1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
4 *
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29
30 #define TAPRIO_ALL_GATES_OPEN -1
31
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35
36 struct sched_entry {
37 struct list_head list;
38
39 /* The instant that this entry "closes" and the next one
40 * should open, the qdisc will make some effort so that no
41 * packet leaves after this time.
42 */
43 ktime_t close_time;
44 ktime_t next_txtime;
45 atomic_t budget;
46 int index;
47 u32 gate_mask;
48 u32 interval;
49 u8 command;
50 };
51
52 struct sched_gate_list {
53 struct rcu_head rcu;
54 struct list_head entries;
55 size_t num_entries;
56 ktime_t cycle_close_time;
57 s64 cycle_time;
58 s64 cycle_time_extension;
59 s64 base_time;
60 };
61
62 struct taprio_sched {
63 struct Qdisc **qdiscs;
64 struct Qdisc *root;
65 u32 flags;
66 enum tk_offsets tk_offset;
67 int clockid;
68 bool offloaded;
69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 * speeds it's sub-nanoseconds per byte
71 */
72
73 /* Protects the update side of the RCU protected current_entry */
74 spinlock_t current_entry_lock;
75 struct sched_entry __rcu *current_entry;
76 struct sched_gate_list __rcu *oper_sched;
77 struct sched_gate_list __rcu *admin_sched;
78 struct hrtimer advance_timer;
79 struct list_head taprio_list;
80 struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 struct sk_buff *(*peek)(struct Qdisc *sch);
82 u32 txtime_delay;
83 };
84
85 struct __tc_taprio_qopt_offload {
86 refcount_t users;
87 struct tc_taprio_qopt_offload offload;
88 };
89
sched_base_time(const struct sched_gate_list * sched)90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92 if (!sched)
93 return KTIME_MAX;
94
95 return ns_to_ktime(sched->base_time);
96 }
97
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)98 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
99 {
100 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
101 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
102
103 switch (tk_offset) {
104 case TK_OFFS_MAX:
105 return mono;
106 default:
107 return ktime_mono_to_any(mono, tk_offset);
108 }
109 }
110
taprio_get_time(const struct taprio_sched * q)111 static ktime_t taprio_get_time(const struct taprio_sched *q)
112 {
113 return taprio_mono_to_any(q, ktime_get());
114 }
115
taprio_free_sched_cb(struct rcu_head * head)116 static void taprio_free_sched_cb(struct rcu_head *head)
117 {
118 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
119 struct sched_entry *entry, *n;
120
121 if (!sched)
122 return;
123
124 list_for_each_entry_safe(entry, n, &sched->entries, list) {
125 list_del(&entry->list);
126 kfree(entry);
127 }
128
129 kfree(sched);
130 }
131
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)132 static void switch_schedules(struct taprio_sched *q,
133 struct sched_gate_list **admin,
134 struct sched_gate_list **oper)
135 {
136 rcu_assign_pointer(q->oper_sched, *admin);
137 rcu_assign_pointer(q->admin_sched, NULL);
138
139 if (*oper)
140 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
141
142 *oper = *admin;
143 *admin = NULL;
144 }
145
146 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)147 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
148 {
149 ktime_t time_since_sched_start;
150 s32 time_elapsed;
151
152 time_since_sched_start = ktime_sub(time, sched->base_time);
153 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
154
155 return time_elapsed;
156 }
157
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)158 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
159 struct sched_gate_list *admin,
160 struct sched_entry *entry,
161 ktime_t intv_start)
162 {
163 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
164 ktime_t intv_end, cycle_ext_end, cycle_end;
165
166 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
167 intv_end = ktime_add_ns(intv_start, entry->interval);
168 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
169
170 if (ktime_before(intv_end, cycle_end))
171 return intv_end;
172 else if (admin && admin != sched &&
173 ktime_after(admin->base_time, cycle_end) &&
174 ktime_before(admin->base_time, cycle_ext_end))
175 return admin->base_time;
176 else
177 return cycle_end;
178 }
179
length_to_duration(struct taprio_sched * q,int len)180 static int length_to_duration(struct taprio_sched *q, int len)
181 {
182 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
183 }
184
185 /* Returns the entry corresponding to next available interval. If
186 * validate_interval is set, it only validates whether the timestamp occurs
187 * when the gate corresponding to the skb's traffic class is open.
188 */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)189 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
190 struct Qdisc *sch,
191 struct sched_gate_list *sched,
192 struct sched_gate_list *admin,
193 ktime_t time,
194 ktime_t *interval_start,
195 ktime_t *interval_end,
196 bool validate_interval)
197 {
198 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
199 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
200 struct sched_entry *entry = NULL, *entry_found = NULL;
201 struct taprio_sched *q = qdisc_priv(sch);
202 struct net_device *dev = qdisc_dev(sch);
203 bool entry_available = false;
204 s32 cycle_elapsed;
205 int tc, n;
206
207 tc = netdev_get_prio_tc_map(dev, skb->priority);
208 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
209
210 *interval_start = 0;
211 *interval_end = 0;
212
213 if (!sched)
214 return NULL;
215
216 cycle = sched->cycle_time;
217 cycle_elapsed = get_cycle_time_elapsed(sched, time);
218 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
219 cycle_end = ktime_add_ns(curr_intv_end, cycle);
220
221 list_for_each_entry(entry, &sched->entries, list) {
222 curr_intv_start = curr_intv_end;
223 curr_intv_end = get_interval_end_time(sched, admin, entry,
224 curr_intv_start);
225
226 if (ktime_after(curr_intv_start, cycle_end))
227 break;
228
229 if (!(entry->gate_mask & BIT(tc)) ||
230 packet_transmit_time > entry->interval)
231 continue;
232
233 txtime = entry->next_txtime;
234
235 if (ktime_before(txtime, time) || validate_interval) {
236 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
237 if ((ktime_before(curr_intv_start, time) &&
238 ktime_before(transmit_end_time, curr_intv_end)) ||
239 (ktime_after(curr_intv_start, time) && !validate_interval)) {
240 entry_found = entry;
241 *interval_start = curr_intv_start;
242 *interval_end = curr_intv_end;
243 break;
244 } else if (!entry_available && !validate_interval) {
245 /* Here, we are just trying to find out the
246 * first available interval in the next cycle.
247 */
248 entry_available = 1;
249 entry_found = entry;
250 *interval_start = ktime_add_ns(curr_intv_start, cycle);
251 *interval_end = ktime_add_ns(curr_intv_end, cycle);
252 }
253 } else if (ktime_before(txtime, earliest_txtime) &&
254 !entry_available) {
255 earliest_txtime = txtime;
256 entry_found = entry;
257 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
258 *interval_start = ktime_add(curr_intv_start, n * cycle);
259 *interval_end = ktime_add(curr_intv_end, n * cycle);
260 }
261 }
262
263 return entry_found;
264 }
265
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)266 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
267 {
268 struct taprio_sched *q = qdisc_priv(sch);
269 struct sched_gate_list *sched, *admin;
270 ktime_t interval_start, interval_end;
271 struct sched_entry *entry;
272
273 rcu_read_lock();
274 sched = rcu_dereference(q->oper_sched);
275 admin = rcu_dereference(q->admin_sched);
276
277 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
278 &interval_start, &interval_end, true);
279 rcu_read_unlock();
280
281 return entry;
282 }
283
taprio_flags_valid(u32 flags)284 static bool taprio_flags_valid(u32 flags)
285 {
286 /* Make sure no other flag bits are set. */
287 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
288 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
289 return false;
290 /* txtime-assist and full offload are mutually exclusive */
291 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
292 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
293 return false;
294 return true;
295 }
296
297 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)298 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
299 {
300 unsigned int offset = skb_network_offset(skb);
301 const struct ipv6hdr *ipv6h;
302 const struct iphdr *iph;
303 struct ipv6hdr _ipv6h;
304
305 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
306 if (!ipv6h)
307 return 0;
308
309 if (ipv6h->version == 4) {
310 iph = (struct iphdr *)ipv6h;
311 offset += iph->ihl * 4;
312
313 /* special-case 6in4 tunnelling, as that is a common way to get
314 * v6 connectivity in the home
315 */
316 if (iph->protocol == IPPROTO_IPV6) {
317 ipv6h = skb_header_pointer(skb, offset,
318 sizeof(_ipv6h), &_ipv6h);
319
320 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
321 return 0;
322 } else if (iph->protocol != IPPROTO_TCP) {
323 return 0;
324 }
325 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
326 return 0;
327 }
328
329 return taprio_mono_to_any(q, skb->skb_mstamp_ns);
330 }
331
332 /* There are a few scenarios where we will have to modify the txtime from
333 * what is read from next_txtime in sched_entry. They are:
334 * 1. If txtime is in the past,
335 * a. The gate for the traffic class is currently open and packet can be
336 * transmitted before it closes, schedule the packet right away.
337 * b. If the gate corresponding to the traffic class is going to open later
338 * in the cycle, set the txtime of packet to the interval start.
339 * 2. If txtime is in the future, there are packets corresponding to the
340 * current traffic class waiting to be transmitted. So, the following
341 * possibilities exist:
342 * a. We can transmit the packet before the window containing the txtime
343 * closes.
344 * b. The window might close before the transmission can be completed
345 * successfully. So, schedule the packet in the next open window.
346 */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)347 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
348 {
349 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
350 struct taprio_sched *q = qdisc_priv(sch);
351 struct sched_gate_list *sched, *admin;
352 ktime_t minimum_time, now, txtime;
353 int len, packet_transmit_time;
354 struct sched_entry *entry;
355 bool sched_changed;
356
357 now = taprio_get_time(q);
358 minimum_time = ktime_add_ns(now, q->txtime_delay);
359
360 tcp_tstamp = get_tcp_tstamp(q, skb);
361 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
362
363 rcu_read_lock();
364 admin = rcu_dereference(q->admin_sched);
365 sched = rcu_dereference(q->oper_sched);
366 if (admin && ktime_after(minimum_time, admin->base_time))
367 switch_schedules(q, &admin, &sched);
368
369 /* Until the schedule starts, all the queues are open */
370 if (!sched || ktime_before(minimum_time, sched->base_time)) {
371 txtime = minimum_time;
372 goto done;
373 }
374
375 len = qdisc_pkt_len(skb);
376 packet_transmit_time = length_to_duration(q, len);
377
378 do {
379 sched_changed = 0;
380
381 entry = find_entry_to_transmit(skb, sch, sched, admin,
382 minimum_time,
383 &interval_start, &interval_end,
384 false);
385 if (!entry) {
386 txtime = 0;
387 goto done;
388 }
389
390 txtime = entry->next_txtime;
391 txtime = max_t(ktime_t, txtime, minimum_time);
392 txtime = max_t(ktime_t, txtime, interval_start);
393
394 if (admin && admin != sched &&
395 ktime_after(txtime, admin->base_time)) {
396 sched = admin;
397 sched_changed = 1;
398 continue;
399 }
400
401 transmit_end_time = ktime_add(txtime, packet_transmit_time);
402 minimum_time = transmit_end_time;
403
404 /* Update the txtime of current entry to the next time it's
405 * interval starts.
406 */
407 if (ktime_after(transmit_end_time, interval_end))
408 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
409 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
410
411 entry->next_txtime = transmit_end_time;
412
413 done:
414 rcu_read_unlock();
415 return txtime;
416 }
417
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)418 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
419 struct sk_buff **to_free)
420 {
421 struct taprio_sched *q = qdisc_priv(sch);
422 struct Qdisc *child;
423 int queue;
424
425 queue = skb_get_queue_mapping(skb);
426
427 child = q->qdiscs[queue];
428 if (unlikely(!child))
429 return qdisc_drop(skb, sch, to_free);
430
431 /* sk_flags are only safe to use on full sockets. */
432 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
433 if (!is_valid_interval(skb, sch))
434 return qdisc_drop(skb, sch, to_free);
435 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
436 skb->tstamp = get_packet_txtime(skb, sch);
437 if (!skb->tstamp)
438 return qdisc_drop(skb, sch, to_free);
439 }
440
441 qdisc_qstats_backlog_inc(sch, skb);
442 sch->q.qlen++;
443
444 return qdisc_enqueue(skb, child, to_free);
445 }
446
taprio_peek_soft(struct Qdisc * sch)447 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
448 {
449 struct taprio_sched *q = qdisc_priv(sch);
450 struct net_device *dev = qdisc_dev(sch);
451 struct sched_entry *entry;
452 struct sk_buff *skb;
453 u32 gate_mask;
454 int i;
455
456 rcu_read_lock();
457 entry = rcu_dereference(q->current_entry);
458 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
459 rcu_read_unlock();
460
461 if (!gate_mask)
462 return NULL;
463
464 for (i = 0; i < dev->num_tx_queues; i++) {
465 struct Qdisc *child = q->qdiscs[i];
466 int prio;
467 u8 tc;
468
469 if (unlikely(!child))
470 continue;
471
472 skb = child->ops->peek(child);
473 if (!skb)
474 continue;
475
476 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
477 return skb;
478
479 prio = skb->priority;
480 tc = netdev_get_prio_tc_map(dev, prio);
481
482 if (!(gate_mask & BIT(tc)))
483 continue;
484
485 return skb;
486 }
487
488 return NULL;
489 }
490
taprio_peek_offload(struct Qdisc * sch)491 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
492 {
493 struct taprio_sched *q = qdisc_priv(sch);
494 struct net_device *dev = qdisc_dev(sch);
495 struct sk_buff *skb;
496 int i;
497
498 for (i = 0; i < dev->num_tx_queues; i++) {
499 struct Qdisc *child = q->qdiscs[i];
500
501 if (unlikely(!child))
502 continue;
503
504 skb = child->ops->peek(child);
505 if (!skb)
506 continue;
507
508 return skb;
509 }
510
511 return NULL;
512 }
513
taprio_peek(struct Qdisc * sch)514 static struct sk_buff *taprio_peek(struct Qdisc *sch)
515 {
516 struct taprio_sched *q = qdisc_priv(sch);
517
518 return q->peek(sch);
519 }
520
taprio_set_budget(struct taprio_sched * q,struct sched_entry * entry)521 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
522 {
523 atomic_set(&entry->budget,
524 div64_u64((u64)entry->interval * 1000,
525 atomic64_read(&q->picos_per_byte)));
526 }
527
taprio_dequeue_soft(struct Qdisc * sch)528 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
529 {
530 struct taprio_sched *q = qdisc_priv(sch);
531 struct net_device *dev = qdisc_dev(sch);
532 struct sk_buff *skb = NULL;
533 struct sched_entry *entry;
534 u32 gate_mask;
535 int i;
536
537 rcu_read_lock();
538 entry = rcu_dereference(q->current_entry);
539 /* if there's no entry, it means that the schedule didn't
540 * start yet, so force all gates to be open, this is in
541 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
542 * "AdminGateSates"
543 */
544 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
545
546 if (!gate_mask)
547 goto done;
548
549 for (i = 0; i < dev->num_tx_queues; i++) {
550 struct Qdisc *child = q->qdiscs[i];
551 ktime_t guard;
552 int prio;
553 int len;
554 u8 tc;
555
556 if (unlikely(!child))
557 continue;
558
559 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
560 skb = child->ops->dequeue(child);
561 if (!skb)
562 continue;
563 goto skb_found;
564 }
565
566 skb = child->ops->peek(child);
567 if (!skb)
568 continue;
569
570 prio = skb->priority;
571 tc = netdev_get_prio_tc_map(dev, prio);
572
573 if (!(gate_mask & BIT(tc))) {
574 skb = NULL;
575 continue;
576 }
577
578 len = qdisc_pkt_len(skb);
579 guard = ktime_add_ns(taprio_get_time(q),
580 length_to_duration(q, len));
581
582 /* In the case that there's no gate entry, there's no
583 * guard band ...
584 */
585 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
586 ktime_after(guard, entry->close_time)) {
587 skb = NULL;
588 continue;
589 }
590
591 /* ... and no budget. */
592 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
593 atomic_sub_return(len, &entry->budget) < 0) {
594 skb = NULL;
595 continue;
596 }
597
598 skb = child->ops->dequeue(child);
599 if (unlikely(!skb))
600 goto done;
601
602 skb_found:
603 qdisc_bstats_update(sch, skb);
604 qdisc_qstats_backlog_dec(sch, skb);
605 sch->q.qlen--;
606
607 goto done;
608 }
609
610 done:
611 rcu_read_unlock();
612
613 return skb;
614 }
615
taprio_dequeue_offload(struct Qdisc * sch)616 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
617 {
618 struct taprio_sched *q = qdisc_priv(sch);
619 struct net_device *dev = qdisc_dev(sch);
620 struct sk_buff *skb;
621 int i;
622
623 for (i = 0; i < dev->num_tx_queues; i++) {
624 struct Qdisc *child = q->qdiscs[i];
625
626 if (unlikely(!child))
627 continue;
628
629 skb = child->ops->dequeue(child);
630 if (unlikely(!skb))
631 continue;
632
633 qdisc_bstats_update(sch, skb);
634 qdisc_qstats_backlog_dec(sch, skb);
635 sch->q.qlen--;
636
637 return skb;
638 }
639
640 return NULL;
641 }
642
taprio_dequeue(struct Qdisc * sch)643 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
644 {
645 struct taprio_sched *q = qdisc_priv(sch);
646
647 return q->dequeue(sch);
648 }
649
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)650 static bool should_restart_cycle(const struct sched_gate_list *oper,
651 const struct sched_entry *entry)
652 {
653 if (list_is_last(&entry->list, &oper->entries))
654 return true;
655
656 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
657 return true;
658
659 return false;
660 }
661
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t close_time)662 static bool should_change_schedules(const struct sched_gate_list *admin,
663 const struct sched_gate_list *oper,
664 ktime_t close_time)
665 {
666 ktime_t next_base_time, extension_time;
667
668 if (!admin)
669 return false;
670
671 next_base_time = sched_base_time(admin);
672
673 /* This is the simple case, the close_time would fall after
674 * the next schedule base_time.
675 */
676 if (ktime_compare(next_base_time, close_time) <= 0)
677 return true;
678
679 /* This is the cycle_time_extension case, if the close_time
680 * plus the amount that can be extended would fall after the
681 * next schedule base_time, we can extend the current schedule
682 * for that amount.
683 */
684 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
685
686 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
687 * how precisely the extension should be made. So after
688 * conformance testing, this logic may change.
689 */
690 if (ktime_compare(next_base_time, extension_time) <= 0)
691 return true;
692
693 return false;
694 }
695
advance_sched(struct hrtimer * timer)696 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
697 {
698 struct taprio_sched *q = container_of(timer, struct taprio_sched,
699 advance_timer);
700 struct sched_gate_list *oper, *admin;
701 struct sched_entry *entry, *next;
702 struct Qdisc *sch = q->root;
703 ktime_t close_time;
704
705 spin_lock(&q->current_entry_lock);
706 entry = rcu_dereference_protected(q->current_entry,
707 lockdep_is_held(&q->current_entry_lock));
708 oper = rcu_dereference_protected(q->oper_sched,
709 lockdep_is_held(&q->current_entry_lock));
710 admin = rcu_dereference_protected(q->admin_sched,
711 lockdep_is_held(&q->current_entry_lock));
712
713 if (!oper)
714 switch_schedules(q, &admin, &oper);
715
716 /* This can happen in two cases: 1. this is the very first run
717 * of this function (i.e. we weren't running any schedule
718 * previously); 2. The previous schedule just ended. The first
719 * entry of all schedules are pre-calculated during the
720 * schedule initialization.
721 */
722 if (unlikely(!entry || entry->close_time == oper->base_time)) {
723 next = list_first_entry(&oper->entries, struct sched_entry,
724 list);
725 close_time = next->close_time;
726 goto first_run;
727 }
728
729 if (should_restart_cycle(oper, entry)) {
730 next = list_first_entry(&oper->entries, struct sched_entry,
731 list);
732 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
733 oper->cycle_time);
734 } else {
735 next = list_next_entry(entry, list);
736 }
737
738 close_time = ktime_add_ns(entry->close_time, next->interval);
739 close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
740
741 if (should_change_schedules(admin, oper, close_time)) {
742 /* Set things so the next time this runs, the new
743 * schedule runs.
744 */
745 close_time = sched_base_time(admin);
746 switch_schedules(q, &admin, &oper);
747 }
748
749 next->close_time = close_time;
750 taprio_set_budget(q, next);
751
752 first_run:
753 rcu_assign_pointer(q->current_entry, next);
754 spin_unlock(&q->current_entry_lock);
755
756 hrtimer_set_expires(&q->advance_timer, close_time);
757
758 rcu_read_lock();
759 __netif_schedule(sch);
760 rcu_read_unlock();
761
762 return HRTIMER_RESTART;
763 }
764
765 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
766 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
767 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
768 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
769 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
770 };
771
772 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
773 [TCA_TAPRIO_ATTR_PRIOMAP] = {
774 .len = sizeof(struct tc_mqprio_qopt)
775 },
776 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
777 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
778 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
779 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
780 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
781 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
782 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
783 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
784 };
785
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)786 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
787 struct sched_entry *entry,
788 struct netlink_ext_ack *extack)
789 {
790 int min_duration = length_to_duration(q, ETH_ZLEN);
791 u32 interval = 0;
792
793 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
794 entry->command = nla_get_u8(
795 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
796
797 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
798 entry->gate_mask = nla_get_u32(
799 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
800
801 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
802 interval = nla_get_u32(
803 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
804
805 /* The interval should allow at least the minimum ethernet
806 * frame to go out.
807 */
808 if (interval < min_duration) {
809 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
810 return -EINVAL;
811 }
812
813 entry->interval = interval;
814
815 return 0;
816 }
817
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)818 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
819 struct sched_entry *entry, int index,
820 struct netlink_ext_ack *extack)
821 {
822 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
823 int err;
824
825 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
826 entry_policy, NULL);
827 if (err < 0) {
828 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
829 return -EINVAL;
830 }
831
832 entry->index = index;
833
834 return fill_sched_entry(q, tb, entry, extack);
835 }
836
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)837 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
838 struct sched_gate_list *sched,
839 struct netlink_ext_ack *extack)
840 {
841 struct nlattr *n;
842 int err, rem;
843 int i = 0;
844
845 if (!list)
846 return -EINVAL;
847
848 nla_for_each_nested(n, list, rem) {
849 struct sched_entry *entry;
850
851 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
852 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
853 continue;
854 }
855
856 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
857 if (!entry) {
858 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
859 return -ENOMEM;
860 }
861
862 err = parse_sched_entry(q, n, entry, i, extack);
863 if (err < 0) {
864 kfree(entry);
865 return err;
866 }
867
868 list_add_tail(&entry->list, &sched->entries);
869 i++;
870 }
871
872 sched->num_entries = i;
873
874 return i;
875 }
876
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)877 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
878 struct sched_gate_list *new,
879 struct netlink_ext_ack *extack)
880 {
881 int err = 0;
882
883 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
884 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
885 return -ENOTSUPP;
886 }
887
888 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
889 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
890
891 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
892 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
893
894 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
895 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
896
897 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
898 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
899 new, extack);
900 if (err < 0)
901 return err;
902
903 if (!new->cycle_time) {
904 struct sched_entry *entry;
905 ktime_t cycle = 0;
906
907 list_for_each_entry(entry, &new->entries, list)
908 cycle = ktime_add_ns(cycle, entry->interval);
909
910 if (!cycle) {
911 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
912 return -EINVAL;
913 }
914
915 new->cycle_time = cycle;
916 }
917
918 return 0;
919 }
920
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)921 static int taprio_parse_mqprio_opt(struct net_device *dev,
922 struct tc_mqprio_qopt *qopt,
923 struct netlink_ext_ack *extack,
924 u32 taprio_flags)
925 {
926 int i, j;
927
928 if (!qopt && !dev->num_tc) {
929 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
930 return -EINVAL;
931 }
932
933 /* If num_tc is already set, it means that the user already
934 * configured the mqprio part
935 */
936 if (dev->num_tc)
937 return 0;
938
939 /* Verify num_tc is not out of max range */
940 if (qopt->num_tc > TC_MAX_QUEUE) {
941 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
942 return -EINVAL;
943 }
944
945 /* taprio imposes that traffic classes map 1:n to tx queues */
946 if (qopt->num_tc > dev->num_tx_queues) {
947 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
948 return -EINVAL;
949 }
950
951 /* Verify priority mapping uses valid tcs */
952 for (i = 0; i <= TC_BITMASK; i++) {
953 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
954 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
955 return -EINVAL;
956 }
957 }
958
959 for (i = 0; i < qopt->num_tc; i++) {
960 unsigned int last = qopt->offset[i] + qopt->count[i];
961
962 /* Verify the queue count is in tx range being equal to the
963 * real_num_tx_queues indicates the last queue is in use.
964 */
965 if (qopt->offset[i] >= dev->num_tx_queues ||
966 !qopt->count[i] ||
967 last > dev->real_num_tx_queues) {
968 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
969 return -EINVAL;
970 }
971
972 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
973 continue;
974
975 /* Verify that the offset and counts do not overlap */
976 for (j = i + 1; j < qopt->num_tc; j++) {
977 if (last > qopt->offset[j]) {
978 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
979 return -EINVAL;
980 }
981 }
982 }
983
984 return 0;
985 }
986
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)987 static int taprio_get_start_time(struct Qdisc *sch,
988 struct sched_gate_list *sched,
989 ktime_t *start)
990 {
991 struct taprio_sched *q = qdisc_priv(sch);
992 ktime_t now, base, cycle;
993 s64 n;
994
995 base = sched_base_time(sched);
996 now = taprio_get_time(q);
997
998 if (ktime_after(base, now)) {
999 *start = base;
1000 return 0;
1001 }
1002
1003 cycle = sched->cycle_time;
1004
1005 /* The qdisc is expected to have at least one sched_entry. Moreover,
1006 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1007 * something went really wrong. In that case, we should warn about this
1008 * inconsistent state and return error.
1009 */
1010 if (WARN_ON(!cycle))
1011 return -EFAULT;
1012
1013 /* Schedule the start time for the beginning of the next
1014 * cycle.
1015 */
1016 n = div64_s64(ktime_sub_ns(now, base), cycle);
1017 *start = ktime_add_ns(base, (n + 1) * cycle);
1018 return 0;
1019 }
1020
setup_first_close_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1021 static void setup_first_close_time(struct taprio_sched *q,
1022 struct sched_gate_list *sched, ktime_t base)
1023 {
1024 struct sched_entry *first;
1025 ktime_t cycle;
1026
1027 first = list_first_entry(&sched->entries,
1028 struct sched_entry, list);
1029
1030 cycle = sched->cycle_time;
1031
1032 /* FIXME: find a better place to do this */
1033 sched->cycle_close_time = ktime_add_ns(base, cycle);
1034
1035 first->close_time = ktime_add_ns(base, first->interval);
1036 taprio_set_budget(q, first);
1037 rcu_assign_pointer(q->current_entry, NULL);
1038 }
1039
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1040 static void taprio_start_sched(struct Qdisc *sch,
1041 ktime_t start, struct sched_gate_list *new)
1042 {
1043 struct taprio_sched *q = qdisc_priv(sch);
1044 ktime_t expires;
1045
1046 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1047 return;
1048
1049 expires = hrtimer_get_expires(&q->advance_timer);
1050 if (expires == 0)
1051 expires = KTIME_MAX;
1052
1053 /* If the new schedule starts before the next expiration, we
1054 * reprogram it to the earliest one, so we change the admin
1055 * schedule to the operational one at the right time.
1056 */
1057 start = min_t(ktime_t, start, expires);
1058
1059 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1060 }
1061
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q)1062 static void taprio_set_picos_per_byte(struct net_device *dev,
1063 struct taprio_sched *q)
1064 {
1065 struct ethtool_link_ksettings ecmd;
1066 int speed = SPEED_10;
1067 int picos_per_byte;
1068 int err;
1069
1070 err = __ethtool_get_link_ksettings(dev, &ecmd);
1071 if (err < 0)
1072 goto skip;
1073
1074 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1075 speed = ecmd.base.speed;
1076
1077 skip:
1078 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1079
1080 atomic64_set(&q->picos_per_byte, picos_per_byte);
1081 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1082 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1083 ecmd.base.speed);
1084 }
1085
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1086 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1087 void *ptr)
1088 {
1089 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1090 struct net_device *qdev;
1091 struct taprio_sched *q;
1092 bool found = false;
1093
1094 ASSERT_RTNL();
1095
1096 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1097 return NOTIFY_DONE;
1098
1099 spin_lock(&taprio_list_lock);
1100 list_for_each_entry(q, &taprio_list, taprio_list) {
1101 qdev = qdisc_dev(q->root);
1102 if (qdev == dev) {
1103 found = true;
1104 break;
1105 }
1106 }
1107 spin_unlock(&taprio_list_lock);
1108
1109 if (found)
1110 taprio_set_picos_per_byte(dev, q);
1111
1112 return NOTIFY_DONE;
1113 }
1114
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1115 static void setup_txtime(struct taprio_sched *q,
1116 struct sched_gate_list *sched, ktime_t base)
1117 {
1118 struct sched_entry *entry;
1119 u32 interval = 0;
1120
1121 list_for_each_entry(entry, &sched->entries, list) {
1122 entry->next_txtime = ktime_add_ns(base, interval);
1123 interval += entry->interval;
1124 }
1125 }
1126
taprio_offload_alloc(int num_entries)1127 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1128 {
1129 struct __tc_taprio_qopt_offload *__offload;
1130
1131 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1132 GFP_KERNEL);
1133 if (!__offload)
1134 return NULL;
1135
1136 refcount_set(&__offload->users, 1);
1137
1138 return &__offload->offload;
1139 }
1140
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1141 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1142 *offload)
1143 {
1144 struct __tc_taprio_qopt_offload *__offload;
1145
1146 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1147 offload);
1148
1149 refcount_inc(&__offload->users);
1150
1151 return offload;
1152 }
1153 EXPORT_SYMBOL_GPL(taprio_offload_get);
1154
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1155 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1156 {
1157 struct __tc_taprio_qopt_offload *__offload;
1158
1159 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1160 offload);
1161
1162 if (!refcount_dec_and_test(&__offload->users))
1163 return;
1164
1165 kfree(__offload);
1166 }
1167 EXPORT_SYMBOL_GPL(taprio_offload_free);
1168
1169 /* The function will only serve to keep the pointers to the "oper" and "admin"
1170 * schedules valid in relation to their base times, so when calling dump() the
1171 * users looks at the right schedules.
1172 * When using full offload, the admin configuration is promoted to oper at the
1173 * base_time in the PHC time domain. But because the system time is not
1174 * necessarily in sync with that, we can't just trigger a hrtimer to call
1175 * switch_schedules at the right hardware time.
1176 * At the moment we call this by hand right away from taprio, but in the future
1177 * it will be useful to create a mechanism for drivers to notify taprio of the
1178 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1179 * This is left as TODO.
1180 */
taprio_offload_config_changed(struct taprio_sched * q)1181 static void taprio_offload_config_changed(struct taprio_sched *q)
1182 {
1183 struct sched_gate_list *oper, *admin;
1184
1185 spin_lock(&q->current_entry_lock);
1186
1187 oper = rcu_dereference_protected(q->oper_sched,
1188 lockdep_is_held(&q->current_entry_lock));
1189 admin = rcu_dereference_protected(q->admin_sched,
1190 lockdep_is_held(&q->current_entry_lock));
1191
1192 switch_schedules(q, &admin, &oper);
1193
1194 spin_unlock(&q->current_entry_lock);
1195 }
1196
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1197 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1198 {
1199 u32 i, queue_mask = 0;
1200
1201 for (i = 0; i < dev->num_tc; i++) {
1202 u32 offset, count;
1203
1204 if (!(tc_mask & BIT(i)))
1205 continue;
1206
1207 offset = dev->tc_to_txq[i].offset;
1208 count = dev->tc_to_txq[i].count;
1209
1210 queue_mask |= GENMASK(offset + count - 1, offset);
1211 }
1212
1213 return queue_mask;
1214 }
1215
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload)1216 static void taprio_sched_to_offload(struct net_device *dev,
1217 struct sched_gate_list *sched,
1218 struct tc_taprio_qopt_offload *offload)
1219 {
1220 struct sched_entry *entry;
1221 int i = 0;
1222
1223 offload->base_time = sched->base_time;
1224 offload->cycle_time = sched->cycle_time;
1225 offload->cycle_time_extension = sched->cycle_time_extension;
1226
1227 list_for_each_entry(entry, &sched->entries, list) {
1228 struct tc_taprio_sched_entry *e = &offload->entries[i];
1229
1230 e->command = entry->command;
1231 e->interval = entry->interval;
1232 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1233
1234 i++;
1235 }
1236
1237 offload->num_entries = i;
1238 }
1239
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1240 static int taprio_enable_offload(struct net_device *dev,
1241 struct taprio_sched *q,
1242 struct sched_gate_list *sched,
1243 struct netlink_ext_ack *extack)
1244 {
1245 const struct net_device_ops *ops = dev->netdev_ops;
1246 struct tc_taprio_qopt_offload *offload;
1247 int err = 0;
1248
1249 if (!ops->ndo_setup_tc) {
1250 NL_SET_ERR_MSG(extack,
1251 "Device does not support taprio offload");
1252 return -EOPNOTSUPP;
1253 }
1254
1255 offload = taprio_offload_alloc(sched->num_entries);
1256 if (!offload) {
1257 NL_SET_ERR_MSG(extack,
1258 "Not enough memory for enabling offload mode");
1259 return -ENOMEM;
1260 }
1261 offload->enable = 1;
1262 taprio_sched_to_offload(dev, sched, offload);
1263
1264 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1265 if (err < 0) {
1266 NL_SET_ERR_MSG(extack,
1267 "Device failed to setup taprio offload");
1268 goto done;
1269 }
1270
1271 q->offloaded = true;
1272
1273 done:
1274 taprio_offload_free(offload);
1275
1276 return err;
1277 }
1278
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1279 static int taprio_disable_offload(struct net_device *dev,
1280 struct taprio_sched *q,
1281 struct netlink_ext_ack *extack)
1282 {
1283 const struct net_device_ops *ops = dev->netdev_ops;
1284 struct tc_taprio_qopt_offload *offload;
1285 int err;
1286
1287 if (!q->offloaded)
1288 return 0;
1289
1290 offload = taprio_offload_alloc(0);
1291 if (!offload) {
1292 NL_SET_ERR_MSG(extack,
1293 "Not enough memory to disable offload mode");
1294 return -ENOMEM;
1295 }
1296 offload->enable = 0;
1297
1298 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1299 if (err < 0) {
1300 NL_SET_ERR_MSG(extack,
1301 "Device failed to disable offload");
1302 goto out;
1303 }
1304
1305 q->offloaded = false;
1306
1307 out:
1308 taprio_offload_free(offload);
1309
1310 return err;
1311 }
1312
1313 /* If full offload is enabled, the only possible clockid is the net device's
1314 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1315 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1316 * in sync with the specified clockid via a user space daemon such as phc2sys.
1317 * For both software taprio and txtime-assist, the clockid is used for the
1318 * hrtimer that advances the schedule and hence mandatory.
1319 */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1320 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1321 struct netlink_ext_ack *extack)
1322 {
1323 struct taprio_sched *q = qdisc_priv(sch);
1324 struct net_device *dev = qdisc_dev(sch);
1325 int err = -EINVAL;
1326
1327 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1328 const struct ethtool_ops *ops = dev->ethtool_ops;
1329 struct ethtool_ts_info info = {
1330 .cmd = ETHTOOL_GET_TS_INFO,
1331 .phc_index = -1,
1332 };
1333
1334 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1335 NL_SET_ERR_MSG(extack,
1336 "The 'clockid' cannot be specified for full offload");
1337 goto out;
1338 }
1339
1340 if (ops && ops->get_ts_info)
1341 err = ops->get_ts_info(dev, &info);
1342
1343 if (err || info.phc_index < 0) {
1344 NL_SET_ERR_MSG(extack,
1345 "Device does not have a PTP clock");
1346 err = -ENOTSUPP;
1347 goto out;
1348 }
1349 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1350 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1351 enum tk_offsets tk_offset;
1352
1353 /* We only support static clockids and we don't allow
1354 * for it to be modified after the first init.
1355 */
1356 if (clockid < 0 ||
1357 (q->clockid != -1 && q->clockid != clockid)) {
1358 NL_SET_ERR_MSG(extack,
1359 "Changing the 'clockid' of a running schedule is not supported");
1360 err = -ENOTSUPP;
1361 goto out;
1362 }
1363
1364 switch (clockid) {
1365 case CLOCK_REALTIME:
1366 tk_offset = TK_OFFS_REAL;
1367 break;
1368 case CLOCK_MONOTONIC:
1369 tk_offset = TK_OFFS_MAX;
1370 break;
1371 case CLOCK_BOOTTIME:
1372 tk_offset = TK_OFFS_BOOT;
1373 break;
1374 case CLOCK_TAI:
1375 tk_offset = TK_OFFS_TAI;
1376 break;
1377 default:
1378 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1379 err = -EINVAL;
1380 goto out;
1381 }
1382 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1383 WRITE_ONCE(q->tk_offset, tk_offset);
1384
1385 q->clockid = clockid;
1386 } else {
1387 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1388 goto out;
1389 }
1390
1391 /* Everything went ok, return success. */
1392 err = 0;
1393
1394 out:
1395 return err;
1396 }
1397
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1398 static int taprio_mqprio_cmp(const struct net_device *dev,
1399 const struct tc_mqprio_qopt *mqprio)
1400 {
1401 int i;
1402
1403 if (!mqprio || mqprio->num_tc != dev->num_tc)
1404 return -1;
1405
1406 for (i = 0; i < mqprio->num_tc; i++)
1407 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1408 dev->tc_to_txq[i].offset != mqprio->offset[i])
1409 return -1;
1410
1411 for (i = 0; i <= TC_BITMASK; i++)
1412 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1413 return -1;
1414
1415 return 0;
1416 }
1417
1418 /* The semantics of the 'flags' argument in relation to 'change()'
1419 * requests, are interpreted following two rules (which are applied in
1420 * this order): (1) an omitted 'flags' argument is interpreted as
1421 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1422 * changed.
1423 */
taprio_new_flags(const struct nlattr * attr,u32 old,struct netlink_ext_ack * extack)1424 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1425 struct netlink_ext_ack *extack)
1426 {
1427 u32 new = 0;
1428
1429 if (attr)
1430 new = nla_get_u32(attr);
1431
1432 if (old != TAPRIO_FLAGS_INVALID && old != new) {
1433 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1434 return -EOPNOTSUPP;
1435 }
1436
1437 if (!taprio_flags_valid(new)) {
1438 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1439 return -EINVAL;
1440 }
1441
1442 return new;
1443 }
1444
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1445 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1446 struct netlink_ext_ack *extack)
1447 {
1448 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1449 struct sched_gate_list *oper, *admin, *new_admin;
1450 struct taprio_sched *q = qdisc_priv(sch);
1451 struct net_device *dev = qdisc_dev(sch);
1452 struct tc_mqprio_qopt *mqprio = NULL;
1453 unsigned long flags;
1454 ktime_t start;
1455 int i, err;
1456
1457 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1458 taprio_policy, extack);
1459 if (err < 0)
1460 return err;
1461
1462 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1463 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1464
1465 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1466 q->flags, extack);
1467 if (err < 0)
1468 return err;
1469
1470 q->flags = err;
1471
1472 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1473 if (err < 0)
1474 return err;
1475
1476 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1477 if (!new_admin) {
1478 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1479 return -ENOMEM;
1480 }
1481 INIT_LIST_HEAD(&new_admin->entries);
1482
1483 rcu_read_lock();
1484 oper = rcu_dereference(q->oper_sched);
1485 admin = rcu_dereference(q->admin_sched);
1486 rcu_read_unlock();
1487
1488 /* no changes - no new mqprio settings */
1489 if (!taprio_mqprio_cmp(dev, mqprio))
1490 mqprio = NULL;
1491
1492 if (mqprio && (oper || admin)) {
1493 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1494 err = -ENOTSUPP;
1495 goto free_sched;
1496 }
1497
1498 err = parse_taprio_schedule(q, tb, new_admin, extack);
1499 if (err < 0)
1500 goto free_sched;
1501
1502 if (new_admin->num_entries == 0) {
1503 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1504 err = -EINVAL;
1505 goto free_sched;
1506 }
1507
1508 err = taprio_parse_clockid(sch, tb, extack);
1509 if (err < 0)
1510 goto free_sched;
1511
1512 taprio_set_picos_per_byte(dev, q);
1513
1514 if (mqprio) {
1515 err = netdev_set_num_tc(dev, mqprio->num_tc);
1516 if (err)
1517 goto free_sched;
1518 for (i = 0; i < mqprio->num_tc; i++)
1519 netdev_set_tc_queue(dev, i,
1520 mqprio->count[i],
1521 mqprio->offset[i]);
1522
1523 /* Always use supplied priority mappings */
1524 for (i = 0; i <= TC_BITMASK; i++)
1525 netdev_set_prio_tc_map(dev, i,
1526 mqprio->prio_tc_map[i]);
1527 }
1528
1529 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1530 err = taprio_enable_offload(dev, q, new_admin, extack);
1531 else
1532 err = taprio_disable_offload(dev, q, extack);
1533 if (err)
1534 goto free_sched;
1535
1536 /* Protects against enqueue()/dequeue() */
1537 spin_lock_bh(qdisc_lock(sch));
1538
1539 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1540 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1541 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1542 err = -EINVAL;
1543 goto unlock;
1544 }
1545
1546 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1547 }
1548
1549 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1550 !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1551 !hrtimer_active(&q->advance_timer)) {
1552 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1553 q->advance_timer.function = advance_sched;
1554 }
1555
1556 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1557 q->dequeue = taprio_dequeue_offload;
1558 q->peek = taprio_peek_offload;
1559 } else {
1560 /* Be sure to always keep the function pointers
1561 * in a consistent state.
1562 */
1563 q->dequeue = taprio_dequeue_soft;
1564 q->peek = taprio_peek_soft;
1565 }
1566
1567 err = taprio_get_start_time(sch, new_admin, &start);
1568 if (err < 0) {
1569 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1570 goto unlock;
1571 }
1572
1573 setup_txtime(q, new_admin, start);
1574
1575 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1576 if (!oper) {
1577 rcu_assign_pointer(q->oper_sched, new_admin);
1578 err = 0;
1579 new_admin = NULL;
1580 goto unlock;
1581 }
1582
1583 rcu_assign_pointer(q->admin_sched, new_admin);
1584 if (admin)
1585 call_rcu(&admin->rcu, taprio_free_sched_cb);
1586 } else {
1587 setup_first_close_time(q, new_admin, start);
1588
1589 /* Protects against advance_sched() */
1590 spin_lock_irqsave(&q->current_entry_lock, flags);
1591
1592 taprio_start_sched(sch, start, new_admin);
1593
1594 rcu_assign_pointer(q->admin_sched, new_admin);
1595 if (admin)
1596 call_rcu(&admin->rcu, taprio_free_sched_cb);
1597
1598 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1599
1600 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1601 taprio_offload_config_changed(q);
1602 }
1603
1604 new_admin = NULL;
1605 err = 0;
1606
1607 unlock:
1608 spin_unlock_bh(qdisc_lock(sch));
1609
1610 free_sched:
1611 if (new_admin)
1612 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1613
1614 return err;
1615 }
1616
taprio_reset(struct Qdisc * sch)1617 static void taprio_reset(struct Qdisc *sch)
1618 {
1619 struct taprio_sched *q = qdisc_priv(sch);
1620 struct net_device *dev = qdisc_dev(sch);
1621 int i;
1622
1623 hrtimer_cancel(&q->advance_timer);
1624
1625 if (q->qdiscs) {
1626 for (i = 0; i < dev->num_tx_queues; i++)
1627 if (q->qdiscs[i])
1628 qdisc_reset(q->qdiscs[i]);
1629 }
1630 }
1631
taprio_destroy(struct Qdisc * sch)1632 static void taprio_destroy(struct Qdisc *sch)
1633 {
1634 struct taprio_sched *q = qdisc_priv(sch);
1635 struct net_device *dev = qdisc_dev(sch);
1636 unsigned int i;
1637
1638 spin_lock(&taprio_list_lock);
1639 list_del(&q->taprio_list);
1640 spin_unlock(&taprio_list_lock);
1641
1642 /* Note that taprio_reset() might not be called if an error
1643 * happens in qdisc_create(), after taprio_init() has been called.
1644 */
1645 hrtimer_cancel(&q->advance_timer);
1646 qdisc_synchronize(sch);
1647
1648 taprio_disable_offload(dev, q, NULL);
1649
1650 if (q->qdiscs) {
1651 for (i = 0; i < dev->num_tx_queues; i++)
1652 qdisc_put(q->qdiscs[i]);
1653
1654 kfree(q->qdiscs);
1655 }
1656 q->qdiscs = NULL;
1657
1658 netdev_reset_tc(dev);
1659
1660 if (q->oper_sched)
1661 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1662
1663 if (q->admin_sched)
1664 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1665 }
1666
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1667 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1668 struct netlink_ext_ack *extack)
1669 {
1670 struct taprio_sched *q = qdisc_priv(sch);
1671 struct net_device *dev = qdisc_dev(sch);
1672 int i;
1673
1674 spin_lock_init(&q->current_entry_lock);
1675
1676 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1677 q->advance_timer.function = advance_sched;
1678
1679 q->dequeue = taprio_dequeue_soft;
1680 q->peek = taprio_peek_soft;
1681
1682 q->root = sch;
1683
1684 /* We only support static clockids. Use an invalid value as default
1685 * and get the valid one on taprio_change().
1686 */
1687 q->clockid = -1;
1688 q->flags = TAPRIO_FLAGS_INVALID;
1689
1690 spin_lock(&taprio_list_lock);
1691 list_add(&q->taprio_list, &taprio_list);
1692 spin_unlock(&taprio_list_lock);
1693
1694 if (sch->parent != TC_H_ROOT)
1695 return -EOPNOTSUPP;
1696
1697 if (!netif_is_multiqueue(dev))
1698 return -EOPNOTSUPP;
1699
1700 /* pre-allocate qdisc, attachment can't fail */
1701 q->qdiscs = kcalloc(dev->num_tx_queues,
1702 sizeof(q->qdiscs[0]),
1703 GFP_KERNEL);
1704
1705 if (!q->qdiscs)
1706 return -ENOMEM;
1707
1708 if (!opt)
1709 return -EINVAL;
1710
1711 for (i = 0; i < dev->num_tx_queues; i++) {
1712 struct netdev_queue *dev_queue;
1713 struct Qdisc *qdisc;
1714
1715 dev_queue = netdev_get_tx_queue(dev, i);
1716 qdisc = qdisc_create_dflt(dev_queue,
1717 &pfifo_qdisc_ops,
1718 TC_H_MAKE(TC_H_MAJ(sch->handle),
1719 TC_H_MIN(i + 1)),
1720 extack);
1721 if (!qdisc)
1722 return -ENOMEM;
1723
1724 if (i < dev->real_num_tx_queues)
1725 qdisc_hash_add(qdisc, false);
1726
1727 q->qdiscs[i] = qdisc;
1728 }
1729
1730 return taprio_change(sch, opt, extack);
1731 }
1732
taprio_queue_get(struct Qdisc * sch,unsigned long cl)1733 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1734 unsigned long cl)
1735 {
1736 struct net_device *dev = qdisc_dev(sch);
1737 unsigned long ntx = cl - 1;
1738
1739 if (ntx >= dev->num_tx_queues)
1740 return NULL;
1741
1742 return netdev_get_tx_queue(dev, ntx);
1743 }
1744
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)1745 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1746 struct Qdisc *new, struct Qdisc **old,
1747 struct netlink_ext_ack *extack)
1748 {
1749 struct taprio_sched *q = qdisc_priv(sch);
1750 struct net_device *dev = qdisc_dev(sch);
1751 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1752
1753 if (!dev_queue)
1754 return -EINVAL;
1755
1756 if (dev->flags & IFF_UP)
1757 dev_deactivate(dev);
1758
1759 *old = q->qdiscs[cl - 1];
1760 q->qdiscs[cl - 1] = new;
1761
1762 if (new)
1763 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1764
1765 if (dev->flags & IFF_UP)
1766 dev_activate(dev);
1767
1768 return 0;
1769 }
1770
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)1771 static int dump_entry(struct sk_buff *msg,
1772 const struct sched_entry *entry)
1773 {
1774 struct nlattr *item;
1775
1776 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1777 if (!item)
1778 return -ENOSPC;
1779
1780 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1781 goto nla_put_failure;
1782
1783 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1784 goto nla_put_failure;
1785
1786 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1787 entry->gate_mask))
1788 goto nla_put_failure;
1789
1790 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1791 entry->interval))
1792 goto nla_put_failure;
1793
1794 return nla_nest_end(msg, item);
1795
1796 nla_put_failure:
1797 nla_nest_cancel(msg, item);
1798 return -1;
1799 }
1800
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)1801 static int dump_schedule(struct sk_buff *msg,
1802 const struct sched_gate_list *root)
1803 {
1804 struct nlattr *entry_list;
1805 struct sched_entry *entry;
1806
1807 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1808 root->base_time, TCA_TAPRIO_PAD))
1809 return -1;
1810
1811 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1812 root->cycle_time, TCA_TAPRIO_PAD))
1813 return -1;
1814
1815 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1816 root->cycle_time_extension, TCA_TAPRIO_PAD))
1817 return -1;
1818
1819 entry_list = nla_nest_start_noflag(msg,
1820 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1821 if (!entry_list)
1822 goto error_nest;
1823
1824 list_for_each_entry(entry, &root->entries, list) {
1825 if (dump_entry(msg, entry) < 0)
1826 goto error_nest;
1827 }
1828
1829 nla_nest_end(msg, entry_list);
1830 return 0;
1831
1832 error_nest:
1833 nla_nest_cancel(msg, entry_list);
1834 return -1;
1835 }
1836
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)1837 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1838 {
1839 struct taprio_sched *q = qdisc_priv(sch);
1840 struct net_device *dev = qdisc_dev(sch);
1841 struct sched_gate_list *oper, *admin;
1842 struct tc_mqprio_qopt opt = { 0 };
1843 struct nlattr *nest, *sched_nest;
1844 unsigned int i;
1845
1846 rcu_read_lock();
1847 oper = rcu_dereference(q->oper_sched);
1848 admin = rcu_dereference(q->admin_sched);
1849
1850 opt.num_tc = netdev_get_num_tc(dev);
1851 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1852
1853 for (i = 0; i < netdev_get_num_tc(dev); i++) {
1854 opt.count[i] = dev->tc_to_txq[i].count;
1855 opt.offset[i] = dev->tc_to_txq[i].offset;
1856 }
1857
1858 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1859 if (!nest)
1860 goto start_error;
1861
1862 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1863 goto options_error;
1864
1865 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1866 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1867 goto options_error;
1868
1869 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1870 goto options_error;
1871
1872 if (q->txtime_delay &&
1873 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1874 goto options_error;
1875
1876 if (oper && dump_schedule(skb, oper))
1877 goto options_error;
1878
1879 if (!admin)
1880 goto done;
1881
1882 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1883 if (!sched_nest)
1884 goto options_error;
1885
1886 if (dump_schedule(skb, admin))
1887 goto admin_error;
1888
1889 nla_nest_end(skb, sched_nest);
1890
1891 done:
1892 rcu_read_unlock();
1893
1894 return nla_nest_end(skb, nest);
1895
1896 admin_error:
1897 nla_nest_cancel(skb, sched_nest);
1898
1899 options_error:
1900 nla_nest_cancel(skb, nest);
1901
1902 start_error:
1903 rcu_read_unlock();
1904 return -ENOSPC;
1905 }
1906
taprio_leaf(struct Qdisc * sch,unsigned long cl)1907 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1908 {
1909 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1910
1911 if (!dev_queue)
1912 return NULL;
1913
1914 return dev_queue->qdisc_sleeping;
1915 }
1916
taprio_find(struct Qdisc * sch,u32 classid)1917 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1918 {
1919 unsigned int ntx = TC_H_MIN(classid);
1920
1921 if (!taprio_queue_get(sch, ntx))
1922 return 0;
1923 return ntx;
1924 }
1925
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)1926 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1927 struct sk_buff *skb, struct tcmsg *tcm)
1928 {
1929 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1930
1931 tcm->tcm_parent = TC_H_ROOT;
1932 tcm->tcm_handle |= TC_H_MIN(cl);
1933 tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1934
1935 return 0;
1936 }
1937
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)1938 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1939 struct gnet_dump *d)
1940 __releases(d->lock)
1941 __acquires(d->lock)
1942 {
1943 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1944
1945 sch = dev_queue->qdisc_sleeping;
1946 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1947 qdisc_qstats_copy(d, sch) < 0)
1948 return -1;
1949 return 0;
1950 }
1951
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)1952 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1953 {
1954 struct net_device *dev = qdisc_dev(sch);
1955 unsigned long ntx;
1956
1957 if (arg->stop)
1958 return;
1959
1960 arg->count = arg->skip;
1961 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1962 if (arg->fn(sch, ntx + 1, arg) < 0) {
1963 arg->stop = 1;
1964 break;
1965 }
1966 arg->count++;
1967 }
1968 }
1969
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)1970 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1971 struct tcmsg *tcm)
1972 {
1973 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1974 }
1975
1976 static const struct Qdisc_class_ops taprio_class_ops = {
1977 .graft = taprio_graft,
1978 .leaf = taprio_leaf,
1979 .find = taprio_find,
1980 .walk = taprio_walk,
1981 .dump = taprio_dump_class,
1982 .dump_stats = taprio_dump_class_stats,
1983 .select_queue = taprio_select_queue,
1984 };
1985
1986 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1987 .cl_ops = &taprio_class_ops,
1988 .id = "taprio",
1989 .priv_size = sizeof(struct taprio_sched),
1990 .init = taprio_init,
1991 .change = taprio_change,
1992 .destroy = taprio_destroy,
1993 .reset = taprio_reset,
1994 .peek = taprio_peek,
1995 .dequeue = taprio_dequeue,
1996 .enqueue = taprio_enqueue,
1997 .dump = taprio_dump,
1998 .owner = THIS_MODULE,
1999 };
2000
2001 static struct notifier_block taprio_device_notifier = {
2002 .notifier_call = taprio_dev_notifier,
2003 };
2004
taprio_module_init(void)2005 static int __init taprio_module_init(void)
2006 {
2007 int err = register_netdevice_notifier(&taprio_device_notifier);
2008
2009 if (err)
2010 return err;
2011
2012 return register_qdisc(&taprio_qdisc_ops);
2013 }
2014
taprio_module_exit(void)2015 static void __exit taprio_module_exit(void)
2016 {
2017 unregister_qdisc(&taprio_qdisc_ops);
2018 unregister_netdevice_notifier(&taprio_device_notifier);
2019 }
2020
2021 module_init(taprio_module_init);
2022 module_exit(taprio_module_exit);
2023 MODULE_LICENSE("GPL");
2024