1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
18
19
20 /* Quick Fair Queueing Plus
21 ========================
22
23 Sources:
24
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38 /*
39
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90 /*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94 #define QFQ_MAX_SLOTS 32
95
96 /*
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
107
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
110
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
113
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
117
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
119
120 /*
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
123 */
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
125
126 struct qfq_group;
127
128 struct qfq_aggregate;
129
130 struct qfq_class {
131 struct Qdisc_class_common common;
132
133 unsigned int filter_cnt;
134
135 struct gnet_stats_basic_packed bstats;
136 struct gnet_stats_queue qstats;
137 struct net_rate_estimator __rcu *rate_est;
138 struct Qdisc *qdisc;
139 struct list_head alist; /* Link for active-classes list. */
140 struct qfq_aggregate *agg; /* Parent aggregate. */
141 int deficit; /* DRR deficit counter. */
142 };
143
144 struct qfq_aggregate {
145 struct hlist_node next; /* Link for the slot list. */
146 u64 S, F; /* flow timestamps (exact) */
147
148 /* group we belong to. In principle we would need the index,
149 * which is log_2(lmax/weight), but we never reference it
150 * directly, only the group.
151 */
152 struct qfq_group *grp;
153
154 /* these are copied from the flowset. */
155 u32 class_weight; /* Weight of each class in this aggregate. */
156 /* Max pkt size for the classes in this aggregate, DRR quantum. */
157 int lmax;
158
159 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
160 u32 budgetmax; /* Max budget for this aggregate. */
161 u32 initial_budget, budget; /* Initial and current budget. */
162
163 int num_classes; /* Number of classes in this aggr. */
164 struct list_head active; /* DRR queue of active classes. */
165
166 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
167 };
168
169 struct qfq_group {
170 u64 S, F; /* group timestamps (approx). */
171 unsigned int slot_shift; /* Slot shift. */
172 unsigned int index; /* Group index. */
173 unsigned int front; /* Index of the front slot. */
174 unsigned long full_slots; /* non-empty slots */
175
176 /* Array of RR lists of active aggregates. */
177 struct hlist_head slots[QFQ_MAX_SLOTS];
178 };
179
180 struct qfq_sched {
181 struct tcf_proto __rcu *filter_list;
182 struct tcf_block *block;
183 struct Qdisc_class_hash clhash;
184
185 u64 oldV, V; /* Precise virtual times. */
186 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
187 u32 wsum; /* weight sum */
188 u32 iwsum; /* inverse weight sum */
189
190 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
191 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
192 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
193
194 u32 max_agg_classes; /* Max number of classes per aggr. */
195 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
196 };
197
198 /*
199 * Possible reasons why the timestamps of an aggregate are updated
200 * enqueue: the aggregate switches from idle to active and must scheduled
201 * for service
202 * requeue: the aggregate finishes its budget, so it stops being served and
203 * must be rescheduled for service
204 */
205 enum update_reason {enqueue, requeue};
206
qfq_find_class(struct Qdisc * sch,u32 classid)207 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
208 {
209 struct qfq_sched *q = qdisc_priv(sch);
210 struct Qdisc_class_common *clc;
211
212 clc = qdisc_class_find(&q->clhash, classid);
213 if (clc == NULL)
214 return NULL;
215 return container_of(clc, struct qfq_class, common);
216 }
217
218 static struct netlink_range_validation lmax_range = {
219 .min = QFQ_MIN_LMAX,
220 .max = QFQ_MAX_LMAX,
221 };
222
223 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
224 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
225 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
226 };
227
228 /*
229 * Calculate a flow index, given its weight and maximum packet length.
230 * index = log_2(maxlen/weight) but we need to apply the scaling.
231 * This is used only once at flow creation.
232 */
qfq_calc_index(u32 inv_w,unsigned int maxlen,u32 min_slot_shift)233 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
234 {
235 u64 slot_size = (u64)maxlen * inv_w;
236 unsigned long size_map;
237 int index = 0;
238
239 size_map = slot_size >> min_slot_shift;
240 if (!size_map)
241 goto out;
242
243 index = __fls(size_map) + 1; /* basically a log_2 */
244 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
245
246 if (index < 0)
247 index = 0;
248 out:
249 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
250 (unsigned long) ONE_FP/inv_w, maxlen, index);
251
252 return index;
253 }
254
255 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
256 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
257 enum update_reason);
258
qfq_init_agg(struct qfq_sched * q,struct qfq_aggregate * agg,u32 lmax,u32 weight)259 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
260 u32 lmax, u32 weight)
261 {
262 INIT_LIST_HEAD(&agg->active);
263 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
264
265 agg->lmax = lmax;
266 agg->class_weight = weight;
267 }
268
qfq_find_agg(struct qfq_sched * q,u32 lmax,u32 weight)269 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
270 u32 lmax, u32 weight)
271 {
272 struct qfq_aggregate *agg;
273
274 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
275 if (agg->lmax == lmax && agg->class_weight == weight)
276 return agg;
277
278 return NULL;
279 }
280
281
282 /* Update aggregate as a function of the new number of classes. */
qfq_update_agg(struct qfq_sched * q,struct qfq_aggregate * agg,int new_num_classes)283 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
284 int new_num_classes)
285 {
286 u32 new_agg_weight;
287
288 if (new_num_classes == q->max_agg_classes)
289 hlist_del_init(&agg->nonfull_next);
290
291 if (agg->num_classes > new_num_classes &&
292 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
293 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
294
295 /* The next assignment may let
296 * agg->initial_budget > agg->budgetmax
297 * hold, we will take it into account in charge_actual_service().
298 */
299 agg->budgetmax = new_num_classes * agg->lmax;
300 new_agg_weight = agg->class_weight * new_num_classes;
301 agg->inv_w = ONE_FP/new_agg_weight;
302
303 if (agg->grp == NULL) {
304 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
305 q->min_slot_shift);
306 agg->grp = &q->groups[i];
307 }
308
309 q->wsum +=
310 (int) agg->class_weight * (new_num_classes - agg->num_classes);
311 q->iwsum = ONE_FP / q->wsum;
312
313 agg->num_classes = new_num_classes;
314 }
315
316 /* Add class to aggregate. */
qfq_add_to_agg(struct qfq_sched * q,struct qfq_aggregate * agg,struct qfq_class * cl)317 static void qfq_add_to_agg(struct qfq_sched *q,
318 struct qfq_aggregate *agg,
319 struct qfq_class *cl)
320 {
321 cl->agg = agg;
322
323 qfq_update_agg(q, agg, agg->num_classes+1);
324 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
325 list_add_tail(&cl->alist, &agg->active);
326 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
327 cl && q->in_serv_agg != agg) /* agg was inactive */
328 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
329 }
330 }
331
332 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
333
qfq_destroy_agg(struct qfq_sched * q,struct qfq_aggregate * agg)334 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
335 {
336 hlist_del_init(&agg->nonfull_next);
337 q->wsum -= agg->class_weight;
338 if (q->wsum != 0)
339 q->iwsum = ONE_FP / q->wsum;
340
341 if (q->in_serv_agg == agg)
342 q->in_serv_agg = qfq_choose_next_agg(q);
343 kfree(agg);
344 }
345
346 /* Deschedule class from within its parent aggregate. */
qfq_deactivate_class(struct qfq_sched * q,struct qfq_class * cl)347 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
348 {
349 struct qfq_aggregate *agg = cl->agg;
350
351
352 list_del(&cl->alist); /* remove from RR queue of the aggregate */
353 if (list_empty(&agg->active)) /* agg is now inactive */
354 qfq_deactivate_agg(q, agg);
355 }
356
357 /* Remove class from its parent aggregate. */
qfq_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)358 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
359 {
360 struct qfq_aggregate *agg = cl->agg;
361
362 cl->agg = NULL;
363 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
364 qfq_destroy_agg(q, agg);
365 return;
366 }
367 qfq_update_agg(q, agg, agg->num_classes-1);
368 }
369
370 /* Deschedule class and remove it from its parent aggregate. */
qfq_deact_rm_from_agg(struct qfq_sched * q,struct qfq_class * cl)371 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
372 {
373 if (cl->qdisc->q.qlen > 0) /* class is active */
374 qfq_deactivate_class(q, cl);
375
376 qfq_rm_from_agg(q, cl);
377 }
378
379 /* Move class to a new aggregate, matching the new class weight and/or lmax */
qfq_change_agg(struct Qdisc * sch,struct qfq_class * cl,u32 weight,u32 lmax)380 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
381 u32 lmax)
382 {
383 struct qfq_sched *q = qdisc_priv(sch);
384 struct qfq_aggregate *new_agg;
385
386 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
387 if (lmax > QFQ_MAX_LMAX)
388 return -EINVAL;
389
390 new_agg = qfq_find_agg(q, lmax, weight);
391 if (new_agg == NULL) { /* create new aggregate */
392 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
393 if (new_agg == NULL)
394 return -ENOBUFS;
395 qfq_init_agg(q, new_agg, lmax, weight);
396 }
397 qfq_deact_rm_from_agg(q, cl);
398 qfq_add_to_agg(q, new_agg, cl);
399
400 return 0;
401 }
402
qfq_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)403 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
404 struct nlattr **tca, unsigned long *arg,
405 struct netlink_ext_ack *extack)
406 {
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
415
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
419 }
420
421 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
422 qfq_policy, extack);
423 if (err < 0)
424 return err;
425
426 if (tb[TCA_QFQ_WEIGHT])
427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 else
429 weight = 1;
430
431 if (tb[TCA_QFQ_LMAX]) {
432 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
433 } else {
434 /* MTU size is user controlled */
435 lmax = psched_mtu(qdisc_dev(sch));
436 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
437 NL_SET_ERR_MSG_MOD(extack,
438 "MTU size out of bounds for qfq");
439 return -EINVAL;
440 }
441 }
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL &&
447 lmax == cl->agg->lmax &&
448 weight == cl->agg->class_weight)
449 return 0; /* nothing to change */
450
451 delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 pr_notice("qfq: total weight out of range (%d + %u)\n",
455 delta_w, q->wsum);
456 return -EINVAL;
457 }
458
459 if (cl != NULL) { /* modify existing class */
460 if (tca[TCA_RATE]) {
461 err = gen_replace_estimator(&cl->bstats, NULL,
462 &cl->rate_est,
463 NULL,
464 qdisc_root_sleeping_running(sch),
465 tca[TCA_RATE]);
466 if (err)
467 return err;
468 }
469 existing = true;
470 goto set_change_agg;
471 }
472
473 /* create and init new class */
474 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
475 if (cl == NULL)
476 return -ENOBUFS;
477
478 cl->common.classid = classid;
479 cl->deficit = lmax;
480
481 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
482 classid, NULL);
483 if (cl->qdisc == NULL)
484 cl->qdisc = &noop_qdisc;
485
486 if (tca[TCA_RATE]) {
487 err = gen_new_estimator(&cl->bstats, NULL,
488 &cl->rate_est,
489 NULL,
490 qdisc_root_sleeping_running(sch),
491 tca[TCA_RATE]);
492 if (err)
493 goto destroy_class;
494 }
495
496 if (cl->qdisc != &noop_qdisc)
497 qdisc_hash_add(cl->qdisc, true);
498
499 set_change_agg:
500 sch_tree_lock(sch);
501 new_agg = qfq_find_agg(q, lmax, weight);
502 if (new_agg == NULL) { /* create new aggregate */
503 sch_tree_unlock(sch);
504 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
505 if (new_agg == NULL) {
506 err = -ENOBUFS;
507 gen_kill_estimator(&cl->rate_est);
508 goto destroy_class;
509 }
510 sch_tree_lock(sch);
511 qfq_init_agg(q, new_agg, lmax, weight);
512 }
513 if (existing)
514 qfq_deact_rm_from_agg(q, cl);
515 else
516 qdisc_class_hash_insert(&q->clhash, &cl->common);
517 qfq_add_to_agg(q, new_agg, cl);
518 sch_tree_unlock(sch);
519 qdisc_class_hash_grow(sch, &q->clhash);
520
521 *arg = (unsigned long)cl;
522 return 0;
523
524 destroy_class:
525 qdisc_put(cl->qdisc);
526 kfree(cl);
527 return err;
528 }
529
qfq_destroy_class(struct Qdisc * sch,struct qfq_class * cl)530 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
531 {
532 struct qfq_sched *q = qdisc_priv(sch);
533
534 qfq_rm_from_agg(q, cl);
535 gen_kill_estimator(&cl->rate_est);
536 qdisc_put(cl->qdisc);
537 kfree(cl);
538 }
539
qfq_delete_class(struct Qdisc * sch,unsigned long arg)540 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
541 {
542 struct qfq_sched *q = qdisc_priv(sch);
543 struct qfq_class *cl = (struct qfq_class *)arg;
544
545 if (cl->filter_cnt > 0)
546 return -EBUSY;
547
548 sch_tree_lock(sch);
549
550 qdisc_purge_queue(cl->qdisc);
551 qdisc_class_hash_remove(&q->clhash, &cl->common);
552
553 sch_tree_unlock(sch);
554
555 qfq_destroy_class(sch, cl);
556 return 0;
557 }
558
qfq_search_class(struct Qdisc * sch,u32 classid)559 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
560 {
561 return (unsigned long)qfq_find_class(sch, classid);
562 }
563
qfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)564 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
565 struct netlink_ext_ack *extack)
566 {
567 struct qfq_sched *q = qdisc_priv(sch);
568
569 if (cl)
570 return NULL;
571
572 return q->block;
573 }
574
qfq_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)575 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
576 u32 classid)
577 {
578 struct qfq_class *cl = qfq_find_class(sch, classid);
579
580 if (cl != NULL)
581 cl->filter_cnt++;
582
583 return (unsigned long)cl;
584 }
585
qfq_unbind_tcf(struct Qdisc * sch,unsigned long arg)586 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
587 {
588 struct qfq_class *cl = (struct qfq_class *)arg;
589
590 cl->filter_cnt--;
591 }
592
qfq_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)593 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
594 struct Qdisc *new, struct Qdisc **old,
595 struct netlink_ext_ack *extack)
596 {
597 struct qfq_class *cl = (struct qfq_class *)arg;
598
599 if (new == NULL) {
600 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
601 cl->common.classid, NULL);
602 if (new == NULL)
603 new = &noop_qdisc;
604 }
605
606 *old = qdisc_replace(sch, new, &cl->qdisc);
607 return 0;
608 }
609
qfq_class_leaf(struct Qdisc * sch,unsigned long arg)610 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
611 {
612 struct qfq_class *cl = (struct qfq_class *)arg;
613
614 return cl->qdisc;
615 }
616
qfq_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)617 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
618 struct sk_buff *skb, struct tcmsg *tcm)
619 {
620 struct qfq_class *cl = (struct qfq_class *)arg;
621 struct nlattr *nest;
622
623 tcm->tcm_parent = TC_H_ROOT;
624 tcm->tcm_handle = cl->common.classid;
625 tcm->tcm_info = cl->qdisc->handle;
626
627 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
628 if (nest == NULL)
629 goto nla_put_failure;
630 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
631 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
632 goto nla_put_failure;
633 return nla_nest_end(skb, nest);
634
635 nla_put_failure:
636 nla_nest_cancel(skb, nest);
637 return -EMSGSIZE;
638 }
639
qfq_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)640 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
641 struct gnet_dump *d)
642 {
643 struct qfq_class *cl = (struct qfq_class *)arg;
644 struct tc_qfq_stats xstats;
645
646 memset(&xstats, 0, sizeof(xstats));
647
648 xstats.weight = cl->agg->class_weight;
649 xstats.lmax = cl->agg->lmax;
650
651 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
652 d, NULL, &cl->bstats) < 0 ||
653 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
654 qdisc_qstats_copy(d, cl->qdisc) < 0)
655 return -1;
656
657 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
658 }
659
qfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)660 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
661 {
662 struct qfq_sched *q = qdisc_priv(sch);
663 struct qfq_class *cl;
664 unsigned int i;
665
666 if (arg->stop)
667 return;
668
669 for (i = 0; i < q->clhash.hashsize; i++) {
670 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
671 if (arg->count < arg->skip) {
672 arg->count++;
673 continue;
674 }
675 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
676 arg->stop = 1;
677 return;
678 }
679 arg->count++;
680 }
681 }
682 }
683
qfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)684 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
685 int *qerr)
686 {
687 struct qfq_sched *q = qdisc_priv(sch);
688 struct qfq_class *cl;
689 struct tcf_result res;
690 struct tcf_proto *fl;
691 int result;
692
693 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
694 pr_debug("qfq_classify: found %d\n", skb->priority);
695 cl = qfq_find_class(sch, skb->priority);
696 if (cl != NULL)
697 return cl;
698 }
699
700 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
701 fl = rcu_dereference_bh(q->filter_list);
702 result = tcf_classify(skb, fl, &res, false);
703 if (result >= 0) {
704 #ifdef CONFIG_NET_CLS_ACT
705 switch (result) {
706 case TC_ACT_QUEUED:
707 case TC_ACT_STOLEN:
708 case TC_ACT_TRAP:
709 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
710 fallthrough;
711 case TC_ACT_SHOT:
712 return NULL;
713 }
714 #endif
715 cl = (struct qfq_class *)res.class;
716 if (cl == NULL)
717 cl = qfq_find_class(sch, res.classid);
718 return cl;
719 }
720
721 return NULL;
722 }
723
724 /* Generic comparison function, handling wraparound. */
qfq_gt(u64 a,u64 b)725 static inline int qfq_gt(u64 a, u64 b)
726 {
727 return (s64)(a - b) > 0;
728 }
729
730 /* Round a precise timestamp to its slotted value. */
qfq_round_down(u64 ts,unsigned int shift)731 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
732 {
733 return ts & ~((1ULL << shift) - 1);
734 }
735
736 /* return the pointer to the group with lowest index in the bitmap */
qfq_ffs(struct qfq_sched * q,unsigned long bitmap)737 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
738 unsigned long bitmap)
739 {
740 int index = __ffs(bitmap);
741 return &q->groups[index];
742 }
743 /* Calculate a mask to mimic what would be ffs_from(). */
mask_from(unsigned long bitmap,int from)744 static inline unsigned long mask_from(unsigned long bitmap, int from)
745 {
746 return bitmap & ~((1UL << from) - 1);
747 }
748
749 /*
750 * The state computation relies on ER=0, IR=1, EB=2, IB=3
751 * First compute eligibility comparing grp->S, q->V,
752 * then check if someone is blocking us and possibly add EB
753 */
qfq_calc_state(struct qfq_sched * q,const struct qfq_group * grp)754 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
755 {
756 /* if S > V we are not eligible */
757 unsigned int state = qfq_gt(grp->S, q->V);
758 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
759 struct qfq_group *next;
760
761 if (mask) {
762 next = qfq_ffs(q, mask);
763 if (qfq_gt(grp->F, next->F))
764 state |= EB;
765 }
766
767 return state;
768 }
769
770
771 /*
772 * In principle
773 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
774 * q->bitmaps[src] &= ~mask;
775 * but we should make sure that src != dst
776 */
qfq_move_groups(struct qfq_sched * q,unsigned long mask,int src,int dst)777 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
778 int src, int dst)
779 {
780 q->bitmaps[dst] |= q->bitmaps[src] & mask;
781 q->bitmaps[src] &= ~mask;
782 }
783
qfq_unblock_groups(struct qfq_sched * q,int index,u64 old_F)784 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
785 {
786 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
787 struct qfq_group *next;
788
789 if (mask) {
790 next = qfq_ffs(q, mask);
791 if (!qfq_gt(next->F, old_F))
792 return;
793 }
794
795 mask = (1UL << index) - 1;
796 qfq_move_groups(q, mask, EB, ER);
797 qfq_move_groups(q, mask, IB, IR);
798 }
799
800 /*
801 * perhaps
802 *
803 old_V ^= q->V;
804 old_V >>= q->min_slot_shift;
805 if (old_V) {
806 ...
807 }
808 *
809 */
qfq_make_eligible(struct qfq_sched * q)810 static void qfq_make_eligible(struct qfq_sched *q)
811 {
812 unsigned long vslot = q->V >> q->min_slot_shift;
813 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
814
815 if (vslot != old_vslot) {
816 unsigned long mask;
817 int last_flip_pos = fls(vslot ^ old_vslot);
818
819 if (last_flip_pos > 31) /* higher than the number of groups */
820 mask = ~0UL; /* make all groups eligible */
821 else
822 mask = (1UL << last_flip_pos) - 1;
823
824 qfq_move_groups(q, mask, IR, ER);
825 qfq_move_groups(q, mask, IB, EB);
826 }
827 }
828
829 /*
830 * The index of the slot in which the input aggregate agg is to be
831 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
832 * and not a '-1' because the start time of the group may be moved
833 * backward by one slot after the aggregate has been inserted, and
834 * this would cause non-empty slots to be right-shifted by one
835 * position.
836 *
837 * QFQ+ fully satisfies this bound to the slot index if the parameters
838 * of the classes are not changed dynamically, and if QFQ+ never
839 * happens to postpone the service of agg unjustly, i.e., it never
840 * happens that the aggregate becomes backlogged and eligible, or just
841 * eligible, while an aggregate with a higher approximated finish time
842 * is being served. In particular, in this case QFQ+ guarantees that
843 * the timestamps of agg are low enough that the slot index is never
844 * higher than 2. Unfortunately, QFQ+ cannot provide the same
845 * guarantee if it happens to unjustly postpone the service of agg, or
846 * if the parameters of some class are changed.
847 *
848 * As for the first event, i.e., an out-of-order service, the
849 * upper bound to the slot index guaranteed by QFQ+ grows to
850 * 2 +
851 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
852 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
853 *
854 * The following function deals with this problem by backward-shifting
855 * the timestamps of agg, if needed, so as to guarantee that the slot
856 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
857 * cause the service of other aggregates to be postponed, yet the
858 * worst-case guarantees of these aggregates are not violated. In
859 * fact, in case of no out-of-order service, the timestamps of agg
860 * would have been even lower than they are after the backward shift,
861 * because QFQ+ would have guaranteed a maximum value equal to 2 for
862 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
863 * service is postponed because of the backward-shift would have
864 * however waited for the service of agg before being served.
865 *
866 * The other event that may cause the slot index to be higher than 2
867 * for agg is a recent change of the parameters of some class. If the
868 * weight of a class is increased or the lmax (max_pkt_size) of the
869 * class is decreased, then a new aggregate with smaller slot size
870 * than the original parent aggregate of the class may happen to be
871 * activated. The activation of this aggregate should be properly
872 * delayed to when the service of the class has finished in the ideal
873 * system tracked by QFQ+. If the activation of the aggregate is not
874 * delayed to this reference time instant, then this aggregate may be
875 * unjustly served before other aggregates waiting for service. This
876 * may cause the above bound to the slot index to be violated for some
877 * of these unlucky aggregates.
878 *
879 * Instead of delaying the activation of the new aggregate, which is
880 * quite complex, the above-discussed capping of the slot index is
881 * used to handle also the consequences of a change of the parameters
882 * of a class.
883 */
qfq_slot_insert(struct qfq_group * grp,struct qfq_aggregate * agg,u64 roundedS)884 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
885 u64 roundedS)
886 {
887 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
888 unsigned int i; /* slot index in the bucket list */
889
890 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
891 u64 deltaS = roundedS - grp->S -
892 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
893 agg->S -= deltaS;
894 agg->F -= deltaS;
895 slot = QFQ_MAX_SLOTS - 2;
896 }
897
898 i = (grp->front + slot) % QFQ_MAX_SLOTS;
899
900 hlist_add_head(&agg->next, &grp->slots[i]);
901 __set_bit(slot, &grp->full_slots);
902 }
903
904 /* Maybe introduce hlist_first_entry?? */
qfq_slot_head(struct qfq_group * grp)905 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
906 {
907 return hlist_entry(grp->slots[grp->front].first,
908 struct qfq_aggregate, next);
909 }
910
911 /*
912 * remove the entry from the slot
913 */
qfq_front_slot_remove(struct qfq_group * grp)914 static void qfq_front_slot_remove(struct qfq_group *grp)
915 {
916 struct qfq_aggregate *agg = qfq_slot_head(grp);
917
918 BUG_ON(!agg);
919 hlist_del(&agg->next);
920 if (hlist_empty(&grp->slots[grp->front]))
921 __clear_bit(0, &grp->full_slots);
922 }
923
924 /*
925 * Returns the first aggregate in the first non-empty bucket of the
926 * group. As a side effect, adjusts the bucket list so the first
927 * non-empty bucket is at position 0 in full_slots.
928 */
qfq_slot_scan(struct qfq_group * grp)929 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
930 {
931 unsigned int i;
932
933 pr_debug("qfq slot_scan: grp %u full %#lx\n",
934 grp->index, grp->full_slots);
935
936 if (grp->full_slots == 0)
937 return NULL;
938
939 i = __ffs(grp->full_slots); /* zero based */
940 if (i > 0) {
941 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
942 grp->full_slots >>= i;
943 }
944
945 return qfq_slot_head(grp);
946 }
947
948 /*
949 * adjust the bucket list. When the start time of a group decreases,
950 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
951 * move the objects. The mask of occupied slots must be shifted
952 * because we use ffs() to find the first non-empty slot.
953 * This covers decreases in the group's start time, but what about
954 * increases of the start time ?
955 * Here too we should make sure that i is less than 32
956 */
qfq_slot_rotate(struct qfq_group * grp,u64 roundedS)957 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
958 {
959 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
960
961 grp->full_slots <<= i;
962 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
963 }
964
qfq_update_eligible(struct qfq_sched * q)965 static void qfq_update_eligible(struct qfq_sched *q)
966 {
967 struct qfq_group *grp;
968 unsigned long ineligible;
969
970 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
971 if (ineligible) {
972 if (!q->bitmaps[ER]) {
973 grp = qfq_ffs(q, ineligible);
974 if (qfq_gt(grp->S, q->V))
975 q->V = grp->S;
976 }
977 qfq_make_eligible(q);
978 }
979 }
980
981 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
agg_dequeue(struct qfq_aggregate * agg,struct qfq_class * cl,unsigned int len)982 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
983 struct qfq_class *cl, unsigned int len)
984 {
985 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
986
987 if (!skb)
988 return NULL;
989
990 cl->deficit -= (int) len;
991
992 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
993 list_del(&cl->alist);
994 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
995 cl->deficit += agg->lmax;
996 list_move_tail(&cl->alist, &agg->active);
997 }
998
999 return skb;
1000 }
1001
qfq_peek_skb(struct qfq_aggregate * agg,struct qfq_class ** cl,unsigned int * len)1002 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1003 struct qfq_class **cl,
1004 unsigned int *len)
1005 {
1006 struct sk_buff *skb;
1007
1008 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1009 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1010 if (skb == NULL)
1011 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1012 else
1013 *len = qdisc_pkt_len(skb);
1014
1015 return skb;
1016 }
1017
1018 /* Update F according to the actual service received by the aggregate. */
charge_actual_service(struct qfq_aggregate * agg)1019 static inline void charge_actual_service(struct qfq_aggregate *agg)
1020 {
1021 /* Compute the service received by the aggregate, taking into
1022 * account that, after decreasing the number of classes in
1023 * agg, it may happen that
1024 * agg->initial_budget - agg->budget > agg->bugdetmax
1025 */
1026 u32 service_received = min(agg->budgetmax,
1027 agg->initial_budget - agg->budget);
1028
1029 agg->F = agg->S + (u64)service_received * agg->inv_w;
1030 }
1031
1032 /* Assign a reasonable start time for a new aggregate in group i.
1033 * Admissible values for \hat(F) are multiples of \sigma_i
1034 * no greater than V+\sigma_i . Larger values mean that
1035 * we had a wraparound so we consider the timestamp to be stale.
1036 *
1037 * If F is not stale and F >= V then we set S = F.
1038 * Otherwise we should assign S = V, but this may violate
1039 * the ordering in EB (see [2]). So, if we have groups in ER,
1040 * set S to the F_j of the first group j which would be blocking us.
1041 * We are guaranteed not to move S backward because
1042 * otherwise our group i would still be blocked.
1043 */
qfq_update_start(struct qfq_sched * q,struct qfq_aggregate * agg)1044 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1045 {
1046 unsigned long mask;
1047 u64 limit, roundedF;
1048 int slot_shift = agg->grp->slot_shift;
1049
1050 roundedF = qfq_round_down(agg->F, slot_shift);
1051 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1052
1053 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1054 /* timestamp was stale */
1055 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1056 if (mask) {
1057 struct qfq_group *next = qfq_ffs(q, mask);
1058 if (qfq_gt(roundedF, next->F)) {
1059 if (qfq_gt(limit, next->F))
1060 agg->S = next->F;
1061 else /* preserve timestamp correctness */
1062 agg->S = limit;
1063 return;
1064 }
1065 }
1066 agg->S = q->V;
1067 } else /* timestamp is not stale */
1068 agg->S = agg->F;
1069 }
1070
1071 /* Update the timestamps of agg before scheduling/rescheduling it for
1072 * service. In particular, assign to agg->F its maximum possible
1073 * value, i.e., the virtual finish time with which the aggregate
1074 * should be labeled if it used all its budget once in service.
1075 */
1076 static inline void
qfq_update_agg_ts(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1077 qfq_update_agg_ts(struct qfq_sched *q,
1078 struct qfq_aggregate *agg, enum update_reason reason)
1079 {
1080 if (reason != requeue)
1081 qfq_update_start(q, agg);
1082 else /* just charge agg for the service received */
1083 agg->S = agg->F;
1084
1085 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1086 }
1087
1088 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1089
qfq_dequeue(struct Qdisc * sch)1090 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1091 {
1092 struct qfq_sched *q = qdisc_priv(sch);
1093 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1094 struct qfq_class *cl;
1095 struct sk_buff *skb = NULL;
1096 /* next-packet len, 0 means no more active classes in in-service agg */
1097 unsigned int len = 0;
1098
1099 if (in_serv_agg == NULL)
1100 return NULL;
1101
1102 if (!list_empty(&in_serv_agg->active))
1103 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1104
1105 /*
1106 * If there are no active classes in the in-service aggregate,
1107 * or if the aggregate has not enough budget to serve its next
1108 * class, then choose the next aggregate to serve.
1109 */
1110 if (len == 0 || in_serv_agg->budget < len) {
1111 charge_actual_service(in_serv_agg);
1112
1113 /* recharge the budget of the aggregate */
1114 in_serv_agg->initial_budget = in_serv_agg->budget =
1115 in_serv_agg->budgetmax;
1116
1117 if (!list_empty(&in_serv_agg->active)) {
1118 /*
1119 * Still active: reschedule for
1120 * service. Possible optimization: if no other
1121 * aggregate is active, then there is no point
1122 * in rescheduling this aggregate, and we can
1123 * just keep it as the in-service one. This
1124 * should be however a corner case, and to
1125 * handle it, we would need to maintain an
1126 * extra num_active_aggs field.
1127 */
1128 qfq_update_agg_ts(q, in_serv_agg, requeue);
1129 qfq_schedule_agg(q, in_serv_agg);
1130 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1131 q->in_serv_agg = NULL;
1132 return NULL;
1133 }
1134
1135 /*
1136 * If we get here, there are other aggregates queued:
1137 * choose the new aggregate to serve.
1138 */
1139 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1140 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1141 }
1142 if (!skb)
1143 return NULL;
1144
1145 sch->q.qlen--;
1146
1147 skb = agg_dequeue(in_serv_agg, cl, len);
1148
1149 if (!skb) {
1150 sch->q.qlen++;
1151 return NULL;
1152 }
1153
1154 qdisc_qstats_backlog_dec(sch, skb);
1155 qdisc_bstats_update(sch, skb);
1156
1157 /* If lmax is lowered, through qfq_change_class, for a class
1158 * owning pending packets with larger size than the new value
1159 * of lmax, then the following condition may hold.
1160 */
1161 if (unlikely(in_serv_agg->budget < len))
1162 in_serv_agg->budget = 0;
1163 else
1164 in_serv_agg->budget -= len;
1165
1166 q->V += (u64)len * q->iwsum;
1167 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1168 len, (unsigned long long) in_serv_agg->F,
1169 (unsigned long long) q->V);
1170
1171 return skb;
1172 }
1173
qfq_choose_next_agg(struct qfq_sched * q)1174 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1175 {
1176 struct qfq_group *grp;
1177 struct qfq_aggregate *agg, *new_front_agg;
1178 u64 old_F;
1179
1180 qfq_update_eligible(q);
1181 q->oldV = q->V;
1182
1183 if (!q->bitmaps[ER])
1184 return NULL;
1185
1186 grp = qfq_ffs(q, q->bitmaps[ER]);
1187 old_F = grp->F;
1188
1189 agg = qfq_slot_head(grp);
1190
1191 /* agg starts to be served, remove it from schedule */
1192 qfq_front_slot_remove(grp);
1193
1194 new_front_agg = qfq_slot_scan(grp);
1195
1196 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1197 __clear_bit(grp->index, &q->bitmaps[ER]);
1198 else {
1199 u64 roundedS = qfq_round_down(new_front_agg->S,
1200 grp->slot_shift);
1201 unsigned int s;
1202
1203 if (grp->S == roundedS)
1204 return agg;
1205 grp->S = roundedS;
1206 grp->F = roundedS + (2ULL << grp->slot_shift);
1207 __clear_bit(grp->index, &q->bitmaps[ER]);
1208 s = qfq_calc_state(q, grp);
1209 __set_bit(grp->index, &q->bitmaps[s]);
1210 }
1211
1212 qfq_unblock_groups(q, grp->index, old_F);
1213
1214 return agg;
1215 }
1216
qfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1217 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1218 struct sk_buff **to_free)
1219 {
1220 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1221 struct qfq_sched *q = qdisc_priv(sch);
1222 struct qfq_class *cl;
1223 struct qfq_aggregate *agg;
1224 int err = 0;
1225 bool first;
1226
1227 cl = qfq_classify(skb, sch, &err);
1228 if (cl == NULL) {
1229 if (err & __NET_XMIT_BYPASS)
1230 qdisc_qstats_drop(sch);
1231 __qdisc_drop(skb, to_free);
1232 return err;
1233 }
1234 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1235
1236 if (unlikely(cl->agg->lmax < len)) {
1237 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1238 cl->agg->lmax, len, cl->common.classid);
1239 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1240 if (err) {
1241 cl->qstats.drops++;
1242 return qdisc_drop(skb, sch, to_free);
1243 }
1244 }
1245
1246 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1247 first = !cl->qdisc->q.qlen;
1248 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1249 if (unlikely(err != NET_XMIT_SUCCESS)) {
1250 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1251 if (net_xmit_drop_count(err)) {
1252 cl->qstats.drops++;
1253 qdisc_qstats_drop(sch);
1254 }
1255 return err;
1256 }
1257
1258 cl->bstats.bytes += len;
1259 cl->bstats.packets += gso_segs;
1260 sch->qstats.backlog += len;
1261 ++sch->q.qlen;
1262
1263 agg = cl->agg;
1264 /* if the queue was not empty, then done here */
1265 if (!first) {
1266 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1267 list_first_entry(&agg->active, struct qfq_class, alist)
1268 == cl && cl->deficit < len)
1269 list_move_tail(&cl->alist, &agg->active);
1270
1271 return err;
1272 }
1273
1274 /* schedule class for service within the aggregate */
1275 cl->deficit = agg->lmax;
1276 list_add_tail(&cl->alist, &agg->active);
1277
1278 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1279 q->in_serv_agg == agg)
1280 return err; /* non-empty or in service, nothing else to do */
1281
1282 qfq_activate_agg(q, agg, enqueue);
1283
1284 return err;
1285 }
1286
1287 /*
1288 * Schedule aggregate according to its timestamps.
1289 */
qfq_schedule_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1290 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1291 {
1292 struct qfq_group *grp = agg->grp;
1293 u64 roundedS;
1294 int s;
1295
1296 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1297
1298 /*
1299 * Insert agg in the correct bucket.
1300 * If agg->S >= grp->S we don't need to adjust the
1301 * bucket list and simply go to the insertion phase.
1302 * Otherwise grp->S is decreasing, we must make room
1303 * in the bucket list, and also recompute the group state.
1304 * Finally, if there were no flows in this group and nobody
1305 * was in ER make sure to adjust V.
1306 */
1307 if (grp->full_slots) {
1308 if (!qfq_gt(grp->S, agg->S))
1309 goto skip_update;
1310
1311 /* create a slot for this agg->S */
1312 qfq_slot_rotate(grp, roundedS);
1313 /* group was surely ineligible, remove */
1314 __clear_bit(grp->index, &q->bitmaps[IR]);
1315 __clear_bit(grp->index, &q->bitmaps[IB]);
1316 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1317 q->in_serv_agg == NULL)
1318 q->V = roundedS;
1319
1320 grp->S = roundedS;
1321 grp->F = roundedS + (2ULL << grp->slot_shift);
1322 s = qfq_calc_state(q, grp);
1323 __set_bit(grp->index, &q->bitmaps[s]);
1324
1325 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1326 s, q->bitmaps[s],
1327 (unsigned long long) agg->S,
1328 (unsigned long long) agg->F,
1329 (unsigned long long) q->V);
1330
1331 skip_update:
1332 qfq_slot_insert(grp, agg, roundedS);
1333 }
1334
1335
1336 /* Update agg ts and schedule agg for service */
qfq_activate_agg(struct qfq_sched * q,struct qfq_aggregate * agg,enum update_reason reason)1337 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1338 enum update_reason reason)
1339 {
1340 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1341
1342 qfq_update_agg_ts(q, agg, reason);
1343 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1344 q->in_serv_agg = agg; /* start serving this aggregate */
1345 /* update V: to be in service, agg must be eligible */
1346 q->oldV = q->V = agg->S;
1347 } else if (agg != q->in_serv_agg)
1348 qfq_schedule_agg(q, agg);
1349 }
1350
qfq_slot_remove(struct qfq_sched * q,struct qfq_group * grp,struct qfq_aggregate * agg)1351 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1352 struct qfq_aggregate *agg)
1353 {
1354 unsigned int i, offset;
1355 u64 roundedS;
1356
1357 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1358 offset = (roundedS - grp->S) >> grp->slot_shift;
1359
1360 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1361
1362 hlist_del(&agg->next);
1363 if (hlist_empty(&grp->slots[i]))
1364 __clear_bit(offset, &grp->full_slots);
1365 }
1366
1367 /*
1368 * Called to forcibly deschedule an aggregate. If the aggregate is
1369 * not in the front bucket, or if the latter has other aggregates in
1370 * the front bucket, we can simply remove the aggregate with no other
1371 * side effects.
1372 * Otherwise we must propagate the event up.
1373 */
qfq_deactivate_agg(struct qfq_sched * q,struct qfq_aggregate * agg)1374 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1375 {
1376 struct qfq_group *grp = agg->grp;
1377 unsigned long mask;
1378 u64 roundedS;
1379 int s;
1380
1381 if (agg == q->in_serv_agg) {
1382 charge_actual_service(agg);
1383 q->in_serv_agg = qfq_choose_next_agg(q);
1384 return;
1385 }
1386
1387 agg->F = agg->S;
1388 qfq_slot_remove(q, grp, agg);
1389
1390 if (!grp->full_slots) {
1391 __clear_bit(grp->index, &q->bitmaps[IR]);
1392 __clear_bit(grp->index, &q->bitmaps[EB]);
1393 __clear_bit(grp->index, &q->bitmaps[IB]);
1394
1395 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1396 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1397 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1398 if (mask)
1399 mask = ~((1UL << __fls(mask)) - 1);
1400 else
1401 mask = ~0UL;
1402 qfq_move_groups(q, mask, EB, ER);
1403 qfq_move_groups(q, mask, IB, IR);
1404 }
1405 __clear_bit(grp->index, &q->bitmaps[ER]);
1406 } else if (hlist_empty(&grp->slots[grp->front])) {
1407 agg = qfq_slot_scan(grp);
1408 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1409 if (grp->S != roundedS) {
1410 __clear_bit(grp->index, &q->bitmaps[ER]);
1411 __clear_bit(grp->index, &q->bitmaps[IR]);
1412 __clear_bit(grp->index, &q->bitmaps[EB]);
1413 __clear_bit(grp->index, &q->bitmaps[IB]);
1414 grp->S = roundedS;
1415 grp->F = roundedS + (2ULL << grp->slot_shift);
1416 s = qfq_calc_state(q, grp);
1417 __set_bit(grp->index, &q->bitmaps[s]);
1418 }
1419 }
1420 }
1421
qfq_qlen_notify(struct Qdisc * sch,unsigned long arg)1422 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1423 {
1424 struct qfq_sched *q = qdisc_priv(sch);
1425 struct qfq_class *cl = (struct qfq_class *)arg;
1426
1427 qfq_deactivate_class(q, cl);
1428 }
1429
qfq_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1430 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1431 struct netlink_ext_ack *extack)
1432 {
1433 struct qfq_sched *q = qdisc_priv(sch);
1434 struct qfq_group *grp;
1435 int i, j, err;
1436 u32 max_cl_shift, maxbudg_shift, max_classes;
1437
1438 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1439 if (err)
1440 return err;
1441
1442 err = qdisc_class_hash_init(&q->clhash);
1443 if (err < 0)
1444 return err;
1445
1446 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1447 QFQ_MAX_AGG_CLASSES);
1448 /* max_cl_shift = floor(log_2(max_classes)) */
1449 max_cl_shift = __fls(max_classes);
1450 q->max_agg_classes = 1<<max_cl_shift;
1451
1452 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1453 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1454 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1455
1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457 grp = &q->groups[i];
1458 grp->index = i;
1459 grp->slot_shift = q->min_slot_shift + i;
1460 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1461 INIT_HLIST_HEAD(&grp->slots[j]);
1462 }
1463
1464 INIT_HLIST_HEAD(&q->nonfull_aggs);
1465
1466 return 0;
1467 }
1468
qfq_reset_qdisc(struct Qdisc * sch)1469 static void qfq_reset_qdisc(struct Qdisc *sch)
1470 {
1471 struct qfq_sched *q = qdisc_priv(sch);
1472 struct qfq_class *cl;
1473 unsigned int i;
1474
1475 for (i = 0; i < q->clhash.hashsize; i++) {
1476 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1477 if (cl->qdisc->q.qlen > 0)
1478 qfq_deactivate_class(q, cl);
1479
1480 qdisc_reset(cl->qdisc);
1481 }
1482 }
1483 }
1484
qfq_destroy_qdisc(struct Qdisc * sch)1485 static void qfq_destroy_qdisc(struct Qdisc *sch)
1486 {
1487 struct qfq_sched *q = qdisc_priv(sch);
1488 struct qfq_class *cl;
1489 struct hlist_node *next;
1490 unsigned int i;
1491
1492 tcf_block_put(q->block);
1493
1494 for (i = 0; i < q->clhash.hashsize; i++) {
1495 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1496 common.hnode) {
1497 qfq_destroy_class(sch, cl);
1498 }
1499 }
1500 qdisc_class_hash_destroy(&q->clhash);
1501 }
1502
1503 static const struct Qdisc_class_ops qfq_class_ops = {
1504 .change = qfq_change_class,
1505 .delete = qfq_delete_class,
1506 .find = qfq_search_class,
1507 .tcf_block = qfq_tcf_block,
1508 .bind_tcf = qfq_bind_tcf,
1509 .unbind_tcf = qfq_unbind_tcf,
1510 .graft = qfq_graft_class,
1511 .leaf = qfq_class_leaf,
1512 .qlen_notify = qfq_qlen_notify,
1513 .dump = qfq_dump_class,
1514 .dump_stats = qfq_dump_class_stats,
1515 .walk = qfq_walk,
1516 };
1517
1518 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1519 .cl_ops = &qfq_class_ops,
1520 .id = "qfq",
1521 .priv_size = sizeof(struct qfq_sched),
1522 .enqueue = qfq_enqueue,
1523 .dequeue = qfq_dequeue,
1524 .peek = qdisc_peek_dequeued,
1525 .init = qfq_init_qdisc,
1526 .reset = qfq_reset_qdisc,
1527 .destroy = qfq_destroy_qdisc,
1528 .owner = THIS_MODULE,
1529 };
1530
qfq_init(void)1531 static int __init qfq_init(void)
1532 {
1533 return register_qdisc(&qfq_qdisc_ops);
1534 }
1535
qfq_exit(void)1536 static void __exit qfq_exit(void)
1537 {
1538 unregister_qdisc(&qfq_qdisc_ops);
1539 }
1540
1541 module_init(qfq_init);
1542 module_exit(qfq_exit);
1543 MODULE_LICENSE("GPL");
1544