• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * This module provides the abstraction for an SCTP association.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Jon Grimm             <jgrimm@us.ibm.com>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang             <hui.huang@nokia.com>
23  *    Sridhar Samudrala	    <sri@us.ibm.com>
24  *    Daisy Chang	    <daisyc@us.ibm.com>
25  *    Ryan Layer	    <rmlayer@us.ibm.com>
26  *    Kevin Gao             <kevin.gao@intel.com>
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35 
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41 
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47 
48 /* 1st Level Abstractions. */
49 
50 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)51 static struct sctp_association *sctp_association_init(
52 					struct sctp_association *asoc,
53 					const struct sctp_endpoint *ep,
54 					const struct sock *sk,
55 					enum sctp_scope scope, gfp_t gfp)
56 {
57 	struct sctp_sock *sp;
58 	struct sctp_paramhdr *p;
59 	int i;
60 
61 	/* Retrieve the SCTP per socket area.  */
62 	sp = sctp_sk((struct sock *)sk);
63 
64 	/* Discarding const is appropriate here.  */
65 	asoc->ep = (struct sctp_endpoint *)ep;
66 	asoc->base.sk = (struct sock *)sk;
67 	asoc->base.net = sock_net(sk);
68 
69 	sctp_endpoint_hold(asoc->ep);
70 	sock_hold(asoc->base.sk);
71 
72 	/* Initialize the common base substructure.  */
73 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74 
75 	/* Initialize the object handling fields.  */
76 	refcount_set(&asoc->base.refcnt, 1);
77 
78 	/* Initialize the bind addr area.  */
79 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80 
81 	asoc->state = SCTP_STATE_CLOSED;
82 	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 	asoc->user_frag = sp->user_frag;
84 
85 	/* Set the association max_retrans and RTO values from the
86 	 * socket values.
87 	 */
88 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 	asoc->pf_retrans  = sp->pf_retrans;
90 	asoc->ps_retrans  = sp->ps_retrans;
91 	asoc->pf_expose   = sp->pf_expose;
92 
93 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96 
97 	/* Initialize the association's heartbeat interval based on the
98 	 * sock configured value.
99 	 */
100 	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101 
102 	/* Initialize path max retrans value. */
103 	asoc->pathmaxrxt = sp->pathmaxrxt;
104 
105 	asoc->flowlabel = sp->flowlabel;
106 	asoc->dscp = sp->dscp;
107 
108 	/* Set association default SACK delay */
109 	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
110 	asoc->sackfreq = sp->sackfreq;
111 
112 	/* Set the association default flags controlling
113 	 * Heartbeat, SACK delay, and Path MTU Discovery.
114 	 */
115 	asoc->param_flags = sp->param_flags;
116 
117 	/* Initialize the maximum number of new data packets that can be sent
118 	 * in a burst.
119 	 */
120 	asoc->max_burst = sp->max_burst;
121 
122 	asoc->subscribe = sp->subscribe;
123 
124 	/* initialize association timers */
125 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
126 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
127 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
128 
129 	/* sctpimpguide Section 2.12.2
130 	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
131 	 * recommended value of 5 times 'RTO.Max'.
132 	 */
133 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
134 		= 5 * asoc->rto_max;
135 
136 	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
137 	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
138 
139 	/* Initializes the timers */
140 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
141 		timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
142 
143 	/* Pull default initialization values from the sock options.
144 	 * Note: This assumes that the values have already been
145 	 * validated in the sock.
146 	 */
147 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
148 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
149 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
150 
151 	asoc->max_init_timeo =
152 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
153 
154 	/* Set the local window size for receive.
155 	 * This is also the rcvbuf space per association.
156 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
157 	 * 1500 bytes in one SCTP packet.
158 	 */
159 	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
160 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
161 	else
162 		asoc->rwnd = sk->sk_rcvbuf/2;
163 
164 	asoc->a_rwnd = asoc->rwnd;
165 
166 	/* Use my own max window until I learn something better.  */
167 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
168 
169 	/* Initialize the receive memory counter */
170 	atomic_set(&asoc->rmem_alloc, 0);
171 
172 	init_waitqueue_head(&asoc->wait);
173 
174 	asoc->c.my_vtag = sctp_generate_tag(ep);
175 	asoc->c.my_port = ep->base.bind_addr.port;
176 
177 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
178 
179 	asoc->next_tsn = asoc->c.initial_tsn;
180 
181 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
182 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
183 	asoc->highest_sacked = asoc->ctsn_ack_point;
184 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
185 
186 	/* ADDIP Section 4.1 Asconf Chunk Procedures
187 	 *
188 	 * When an endpoint has an ASCONF signaled change to be sent to the
189 	 * remote endpoint it should do the following:
190 	 * ...
191 	 * A2) a serial number should be assigned to the chunk. The serial
192 	 * number SHOULD be a monotonically increasing number. The serial
193 	 * numbers SHOULD be initialized at the start of the
194 	 * association to the same value as the initial TSN.
195 	 */
196 	asoc->addip_serial = asoc->c.initial_tsn;
197 	asoc->strreset_outseq = asoc->c.initial_tsn;
198 
199 	INIT_LIST_HEAD(&asoc->addip_chunk_list);
200 	INIT_LIST_HEAD(&asoc->asconf_ack_list);
201 
202 	/* Make an empty list of remote transport addresses.  */
203 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
204 
205 	/* RFC 2960 5.1 Normal Establishment of an Association
206 	 *
207 	 * After the reception of the first data chunk in an
208 	 * association the endpoint must immediately respond with a
209 	 * sack to acknowledge the data chunk.  Subsequent
210 	 * acknowledgements should be done as described in Section
211 	 * 6.2.
212 	 *
213 	 * [We implement this by telling a new association that it
214 	 * already received one packet.]
215 	 */
216 	asoc->peer.sack_needed = 1;
217 	asoc->peer.sack_generation = 1;
218 
219 	/* Create an input queue.  */
220 	sctp_inq_init(&asoc->base.inqueue);
221 	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
222 
223 	/* Create an output queue.  */
224 	sctp_outq_init(asoc, &asoc->outqueue);
225 
226 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
227 		goto fail_init;
228 
229 	if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp))
230 		goto stream_free;
231 
232 	/* Initialize default path MTU. */
233 	asoc->pathmtu = sp->pathmtu;
234 	sctp_assoc_update_frag_point(asoc);
235 
236 	/* Assume that peer would support both address types unless we are
237 	 * told otherwise.
238 	 */
239 	asoc->peer.ipv4_address = 1;
240 	if (asoc->base.sk->sk_family == PF_INET6)
241 		asoc->peer.ipv6_address = 1;
242 	INIT_LIST_HEAD(&asoc->asocs);
243 
244 	asoc->default_stream = sp->default_stream;
245 	asoc->default_ppid = sp->default_ppid;
246 	asoc->default_flags = sp->default_flags;
247 	asoc->default_context = sp->default_context;
248 	asoc->default_timetolive = sp->default_timetolive;
249 	asoc->default_rcv_context = sp->default_rcv_context;
250 
251 	/* AUTH related initializations */
252 	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
253 	if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
254 		goto stream_free;
255 
256 	asoc->active_key_id = ep->active_key_id;
257 	asoc->strreset_enable = ep->strreset_enable;
258 
259 	/* Save the hmacs and chunks list into this association */
260 	if (ep->auth_hmacs_list)
261 		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
262 			ntohs(ep->auth_hmacs_list->param_hdr.length));
263 	if (ep->auth_chunk_list)
264 		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
265 			ntohs(ep->auth_chunk_list->param_hdr.length));
266 
267 	/* Get the AUTH random number for this association */
268 	p = (struct sctp_paramhdr *)asoc->c.auth_random;
269 	p->type = SCTP_PARAM_RANDOM;
270 	p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
271 	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
272 
273 	return asoc;
274 
275 stream_free:
276 	sctp_stream_free(&asoc->stream);
277 fail_init:
278 	sock_put(asoc->base.sk);
279 	sctp_endpoint_put(asoc->ep);
280 	return NULL;
281 }
282 
283 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)284 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
285 					      const struct sock *sk,
286 					      enum sctp_scope scope, gfp_t gfp)
287 {
288 	struct sctp_association *asoc;
289 
290 	asoc = kzalloc(sizeof(*asoc), gfp);
291 	if (!asoc)
292 		goto fail;
293 
294 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
295 		goto fail_init;
296 
297 	SCTP_DBG_OBJCNT_INC(assoc);
298 
299 	pr_debug("Created asoc %p\n", asoc);
300 
301 	return asoc;
302 
303 fail_init:
304 	kfree(asoc);
305 fail:
306 	return NULL;
307 }
308 
309 /* Free this association if possible.  There may still be users, so
310  * the actual deallocation may be delayed.
311  */
sctp_association_free(struct sctp_association * asoc)312 void sctp_association_free(struct sctp_association *asoc)
313 {
314 	struct sock *sk = asoc->base.sk;
315 	struct sctp_transport *transport;
316 	struct list_head *pos, *temp;
317 	int i;
318 
319 	/* Only real associations count against the endpoint, so
320 	 * don't bother for if this is a temporary association.
321 	 */
322 	if (!list_empty(&asoc->asocs)) {
323 		list_del(&asoc->asocs);
324 
325 		/* Decrement the backlog value for a TCP-style listening
326 		 * socket.
327 		 */
328 		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
329 			sk_acceptq_removed(sk);
330 	}
331 
332 	/* Mark as dead, so other users can know this structure is
333 	 * going away.
334 	 */
335 	asoc->base.dead = true;
336 
337 	/* Dispose of any data lying around in the outqueue. */
338 	sctp_outq_free(&asoc->outqueue);
339 
340 	/* Dispose of any pending messages for the upper layer. */
341 	sctp_ulpq_free(&asoc->ulpq);
342 
343 	/* Dispose of any pending chunks on the inqueue. */
344 	sctp_inq_free(&asoc->base.inqueue);
345 
346 	sctp_tsnmap_free(&asoc->peer.tsn_map);
347 
348 	/* Free stream information. */
349 	sctp_stream_free(&asoc->stream);
350 
351 	if (asoc->strreset_chunk)
352 		sctp_chunk_free(asoc->strreset_chunk);
353 
354 	/* Clean up the bound address list. */
355 	sctp_bind_addr_free(&asoc->base.bind_addr);
356 
357 	/* Do we need to go through all of our timers and
358 	 * delete them?   To be safe we will try to delete all, but we
359 	 * should be able to go through and make a guess based
360 	 * on our state.
361 	 */
362 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
363 		if (del_timer(&asoc->timers[i]))
364 			sctp_association_put(asoc);
365 	}
366 
367 	/* Free peer's cached cookie. */
368 	kfree(asoc->peer.cookie);
369 	kfree(asoc->peer.peer_random);
370 	kfree(asoc->peer.peer_chunks);
371 	kfree(asoc->peer.peer_hmacs);
372 
373 	/* Release the transport structures. */
374 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
375 		transport = list_entry(pos, struct sctp_transport, transports);
376 		list_del_rcu(pos);
377 		sctp_unhash_transport(transport);
378 		sctp_transport_free(transport);
379 	}
380 
381 	asoc->peer.transport_count = 0;
382 
383 	sctp_asconf_queue_teardown(asoc);
384 
385 	/* Free pending address space being deleted */
386 	kfree(asoc->asconf_addr_del_pending);
387 
388 	/* AUTH - Free the endpoint shared keys */
389 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
390 
391 	/* AUTH - Free the association shared key */
392 	sctp_auth_key_put(asoc->asoc_shared_key);
393 
394 	sctp_association_put(asoc);
395 }
396 
397 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)398 static void sctp_association_destroy(struct sctp_association *asoc)
399 {
400 	if (unlikely(!asoc->base.dead)) {
401 		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
402 		return;
403 	}
404 
405 	sctp_endpoint_put(asoc->ep);
406 	sock_put(asoc->base.sk);
407 
408 	if (asoc->assoc_id != 0) {
409 		spin_lock_bh(&sctp_assocs_id_lock);
410 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
411 		spin_unlock_bh(&sctp_assocs_id_lock);
412 	}
413 
414 	WARN_ON(atomic_read(&asoc->rmem_alloc));
415 
416 	kfree_rcu(asoc, rcu);
417 	SCTP_DBG_OBJCNT_DEC(assoc);
418 }
419 
420 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)421 void sctp_assoc_set_primary(struct sctp_association *asoc,
422 			    struct sctp_transport *transport)
423 {
424 	int changeover = 0;
425 
426 	/* it's a changeover only if we already have a primary path
427 	 * that we are changing
428 	 */
429 	if (asoc->peer.primary_path != NULL &&
430 	    asoc->peer.primary_path != transport)
431 		changeover = 1 ;
432 
433 	asoc->peer.primary_path = transport;
434 	sctp_ulpevent_notify_peer_addr_change(transport,
435 					      SCTP_ADDR_MADE_PRIM, 0);
436 
437 	/* Set a default msg_name for events. */
438 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
439 	       sizeof(union sctp_addr));
440 
441 	/* If the primary path is changing, assume that the
442 	 * user wants to use this new path.
443 	 */
444 	if ((transport->state == SCTP_ACTIVE) ||
445 	    (transport->state == SCTP_UNKNOWN))
446 		asoc->peer.active_path = transport;
447 
448 	/*
449 	 * SFR-CACC algorithm:
450 	 * Upon the receipt of a request to change the primary
451 	 * destination address, on the data structure for the new
452 	 * primary destination, the sender MUST do the following:
453 	 *
454 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
455 	 * to this destination address earlier. The sender MUST set
456 	 * CYCLING_CHANGEOVER to indicate that this switch is a
457 	 * double switch to the same destination address.
458 	 *
459 	 * Really, only bother is we have data queued or outstanding on
460 	 * the association.
461 	 */
462 	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
463 		return;
464 
465 	if (transport->cacc.changeover_active)
466 		transport->cacc.cycling_changeover = changeover;
467 
468 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
469 	 * a changeover has occurred.
470 	 */
471 	transport->cacc.changeover_active = changeover;
472 
473 	/* 3) The sender MUST store the next TSN to be sent in
474 	 * next_tsn_at_change.
475 	 */
476 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
477 }
478 
479 /* Remove a transport from an association.  */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)480 void sctp_assoc_rm_peer(struct sctp_association *asoc,
481 			struct sctp_transport *peer)
482 {
483 	struct sctp_transport *transport;
484 	struct list_head *pos;
485 	struct sctp_chunk *ch;
486 
487 	pr_debug("%s: association:%p addr:%pISpc\n",
488 		 __func__, asoc, &peer->ipaddr.sa);
489 
490 	/* If we are to remove the current retran_path, update it
491 	 * to the next peer before removing this peer from the list.
492 	 */
493 	if (asoc->peer.retran_path == peer)
494 		sctp_assoc_update_retran_path(asoc);
495 
496 	/* Remove this peer from the list. */
497 	list_del_rcu(&peer->transports);
498 	/* Remove this peer from the transport hashtable */
499 	sctp_unhash_transport(peer);
500 
501 	/* Get the first transport of asoc. */
502 	pos = asoc->peer.transport_addr_list.next;
503 	transport = list_entry(pos, struct sctp_transport, transports);
504 
505 	/* Update any entries that match the peer to be deleted. */
506 	if (asoc->peer.primary_path == peer)
507 		sctp_assoc_set_primary(asoc, transport);
508 	if (asoc->peer.active_path == peer)
509 		asoc->peer.active_path = transport;
510 	if (asoc->peer.retran_path == peer)
511 		asoc->peer.retran_path = transport;
512 	if (asoc->peer.last_data_from == peer)
513 		asoc->peer.last_data_from = transport;
514 
515 	if (asoc->strreset_chunk &&
516 	    asoc->strreset_chunk->transport == peer) {
517 		asoc->strreset_chunk->transport = transport;
518 		sctp_transport_reset_reconf_timer(transport);
519 	}
520 
521 	/* If we remove the transport an INIT was last sent to, set it to
522 	 * NULL. Combined with the update of the retran path above, this
523 	 * will cause the next INIT to be sent to the next available
524 	 * transport, maintaining the cycle.
525 	 */
526 	if (asoc->init_last_sent_to == peer)
527 		asoc->init_last_sent_to = NULL;
528 
529 	/* If we remove the transport an SHUTDOWN was last sent to, set it
530 	 * to NULL. Combined with the update of the retran path above, this
531 	 * will cause the next SHUTDOWN to be sent to the next available
532 	 * transport, maintaining the cycle.
533 	 */
534 	if (asoc->shutdown_last_sent_to == peer)
535 		asoc->shutdown_last_sent_to = NULL;
536 
537 	/* If we remove the transport an ASCONF was last sent to, set it to
538 	 * NULL.
539 	 */
540 	if (asoc->addip_last_asconf &&
541 	    asoc->addip_last_asconf->transport == peer)
542 		asoc->addip_last_asconf->transport = NULL;
543 
544 	/* If we have something on the transmitted list, we have to
545 	 * save it off.  The best place is the active path.
546 	 */
547 	if (!list_empty(&peer->transmitted)) {
548 		struct sctp_transport *active = asoc->peer.active_path;
549 
550 		/* Reset the transport of each chunk on this list */
551 		list_for_each_entry(ch, &peer->transmitted,
552 					transmitted_list) {
553 			ch->transport = NULL;
554 			ch->rtt_in_progress = 0;
555 		}
556 
557 		list_splice_tail_init(&peer->transmitted,
558 					&active->transmitted);
559 
560 		/* Start a T3 timer here in case it wasn't running so
561 		 * that these migrated packets have a chance to get
562 		 * retransmitted.
563 		 */
564 		if (!timer_pending(&active->T3_rtx_timer))
565 			if (!mod_timer(&active->T3_rtx_timer,
566 					jiffies + active->rto))
567 				sctp_transport_hold(active);
568 	}
569 
570 	list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
571 		if (ch->transport == peer)
572 			ch->transport = NULL;
573 
574 	asoc->peer.transport_count--;
575 
576 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
577 	sctp_transport_free(peer);
578 }
579 
580 /* Add a transport address to an association.  */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)581 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
582 					   const union sctp_addr *addr,
583 					   const gfp_t gfp,
584 					   const int peer_state)
585 {
586 	struct sctp_transport *peer;
587 	struct sctp_sock *sp;
588 	unsigned short port;
589 
590 	sp = sctp_sk(asoc->base.sk);
591 
592 	/* AF_INET and AF_INET6 share common port field. */
593 	port = ntohs(addr->v4.sin_port);
594 
595 	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
596 		 asoc, &addr->sa, peer_state);
597 
598 	/* Set the port if it has not been set yet.  */
599 	if (0 == asoc->peer.port)
600 		asoc->peer.port = port;
601 
602 	/* Check to see if this is a duplicate. */
603 	peer = sctp_assoc_lookup_paddr(asoc, addr);
604 	if (peer) {
605 		/* An UNKNOWN state is only set on transports added by
606 		 * user in sctp_connectx() call.  Such transports should be
607 		 * considered CONFIRMED per RFC 4960, Section 5.4.
608 		 */
609 		if (peer->state == SCTP_UNKNOWN) {
610 			peer->state = SCTP_ACTIVE;
611 		}
612 		return peer;
613 	}
614 
615 	peer = sctp_transport_new(asoc->base.net, addr, gfp);
616 	if (!peer)
617 		return NULL;
618 
619 	sctp_transport_set_owner(peer, asoc);
620 
621 	/* Initialize the peer's heartbeat interval based on the
622 	 * association configured value.
623 	 */
624 	peer->hbinterval = asoc->hbinterval;
625 
626 	/* Set the path max_retrans.  */
627 	peer->pathmaxrxt = asoc->pathmaxrxt;
628 
629 	/* And the partial failure retrans threshold */
630 	peer->pf_retrans = asoc->pf_retrans;
631 	/* And the primary path switchover retrans threshold */
632 	peer->ps_retrans = asoc->ps_retrans;
633 
634 	/* Initialize the peer's SACK delay timeout based on the
635 	 * association configured value.
636 	 */
637 	peer->sackdelay = asoc->sackdelay;
638 	peer->sackfreq = asoc->sackfreq;
639 
640 	if (addr->sa.sa_family == AF_INET6) {
641 		__be32 info = addr->v6.sin6_flowinfo;
642 
643 		if (info) {
644 			peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
645 			peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
646 		} else {
647 			peer->flowlabel = asoc->flowlabel;
648 		}
649 	}
650 	peer->dscp = asoc->dscp;
651 
652 	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
653 	 * based on association setting.
654 	 */
655 	peer->param_flags = asoc->param_flags;
656 
657 	/* Initialize the pmtu of the transport. */
658 	sctp_transport_route(peer, NULL, sp);
659 
660 	/* If this is the first transport addr on this association,
661 	 * initialize the association PMTU to the peer's PMTU.
662 	 * If not and the current association PMTU is higher than the new
663 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
664 	 */
665 	sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
666 				  min_t(int, peer->pathmtu, asoc->pathmtu) :
667 				  peer->pathmtu);
668 
669 	peer->pmtu_pending = 0;
670 
671 	/* The asoc->peer.port might not be meaningful yet, but
672 	 * initialize the packet structure anyway.
673 	 */
674 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
675 			 asoc->peer.port);
676 
677 	/* 7.2.1 Slow-Start
678 	 *
679 	 * o The initial cwnd before DATA transmission or after a sufficiently
680 	 *   long idle period MUST be set to
681 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
682 	 *
683 	 * o The initial value of ssthresh MAY be arbitrarily high
684 	 *   (for example, implementations MAY use the size of the
685 	 *   receiver advertised window).
686 	 */
687 	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
688 
689 	/* At this point, we may not have the receiver's advertised window,
690 	 * so initialize ssthresh to the default value and it will be set
691 	 * later when we process the INIT.
692 	 */
693 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
694 
695 	peer->partial_bytes_acked = 0;
696 	peer->flight_size = 0;
697 	peer->burst_limited = 0;
698 
699 	/* Set the transport's RTO.initial value */
700 	peer->rto = asoc->rto_initial;
701 	sctp_max_rto(asoc, peer);
702 
703 	/* Set the peer's active state. */
704 	peer->state = peer_state;
705 
706 	/* Add this peer into the transport hashtable */
707 	if (sctp_hash_transport(peer)) {
708 		sctp_transport_free(peer);
709 		return NULL;
710 	}
711 
712 	/* Attach the remote transport to our asoc.  */
713 	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
714 	asoc->peer.transport_count++;
715 
716 	sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
717 
718 	/* If we do not yet have a primary path, set one.  */
719 	if (!asoc->peer.primary_path) {
720 		sctp_assoc_set_primary(asoc, peer);
721 		asoc->peer.retran_path = peer;
722 	}
723 
724 	if (asoc->peer.active_path == asoc->peer.retran_path &&
725 	    peer->state != SCTP_UNCONFIRMED) {
726 		asoc->peer.retran_path = peer;
727 	}
728 
729 	return peer;
730 }
731 
732 /* Delete a transport address from an association.  */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)733 void sctp_assoc_del_peer(struct sctp_association *asoc,
734 			 const union sctp_addr *addr)
735 {
736 	struct list_head	*pos;
737 	struct list_head	*temp;
738 	struct sctp_transport	*transport;
739 
740 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
741 		transport = list_entry(pos, struct sctp_transport, transports);
742 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
743 			/* Do book keeping for removing the peer and free it. */
744 			sctp_assoc_rm_peer(asoc, transport);
745 			break;
746 		}
747 	}
748 }
749 
750 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)751 struct sctp_transport *sctp_assoc_lookup_paddr(
752 					const struct sctp_association *asoc,
753 					const union sctp_addr *address)
754 {
755 	struct sctp_transport *t;
756 
757 	/* Cycle through all transports searching for a peer address. */
758 
759 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
760 			transports) {
761 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
762 			return t;
763 	}
764 
765 	return NULL;
766 }
767 
768 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)769 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
770 				     struct sctp_transport *primary)
771 {
772 	struct sctp_transport	*temp;
773 	struct sctp_transport	*t;
774 
775 	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
776 				 transports) {
777 		/* if the current transport is not the primary one, delete it */
778 		if (t != primary)
779 			sctp_assoc_rm_peer(asoc, t);
780 	}
781 }
782 
783 /* Engage in transport control operations.
784  * Mark the transport up or down and send a notification to the user.
785  * Select and update the new active and retran paths.
786  */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,enum sctp_transport_cmd command,sctp_sn_error_t error)787 void sctp_assoc_control_transport(struct sctp_association *asoc,
788 				  struct sctp_transport *transport,
789 				  enum sctp_transport_cmd command,
790 				  sctp_sn_error_t error)
791 {
792 	int spc_state = SCTP_ADDR_AVAILABLE;
793 	bool ulp_notify = true;
794 
795 	/* Record the transition on the transport.  */
796 	switch (command) {
797 	case SCTP_TRANSPORT_UP:
798 		/* If we are moving from UNCONFIRMED state due
799 		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
800 		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
801 		 */
802 		if (transport->state == SCTP_PF &&
803 		    asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
804 			ulp_notify = false;
805 		else if (transport->state == SCTP_UNCONFIRMED &&
806 			 error == SCTP_HEARTBEAT_SUCCESS)
807 			spc_state = SCTP_ADDR_CONFIRMED;
808 
809 		transport->state = SCTP_ACTIVE;
810 		break;
811 
812 	case SCTP_TRANSPORT_DOWN:
813 		/* If the transport was never confirmed, do not transition it
814 		 * to inactive state.  Also, release the cached route since
815 		 * there may be a better route next time.
816 		 */
817 		if (transport->state != SCTP_UNCONFIRMED) {
818 			transport->state = SCTP_INACTIVE;
819 			spc_state = SCTP_ADDR_UNREACHABLE;
820 		} else {
821 			sctp_transport_dst_release(transport);
822 			ulp_notify = false;
823 		}
824 		break;
825 
826 	case SCTP_TRANSPORT_PF:
827 		transport->state = SCTP_PF;
828 		if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
829 			ulp_notify = false;
830 		else
831 			spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
832 		break;
833 
834 	default:
835 		return;
836 	}
837 
838 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
839 	 * to the user.
840 	 */
841 	if (ulp_notify)
842 		sctp_ulpevent_notify_peer_addr_change(transport,
843 						      spc_state, error);
844 
845 	/* Select new active and retran paths. */
846 	sctp_select_active_and_retran_path(asoc);
847 }
848 
849 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)850 void sctp_association_hold(struct sctp_association *asoc)
851 {
852 	refcount_inc(&asoc->base.refcnt);
853 }
854 
855 /* Release a reference to an association and cleanup
856  * if there are no more references.
857  */
sctp_association_put(struct sctp_association * asoc)858 void sctp_association_put(struct sctp_association *asoc)
859 {
860 	if (refcount_dec_and_test(&asoc->base.refcnt))
861 		sctp_association_destroy(asoc);
862 }
863 
864 /* Allocate the next TSN, Transmission Sequence Number, for the given
865  * association.
866  */
sctp_association_get_next_tsn(struct sctp_association * asoc)867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868 {
869 	/* From Section 1.6 Serial Number Arithmetic:
870 	 * Transmission Sequence Numbers wrap around when they reach
871 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
872 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873 	 */
874 	__u32 retval = asoc->next_tsn;
875 	asoc->next_tsn++;
876 	asoc->unack_data++;
877 
878 	return retval;
879 }
880 
881 /* Compare two addresses to see if they match.  Wildcard addresses
882  * only match themselves.
883  */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)884 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885 			const union sctp_addr *ss2)
886 {
887 	struct sctp_af *af;
888 
889 	af = sctp_get_af_specific(ss1->sa.sa_family);
890 	if (unlikely(!af))
891 		return 0;
892 
893 	return af->cmp_addr(ss1, ss2);
894 }
895 
896 /* Return an ecne chunk to get prepended to a packet.
897  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
898  * No we don't, but we could/should.
899  */
sctp_get_ecne_prepend(struct sctp_association * asoc)900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901 {
902 	if (!asoc->need_ecne)
903 		return NULL;
904 
905 	/* Send ECNE if needed.
906 	 * Not being able to allocate a chunk here is not deadly.
907 	 */
908 	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909 }
910 
911 /*
912  * Find which transport this TSN was sent on.
913  */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915 					     __u32 tsn)
916 {
917 	struct sctp_transport *active;
918 	struct sctp_transport *match;
919 	struct sctp_transport *transport;
920 	struct sctp_chunk *chunk;
921 	__be32 key = htonl(tsn);
922 
923 	match = NULL;
924 
925 	/*
926 	 * FIXME: In general, find a more efficient data structure for
927 	 * searching.
928 	 */
929 
930 	/*
931 	 * The general strategy is to search each transport's transmitted
932 	 * list.   Return which transport this TSN lives on.
933 	 *
934 	 * Let's be hopeful and check the active_path first.
935 	 * Another optimization would be to know if there is only one
936 	 * outbound path and not have to look for the TSN at all.
937 	 *
938 	 */
939 
940 	active = asoc->peer.active_path;
941 
942 	list_for_each_entry(chunk, &active->transmitted,
943 			transmitted_list) {
944 
945 		if (key == chunk->subh.data_hdr->tsn) {
946 			match = active;
947 			goto out;
948 		}
949 	}
950 
951 	/* If not found, go search all the other transports. */
952 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953 			transports) {
954 
955 		if (transport == active)
956 			continue;
957 		list_for_each_entry(chunk, &transport->transmitted,
958 				transmitted_list) {
959 			if (key == chunk->subh.data_hdr->tsn) {
960 				match = transport;
961 				goto out;
962 			}
963 		}
964 	}
965 out:
966 	return match;
967 }
968 
969 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)970 static void sctp_assoc_bh_rcv(struct work_struct *work)
971 {
972 	struct sctp_association *asoc =
973 		container_of(work, struct sctp_association,
974 			     base.inqueue.immediate);
975 	struct net *net = asoc->base.net;
976 	union sctp_subtype subtype;
977 	struct sctp_endpoint *ep;
978 	struct sctp_chunk *chunk;
979 	struct sctp_inq *inqueue;
980 	int first_time = 1;	/* is this the first time through the loop */
981 	int error = 0;
982 	int state;
983 
984 	/* The association should be held so we should be safe. */
985 	ep = asoc->ep;
986 
987 	inqueue = &asoc->base.inqueue;
988 	sctp_association_hold(asoc);
989 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
990 		state = asoc->state;
991 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
992 
993 		/* If the first chunk in the packet is AUTH, do special
994 		 * processing specified in Section 6.3 of SCTP-AUTH spec
995 		 */
996 		if (first_time && subtype.chunk == SCTP_CID_AUTH) {
997 			struct sctp_chunkhdr *next_hdr;
998 
999 			next_hdr = sctp_inq_peek(inqueue);
1000 			if (!next_hdr)
1001 				goto normal;
1002 
1003 			/* If the next chunk is COOKIE-ECHO, skip the AUTH
1004 			 * chunk while saving a pointer to it so we can do
1005 			 * Authentication later (during cookie-echo
1006 			 * processing).
1007 			 */
1008 			if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1009 				chunk->auth_chunk = skb_clone(chunk->skb,
1010 							      GFP_ATOMIC);
1011 				chunk->auth = 1;
1012 				continue;
1013 			}
1014 		}
1015 
1016 normal:
1017 		/* SCTP-AUTH, Section 6.3:
1018 		 *    The receiver has a list of chunk types which it expects
1019 		 *    to be received only after an AUTH-chunk.  This list has
1020 		 *    been sent to the peer during the association setup.  It
1021 		 *    MUST silently discard these chunks if they are not placed
1022 		 *    after an AUTH chunk in the packet.
1023 		 */
1024 		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025 			continue;
1026 
1027 		/* Remember where the last DATA chunk came from so we
1028 		 * know where to send the SACK.
1029 		 */
1030 		if (sctp_chunk_is_data(chunk))
1031 			asoc->peer.last_data_from = chunk->transport;
1032 		else {
1033 			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034 			asoc->stats.ictrlchunks++;
1035 			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036 				asoc->stats.isacks++;
1037 		}
1038 
1039 		if (chunk->transport)
1040 			chunk->transport->last_time_heard = ktime_get();
1041 
1042 		/* Run through the state machine. */
1043 		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044 				   state, ep, asoc, chunk, GFP_ATOMIC);
1045 
1046 		/* Check to see if the association is freed in response to
1047 		 * the incoming chunk.  If so, get out of the while loop.
1048 		 */
1049 		if (asoc->base.dead)
1050 			break;
1051 
1052 		/* If there is an error on chunk, discard this packet. */
1053 		if (error && chunk)
1054 			chunk->pdiscard = 1;
1055 
1056 		if (first_time)
1057 			first_time = 0;
1058 	}
1059 	sctp_association_put(asoc);
1060 }
1061 
1062 /* This routine moves an association from its old sk to a new sk.  */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1063 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1064 {
1065 	struct sctp_sock *newsp = sctp_sk(newsk);
1066 	struct sock *oldsk = assoc->base.sk;
1067 
1068 	/* Delete the association from the old endpoint's list of
1069 	 * associations.
1070 	 */
1071 	list_del_init(&assoc->asocs);
1072 
1073 	/* Decrement the backlog value for a TCP-style socket. */
1074 	if (sctp_style(oldsk, TCP))
1075 		sk_acceptq_removed(oldsk);
1076 
1077 	/* Release references to the old endpoint and the sock.  */
1078 	sctp_endpoint_put(assoc->ep);
1079 	sock_put(assoc->base.sk);
1080 
1081 	/* Get a reference to the new endpoint.  */
1082 	assoc->ep = newsp->ep;
1083 	sctp_endpoint_hold(assoc->ep);
1084 
1085 	/* Get a reference to the new sock.  */
1086 	assoc->base.sk = newsk;
1087 	sock_hold(assoc->base.sk);
1088 
1089 	/* Add the association to the new endpoint's list of associations.  */
1090 	sctp_endpoint_add_asoc(newsp->ep, assoc);
1091 }
1092 
1093 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1094 int sctp_assoc_update(struct sctp_association *asoc,
1095 		      struct sctp_association *new)
1096 {
1097 	struct sctp_transport *trans;
1098 	struct list_head *pos, *temp;
1099 
1100 	/* Copy in new parameters of peer. */
1101 	asoc->c = new->c;
1102 	asoc->peer.rwnd = new->peer.rwnd;
1103 	asoc->peer.sack_needed = new->peer.sack_needed;
1104 	asoc->peer.auth_capable = new->peer.auth_capable;
1105 	asoc->peer.i = new->peer.i;
1106 
1107 	if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1108 			      asoc->peer.i.initial_tsn, GFP_ATOMIC))
1109 		return -ENOMEM;
1110 
1111 	/* Remove any peer addresses not present in the new association. */
1112 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1113 		trans = list_entry(pos, struct sctp_transport, transports);
1114 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1115 			sctp_assoc_rm_peer(asoc, trans);
1116 			continue;
1117 		}
1118 
1119 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1120 			sctp_transport_reset(trans);
1121 	}
1122 
1123 	/* If the case is A (association restart), use
1124 	 * initial_tsn as next_tsn. If the case is B, use
1125 	 * current next_tsn in case data sent to peer
1126 	 * has been discarded and needs retransmission.
1127 	 */
1128 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1129 		asoc->next_tsn = new->next_tsn;
1130 		asoc->ctsn_ack_point = new->ctsn_ack_point;
1131 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1132 
1133 		/* Reinitialize SSN for both local streams
1134 		 * and peer's streams.
1135 		 */
1136 		sctp_stream_clear(&asoc->stream);
1137 
1138 		/* Flush the ULP reassembly and ordered queue.
1139 		 * Any data there will now be stale and will
1140 		 * cause problems.
1141 		 */
1142 		sctp_ulpq_flush(&asoc->ulpq);
1143 
1144 		/* reset the overall association error count so
1145 		 * that the restarted association doesn't get torn
1146 		 * down on the next retransmission timer.
1147 		 */
1148 		asoc->overall_error_count = 0;
1149 
1150 	} else {
1151 		/* Add any peer addresses from the new association. */
1152 		list_for_each_entry(trans, &new->peer.transport_addr_list,
1153 				    transports)
1154 			if (!sctp_assoc_add_peer(asoc, &trans->ipaddr,
1155 						 GFP_ATOMIC, trans->state))
1156 				return -ENOMEM;
1157 
1158 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1159 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1160 
1161 		if (sctp_state(asoc, COOKIE_WAIT))
1162 			sctp_stream_update(&asoc->stream, &new->stream);
1163 
1164 		/* get a new assoc id if we don't have one yet. */
1165 		if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1166 			return -ENOMEM;
1167 	}
1168 
1169 	/* SCTP-AUTH: Save the peer parameters from the new associations
1170 	 * and also move the association shared keys over
1171 	 */
1172 	kfree(asoc->peer.peer_random);
1173 	asoc->peer.peer_random = new->peer.peer_random;
1174 	new->peer.peer_random = NULL;
1175 
1176 	kfree(asoc->peer.peer_chunks);
1177 	asoc->peer.peer_chunks = new->peer.peer_chunks;
1178 	new->peer.peer_chunks = NULL;
1179 
1180 	kfree(asoc->peer.peer_hmacs);
1181 	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182 	new->peer.peer_hmacs = NULL;
1183 
1184 	return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1185 }
1186 
1187 /* Update the retran path for sending a retransmitted packet.
1188  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1189  *
1190  *   When there is outbound data to send and the primary path
1191  *   becomes inactive (e.g., due to failures), or where the
1192  *   SCTP user explicitly requests to send data to an
1193  *   inactive destination transport address, before reporting
1194  *   an error to its ULP, the SCTP endpoint should try to send
1195  *   the data to an alternate active destination transport
1196  *   address if one exists.
1197  *
1198  *   When retransmitting data that timed out, if the endpoint
1199  *   is multihomed, it should consider each source-destination
1200  *   address pair in its retransmission selection policy.
1201  *   When retransmitting timed-out data, the endpoint should
1202  *   attempt to pick the most divergent source-destination
1203  *   pair from the original source-destination pair to which
1204  *   the packet was transmitted.
1205  *
1206  *   Note: Rules for picking the most divergent source-destination
1207  *   pair are an implementation decision and are not specified
1208  *   within this document.
1209  *
1210  * Our basic strategy is to round-robin transports in priorities
1211  * according to sctp_trans_score() e.g., if no such
1212  * transport with state SCTP_ACTIVE exists, round-robin through
1213  * SCTP_UNKNOWN, etc. You get the picture.
1214  */
sctp_trans_score(const struct sctp_transport * trans)1215 static u8 sctp_trans_score(const struct sctp_transport *trans)
1216 {
1217 	switch (trans->state) {
1218 	case SCTP_ACTIVE:
1219 		return 3;	/* best case */
1220 	case SCTP_UNKNOWN:
1221 		return 2;
1222 	case SCTP_PF:
1223 		return 1;
1224 	default: /* case SCTP_INACTIVE */
1225 		return 0;	/* worst case */
1226 	}
1227 }
1228 
sctp_trans_elect_tie(struct sctp_transport * trans1,struct sctp_transport * trans2)1229 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230 						   struct sctp_transport *trans2)
1231 {
1232 	if (trans1->error_count > trans2->error_count) {
1233 		return trans2;
1234 	} else if (trans1->error_count == trans2->error_count &&
1235 		   ktime_after(trans2->last_time_heard,
1236 			       trans1->last_time_heard)) {
1237 		return trans2;
1238 	} else {
1239 		return trans1;
1240 	}
1241 }
1242 
sctp_trans_elect_best(struct sctp_transport * curr,struct sctp_transport * best)1243 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244 						    struct sctp_transport *best)
1245 {
1246 	u8 score_curr, score_best;
1247 
1248 	if (best == NULL || curr == best)
1249 		return curr;
1250 
1251 	score_curr = sctp_trans_score(curr);
1252 	score_best = sctp_trans_score(best);
1253 
1254 	/* First, try a score-based selection if both transport states
1255 	 * differ. If we're in a tie, lets try to make a more clever
1256 	 * decision here based on error counts and last time heard.
1257 	 */
1258 	if (score_curr > score_best)
1259 		return curr;
1260 	else if (score_curr == score_best)
1261 		return sctp_trans_elect_tie(best, curr);
1262 	else
1263 		return best;
1264 }
1265 
sctp_assoc_update_retran_path(struct sctp_association * asoc)1266 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267 {
1268 	struct sctp_transport *trans = asoc->peer.retran_path;
1269 	struct sctp_transport *trans_next = NULL;
1270 
1271 	/* We're done as we only have the one and only path. */
1272 	if (asoc->peer.transport_count == 1)
1273 		return;
1274 	/* If active_path and retran_path are the same and active,
1275 	 * then this is the only active path. Use it.
1276 	 */
1277 	if (asoc->peer.active_path == asoc->peer.retran_path &&
1278 	    asoc->peer.active_path->state == SCTP_ACTIVE)
1279 		return;
1280 
1281 	/* Iterate from retran_path's successor back to retran_path. */
1282 	for (trans = list_next_entry(trans, transports); 1;
1283 	     trans = list_next_entry(trans, transports)) {
1284 		/* Manually skip the head element. */
1285 		if (&trans->transports == &asoc->peer.transport_addr_list)
1286 			continue;
1287 		if (trans->state == SCTP_UNCONFIRMED)
1288 			continue;
1289 		trans_next = sctp_trans_elect_best(trans, trans_next);
1290 		/* Active is good enough for immediate return. */
1291 		if (trans_next->state == SCTP_ACTIVE)
1292 			break;
1293 		/* We've reached the end, time to update path. */
1294 		if (trans == asoc->peer.retran_path)
1295 			break;
1296 	}
1297 
1298 	asoc->peer.retran_path = trans_next;
1299 
1300 	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301 		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302 }
1303 
sctp_select_active_and_retran_path(struct sctp_association * asoc)1304 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305 {
1306 	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307 	struct sctp_transport *trans_pf = NULL;
1308 
1309 	/* Look for the two most recently used active transports. */
1310 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311 			    transports) {
1312 		/* Skip uninteresting transports. */
1313 		if (trans->state == SCTP_INACTIVE ||
1314 		    trans->state == SCTP_UNCONFIRMED)
1315 			continue;
1316 		/* Keep track of the best PF transport from our
1317 		 * list in case we don't find an active one.
1318 		 */
1319 		if (trans->state == SCTP_PF) {
1320 			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321 			continue;
1322 		}
1323 		/* For active transports, pick the most recent ones. */
1324 		if (trans_pri == NULL ||
1325 		    ktime_after(trans->last_time_heard,
1326 				trans_pri->last_time_heard)) {
1327 			trans_sec = trans_pri;
1328 			trans_pri = trans;
1329 		} else if (trans_sec == NULL ||
1330 			   ktime_after(trans->last_time_heard,
1331 				       trans_sec->last_time_heard)) {
1332 			trans_sec = trans;
1333 		}
1334 	}
1335 
1336 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337 	 *
1338 	 * By default, an endpoint should always transmit to the primary
1339 	 * path, unless the SCTP user explicitly specifies the
1340 	 * destination transport address (and possibly source transport
1341 	 * address) to use. [If the primary is active but not most recent,
1342 	 * bump the most recently used transport.]
1343 	 */
1344 	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345 	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346 	     asoc->peer.primary_path != trans_pri) {
1347 		trans_sec = trans_pri;
1348 		trans_pri = asoc->peer.primary_path;
1349 	}
1350 
1351 	/* We did not find anything useful for a possible retransmission
1352 	 * path; either primary path that we found is the same as
1353 	 * the current one, or we didn't generally find an active one.
1354 	 */
1355 	if (trans_sec == NULL)
1356 		trans_sec = trans_pri;
1357 
1358 	/* If we failed to find a usable transport, just camp on the
1359 	 * active or pick a PF iff it's the better choice.
1360 	 */
1361 	if (trans_pri == NULL) {
1362 		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363 		trans_sec = trans_pri;
1364 	}
1365 
1366 	/* Set the active and retran transports. */
1367 	asoc->peer.active_path = trans_pri;
1368 	asoc->peer.retran_path = trans_sec;
1369 }
1370 
1371 struct sctp_transport *
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1372 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373 				  struct sctp_transport *last_sent_to)
1374 {
1375 	/* If this is the first time packet is sent, use the active path,
1376 	 * else use the retran path. If the last packet was sent over the
1377 	 * retran path, update the retran path and use it.
1378 	 */
1379 	if (last_sent_to == NULL) {
1380 		return asoc->peer.active_path;
1381 	} else {
1382 		if (last_sent_to == asoc->peer.retran_path)
1383 			sctp_assoc_update_retran_path(asoc);
1384 
1385 		return asoc->peer.retran_path;
1386 	}
1387 }
1388 
sctp_assoc_update_frag_point(struct sctp_association * asoc)1389 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1390 {
1391 	int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1392 				    sctp_datachk_len(&asoc->stream));
1393 
1394 	if (asoc->user_frag)
1395 		frag = min_t(int, frag, asoc->user_frag);
1396 
1397 	frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1398 				sctp_datachk_len(&asoc->stream));
1399 
1400 	asoc->frag_point = SCTP_TRUNC4(frag);
1401 }
1402 
sctp_assoc_set_pmtu(struct sctp_association * asoc,__u32 pmtu)1403 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1404 {
1405 	if (asoc->pathmtu != pmtu) {
1406 		asoc->pathmtu = pmtu;
1407 		sctp_assoc_update_frag_point(asoc);
1408 	}
1409 
1410 	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1411 		 asoc->pathmtu, asoc->frag_point);
1412 }
1413 
1414 /* Update the association's pmtu and frag_point by going through all the
1415  * transports. This routine is called when a transport's PMTU has changed.
1416  */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1417 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1418 {
1419 	struct sctp_transport *t;
1420 	__u32 pmtu = 0;
1421 
1422 	if (!asoc)
1423 		return;
1424 
1425 	/* Get the lowest pmtu of all the transports. */
1426 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1427 		if (t->pmtu_pending && t->dst) {
1428 			sctp_transport_update_pmtu(t,
1429 						   atomic_read(&t->mtu_info));
1430 			t->pmtu_pending = 0;
1431 		}
1432 		if (!pmtu || (t->pathmtu < pmtu))
1433 			pmtu = t->pathmtu;
1434 	}
1435 
1436 	sctp_assoc_set_pmtu(asoc, pmtu);
1437 }
1438 
1439 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1440 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1441 {
1442 	struct net *net = asoc->base.net;
1443 
1444 	switch (asoc->state) {
1445 	case SCTP_STATE_ESTABLISHED:
1446 	case SCTP_STATE_SHUTDOWN_PENDING:
1447 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1448 	case SCTP_STATE_SHUTDOWN_SENT:
1449 		if ((asoc->rwnd > asoc->a_rwnd) &&
1450 		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1451 			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1452 			   asoc->pathmtu)))
1453 			return true;
1454 		break;
1455 	default:
1456 		break;
1457 	}
1458 	return false;
1459 }
1460 
1461 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned int len)1462 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1463 {
1464 	struct sctp_chunk *sack;
1465 	struct timer_list *timer;
1466 
1467 	if (asoc->rwnd_over) {
1468 		if (asoc->rwnd_over >= len) {
1469 			asoc->rwnd_over -= len;
1470 		} else {
1471 			asoc->rwnd += (len - asoc->rwnd_over);
1472 			asoc->rwnd_over = 0;
1473 		}
1474 	} else {
1475 		asoc->rwnd += len;
1476 	}
1477 
1478 	/* If we had window pressure, start recovering it
1479 	 * once our rwnd had reached the accumulated pressure
1480 	 * threshold.  The idea is to recover slowly, but up
1481 	 * to the initial advertised window.
1482 	 */
1483 	if (asoc->rwnd_press) {
1484 		int change = min(asoc->pathmtu, asoc->rwnd_press);
1485 		asoc->rwnd += change;
1486 		asoc->rwnd_press -= change;
1487 	}
1488 
1489 	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1490 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1491 		 asoc->a_rwnd);
1492 
1493 	/* Send a window update SACK if the rwnd has increased by at least the
1494 	 * minimum of the association's PMTU and half of the receive buffer.
1495 	 * The algorithm used is similar to the one described in
1496 	 * Section 4.2.3.3 of RFC 1122.
1497 	 */
1498 	if (sctp_peer_needs_update(asoc)) {
1499 		asoc->a_rwnd = asoc->rwnd;
1500 
1501 		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1502 			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1503 			 asoc->a_rwnd);
1504 
1505 		sack = sctp_make_sack(asoc);
1506 		if (!sack)
1507 			return;
1508 
1509 		asoc->peer.sack_needed = 0;
1510 
1511 		sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1512 
1513 		/* Stop the SACK timer.  */
1514 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1515 		if (del_timer(timer))
1516 			sctp_association_put(asoc);
1517 	}
1518 }
1519 
1520 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned int len)1521 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1522 {
1523 	int rx_count;
1524 	int over = 0;
1525 
1526 	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1527 		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1528 			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1529 			 asoc->rwnd, asoc->rwnd_over);
1530 
1531 	if (asoc->ep->rcvbuf_policy)
1532 		rx_count = atomic_read(&asoc->rmem_alloc);
1533 	else
1534 		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1535 
1536 	/* If we've reached or overflowed our receive buffer, announce
1537 	 * a 0 rwnd if rwnd would still be positive.  Store the
1538 	 * potential pressure overflow so that the window can be restored
1539 	 * back to original value.
1540 	 */
1541 	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1542 		over = 1;
1543 
1544 	if (asoc->rwnd >= len) {
1545 		asoc->rwnd -= len;
1546 		if (over) {
1547 			asoc->rwnd_press += asoc->rwnd;
1548 			asoc->rwnd = 0;
1549 		}
1550 	} else {
1551 		asoc->rwnd_over += len - asoc->rwnd;
1552 		asoc->rwnd = 0;
1553 	}
1554 
1555 	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1556 		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1557 		 asoc->rwnd_press);
1558 }
1559 
1560 /* Build the bind address list for the association based on info from the
1561  * local endpoint and the remote peer.
1562  */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,enum sctp_scope scope,gfp_t gfp)1563 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1564 				     enum sctp_scope scope, gfp_t gfp)
1565 {
1566 	struct sock *sk = asoc->base.sk;
1567 	int flags;
1568 
1569 	/* Use scoping rules to determine the subset of addresses from
1570 	 * the endpoint.
1571 	 */
1572 	flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1573 	if (!inet_v6_ipv6only(sk))
1574 		flags |= SCTP_ADDR4_ALLOWED;
1575 	if (asoc->peer.ipv4_address)
1576 		flags |= SCTP_ADDR4_PEERSUPP;
1577 	if (asoc->peer.ipv6_address)
1578 		flags |= SCTP_ADDR6_PEERSUPP;
1579 
1580 	return sctp_bind_addr_copy(asoc->base.net,
1581 				   &asoc->base.bind_addr,
1582 				   &asoc->ep->base.bind_addr,
1583 				   scope, gfp, flags);
1584 }
1585 
1586 /* Build the association's bind address list from the cookie.  */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1587 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1588 					 struct sctp_cookie *cookie,
1589 					 gfp_t gfp)
1590 {
1591 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1592 	int var_size3 = cookie->raw_addr_list_len;
1593 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1594 
1595 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1596 				      asoc->ep->base.bind_addr.port, gfp);
1597 }
1598 
1599 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1600 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1601 			    const union sctp_addr *laddr)
1602 {
1603 	int found = 0;
1604 
1605 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1606 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1607 				 sctp_sk(asoc->base.sk)))
1608 		found = 1;
1609 
1610 	return found;
1611 }
1612 
1613 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1614 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1615 {
1616 	bool preload = gfpflags_allow_blocking(gfp);
1617 	int ret;
1618 
1619 	/* If the id is already assigned, keep it. */
1620 	if (asoc->assoc_id)
1621 		return 0;
1622 
1623 	if (preload)
1624 		idr_preload(gfp);
1625 	spin_lock_bh(&sctp_assocs_id_lock);
1626 	/* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1627 	 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1628 	 */
1629 	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1630 			       GFP_NOWAIT);
1631 	spin_unlock_bh(&sctp_assocs_id_lock);
1632 	if (preload)
1633 		idr_preload_end();
1634 	if (ret < 0)
1635 		return ret;
1636 
1637 	asoc->assoc_id = (sctp_assoc_t)ret;
1638 	return 0;
1639 }
1640 
1641 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1642 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1643 {
1644 	struct sctp_chunk *asconf;
1645 	struct sctp_chunk *tmp;
1646 
1647 	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1648 		list_del_init(&asconf->list);
1649 		sctp_chunk_free(asconf);
1650 	}
1651 }
1652 
1653 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1654 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1655 {
1656 	struct sctp_chunk *ack;
1657 	struct sctp_chunk *tmp;
1658 
1659 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1660 				transmitted_list) {
1661 		list_del_init(&ack->transmitted_list);
1662 		sctp_chunk_free(ack);
1663 	}
1664 }
1665 
1666 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1667 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1668 {
1669 	struct sctp_chunk *ack;
1670 	struct sctp_chunk *tmp;
1671 
1672 	/* We can remove all the entries from the queue up to
1673 	 * the "Peer-Sequence-Number".
1674 	 */
1675 	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1676 				transmitted_list) {
1677 		if (ack->subh.addip_hdr->serial ==
1678 				htonl(asoc->peer.addip_serial))
1679 			break;
1680 
1681 		list_del_init(&ack->transmitted_list);
1682 		sctp_chunk_free(ack);
1683 	}
1684 }
1685 
1686 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1687 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1688 					const struct sctp_association *asoc,
1689 					__be32 serial)
1690 {
1691 	struct sctp_chunk *ack;
1692 
1693 	/* Walk through the list of cached ASCONF-ACKs and find the
1694 	 * ack chunk whose serial number matches that of the request.
1695 	 */
1696 	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1697 		if (sctp_chunk_pending(ack))
1698 			continue;
1699 		if (ack->subh.addip_hdr->serial == serial) {
1700 			sctp_chunk_hold(ack);
1701 			return ack;
1702 		}
1703 	}
1704 
1705 	return NULL;
1706 }
1707 
sctp_asconf_queue_teardown(struct sctp_association * asoc)1708 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1709 {
1710 	/* Free any cached ASCONF_ACK chunk. */
1711 	sctp_assoc_free_asconf_acks(asoc);
1712 
1713 	/* Free the ASCONF queue. */
1714 	sctp_assoc_free_asconf_queue(asoc);
1715 
1716 	/* Free any cached ASCONF chunk. */
1717 	if (asoc->addip_last_asconf)
1718 		sctp_chunk_free(asoc->addip_last_asconf);
1719 }
1720