HASH(handle);
273 if (sel > ht->divisor)
274 goto out;
275
276 for (n = rtnl_dereference(ht->ht[sel]);
277 n;
278 n = rtnl_dereference(n->next))
279 if (n->handle == handle)
280 break;
281 out:
282 return n;
283 }
284
285
u32_get(struct tcf_proto * tp,u32 handle)286 static void *u32_get(struct tcf_proto *tp, u32 handle)
287 {
288 struct tc_u_hnode *ht;
289 struct tc_u_common *tp_c = tp->data;
290
291 if (TC_U32_HTID(handle) == TC_U32_ROOT)
292 ht = rtnl_dereference(tp->root);
293 else
294 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
295
296 if (!ht)
297 return NULL;
298
299 if (TC_U32_KEY(handle) == 0)
300 return ht;
301
302 return u32_lookup_key(ht, handle);
303 }
304
305 /* Protected by rtnl lock */
gen_new_htid(struct tc_u_common * tp_c,struct tc_u_hnode * ptr)306 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
307 {
308 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
309 if (id < 0)
310 return 0;
311 return (id | 0x800U) << 20;
312 }
313
314 static struct hlist_head *tc_u_common_hash;
315
316 #define U32_HASH_SHIFT 10
317 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
318
tc_u_common_ptr(const struct tcf_proto * tp)319 static void *tc_u_common_ptr(const struct tcf_proto *tp)
320 {
321 struct tcf_block *block = tp->chain->block;
322
323 /* The block sharing is currently supported only
324 * for classless qdiscs. In that case we use block
325 * for tc_u_common identification. In case the
326 * block is not shared, block->q is a valid pointer
327 * and we can use that. That works for classful qdiscs.
328 */
329 if (tcf_block_shared(block))
330 return block;
331 else
332 return block->q;
333 }
334
tc_u_hash(void * key)335 static struct hlist_head *tc_u_hash(void *key)
336 {
337 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
338 }
339
tc_u_common_find(void * key)340 static struct tc_u_common *tc_u_common_find(void *key)
341 {
342 struct tc_u_common *tc;
343 hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
344 if (tc->ptr == key)
345 return tc;
346 }
347 return NULL;
348 }
349
u32_init(struct tcf_proto * tp)350 static int u32_init(struct tcf_proto *tp)
351 {
352 struct tc_u_hnode *root_ht;
353 void *key = tc_u_common_ptr(tp);
354 struct tc_u_common *tp_c = tc_u_common_find(key);
355
356 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
357 if (root_ht == NULL)
358 return -ENOBUFS;
359
360 root_ht->refcnt++;
361 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
362 root_ht->prio = tp->prio;
363 root_ht->is_root = true;
364 idr_init(&root_ht->handle_idr);
365
366 if (tp_c == NULL) {
367 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
368 if (tp_c == NULL) {
369 kfree(root_ht);
370 return -ENOBUFS;
371 }
372 tp_c->ptr = key;
373 INIT_HLIST_NODE(&tp_c->hnode);
374 idr_init(&tp_c->handle_idr);
375
376 hlist_add_head(&tp_c->hnode, tc_u_hash(key));
377 }
378
379 tp_c->refcnt++;
380 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
381 rcu_assign_pointer(tp_c->hlist, root_ht);
382
383 root_ht->refcnt++;
384 rcu_assign_pointer(tp->root, root_ht);
385 tp->data = tp_c;
386 return 0;
387 }
388
__u32_destroy_key(struct tc_u_knode * n)389 static void __u32_destroy_key(struct tc_u_knode *n)
390 {
391 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
392
393 tcf_exts_destroy(&n->exts);
394 if (ht && --ht->refcnt == 0)
395 kfree(ht);
396 kfree(n);
397 }
398
u32_destroy_key(struct tc_u_knode * n,bool free_pf)399 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
400 {
401 tcf_exts_put_net(&n->exts);
402 #ifdef CONFIG_CLS_U32_PERF
403 if (free_pf)
404 free_percpu(n->pf);
405 #endif
406 #ifdef CONFIG_CLS_U32_MARK
407 if (free_pf)
408 free_percpu(n->pcpu_success);
409 #endif
410 __u32_destroy_key(n);
411 }
412
413 /* u32_delete_key_rcu should be called when free'ing a copied
414 * version of a tc_u_knode obtained from u32_init_knode(). When
415 * copies are obtained from u32_init_knode() the statistics are
416 * shared between the old and new copies to allow readers to
417 * continue to update the statistics during the copy. To support
418 * this the u32_delete_key_rcu variant does not free the percpu
419 * statistics.
420 */
u32_delete_key_work(struct work_struct * work)421 static void u32_delete_key_work(struct work_struct *work)
422 {
423 struct tc_u_knode *key = container_of(to_rcu_work(work),
424 struct tc_u_knode,
425 rwork);
426 rtnl_lock();
427 u32_destroy_key(key, false);
428 rtnl_unlock();
429 }
430
431 /* u32_delete_key_freepf_rcu is the rcu callback variant
432 * that free's the entire structure including the statistics
433 * percpu variables. Only use this if the key is not a copy
434 * returned by u32_init_knode(). See u32_delete_key_rcu()
435 * for the variant that should be used with keys return from
436 * u32_init_knode()
437 */
u32_delete_key_freepf_work(struct work_struct * work)438 static void u32_delete_key_freepf_work(struct work_struct *work)
439 {
440 struct tc_u_knode *key = container_of(to_rcu_work(work),
441 struct tc_u_knode,
442 rwork);
443 rtnl_lock();
444 u32_destroy_key(key, true);
445 rtnl_unlock();
446 }
447
u32_delete_key(struct tcf_proto * tp,struct tc_u_knode * key)448 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
449 {
450 struct tc_u_common *tp_c = tp->data;
451 struct tc_u_knode __rcu **kp;
452 struct tc_u_knode *pkp;
453 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
454
455 if (ht) {
456 kp = &ht->ht[TC_U32_HASH(key->handle)];
457 for (pkp = rtnl_dereference(*kp); pkp;
458 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
459 if (pkp == key) {
460 RCU_INIT_POINTER(*kp, key->next);
461 tp_c->knodes--;
462
463 tcf_unbind_filter(tp, &key->res);
464 idr_remove(&ht->handle_idr, key->handle);
465 tcf_exts_get_net(&key->exts);
466 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
467 return 0;
468 }
469 }
470 }
471 WARN_ON(1);
472 return 0;
473 }
474
u32_clear_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,struct netlink_ext_ack * extack)475 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
476 struct netlink_ext_ack *extack)
477 {
478 struct tcf_block *block = tp->chain->block;
479 struct tc_cls_u32_offload cls_u32 = {};
480
481 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
482 cls_u32.command = TC_CLSU32_DELETE_HNODE;
483 cls_u32.hnode.divisor = h->divisor;
484 cls_u32.hnode.handle = h->handle;
485 cls_u32.hnode.prio = h->prio;
486
487 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
488 }
489
u32_replace_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,u32 flags,struct netlink_ext_ack * extack)490 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
491 u32 flags, struct netlink_ext_ack *extack)
492 {
493 struct tcf_block *block = tp->chain->block;
494 struct tc_cls_u32_offload cls_u32 = {};
495 bool skip_sw = tc_skip_sw(flags);
496 bool offloaded = false;
497 int err;
498
499 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
500 cls_u32.command = TC_CLSU32_NEW_HNODE;
501 cls_u32.hnode.divisor = h->divisor;
502 cls_u32.hnode.handle = h->handle;
503 cls_u32.hnode.prio = h->prio;
504
505 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
506 if (err < 0) {
507 u32_clear_hw_hnode(tp, h, NULL);
508 return err;
509 } else if (err > 0) {
510 offloaded = true;
511 }
512
513 if (skip_sw && !offloaded)
514 return -EINVAL;
515
516 return 0;
517 }
518
u32_remove_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,struct netlink_ext_ack * extack)519 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
520 struct netlink_ext_ack *extack)
521 {
522 struct tcf_block *block = tp->chain->block;
523 struct tc_cls_u32_offload cls_u32 = {};
524
525 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
526 cls_u32.command = TC_CLSU32_DELETE_KNODE;
527 cls_u32.knode.handle = n->handle;
528
529 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
530 &n->flags, &n->in_hw_count, true);
531 }
532
u32_replace_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,u32 flags,struct netlink_ext_ack * extack)533 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
534 u32 flags, struct netlink_ext_ack *extack)
535 {
536 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
537 struct tcf_block *block = tp->chain->block;
538 struct tc_cls_u32_offload cls_u32 = {};
539 bool skip_sw = tc_skip_sw(flags);
540 int err;
541
542 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
543 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
544 cls_u32.knode.handle = n->handle;
545 cls_u32.knode.fshift = n->fshift;
546 #ifdef CONFIG_CLS_U32_MARK
547 cls_u32.knode.val = n->val;
548 cls_u32.knode.mask = n->mask;
549 #else
550 cls_u32.knode.val = 0;
551 cls_u32.knode.mask = 0;
552 #endif
553 cls_u32.knode.sel = &n->sel;
554 cls_u32.knode.res = &n->res;
555 cls_u32.knode.exts = &n->exts;
556 if (n->ht_down)
557 cls_u32.knode.link_handle = ht->handle;
558
559 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
560 &n->flags, &n->in_hw_count, true);
561 if (err) {
562 u32_remove_hw_knode(tp, n, NULL);
563 return err;
564 }
565
566 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
567 return -EINVAL;
568
569 return 0;
570 }
571
u32_clear_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)572 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
573 struct netlink_ext_ack *extack)
574 {
575 struct tc_u_common *tp_c = tp->data;
576 struct tc_u_knode *n;
577 unsigned int h;
578
579 for (h = 0; h <= ht->divisor; h++) {
580 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
581 RCU_INIT_POINTER(ht->ht[h],
582 rtnl_dereference(n->next));
583 tp_c->knodes--;
584 tcf_unbind_filter(tp, &n->res);
585 u32_remove_hw_knode(tp, n, extack);
586 idr_remove(&ht->handle_idr, n->handle);
587 if (tcf_exts_get_net(&n->exts))
588 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
589 else
590 u32_destroy_key(n, true);
591 }
592 }
593 }
594
u32_destroy_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)595 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
596 struct netlink_ext_ack *extack)
597 {
598 struct tc_u_common *tp_c = tp->data;
599 struct tc_u_hnode __rcu **hn;
600 struct tc_u_hnode *phn;
601
602 WARN_ON(--ht->refcnt);
603
604 u32_clear_hnode(tp, ht, extack);
605
606 hn = &tp_c->hlist;
607 for (phn = rtnl_dereference(*hn);
608 phn;
609 hn = &phn->next, phn = rtnl_dereference(*hn)) {
610 if (phn == ht) {
611 u32_clear_hw_hnode(tp, ht, extack);
612 idr_destroy(&ht->handle_idr);
613 idr_remove(&tp_c->handle_idr, ht->handle);
614 RCU_INIT_POINTER(*hn, ht->next);
615 kfree_rcu(ht, rcu);
616 return 0;
617 }
618 }
619
620 return -ENOENT;
621 }
622
u32_destroy(struct tcf_proto * tp,bool rtnl_held,struct netlink_ext_ack * extack)623 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
624 struct netlink_ext_ack *extack)
625 {
626 struct tc_u_common *tp_c = tp->data;
627 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
628
629 WARN_ON(root_ht == NULL);
630
631 if (root_ht && --root_ht->refcnt == 1)
632 u32_destroy_hnode(tp, root_ht, extack);
633
634 if (--tp_c->refcnt == 0) {
635 struct tc_u_hnode *ht;
636
637 hlist_del(&tp_c->hnode);
638
639 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
640 u32_clear_hnode(tp, ht, extack);
641 RCU_INIT_POINTER(tp_c->hlist, ht->next);
642
643 /* u32_destroy_key() will later free ht for us, if it's
644 * still referenced by some knode
645 */
646 if (--ht->refcnt == 0)
647 kfree_rcu(ht, rcu);
648 }
649
650 idr_destroy(&tp_c->handle_idr);
651 kfree(tp_c);
652 }
653
654 tp->data = NULL;
655 }
656
u32_delete(struct tcf_proto * tp,void * arg,bool * last,bool rtnl_held,struct netlink_ext_ack * extack)657 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
658 bool rtnl_held, struct netlink_ext_ack *extack)
659 {
660 struct tc_u_hnode *ht = arg;
661 struct tc_u_common *tp_c = tp->data;
662 int ret = 0;
663
664 if (TC_U32_KEY(ht->handle)) {
665 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
666 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
667 goto out;
668 }
669
670 if (ht->is_root) {
671 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
672 return -EINVAL;
673 }
674
675 if (ht->refcnt == 1) {
676 u32_destroy_hnode(tp, ht, extack);
677 } else {
678 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
679 return -EBUSY;
680 }
681
682 out:
683 *last = tp_c->refcnt == 1 && tp_c->knodes == 0;
684 return ret;
685 }
686
gen_new_kid(struct tc_u_hnode * ht,u32 htid)687 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
688 {
689 u32 index = htid | 0x800;
690 u32 max = htid | 0xFFF;
691
692 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
693 index = htid + 1;
694 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
695 GFP_KERNEL))
696 index = max;
697 }
698
699 return index;
700 }
701
702 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
703 [TCA_U32_CLASSID] = { .type = NLA_U32 },
704 [TCA_U32_HASH] = { .type = NLA_U32 },
705 [TCA_U32_LINK] = { .type = NLA_U32 },
706 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
707 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
708 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
709 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
710 [TCA_U32_FLAGS] = { .type = NLA_U32 },
711 };
712
u32_set_parms(struct net * net,struct tcf_proto * tp,unsigned long base,struct tc_u_knode * n,struct nlattr ** tb,struct nlattr * est,bool ovr,struct netlink_ext_ack * extack)713 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
714 unsigned long base,
715 struct tc_u_knode *n, struct nlattr **tb,
716 struct nlattr *est, bool ovr,
717 struct netlink_ext_ack *extack)
718 {
719 int err, ifindex = -1;
720
721 err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr, true, extack);
722 if (err < 0)
723 return err;
724
725 if (tb[TCA_U32_INDEV]) {
726 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
727 if (ifindex < 0)
728 return -EINVAL;
729 }
730
731 if (tb[TCA_U32_LINK]) {
732 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
733 struct tc_u_hnode *ht_down = NULL, *ht_old;
734
735 if (TC_U32_KEY(handle)) {
736 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
737 return -EINVAL;
738 }
739
740 if (handle) {
741 ht_down = u32_lookup_ht(tp->data, handle);
742
743 if (!ht_down) {
744 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
745 return -EINVAL;
746 }
747 if (ht_down->is_root) {
748 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
749 return -EINVAL;
750 }
751 ht_down->refcnt++;
752 }
753
754 ht_old = rtnl_dereference(n->ht_down);
755 rcu_assign_pointer(n->ht_down, ht_down);
756
757 if (ht_old)
758 ht_old->refcnt--;
759 }
760 if (tb[TCA_U32_CLASSID]) {
761 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
762 tcf_bind_filter(tp, &n->res, base);
763 }
764
765 if (ifindex >= 0)
766 n->ifindex = ifindex;
767
768 return 0;
769 }
770
u32_replace_knode(struct tcf_proto * tp,struct tc_u_common * tp_c,struct tc_u_knode * n)771 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
772 struct tc_u_knode *n)
773 {
774 struct tc_u_knode __rcu **ins;
775 struct tc_u_knode *pins;
776 struct tc_u_hnode *ht;
777
778 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
779 ht = rtnl_dereference(tp->root);
780 else
781 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
782
783 ins = &ht->ht[TC_U32_HASH(n->handle)];
784
785 /* The node must always exist for it to be replaced if this is not the
786 * case then something went very wrong elsewhere.
787 */
788 for (pins = rtnl_dereference(*ins); ;
789 ins = &pins->next, pins = rtnl_dereference(*ins))
790 if (pins->handle == n->handle)
791 break;
792
793 idr_replace(&ht->handle_idr, n, n->handle);
794 RCU_INIT_POINTER(n->next, pins->next);
795 rcu_assign_pointer(*ins, n);
796 }
797
u32_init_knode(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n)798 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
799 struct tc_u_knode *n)
800 {
801 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
802 struct tc_u32_sel *s = &n->sel;
803 struct tc_u_knode *new;
804
805 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
806 if (!new)
807 return NULL;
808
809 RCU_INIT_POINTER(new->next, n->next);
810 new->handle = n->handle;
811 RCU_INIT_POINTER(new->ht_up, n->ht_up);
812
813 new->ifindex = n->ifindex;
814 new->fshift = n->fshift;
815 new->flags = n->flags;
816 RCU_INIT_POINTER(new->ht_down, ht);
817
818 #ifdef CONFIG_CLS_U32_PERF
819 /* Statistics may be incremented by readers during update
820 * so we must keep them in tact. When the node is later destroyed
821 * a special destroy call must be made to not free the pf memory.
822 */
823 new->pf = n->pf;
824 #endif
825
826 #ifdef CONFIG_CLS_U32_MARK
827 new->val = n->val;
828 new->mask = n->mask;
829 /* Similarly success statistics must be moved as pointers */
830 new->pcpu_success = n->pcpu_success;
831 #endif
832 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
833
834 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
835 kfree(new);
836 return NULL;
837 }
838
839 /* bump reference count as long as we hold pointer to structure */
840 if (ht)
841 ht->refcnt++;
842
843 return new;
844 }
845
u32_change(struct net * net,struct sk_buff * in_skb,struct tcf_proto * tp,unsigned long base,u32 handle,struct nlattr ** tca,void ** arg,bool ovr,bool rtnl_held,struct netlink_ext_ack * extack)846 static int u32_change(struct net *net, struct sk_buff *in_skb,
847 struct tcf_proto *tp, unsigned long base, u32 handle,
848 struct nlattr **tca, void **arg, bool ovr, bool rtnl_held,
849 struct netlink_ext_ack *extack)
850 {
851 struct tc_u_common *tp_c = tp->data;
852 struct tc_u_hnode *ht;
853 struct tc_u_knode *n;
854 struct tc_u32_sel *s;
855 struct nlattr *opt = tca[TCA_OPTIONS];
856 struct nlattr *tb[TCA_U32_MAX + 1];
857 u32 htid, flags = 0;
858 size_t sel_size;
859 int err;
860
861 if (!opt) {
862 if (handle) {
863 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
864 return -EINVAL;
865 } else {
866 return 0;
867 }
868 }
869
870 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
871 extack);
872 if (err < 0)
873 return err;
874
875 if (tb[TCA_U32_FLAGS]) {
876 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
877 if (!tc_flags_valid(flags)) {
878 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
879 return -EINVAL;
880 }
881 }
882
883 n = *arg;
884 if (n) {
885 struct tc_u_knode *new;
886
887 if (TC_U32_KEY(n->handle) == 0) {
888 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
889 return -EINVAL;
890 }
891
892 if ((n->flags ^ flags) &
893 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
894 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
895 return -EINVAL;
896 }
897
898 new = u32_init_knode(net, tp, n);
899 if (!new)
900 return -ENOMEM;
901
902 err = u32_set_parms(net, tp, base, new, tb,
903 tca[TCA_RATE], ovr, extack);
904
905 if (err) {
906 __u32_destroy_key(new);
907 return err;
908 }
909
910 err = u32_replace_hw_knode(tp, new, flags, extack);
911 if (err) {
912 __u32_destroy_key(new);
913 return err;
914 }
915
916 if (!tc_in_hw(new->flags))
917 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
918
919 u32_replace_knode(tp, tp_c, new);
920 tcf_unbind_filter(tp, &n->res);
921 tcf_exts_get_net(&n->exts);
922 tcf_queue_work(&n->rwork, u32_delete_key_work);
923 return 0;
924 }
925
926 if (tb[TCA_U32_DIVISOR]) {
927 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
928
929 if (!is_power_of_2(divisor)) {
930 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
931 return -EINVAL;
932 }
933 if (divisor-- > 0x100) {
934 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
935 return -EINVAL;
936 }
937 if (TC_U32_KEY(handle)) {
938 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
939 return -EINVAL;
940 }
941 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
942 if (ht == NULL)
943 return -ENOBUFS;
944 if (handle == 0) {
945 handle = gen_new_htid(tp->data, ht);
946 if (handle == 0) {
947 kfree(ht);
948 return -ENOMEM;
949 }
950 } else {
951 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
952 handle, GFP_KERNEL);
953 if (err) {
954 kfree(ht);
955 return err;
956 }
957 }
958 ht->refcnt = 1;
959 ht->divisor = divisor;
960 ht->handle = handle;
961 ht->prio = tp->prio;
962 idr_init(&ht->handle_idr);
963 ht->flags = flags;
964
965 err = u32_replace_hw_hnode(tp, ht, flags, extack);
966 if (err) {
967 idr_remove(&tp_c->handle_idr, handle);
968 kfree(ht);
969 return err;
970 }
971
972 RCU_INIT_POINTER(ht->next, tp_c->hlist);
973 rcu_assign_pointer(tp_c->hlist, ht);
974 *arg = ht;
975
976 return 0;
977 }
978
979 if (tb[TCA_U32_HASH]) {
980 htid = nla_get_u32(tb[TCA_U32_HASH]);
981 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
982 ht = rtnl_dereference(tp->root);
983 htid = ht->handle;
984 } else {
985 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
986 if (!ht) {
987 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
988 return -EINVAL;
989 }
990 }
991 } else {
992 ht = rtnl_dereference(tp->root);
993 htid = ht->handle;
994 }
995
996 if (ht->divisor < TC_U32_HASH(htid)) {
997 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
998 return -EINVAL;
999 }
1000
1001 /* At this point, we need to derive the new handle that will be used to
1002 * uniquely map the identity of this table match entry. The
1003 * identity of the entry that we need to construct is 32 bits made of:
1004 * htid(12b):bucketid(8b):node/entryid(12b)
1005 *
1006 * At this point _we have the table(ht)_ in which we will insert this
1007 * entry. We carry the table's id in variable "htid".
1008 * Note that earlier code picked the ht selection either by a) the user
1009 * providing the htid specified via TCA_U32_HASH attribute or b) when
1010 * no such attribute is passed then the root ht, is default to at ID
1011 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1012 * If OTOH the user passed us the htid, they may also pass a bucketid of
1013 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1014 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1015 * passed via the htid, so even if it was non-zero it will be ignored.
1016 *
1017 * We may also have a handle, if the user passed one. The handle also
1018 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1019 * Rule: the bucketid on the handle is ignored even if one was passed;
1020 * rather the value on "htid" is always assumed to be the bucketid.
1021 */
1022 if (handle) {
1023 /* Rule: The htid from handle and tableid from htid must match */
1024 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1025 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1026 return -EINVAL;
1027 }
1028 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1029 * need to finalize the table entry identification with the last
1030 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1031 * entries. Rule: nodeid of 0 is reserved only for tables(see
1032 * earlier code which processes TC_U32_DIVISOR attribute).
1033 * Rule: The nodeid can only be derived from the handle (and not
1034 * htid).
1035 * Rule: if the handle specified zero for the node id example
1036 * 0x60000000, then pick a new nodeid from the pool of IDs
1037 * this hash table has been allocating from.
1038 * If OTOH it is specified (i.e for example the user passed a
1039 * handle such as 0x60000123), then we use it generate our final
1040 * handle which is used to uniquely identify the match entry.
1041 */
1042 if (!TC_U32_NODE(handle)) {
1043 handle = gen_new_kid(ht, htid);
1044 } else {
1045 handle = htid | TC_U32_NODE(handle);
1046 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle,
1047 handle, GFP_KERNEL);
1048 if (err)
1049 return err;
1050 }
1051 } else {
1052 /* The user did not give us a handle; lets just generate one
1053 * from the table's pool of nodeids.
1054 */
1055 handle = gen_new_kid(ht, htid);
1056 }
1057
1058 if (tb[TCA_U32_SEL] == NULL) {
1059 NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1060 err = -EINVAL;
1061 goto erridr;
1062 }
1063
1064 s = nla_data(tb[TCA_U32_SEL]);
1065 sel_size = struct_size(s, keys, s->nkeys);
1066 if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
1067 err = -EINVAL;
1068 goto erridr;
1069 }
1070
1071 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1072 if (n == NULL) {
1073 err = -ENOBUFS;
1074 goto erridr;
1075 }
1076
1077 #ifdef CONFIG_CLS_U32_PERF
1078 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1079 __alignof__(struct tc_u32_pcnt));
1080 if (!n->pf) {
1081 err = -ENOBUFS;
1082 goto errfree;
1083 }
1084 #endif
1085
1086 memcpy(&n->sel, s, sel_size);
1087 RCU_INIT_POINTER(n->ht_up, ht);
1088 n->handle = handle;
1089 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1090 n->flags = flags;
1091
1092 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
1093 if (err < 0)
1094 goto errout;
1095
1096 #ifdef CONFIG_CLS_U32_MARK
1097 n->pcpu_success = alloc_percpu(u32);
1098 if (!n->pcpu_success) {
1099 err = -ENOMEM;
1100 goto errout;
1101 }
1102
1103 if (tb[TCA_U32_MARK]) {
1104 struct tc_u32_mark *mark;
1105
1106 mark = nla_data(tb[TCA_U32_MARK]);
1107 n->val = mark->val;
1108 n->mask = mark->mask;
1109 }
1110 #endif
1111
1112 err = u32_set_parms(net, tp, base, n, tb, tca[TCA_RATE], ovr,
1113 extack);
1114 if (err == 0) {
1115 struct tc_u_knode __rcu **ins;
1116 struct tc_u_knode *pins;
1117
1118 err = u32_replace_hw_knode(tp, n, flags, extack);
1119 if (err)
1120 goto errhw;
1121
1122 if (!tc_in_hw(n->flags))
1123 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1124
1125 ins = &ht->ht[TC_U32_HASH(handle)];
1126 for (pins = rtnl_dereference(*ins); pins;
1127 ins = &pins->next, pins = rtnl_dereference(*ins))
1128 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1129 break;
1130
1131 RCU_INIT_POINTER(n->next, pins);
1132 rcu_assign_pointer(*ins, n);
1133 tp_c->knodes++;
1134 *arg = n;
1135 return 0;
1136 }
1137
1138 errhw:
1139 #ifdef CONFIG_CLS_U32_MARK
1140 free_percpu(n->pcpu_success);
1141 #endif
1142
1143 errout:
1144 tcf_exts_destroy(&n->exts);
1145 #ifdef CONFIG_CLS_U32_PERF
1146 errfree:
1147 free_percpu(n->pf);
1148 #endif
1149 kfree(n);
1150 erridr:
1151 idr_remove(&ht->handle_idr, handle);
1152 return err;
1153 }
1154
u32_walk(struct tcf_proto * tp,struct tcf_walker * arg,bool rtnl_held)1155 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1156 bool rtnl_held)
1157 {
1158 struct tc_u_common *tp_c = tp->data;
1159 struct tc_u_hnode *ht;
1160 struct tc_u_knode *n;
1161 unsigned int h;
1162
1163 if (arg->stop)
1164 return;
1165
1166 for (ht = rtnl_dereference(tp_c->hlist);
1167 ht;
1168 ht = rtnl_dereference(ht->next)) {
1169 if (ht->prio != tp->prio)
1170 continue;
1171 if (arg->count >= arg->skip) {
1172 if (arg->fn(tp, ht, arg) < 0) {
1173 arg->stop = 1;
1174 return;
1175 }
1176 }
1177 arg->count++;
1178 for (h = 0; h <= ht->divisor; h++) {
1179 for (n = rtnl_dereference(ht->ht[h]);
1180 n;
1181 n = rtnl_dereference(n->next)) {
1182 if (arg->count < arg->skip) {
1183 arg->count++;
1184 continue;
1185 }
1186 if (arg->fn(tp, n, arg) < 0) {
1187 arg->stop = 1;
1188 return;
1189 }
1190 arg->count++;
1191 }
1192 }
1193 }
1194 }
1195
u32_reoffload_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1196 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1197 bool add, flow_setup_cb_t *cb, void *cb_priv,
1198 struct netlink_ext_ack *extack)
1199 {
1200 struct tc_cls_u32_offload cls_u32 = {};
1201 int err;
1202
1203 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
1204 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1205 cls_u32.hnode.divisor = ht->divisor;
1206 cls_u32.hnode.handle = ht->handle;
1207 cls_u32.hnode.prio = ht->prio;
1208
1209 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1210 if (err && add && tc_skip_sw(ht->flags))
1211 return err;
1212
1213 return 0;
1214 }
1215
u32_reoffload_knode(struct tcf_proto * tp,struct tc_u_knode * n,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1216 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1217 bool add, flow_setup_cb_t *cb, void *cb_priv,
1218 struct netlink_ext_ack *extack)
1219 {
1220 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1221 struct tcf_block *block = tp->chain->block;
1222 struct tc_cls_u32_offload cls_u32 = {};
1223 int err;
1224
1225 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
1226 cls_u32.command = add ?
1227 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1228 cls_u32.knode.handle = n->handle;
1229
1230 if (add) {
1231 cls_u32.knode.fshift = n->fshift;
1232 #ifdef CONFIG_CLS_U32_MARK
1233 cls_u32.knode.val = n->val;
1234 cls_u32.knode.mask = n->mask;
1235 #else
1236 cls_u32.knode.val = 0;
1237 cls_u32.knode.mask = 0;
1238 #endif
1239 cls_u32.knode.sel = &n->sel;
1240 cls_u32.knode.res = &n->res;
1241 cls_u32.knode.exts = &n->exts;
1242 if (n->ht_down)
1243 cls_u32.knode.link_handle = ht->handle;
1244 }
1245
1246 err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
1247 &cls_u32, cb_priv, &n->flags,
1248 &n->in_hw_count);
1249 if (err)
1250 return err;
1251
1252 return 0;
1253 }
1254
u32_reoffload(struct tcf_proto * tp,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1255 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1256 void *cb_priv, struct netlink_ext_ack *extack)
1257 {
1258 struct tc_u_common *tp_c = tp->data;
1259 struct tc_u_hnode *ht;
1260 struct tc_u_knode *n;
1261 unsigned int h;
1262 int err;
1263
1264 for (ht = rtnl_dereference(tp_c->hlist);
1265 ht;
1266 ht = rtnl_dereference(ht->next)) {
1267 if (ht->prio != tp->prio)
1268 continue;
1269
1270 /* When adding filters to a new dev, try to offload the
1271 * hashtable first. When removing, do the filters before the
1272 * hashtable.
1273 */
1274 if (add && !tc_skip_hw(ht->flags)) {
1275 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1276 extack);
1277 if (err)
1278 return err;
1279 }
1280
1281 for (h = 0; h <= ht->divisor; h++) {
1282 for (n = rtnl_dereference(ht->ht[h]);
1283 n;
1284 n = rtnl_dereference(n->next)) {
1285 if (tc_skip_hw(n->flags))
1286 continue;
1287
1288 err = u32_reoffload_knode(tp, n, add, cb,
1289 cb_priv, extack);
1290 if (err)
1291 return err;
1292 }
1293 }
1294
1295 if (!add && !tc_skip_hw(ht->flags))
1296 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1297 }
1298
1299 return 0;
1300 }
1301
u32_bind_class(void * fh,u32 classid,unsigned long cl,void * q,unsigned long base)1302 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1303 unsigned long base)
1304 {
1305 struct tc_u_knode *n = fh;
1306
1307 if (n && n->res.classid == classid) {
1308 if (cl)
1309 __tcf_bind_filter(q, &n->res, base);
1310 else
1311 __tcf_unbind_filter(q, &n->res);
1312 }
1313 }
1314
u32_dump(struct net * net,struct tcf_proto * tp,void * fh,struct sk_buff * skb,struct tcmsg * t,bool rtnl_held)1315 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1316 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1317 {
1318 struct tc_u_knode *n = fh;
1319 struct tc_u_hnode *ht_up, *ht_down;
1320 struct nlattr *nest;
1321
1322 if (n == NULL)
1323 return skb->len;
1324
1325 t->tcm_handle = n->handle;
1326
1327 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1328 if (nest == NULL)
1329 goto nla_put_failure;
1330
1331 if (TC_U32_KEY(n->handle) == 0) {
1332 struct tc_u_hnode *ht = fh;
1333 u32 divisor = ht->divisor + 1;
1334
1335 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1336 goto nla_put_failure;
1337 } else {
1338 #ifdef CONFIG_CLS_U32_PERF
1339 struct tc_u32_pcnt *gpf;
1340 int cpu;
1341 #endif
1342
1343 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1344 &n->sel))
1345 goto nla_put_failure;
1346
1347 ht_up = rtnl_dereference(n->ht_up);
1348 if (ht_up) {
1349 u32 htid = n->handle & 0xFFFFF000;
1350 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1351 goto nla_put_failure;
1352 }
1353 if (n->res.classid &&
1354 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1355 goto nla_put_failure;
1356
1357 ht_down = rtnl_dereference(n->ht_down);
1358 if (ht_down &&
1359 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1360 goto nla_put_failure;
1361
1362 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1363 goto nla_put_failure;
1364
1365 #ifdef CONFIG_CLS_U32_MARK
1366 if ((n->val || n->mask)) {
1367 struct tc_u32_mark mark = {.val = n->val,
1368 .mask = n->mask,
1369 .success = 0};
1370 int cpum;
1371
1372 for_each_possible_cpu(cpum) {
1373 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1374
1375 mark.success += cnt;
1376 }
1377
1378 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1379 goto nla_put_failure;
1380 }
1381 #endif
1382
1383 if (tcf_exts_dump(skb, &n->exts) < 0)
1384 goto nla_put_failure;
1385
1386 if (n->ifindex) {
1387 struct net_device *dev;
1388 dev = __dev_get_by_index(net, n->ifindex);
1389 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1390 goto nla_put_failure;
1391 }
1392 #ifdef CONFIG_CLS_U32_PERF
1393 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1394 if (!gpf)
1395 goto nla_put_failure;
1396
1397 for_each_possible_cpu(cpu) {
1398 int i;
1399 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1400
1401 gpf->rcnt += pf->rcnt;
1402 gpf->rhit += pf->rhit;
1403 for (i = 0; i < n->sel.nkeys; i++)
1404 gpf->kcnts[i] += pf->kcnts[i];
1405 }
1406
1407 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1408 gpf, TCA_U32_PAD)) {
1409 kfree(gpf);
1410 goto nla_put_failure;
1411 }
1412 kfree(gpf);
1413 #endif
1414 }
1415
1416 nla_nest_end(skb, nest);
1417
1418 if (TC_U32_KEY(n->handle))
1419 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1420 goto nla_put_failure;
1421 return skb->len;
1422
1423 nla_put_failure:
1424 nla_nest_cancel(skb, nest);
1425 return -1;
1426 }
1427
1428 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1429 .kind = "u32",
1430 .classify = u32_classify,
1431 .init = u32_init,
1432 .destroy = u32_destroy,
1433 .get = u32_get,
1434 .change = u32_change,
1435 .delete = u32_delete,
1436 .walk = u32_walk,
1437 .reoffload = u32_reoffload,
1438 .dump = u32_dump,
1439 .bind_class = u32_bind_class,
1440 .owner = THIS_MODULE,
1441 };
1442
init_u32(void)1443 static int __init init_u32(void)
1444 {
1445 int i, ret;
1446
1447 pr_info("u32 classifier\n");
1448 #ifdef CONFIG_CLS_U32_PERF
1449 pr_info(" Performance counters on\n");
1450 #endif
1451 pr_info(" input device check on\n");
1452 #ifdef CONFIG_NET_CLS_ACT
1453 pr_info(" Actions configured\n");
1454 #endif
1455 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1456 sizeof(struct hlist_head),
1457 GFP_KERNEL);
1458 if (!tc_u_common_hash)
1459 return -ENOMEM;
1460
1461 for (i = 0; i < U32_HASH_SIZE; i++)
1462 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1463
1464 ret = register_tcf_proto_ops(&cls_u32_ops);
1465 if (ret)
1466 kvfree(tc_u_common_hash);
1467 return ret;
1468 }
1469
exit_u32(void)1470 static void __exit exit_u32(void)
1471 {
1472 unregister_tcf_proto_ops(&cls_u32_ops);
1473 kvfree(tc_u_common_hash);
1474 }
1475
1476 module_init(init_u32)
1477 module_exit(exit_u32)
1478 MODULE_LICENSE("GPL");
1479