1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * This module provides the abstraction for an SCTP association.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Jon Grimm <jgrimm@us.ibm.com>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Daisy Chang <daisyc@us.ibm.com>
25 * Ryan Layer <rmlayer@us.ibm.com>
26 * Kevin Gao <kevin.gao@intel.com>
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47
48 /* 1st Level Abstractions. */
49
50 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)51 static struct sctp_association *sctp_association_init(
52 struct sctp_association *asoc,
53 const struct sctp_endpoint *ep,
54 const struct sock *sk,
55 enum sctp_scope scope, gfp_t gfp)
56 {
57 struct sctp_sock *sp;
58 struct sctp_paramhdr *p;
59 int i;
60
61 /* Retrieve the SCTP per socket area. */
62 sp = sctp_sk((struct sock *)sk);
63
64 /* Discarding const is appropriate here. */
65 asoc->ep = (struct sctp_endpoint *)ep;
66 asoc->base.sk = (struct sock *)sk;
67 asoc->base.net = sock_net(sk);
68
69 sctp_endpoint_hold(asoc->ep);
70 sock_hold(asoc->base.sk);
71
72 /* Initialize the common base substructure. */
73 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74
75 /* Initialize the object handling fields. */
76 refcount_set(&asoc->base.refcnt, 1);
77
78 /* Initialize the bind addr area. */
79 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80
81 asoc->state = SCTP_STATE_CLOSED;
82 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 asoc->user_frag = sp->user_frag;
84
85 /* Set the association max_retrans and RTO values from the
86 * socket values.
87 */
88 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 asoc->pf_retrans = sp->pf_retrans;
90 asoc->ps_retrans = sp->ps_retrans;
91 asoc->pf_expose = sp->pf_expose;
92
93 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96
97 /* Initialize the association's heartbeat interval based on the
98 * sock configured value.
99 */
100 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101
102 /* Initialize path max retrans value. */
103 asoc->pathmaxrxt = sp->pathmaxrxt;
104
105 asoc->flowlabel = sp->flowlabel;
106 asoc->dscp = sp->dscp;
107
108 /* Set association default SACK delay */
109 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
110 asoc->sackfreq = sp->sackfreq;
111
112 /* Set the association default flags controlling
113 * Heartbeat, SACK delay, and Path MTU Discovery.
114 */
115 asoc->param_flags = sp->param_flags;
116
117 /* Initialize the maximum number of new data packets that can be sent
118 * in a burst.
119 */
120 asoc->max_burst = sp->max_burst;
121
122 asoc->subscribe = sp->subscribe;
123
124 /* initialize association timers */
125 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
126 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
127 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
128
129 /* sctpimpguide Section 2.12.2
130 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
131 * recommended value of 5 times 'RTO.Max'.
132 */
133 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
134 = 5 * asoc->rto_max;
135
136 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
138
139 /* Initializes the timers */
140 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
141 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
142
143 /* Pull default initialization values from the sock options.
144 * Note: This assumes that the values have already been
145 * validated in the sock.
146 */
147 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
148 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
149 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
150
151 asoc->max_init_timeo =
152 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
153
154 /* Set the local window size for receive.
155 * This is also the rcvbuf space per association.
156 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
157 * 1500 bytes in one SCTP packet.
158 */
159 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
160 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
161 else
162 asoc->rwnd = sk->sk_rcvbuf/2;
163
164 asoc->a_rwnd = asoc->rwnd;
165
166 /* Use my own max window until I learn something better. */
167 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
168
169 /* Initialize the receive memory counter */
170 atomic_set(&asoc->rmem_alloc, 0);
171
172 init_waitqueue_head(&asoc->wait);
173
174 asoc->c.my_vtag = sctp_generate_tag(ep);
175 asoc->c.my_port = ep->base.bind_addr.port;
176
177 asoc->c.initial_tsn = sctp_generate_tsn(ep);
178
179 asoc->next_tsn = asoc->c.initial_tsn;
180
181 asoc->ctsn_ack_point = asoc->next_tsn - 1;
182 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
183 asoc->highest_sacked = asoc->ctsn_ack_point;
184 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
185
186 /* ADDIP Section 4.1 Asconf Chunk Procedures
187 *
188 * When an endpoint has an ASCONF signaled change to be sent to the
189 * remote endpoint it should do the following:
190 * ...
191 * A2) a serial number should be assigned to the chunk. The serial
192 * number SHOULD be a monotonically increasing number. The serial
193 * numbers SHOULD be initialized at the start of the
194 * association to the same value as the initial TSN.
195 */
196 asoc->addip_serial = asoc->c.initial_tsn;
197 asoc->strreset_outseq = asoc->c.initial_tsn;
198
199 INIT_LIST_HEAD(&asoc->addip_chunk_list);
200 INIT_LIST_HEAD(&asoc->asconf_ack_list);
201
202 /* Make an empty list of remote transport addresses. */
203 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
204
205 /* RFC 2960 5.1 Normal Establishment of an Association
206 *
207 * After the reception of the first data chunk in an
208 * association the endpoint must immediately respond with a
209 * sack to acknowledge the data chunk. Subsequent
210 * acknowledgements should be done as described in Section
211 * 6.2.
212 *
213 * [We implement this by telling a new association that it
214 * already received one packet.]
215 */
216 asoc->peer.sack_needed = 1;
217 asoc->peer.sack_generation = 1;
218
219 /* Create an input queue. */
220 sctp_inq_init(&asoc->base.inqueue);
221 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
222
223 /* Create an output queue. */
224 sctp_outq_init(asoc, &asoc->outqueue);
225
226 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
227 goto fail_init;
228
229 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp))
230 goto stream_free;
231
232 /* Initialize default path MTU. */
233 asoc->pathmtu = sp->pathmtu;
234 sctp_assoc_update_frag_point(asoc);
235
236 /* Assume that peer would support both address types unless we are
237 * told otherwise.
238 */
239 asoc->peer.ipv4_address = 1;
240 if (asoc->base.sk->sk_family == PF_INET6)
241 asoc->peer.ipv6_address = 1;
242 INIT_LIST_HEAD(&asoc->asocs);
243
244 asoc->default_stream = sp->default_stream;
245 asoc->default_ppid = sp->default_ppid;
246 asoc->default_flags = sp->default_flags;
247 asoc->default_context = sp->default_context;
248 asoc->default_timetolive = sp->default_timetolive;
249 asoc->default_rcv_context = sp->default_rcv_context;
250
251 /* AUTH related initializations */
252 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
253 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
254 goto stream_free;
255
256 asoc->active_key_id = ep->active_key_id;
257 asoc->strreset_enable = ep->strreset_enable;
258
259 /* Save the hmacs and chunks list into this association */
260 if (ep->auth_hmacs_list)
261 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
262 ntohs(ep->auth_hmacs_list->param_hdr.length));
263 if (ep->auth_chunk_list)
264 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
265 ntohs(ep->auth_chunk_list->param_hdr.length));
266
267 /* Get the AUTH random number for this association */
268 p = (struct sctp_paramhdr *)asoc->c.auth_random;
269 p->type = SCTP_PARAM_RANDOM;
270 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
271 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
272
273 return asoc;
274
275 stream_free:
276 sctp_stream_free(&asoc->stream);
277 fail_init:
278 sock_put(asoc->base.sk);
279 sctp_endpoint_put(asoc->ep);
280 return NULL;
281 }
282
283 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)284 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
285 const struct sock *sk,
286 enum sctp_scope scope, gfp_t gfp)
287 {
288 struct sctp_association *asoc;
289
290 asoc = kzalloc(sizeof(*asoc), gfp);
291 if (!asoc)
292 goto fail;
293
294 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
295 goto fail_init;
296
297 SCTP_DBG_OBJCNT_INC(assoc);
298
299 pr_debug("Created asoc %p\n", asoc);
300
301 return asoc;
302
303 fail_init:
304 kfree(asoc);
305 fail:
306 return NULL;
307 }
308
309 /* Free this association if possible. There may still be users, so
310 * the actual deallocation may be delayed.
311 */
sctp_association_free(struct sctp_association * asoc)312 void sctp_association_free(struct sctp_association *asoc)
313 {
314 struct sock *sk = asoc->base.sk;
315 struct sctp_transport *transport;
316 struct list_head *pos, *temp;
317 int i;
318
319 /* Only real associations count against the endpoint, so
320 * don't bother for if this is a temporary association.
321 */
322 if (!list_empty(&asoc->asocs)) {
323 list_del(&asoc->asocs);
324
325 /* Decrement the backlog value for a TCP-style listening
326 * socket.
327 */
328 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
329 sk_acceptq_removed(sk);
330 }
331
332 /* Mark as dead, so other users can know this structure is
333 * going away.
334 */
335 asoc->base.dead = true;
336
337 /* Dispose of any data lying around in the outqueue. */
338 sctp_outq_free(&asoc->outqueue);
339
340 /* Dispose of any pending messages for the upper layer. */
341 sctp_ulpq_free(&asoc->ulpq);
342
343 /* Dispose of any pending chunks on the inqueue. */
344 sctp_inq_free(&asoc->base.inqueue);
345
346 sctp_tsnmap_free(&asoc->peer.tsn_map);
347
348 /* Free stream information. */
349 sctp_stream_free(&asoc->stream);
350
351 if (asoc->strreset_chunk)
352 sctp_chunk_free(asoc->strreset_chunk);
353
354 /* Clean up the bound address list. */
355 sctp_bind_addr_free(&asoc->base.bind_addr);
356
357 /* Do we need to go through all of our timers and
358 * delete them? To be safe we will try to delete all, but we
359 * should be able to go through and make a guess based
360 * on our state.
361 */
362 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
363 if (del_timer(&asoc->timers[i]))
364 sctp_association_put(asoc);
365 }
366
367 /* Free peer's cached cookie. */
368 kfree(asoc->peer.cookie);
369 kfree(asoc->peer.peer_random);
370 kfree(asoc->peer.peer_chunks);
371 kfree(asoc->peer.peer_hmacs);
372
373 /* Release the transport structures. */
374 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
375 transport = list_entry(pos, struct sctp_transport, transports);
376 list_del_rcu(pos);
377 sctp_unhash_transport(transport);
378 sctp_transport_free(transport);
379 }
380
381 asoc->peer.transport_count = 0;
382
383 sctp_asconf_queue_teardown(asoc);
384
385 /* Free pending address space being deleted */
386 kfree(asoc->asconf_addr_del_pending);
387
388 /* AUTH - Free the endpoint shared keys */
389 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
390
391 /* AUTH - Free the association shared key */
392 sctp_auth_key_put(asoc->asoc_shared_key);
393
394 sctp_association_put(asoc);
395 }
396
397 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)398 static void sctp_association_destroy(struct sctp_association *asoc)
399 {
400 if (unlikely(!asoc->base.dead)) {
401 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
402 return;
403 }
404
405 sctp_endpoint_put(asoc->ep);
406 sock_put(asoc->base.sk);
407
408 if (asoc->assoc_id != 0) {
409 spin_lock_bh(&sctp_assocs_id_lock);
410 idr_remove(&sctp_assocs_id, asoc->assoc_id);
411 spin_unlock_bh(&sctp_assocs_id_lock);
412 }
413
414 WARN_ON(atomic_read(&asoc->rmem_alloc));
415
416 kfree_rcu(asoc, rcu);
417 SCTP_DBG_OBJCNT_DEC(assoc);
418 }
419
420 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)421 void sctp_assoc_set_primary(struct sctp_association *asoc,
422 struct sctp_transport *transport)
423 {
424 int changeover = 0;
425
426 /* it's a changeover only if we already have a primary path
427 * that we are changing
428 */
429 if (asoc->peer.primary_path != NULL &&
430 asoc->peer.primary_path != transport)
431 changeover = 1 ;
432
433 asoc->peer.primary_path = transport;
434 sctp_ulpevent_notify_peer_addr_change(transport,
435 SCTP_ADDR_MADE_PRIM, 0);
436
437 /* Set a default msg_name for events. */
438 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
439 sizeof(union sctp_addr));
440
441 /* If the primary path is changing, assume that the
442 * user wants to use this new path.
443 */
444 if ((transport->state == SCTP_ACTIVE) ||
445 (transport->state == SCTP_UNKNOWN))
446 asoc->peer.active_path = transport;
447
448 /*
449 * SFR-CACC algorithm:
450 * Upon the receipt of a request to change the primary
451 * destination address, on the data structure for the new
452 * primary destination, the sender MUST do the following:
453 *
454 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
455 * to this destination address earlier. The sender MUST set
456 * CYCLING_CHANGEOVER to indicate that this switch is a
457 * double switch to the same destination address.
458 *
459 * Really, only bother is we have data queued or outstanding on
460 * the association.
461 */
462 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
463 return;
464
465 if (transport->cacc.changeover_active)
466 transport->cacc.cycling_changeover = changeover;
467
468 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
469 * a changeover has occurred.
470 */
471 transport->cacc.changeover_active = changeover;
472
473 /* 3) The sender MUST store the next TSN to be sent in
474 * next_tsn_at_change.
475 */
476 transport->cacc.next_tsn_at_change = asoc->next_tsn;
477 }
478
479 /* Remove a transport from an association. */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)480 void sctp_assoc_rm_peer(struct sctp_association *asoc,
481 struct sctp_transport *peer)
482 {
483 struct sctp_transport *transport;
484 struct list_head *pos;
485 struct sctp_chunk *ch;
486
487 pr_debug("%s: association:%p addr:%pISpc\n",
488 __func__, asoc, &peer->ipaddr.sa);
489
490 /* If we are to remove the current retran_path, update it
491 * to the next peer before removing this peer from the list.
492 */
493 if (asoc->peer.retran_path == peer)
494 sctp_assoc_update_retran_path(asoc);
495
496 /* Remove this peer from the list. */
497 list_del_rcu(&peer->transports);
498 /* Remove this peer from the transport hashtable */
499 sctp_unhash_transport(peer);
500
501 /* Get the first transport of asoc. */
502 pos = asoc->peer.transport_addr_list.next;
503 transport = list_entry(pos, struct sctp_transport, transports);
504
505 /* Update any entries that match the peer to be deleted. */
506 if (asoc->peer.primary_path == peer)
507 sctp_assoc_set_primary(asoc, transport);
508 if (asoc->peer.active_path == peer)
509 asoc->peer.active_path = transport;
510 if (asoc->peer.retran_path == peer)
511 asoc->peer.retran_path = transport;
512 if (asoc->peer.last_data_from == peer)
513 asoc->peer.last_data_from = transport;
514
515 if (asoc->strreset_chunk &&
516 asoc->strreset_chunk->transport == peer) {
517 asoc->strreset_chunk->transport = transport;
518 sctp_transport_reset_reconf_timer(transport);
519 }
520
521 /* If we remove the transport an INIT was last sent to, set it to
522 * NULL. Combined with the update of the retran path above, this
523 * will cause the next INIT to be sent to the next available
524 * transport, maintaining the cycle.
525 */
526 if (asoc->init_last_sent_to == peer)
527 asoc->init_last_sent_to = NULL;
528
529 /* If we remove the transport an SHUTDOWN was last sent to, set it
530 * to NULL. Combined with the update of the retran path above, this
531 * will cause the next SHUTDOWN to be sent to the next available
532 * transport, maintaining the cycle.
533 */
534 if (asoc->shutdown_last_sent_to == peer)
535 asoc->shutdown_last_sent_to = NULL;
536
537 /* If we remove the transport an ASCONF was last sent to, set it to
538 * NULL.
539 */
540 if (asoc->addip_last_asconf &&
541 asoc->addip_last_asconf->transport == peer)
542 asoc->addip_last_asconf->transport = NULL;
543
544 /* If we have something on the transmitted list, we have to
545 * save it off. The best place is the active path.
546 */
547 if (!list_empty(&peer->transmitted)) {
548 struct sctp_transport *active = asoc->peer.active_path;
549
550 /* Reset the transport of each chunk on this list */
551 list_for_each_entry(ch, &peer->transmitted,
552 transmitted_list) {
553 ch->transport = NULL;
554 ch->rtt_in_progress = 0;
555 }
556
557 list_splice_tail_init(&peer->transmitted,
558 &active->transmitted);
559
560 /* Start a T3 timer here in case it wasn't running so
561 * that these migrated packets have a chance to get
562 * retransmitted.
563 */
564 if (!timer_pending(&active->T3_rtx_timer))
565 if (!mod_timer(&active->T3_rtx_timer,
566 jiffies + active->rto))
567 sctp_transport_hold(active);
568 }
569
570 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
571 if (ch->transport == peer)
572 ch->transport = NULL;
573
574 asoc->peer.transport_count--;
575
576 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
577 sctp_transport_free(peer);
578 }
579
580 /* Add a transport address to an association. */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)581 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
582 const union sctp_addr *addr,
583 const gfp_t gfp,
584 const int peer_state)
585 {
586 struct sctp_transport *peer;
587 struct sctp_sock *sp;
588 unsigned short port;
589
590 sp = sctp_sk(asoc->base.sk);
591
592 /* AF_INET and AF_INET6 share common port field. */
593 port = ntohs(addr->v4.sin_port);
594
595 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
596 asoc, &addr->sa, peer_state);
597
598 /* Set the port if it has not been set yet. */
599 if (0 == asoc->peer.port)
600 asoc->peer.port = port;
601
602 /* Check to see if this is a duplicate. */
603 peer = sctp_assoc_lookup_paddr(asoc, addr);
604 if (peer) {
605 /* An UNKNOWN state is only set on transports added by
606 * user in sctp_connectx() call. Such transports should be
607 * considered CONFIRMED per RFC 4960, Section 5.4.
608 */
609 if (peer->state == SCTP_UNKNOWN) {
610 peer->state = SCTP_ACTIVE;
611 }
612 return peer;
613 }
614
615 peer = sctp_transport_new(asoc->base.net, addr, gfp);
616 if (!peer)
617 return NULL;
618
619 sctp_transport_set_owner(peer, asoc);
620
621 /* Initialize the peer's heartbeat interval based on the
622 * association configured value.
623 */
624 peer->hbinterval = asoc->hbinterval;
625
626 /* Set the path max_retrans. */
627 peer->pathmaxrxt = asoc->pathmaxrxt;
628
629 /* And the partial failure retrans threshold */
630 peer->pf_retrans = asoc->pf_retrans;
631 /* And the primary path switchover retrans threshold */
632 peer->ps_retrans = asoc->ps_retrans;
633
634 /* Initialize the peer's SACK delay timeout based on the
635 * association configured value.
636 */
637 peer->sackdelay = asoc->sackdelay;
638 peer->sackfreq = asoc->sackfreq;
639
640 if (addr->sa.sa_family == AF_INET6) {
641 __be32 info = addr->v6.sin6_flowinfo;
642
643 if (info) {
644 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
645 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
646 } else {
647 peer->flowlabel = asoc->flowlabel;
648 }
649 }
650 peer->dscp = asoc->dscp;
651
652 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
653 * based on association setting.
654 */
655 peer->param_flags = asoc->param_flags;
656
657 /* Initialize the pmtu of the transport. */
658 sctp_transport_route(peer, NULL, sp);
659
660 /* If this is the first transport addr on this association,
661 * initialize the association PMTU to the peer's PMTU.
662 * If not and the current association PMTU is higher than the new
663 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
664 */
665 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
666 min_t(int, peer->pathmtu, asoc->pathmtu) :
667 peer->pathmtu);
668
669 peer->pmtu_pending = 0;
670
671 /* The asoc->peer.port might not be meaningful yet, but
672 * initialize the packet structure anyway.
673 */
674 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
675 asoc->peer.port);
676
677 /* 7.2.1 Slow-Start
678 *
679 * o The initial cwnd before DATA transmission or after a sufficiently
680 * long idle period MUST be set to
681 * min(4*MTU, max(2*MTU, 4380 bytes))
682 *
683 * o The initial value of ssthresh MAY be arbitrarily high
684 * (for example, implementations MAY use the size of the
685 * receiver advertised window).
686 */
687 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
688
689 /* At this point, we may not have the receiver's advertised window,
690 * so initialize ssthresh to the default value and it will be set
691 * later when we process the INIT.
692 */
693 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
694
695 peer->partial_bytes_acked = 0;
696 peer->flight_size = 0;
697 peer->burst_limited = 0;
698
699 /* Set the transport's RTO.initial value */
700 peer->rto = asoc->rto_initial;
701 sctp_max_rto(asoc, peer);
702
703 /* Set the peer's active state. */
704 peer->state = peer_state;
705
706 /* Add this peer into the transport hashtable */
707 if (sctp_hash_transport(peer)) {
708 sctp_transport_free(peer);
709 return NULL;
710 }
711
712 /* Attach the remote transport to our asoc. */
713 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
714 asoc->peer.transport_count++;
715
716 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
717
718 /* If we do not yet have a primary path, set one. */
719 if (!asoc->peer.primary_path) {
720 sctp_assoc_set_primary(asoc, peer);
721 asoc->peer.retran_path = peer;
722 }
723
724 if (asoc->peer.active_path == asoc->peer.retran_path &&
725 peer->state != SCTP_UNCONFIRMED) {
726 asoc->peer.retran_path = peer;
727 }
728
729 return peer;
730 }
731
732 /* Delete a transport address from an association. */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)733 void sctp_assoc_del_peer(struct sctp_association *asoc,
734 const union sctp_addr *addr)
735 {
736 struct list_head *pos;
737 struct list_head *temp;
738 struct sctp_transport *transport;
739
740 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
741 transport = list_entry(pos, struct sctp_transport, transports);
742 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
743 /* Do book keeping for removing the peer and free it. */
744 sctp_assoc_rm_peer(asoc, transport);
745 break;
746 }
747 }
748 }
749
750 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)751 struct sctp_transport *sctp_assoc_lookup_paddr(
752 const struct sctp_association *asoc,
753 const union sctp_addr *address)
754 {
755 struct sctp_transport *t;
756
757 /* Cycle through all transports searching for a peer address. */
758
759 list_for_each_entry(t, &asoc->peer.transport_addr_list,
760 transports) {
761 if (sctp_cmp_addr_exact(address, &t->ipaddr))
762 return t;
763 }
764
765 return NULL;
766 }
767
768 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)769 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
770 struct sctp_transport *primary)
771 {
772 struct sctp_transport *temp;
773 struct sctp_transport *t;
774
775 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
776 transports) {
777 /* if the current transport is not the primary one, delete it */
778 if (t != primary)
779 sctp_assoc_rm_peer(asoc, t);
780 }
781 }
782
783 /* Engage in transport control operations.
784 * Mark the transport up or down and send a notification to the user.
785 * Select and update the new active and retran paths.
786 */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,enum sctp_transport_cmd command,sctp_sn_error_t error)787 void sctp_assoc_control_transport(struct sctp_association *asoc,
788 struct sctp_transport *transport,
789 enum sctp_transport_cmd command,
790 sctp_sn_error_t error)
791 {
792 int spc_state = SCTP_ADDR_AVAILABLE;
793 bool ulp_notify = true;
794
795 /* Record the transition on the transport. */
796 switch (command) {
797 case SCTP_TRANSPORT_UP:
798 /* If we are moving from UNCONFIRMED state due
799 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
800 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
801 */
802 if (transport->state == SCTP_PF &&
803 asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
804 ulp_notify = false;
805 else if (transport->state == SCTP_UNCONFIRMED &&
806 error == SCTP_HEARTBEAT_SUCCESS)
807 spc_state = SCTP_ADDR_CONFIRMED;
808
809 transport->state = SCTP_ACTIVE;
810 break;
811
812 case SCTP_TRANSPORT_DOWN:
813 /* If the transport was never confirmed, do not transition it
814 * to inactive state. Also, release the cached route since
815 * there may be a better route next time.
816 */
817 if (transport->state != SCTP_UNCONFIRMED) {
818 transport->state = SCTP_INACTIVE;
819 spc_state = SCTP_ADDR_UNREACHABLE;
820 } else {
821 sctp_transport_dst_release(transport);
822 ulp_notify = false;
823 }
824 break;
825
826 case SCTP_TRANSPORT_PF:
827 transport->state = SCTP_PF;
828 if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
829 ulp_notify = false;
830 else
831 spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
832 break;
833
834 default:
835 return;
836 }
837
838 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
839 * to the user.
840 */
841 if (ulp_notify)
842 sctp_ulpevent_notify_peer_addr_change(transport,
843 spc_state, error);
844
845 /* Select new active and retran paths. */
846 sctp_select_active_and_retran_path(asoc);
847 }
848
849 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)850 void sctp_association_hold(struct sctp_association *asoc)
851 {
852 refcount_inc(&asoc->base.refcnt);
853 }
854
855 /* Release a reference to an association and cleanup
856 * if there are no more references.
857 */
sctp_association_put(struct sctp_association * asoc)858 void sctp_association_put(struct sctp_association *asoc)
859 {
860 if (refcount_dec_and_test(&asoc->base.refcnt))
861 sctp_association_destroy(asoc);
862 }
863
864 /* Allocate the next TSN, Transmission Sequence Number, for the given
865 * association.
866 */
sctp_association_get_next_tsn(struct sctp_association * asoc)867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868 {
869 /* From Section 1.6 Serial Number Arithmetic:
870 * Transmission Sequence Numbers wrap around when they reach
871 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
872 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873 */
874 __u32 retval = asoc->next_tsn;
875 asoc->next_tsn++;
876 asoc->unack_data++;
877
878 return retval;
879 }
880
881 /* Compare two addresses to see if they match. Wildcard addresses
882 * only match themselves.
883 */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)884 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885 const union sctp_addr *ss2)
886 {
887 struct sctp_af *af;
888
889 af = sctp_get_af_specific(ss1->sa.sa_family);
890 if (unlikely(!af))
891 return 0;
892
893 return af->cmp_addr(ss1, ss2);
894 }
895
896 /* Return an ecne chunk to get prepended to a packet.
897 * Note: We are sly and return a shared, prealloced chunk. FIXME:
898 * No we don't, but we could/should.
899 */
sctp_get_ecne_prepend(struct sctp_association * asoc)900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901 {
902 if (!asoc->need_ecne)
903 return NULL;
904
905 /* Send ECNE if needed.
906 * Not being able to allocate a chunk here is not deadly.
907 */
908 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909 }
910
911 /*
912 * Find which transport this TSN was sent on.
913 */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915 __u32 tsn)
916 {
917 struct sctp_transport *active;
918 struct sctp_transport *match;
919 struct sctp_transport *transport;
920 struct sctp_chunk *chunk;
921 __be32 key = htonl(tsn);
922
923 match = NULL;
924
925 /*
926 * FIXME: In general, find a more efficient data structure for
927 * searching.
928 */
929
930 /*
931 * The general strategy is to search each transport's transmitted
932 * list. Return which transport this TSN lives on.
933 *
934 * Let's be hopeful and check the active_path first.
935 * Another optimization would be to know if there is only one
936 * outbound path and not have to look for the TSN at all.
937 *
938 */
939
940 active = asoc->peer.active_path;
941
942 list_for_each_entry(chunk, &active->transmitted,
943 transmitted_list) {
944
945 if (key == chunk->subh.data_hdr->tsn) {
946 match = active;
947 goto out;
948 }
949 }
950
951 /* If not found, go search all the other transports. */
952 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953 transports) {
954
955 if (transport == active)
956 continue;
957 list_for_each_entry(chunk, &transport->transmitted,
958 transmitted_list) {
959 if (key == chunk->subh.data_hdr->tsn) {
960 match = transport;
961 goto out;
962 }
963 }
964 }
965 out:
966 return match;
967 }
968
969 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)970 static void sctp_assoc_bh_rcv(struct work_struct *work)
971 {
972 struct sctp_association *asoc =
973 container_of(work, struct sctp_association,
974 base.inqueue.immediate);
975 struct net *net = asoc->base.net;
976 union sctp_subtype subtype;
977 struct sctp_endpoint *ep;
978 struct sctp_chunk *chunk;
979 struct sctp_inq *inqueue;
980 int first_time = 1; /* is this the first time through the loop */
981 int error = 0;
982 int state;
983
984 /* The association should be held so we should be safe. */
985 ep = asoc->ep;
986
987 inqueue = &asoc->base.inqueue;
988 sctp_association_hold(asoc);
989 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
990 state = asoc->state;
991 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
992
993 /* If the first chunk in the packet is AUTH, do special
994 * processing specified in Section 6.3 of SCTP-AUTH spec
995 */
996 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
997 struct sctp_chunkhdr *next_hdr;
998
999 next_hdr = sctp_inq_peek(inqueue);
1000 if (!next_hdr)
1001 goto normal;
1002
1003 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1004 * chunk while saving a pointer to it so we can do
1005 * Authentication later (during cookie-echo
1006 * processing).
1007 */
1008 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1009 chunk->auth_chunk = skb_clone(chunk->skb,
1010 GFP_ATOMIC);
1011 chunk->auth = 1;
1012 continue;
1013 }
1014 }
1015
1016 normal:
1017 /* SCTP-AUTH, Section 6.3:
1018 * The receiver has a list of chunk types which it expects
1019 * to be received only after an AUTH-chunk. This list has
1020 * been sent to the peer during the association setup. It
1021 * MUST silently discard these chunks if they are not placed
1022 * after an AUTH chunk in the packet.
1023 */
1024 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025 continue;
1026
1027 /* Remember where the last DATA chunk came from so we
1028 * know where to send the SACK.
1029 */
1030 if (sctp_chunk_is_data(chunk))
1031 asoc->peer.last_data_from = chunk->transport;
1032 else {
1033 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034 asoc->stats.ictrlchunks++;
1035 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036 asoc->stats.isacks++;
1037 }
1038
1039 if (chunk->transport)
1040 chunk->transport->last_time_heard = ktime_get();
1041
1042 /* Run through the state machine. */
1043 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044 state, ep, asoc, chunk, GFP_ATOMIC);
1045
1046 /* Check to see if the association is freed in response to
1047 * the incoming chunk. If so, get out of the while loop.
1048 */
1049 if (asoc->base.dead)
1050 break;
1051
1052 /* If there is an error on chunk, discard this packet. */
1053 if (error && chunk)
1054 chunk->pdiscard = 1;
1055
1056 if (first_time)
1057 first_time = 0;
1058 }
1059 sctp_association_put(asoc);
1060 }
1061
1062 /* This routine moves an association from its old sk to a new sk. */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1063 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1064 {
1065 struct sctp_sock *newsp = sctp_sk(newsk);
1066 struct sock *oldsk = assoc->base.sk;
1067
1068 /* Delete the association from the old endpoint's list of
1069 * associations.
1070 */
1071 list_del_init(&assoc->asocs);
1072
1073 /* Decrement the backlog value for a TCP-style socket. */
1074 if (sctp_style(oldsk, TCP))
1075 sk_acceptq_removed(oldsk);
1076
1077 /* Release references to the old endpoint and the sock. */
1078 sctp_endpoint_put(assoc->ep);
1079 sock_put(assoc->base.sk);
1080
1081 /* Get a reference to the new endpoint. */
1082 assoc->ep = newsp->ep;
1083 sctp_endpoint_hold(assoc->ep);
1084
1085 /* Get a reference to the new sock. */
1086 assoc->base.sk = newsk;
1087 sock_hold(assoc->base.sk);
1088
1089 /* Add the association to the new endpoint's list of associations. */
1090 sctp_endpoint_add_asoc(newsp->ep, assoc);
1091 }
1092
1093 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1094 int sctp_assoc_update(struct sctp_association *asoc,
1095 struct sctp_association *new)
1096 {
1097 struct sctp_transport *trans;
1098 struct list_head *pos, *temp;
1099
1100 /* Copy in new parameters of peer. */
1101 asoc->c = new->c;
1102 asoc->peer.rwnd = new->peer.rwnd;
1103 asoc->peer.sack_needed = new->peer.sack_needed;
1104 asoc->peer.auth_capable = new->peer.auth_capable;
1105 asoc->peer.i = new->peer.i;
1106
1107 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1108 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1109 return -ENOMEM;
1110
1111 /* Remove any peer addresses not present in the new association. */
1112 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1113 trans = list_entry(pos, struct sctp_transport, transports);
1114 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1115 sctp_assoc_rm_peer(asoc, trans);
1116 continue;
1117 }
1118
1119 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1120 sctp_transport_reset(trans);
1121 }
1122
1123 /* If the case is A (association restart), use
1124 * initial_tsn as next_tsn. If the case is B, use
1125 * current next_tsn in case data sent to peer
1126 * has been discarded and needs retransmission.
1127 */
1128 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1129 asoc->next_tsn = new->next_tsn;
1130 asoc->ctsn_ack_point = new->ctsn_ack_point;
1131 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1132
1133 /* Reinitialize SSN for both local streams
1134 * and peer's streams.
1135 */
1136 sctp_stream_clear(&asoc->stream);
1137
1138 /* Flush the ULP reassembly and ordered queue.
1139 * Any data there will now be stale and will
1140 * cause problems.
1141 */
1142 sctp_ulpq_flush(&asoc->ulpq);
1143
1144 /* reset the overall association error count so
1145 * that the restarted association doesn't get torn
1146 * down on the next retransmission timer.
1147 */
1148 asoc->overall_error_count = 0;
1149
1150 } else {
1151 /* Add any peer addresses from the new association. */
1152 list_for_each_entry(trans, &new->peer.transport_addr_list,
1153 transports)
1154 if (!sctp_assoc_add_peer(asoc, &trans->ipaddr,
1155 GFP_ATOMIC, trans->state))
1156 return -ENOMEM;
1157
1158 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1159 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1160
1161 if (sctp_state(asoc, COOKIE_WAIT))
1162 sctp_stream_update(&asoc->stream, &new->stream);
1163
1164 /* get a new assoc id if we don't have one yet. */
1165 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1166 return -ENOMEM;
1167 }
1168
1169 /* SCTP-AUTH: Save the peer parameters from the new associations
1170 * and also move the association shared keys over
1171 */
1172 kfree(asoc->peer.peer_random);
1173 asoc->peer.peer_random = new->peer.peer_random;
1174 new->peer.peer_random = NULL;
1175
1176 kfree(asoc->peer.peer_chunks);
1177 asoc->peer.peer_chunks = new->peer.peer_chunks;
1178 new->peer.peer_chunks = NULL;
1179
1180 kfree(asoc->peer.peer_hmacs);
1181 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182 new->peer.peer_hmacs = NULL;
1183
1184 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1185 }
1186
1187 /* Update the retran path for sending a retransmitted packet.
1188 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1189 *
1190 * When there is outbound data to send and the primary path
1191 * becomes inactive (e.g., due to failures), or where the
1192 * SCTP user explicitly requests to send data to an
1193 * inactive destination transport address, before reporting
1194 * an error to its ULP, the SCTP endpoint should try to send
1195 * the data to an alternate active destination transport
1196 * address if one exists.
1197 *
1198 * When retransmitting data that timed out, if the endpoint
1199 * is multihomed, it should consider each source-destination
1200 * address pair in its retransmission selection policy.
1201 * When retransmitting timed-out data, the endpoint should
1202 * attempt to pick the most divergent source-destination
1203 * pair from the original source-destination pair to which
1204 * the packet was transmitted.
1205 *
1206 * Note: Rules for picking the most divergent source-destination
1207 * pair are an implementation decision and are not specified
1208 * within this document.
1209 *
1210 * Our basic strategy is to round-robin transports in priorities
1211 * according to sctp_trans_score() e.g., if no such
1212 * transport with state SCTP_ACTIVE exists, round-robin through
1213 * SCTP_UNKNOWN, etc. You get the picture.
1214 */
sctp_trans_score(const struct sctp_transport * trans)1215 static u8 sctp_trans_score(const struct sctp_transport *trans)
1216 {
1217 switch (trans->state) {
1218 case SCTP_ACTIVE:
1219 return 3; /* best case */
1220 case SCTP_UNKNOWN:
1221 return 2;
1222 case SCTP_PF:
1223 return 1;
1224 default: /* case SCTP_INACTIVE */
1225 return 0; /* worst case */
1226 }
1227 }
1228
sctp_trans_elect_tie(struct sctp_transport * trans1,struct sctp_transport * trans2)1229 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230 struct sctp_transport *trans2)
1231 {
1232 if (trans1->error_count > trans2->error_count) {
1233 return trans2;
1234 } else if (trans1->error_count == trans2->error_count &&
1235 ktime_after(trans2->last_time_heard,
1236 trans1->last_time_heard)) {
1237 return trans2;
1238 } else {
1239 return trans1;
1240 }
1241 }
1242
sctp_trans_elect_best(struct sctp_transport * curr,struct sctp_transport * best)1243 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244 struct sctp_transport *best)
1245 {
1246 u8 score_curr, score_best;
1247
1248 if (best == NULL || curr == best)
1249 return curr;
1250
1251 score_curr = sctp_trans_score(curr);
1252 score_best = sctp_trans_score(best);
1253
1254 /* First, try a score-based selection if both transport states
1255 * differ. If we're in a tie, lets try to make a more clever
1256 * decision here based on error counts and last time heard.
1257 */
1258 if (score_curr > score_best)
1259 return curr;
1260 else if (score_curr == score_best)
1261 return sctp_trans_elect_tie(best, curr);
1262 else
1263 return best;
1264 }
1265
sctp_assoc_update_retran_path(struct sctp_association * asoc)1266 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267 {
1268 struct sctp_transport *trans = asoc->peer.retran_path;
1269 struct sctp_transport *trans_next = NULL;
1270
1271 /* We're done as we only have the one and only path. */
1272 if (asoc->peer.transport_count == 1)
1273 return;
1274 /* If active_path and retran_path are the same and active,
1275 * then this is the only active path. Use it.
1276 */
1277 if (asoc->peer.active_path == asoc->peer.retran_path &&
1278 asoc->peer.active_path->state == SCTP_ACTIVE)
1279 return;
1280
1281 /* Iterate from retran_path's successor back to retran_path. */
1282 for (trans = list_next_entry(trans, transports); 1;
1283 trans = list_next_entry(trans, transports)) {
1284 /* Manually skip the head element. */
1285 if (&trans->transports == &asoc->peer.transport_addr_list)
1286 continue;
1287 if (trans->state == SCTP_UNCONFIRMED)
1288 continue;
1289 trans_next = sctp_trans_elect_best(trans, trans_next);
1290 /* Active is good enough for immediate return. */
1291 if (trans_next->state == SCTP_ACTIVE)
1292 break;
1293 /* We've reached the end, time to update path. */
1294 if (trans == asoc->peer.retran_path)
1295 break;
1296 }
1297
1298 asoc->peer.retran_path = trans_next;
1299
1300 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302 }
1303
sctp_select_active_and_retran_path(struct sctp_association * asoc)1304 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305 {
1306 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307 struct sctp_transport *trans_pf = NULL;
1308
1309 /* Look for the two most recently used active transports. */
1310 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311 transports) {
1312 /* Skip uninteresting transports. */
1313 if (trans->state == SCTP_INACTIVE ||
1314 trans->state == SCTP_UNCONFIRMED)
1315 continue;
1316 /* Keep track of the best PF transport from our
1317 * list in case we don't find an active one.
1318 */
1319 if (trans->state == SCTP_PF) {
1320 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321 continue;
1322 }
1323 /* For active transports, pick the most recent ones. */
1324 if (trans_pri == NULL ||
1325 ktime_after(trans->last_time_heard,
1326 trans_pri->last_time_heard)) {
1327 trans_sec = trans_pri;
1328 trans_pri = trans;
1329 } else if (trans_sec == NULL ||
1330 ktime_after(trans->last_time_heard,
1331 trans_sec->last_time_heard)) {
1332 trans_sec = trans;
1333 }
1334 }
1335
1336 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337 *
1338 * By default, an endpoint should always transmit to the primary
1339 * path, unless the SCTP user explicitly specifies the
1340 * destination transport address (and possibly source transport
1341 * address) to use. [If the primary is active but not most recent,
1342 * bump the most recently used transport.]
1343 */
1344 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346 asoc->peer.primary_path != trans_pri) {
1347 trans_sec = trans_pri;
1348 trans_pri = asoc->peer.primary_path;
1349 }
1350
1351 /* We did not find anything useful for a possible retransmission
1352 * path; either primary path that we found is the same as
1353 * the current one, or we didn't generally find an active one.
1354 */
1355 if (trans_sec == NULL)
1356 trans_sec = trans_pri;
1357
1358 /* If we failed to find a usable transport, just camp on the
1359 * active or pick a PF iff it's the better choice.
1360 */
1361 if (trans_pri == NULL) {
1362 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363 trans_sec = trans_pri;
1364 }
1365
1366 /* Set the active and retran transports. */
1367 asoc->peer.active_path = trans_pri;
1368 asoc->peer.retran_path = trans_sec;
1369 }
1370
1371 struct sctp_transport *
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1372 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373 struct sctp_transport *last_sent_to)
1374 {
1375 /* If this is the first time packet is sent, use the active path,
1376 * else use the retran path. If the last packet was sent over the
1377 * retran path, update the retran path and use it.
1378 */
1379 if (last_sent_to == NULL) {
1380 return asoc->peer.active_path;
1381 } else {
1382 if (last_sent_to == asoc->peer.retran_path)
1383 sctp_assoc_update_retran_path(asoc);
1384
1385 return asoc->peer.retran_path;
1386 }
1387 }
1388
sctp_assoc_update_frag_point(struct sctp_association * asoc)1389 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1390 {
1391 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1392 sctp_datachk_len(&asoc->stream));
1393
1394 if (asoc->user_frag)
1395 frag = min_t(int, frag, asoc->user_frag);
1396
1397 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1398 sctp_datachk_len(&asoc->stream));
1399
1400 asoc->frag_point = SCTP_TRUNC4(frag);
1401 }
1402
sctp_assoc_set_pmtu(struct sctp_association * asoc,__u32 pmtu)1403 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1404 {
1405 if (asoc->pathmtu != pmtu) {
1406 asoc->pathmtu = pmtu;
1407 sctp_assoc_update_frag_point(asoc);
1408 }
1409
1410 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1411 asoc->pathmtu, asoc->frag_point);
1412 }
1413
1414 /* Update the association's pmtu and frag_point by going through all the
1415 * transports. This routine is called when a transport's PMTU has changed.
1416 */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1417 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1418 {
1419 struct sctp_transport *t;
1420 __u32 pmtu = 0;
1421
1422 if (!asoc)
1423 return;
1424
1425 /* Get the lowest pmtu of all the transports. */
1426 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1427 if (t->pmtu_pending && t->dst) {
1428 sctp_transport_update_pmtu(t,
1429 atomic_read(&t->mtu_info));
1430 t->pmtu_pending = 0;
1431 }
1432 if (!pmtu || (t->pathmtu < pmtu))
1433 pmtu = t->pathmtu;
1434 }
1435
1436 sctp_assoc_set_pmtu(asoc, pmtu);
1437 }
1438
1439 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1440 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1441 {
1442 struct net *net = asoc->base.net;
1443
1444 switch (asoc->state) {
1445 case SCTP_STATE_ESTABLISHED:
1446 case SCTP_STATE_SHUTDOWN_PENDING:
1447 case SCTP_STATE_SHUTDOWN_RECEIVED:
1448 case SCTP_STATE_SHUTDOWN_SENT:
1449 if ((asoc->rwnd > asoc->a_rwnd) &&
1450 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1451 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1452 asoc->pathmtu)))
1453 return true;
1454 break;
1455 default:
1456 break;
1457 }
1458 return false;
1459 }
1460
1461 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned int len)1462 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1463 {
1464 struct sctp_chunk *sack;
1465 struct timer_list *timer;
1466
1467 if (asoc->rwnd_over) {
1468 if (asoc->rwnd_over >= len) {
1469 asoc->rwnd_over -= len;
1470 } else {
1471 asoc->rwnd += (len - asoc->rwnd_over);
1472 asoc->rwnd_over = 0;
1473 }
1474 } else {
1475 asoc->rwnd += len;
1476 }
1477
1478 /* If we had window pressure, start recovering it
1479 * once our rwnd had reached the accumulated pressure
1480 * threshold. The idea is to recover slowly, but up
1481 * to the initial advertised window.
1482 */
1483 if (asoc->rwnd_press) {
1484 int change = min(asoc->pathmtu, asoc->rwnd_press);
1485 asoc->rwnd += change;
1486 asoc->rwnd_press -= change;
1487 }
1488
1489 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1490 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1491 asoc->a_rwnd);
1492
1493 /* Send a window update SACK if the rwnd has increased by at least the
1494 * minimum of the association's PMTU and half of the receive buffer.
1495 * The algorithm used is similar to the one described in
1496 * Section 4.2.3.3 of RFC 1122.
1497 */
1498 if (sctp_peer_needs_update(asoc)) {
1499 asoc->a_rwnd = asoc->rwnd;
1500
1501 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1502 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1503 asoc->a_rwnd);
1504
1505 sack = sctp_make_sack(asoc);
1506 if (!sack)
1507 return;
1508
1509 asoc->peer.sack_needed = 0;
1510
1511 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1512
1513 /* Stop the SACK timer. */
1514 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1515 if (del_timer(timer))
1516 sctp_association_put(asoc);
1517 }
1518 }
1519
1520 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned int len)1521 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1522 {
1523 int rx_count;
1524 int over = 0;
1525
1526 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1527 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1528 "asoc->rwnd_over:%u!\n", __func__, asoc,
1529 asoc->rwnd, asoc->rwnd_over);
1530
1531 if (asoc->ep->rcvbuf_policy)
1532 rx_count = atomic_read(&asoc->rmem_alloc);
1533 else
1534 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1535
1536 /* If we've reached or overflowed our receive buffer, announce
1537 * a 0 rwnd if rwnd would still be positive. Store the
1538 * potential pressure overflow so that the window can be restored
1539 * back to original value.
1540 */
1541 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1542 over = 1;
1543
1544 if (asoc->rwnd >= len) {
1545 asoc->rwnd -= len;
1546 if (over) {
1547 asoc->rwnd_press += asoc->rwnd;
1548 asoc->rwnd = 0;
1549 }
1550 } else {
1551 asoc->rwnd_over += len - asoc->rwnd;
1552 asoc->rwnd = 0;
1553 }
1554
1555 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1556 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1557 asoc->rwnd_press);
1558 }
1559
1560 /* Build the bind address list for the association based on info from the
1561 * local endpoint and the remote peer.
1562 */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,enum sctp_scope scope,gfp_t gfp)1563 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1564 enum sctp_scope scope, gfp_t gfp)
1565 {
1566 struct sock *sk = asoc->base.sk;
1567 int flags;
1568
1569 /* Use scoping rules to determine the subset of addresses from
1570 * the endpoint.
1571 */
1572 flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1573 if (!inet_v6_ipv6only(sk))
1574 flags |= SCTP_ADDR4_ALLOWED;
1575 if (asoc->peer.ipv4_address)
1576 flags |= SCTP_ADDR4_PEERSUPP;
1577 if (asoc->peer.ipv6_address)
1578 flags |= SCTP_ADDR6_PEERSUPP;
1579
1580 return sctp_bind_addr_copy(asoc->base.net,
1581 &asoc->base.bind_addr,
1582 &asoc->ep->base.bind_addr,
1583 scope, gfp, flags);
1584 }
1585
1586 /* Build the association's bind address list from the cookie. */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1587 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1588 struct sctp_cookie *cookie,
1589 gfp_t gfp)
1590 {
1591 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1592 int var_size3 = cookie->raw_addr_list_len;
1593 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1594
1595 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1596 asoc->ep->base.bind_addr.port, gfp);
1597 }
1598
1599 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1600 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1601 const union sctp_addr *laddr)
1602 {
1603 int found = 0;
1604
1605 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1606 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1607 sctp_sk(asoc->base.sk)))
1608 found = 1;
1609
1610 return found;
1611 }
1612
1613 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1614 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1615 {
1616 bool preload = gfpflags_allow_blocking(gfp);
1617 int ret;
1618
1619 /* If the id is already assigned, keep it. */
1620 if (asoc->assoc_id)
1621 return 0;
1622
1623 if (preload)
1624 idr_preload(gfp);
1625 spin_lock_bh(&sctp_assocs_id_lock);
1626 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1627 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1628 */
1629 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1630 GFP_NOWAIT);
1631 spin_unlock_bh(&sctp_assocs_id_lock);
1632 if (preload)
1633 idr_preload_end();
1634 if (ret < 0)
1635 return ret;
1636
1637 asoc->assoc_id = (sctp_assoc_t)ret;
1638 return 0;
1639 }
1640
1641 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1642 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1643 {
1644 struct sctp_chunk *asconf;
1645 struct sctp_chunk *tmp;
1646
1647 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1648 list_del_init(&asconf->list);
1649 sctp_chunk_free(asconf);
1650 }
1651 }
1652
1653 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1654 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1655 {
1656 struct sctp_chunk *ack;
1657 struct sctp_chunk *tmp;
1658
1659 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1660 transmitted_list) {
1661 list_del_init(&ack->transmitted_list);
1662 sctp_chunk_free(ack);
1663 }
1664 }
1665
1666 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1667 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1668 {
1669 struct sctp_chunk *ack;
1670 struct sctp_chunk *tmp;
1671
1672 /* We can remove all the entries from the queue up to
1673 * the "Peer-Sequence-Number".
1674 */
1675 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1676 transmitted_list) {
1677 if (ack->subh.addip_hdr->serial ==
1678 htonl(asoc->peer.addip_serial))
1679 break;
1680
1681 list_del_init(&ack->transmitted_list);
1682 sctp_chunk_free(ack);
1683 }
1684 }
1685
1686 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1687 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1688 const struct sctp_association *asoc,
1689 __be32 serial)
1690 {
1691 struct sctp_chunk *ack;
1692
1693 /* Walk through the list of cached ASCONF-ACKs and find the
1694 * ack chunk whose serial number matches that of the request.
1695 */
1696 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1697 if (sctp_chunk_pending(ack))
1698 continue;
1699 if (ack->subh.addip_hdr->serial == serial) {
1700 sctp_chunk_hold(ack);
1701 return ack;
1702 }
1703 }
1704
1705 return NULL;
1706 }
1707
sctp_asconf_queue_teardown(struct sctp_association * asoc)1708 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1709 {
1710 /* Free any cached ASCONF_ACK chunk. */
1711 sctp_assoc_free_asconf_acks(asoc);
1712
1713 /* Free the ASCONF queue. */
1714 sctp_assoc_free_asconf_queue(asoc);
1715
1716 /* Free any cached ASCONF chunk. */
1717 if (asoc->addip_last_asconf)
1718 sctp_chunk_free(asoc->addip_last_asconf);
1719 }
1720