1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
tls_err_abort(struct sock * sk,int err)47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49 WARN_ON_ONCE(err >= 0);
50 /* sk->sk_err should contain a positive error code. */
51 sk->sk_err = -err;
52 sk->sk_error_report(sk);
53 }
54
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56 unsigned int recursion_level)
57 {
58 int start = skb_headlen(skb);
59 int i, chunk = start - offset;
60 struct sk_buff *frag_iter;
61 int elt = 0;
62
63 if (unlikely(recursion_level >= 24))
64 return -EMSGSIZE;
65
66 if (chunk > 0) {
67 if (chunk > len)
68 chunk = len;
69 elt++;
70 len -= chunk;
71 if (len == 0)
72 return elt;
73 offset += chunk;
74 }
75
76 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77 int end;
78
79 WARN_ON(start > offset + len);
80
81 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82 chunk = end - offset;
83 if (chunk > 0) {
84 if (chunk > len)
85 chunk = len;
86 elt++;
87 len -= chunk;
88 if (len == 0)
89 return elt;
90 offset += chunk;
91 }
92 start = end;
93 }
94
95 if (unlikely(skb_has_frag_list(skb))) {
96 skb_walk_frags(skb, frag_iter) {
97 int end, ret;
98
99 WARN_ON(start > offset + len);
100
101 end = start + frag_iter->len;
102 chunk = end - offset;
103 if (chunk > 0) {
104 if (chunk > len)
105 chunk = len;
106 ret = __skb_nsg(frag_iter, offset - start, chunk,
107 recursion_level + 1);
108 if (unlikely(ret < 0))
109 return ret;
110 elt += ret;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118 }
119 BUG_ON(len);
120 return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124 * skb, or -EMSGSIZE if the recursion depth is exceeded.
125 */
skb_nsg(struct sk_buff * skb,int offset,int len)126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128 return __skb_nsg(skb, offset, len, 0);
129 }
130
padding_length(struct tls_sw_context_rx * ctx,struct tls_prot_info * prot,struct sk_buff * skb)131 static int padding_length(struct tls_sw_context_rx *ctx,
132 struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134 struct strp_msg *rxm = strp_msg(skb);
135 int sub = 0;
136
137 /* Determine zero-padding length */
138 if (prot->version == TLS_1_3_VERSION) {
139 char content_type = 0;
140 int err;
141 int back = 17;
142
143 while (content_type == 0) {
144 if (back > rxm->full_len - prot->prepend_size)
145 return -EBADMSG;
146 err = skb_copy_bits(skb,
147 rxm->offset + rxm->full_len - back,
148 &content_type, 1);
149 if (err)
150 return err;
151 if (content_type)
152 break;
153 sub++;
154 back++;
155 }
156 ctx->control = content_type;
157 }
158 return sub;
159 }
160
tls_decrypt_done(struct crypto_async_request * req,int err)161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163 struct aead_request *aead_req = (struct aead_request *)req;
164 struct scatterlist *sgout = aead_req->dst;
165 struct scatterlist *sgin = aead_req->src;
166 struct tls_sw_context_rx *ctx;
167 struct tls_context *tls_ctx;
168 struct tls_prot_info *prot;
169 struct scatterlist *sg;
170 struct sk_buff *skb;
171 unsigned int pages;
172 int pending;
173
174 skb = (struct sk_buff *)req->data;
175 tls_ctx = tls_get_ctx(skb->sk);
176 ctx = tls_sw_ctx_rx(tls_ctx);
177 prot = &tls_ctx->prot_info;
178
179 /* Propagate if there was an err */
180 if (err) {
181 if (err == -EBADMSG)
182 TLS_INC_STATS(sock_net(skb->sk),
183 LINUX_MIB_TLSDECRYPTERROR);
184 ctx->async_wait.err = err;
185 tls_err_abort(skb->sk, err);
186 } else {
187 struct strp_msg *rxm = strp_msg(skb);
188 int pad;
189
190 pad = padding_length(ctx, prot, skb);
191 if (pad < 0) {
192 ctx->async_wait.err = pad;
193 tls_err_abort(skb->sk, pad);
194 } else {
195 rxm->full_len -= pad;
196 rxm->offset += prot->prepend_size;
197 rxm->full_len -= prot->overhead_size;
198 }
199 }
200
201 /* After using skb->sk to propagate sk through crypto async callback
202 * we need to NULL it again.
203 */
204 skb->sk = NULL;
205
206
207 /* Free the destination pages if skb was not decrypted inplace */
208 if (sgout != sgin) {
209 /* Skip the first S/G entry as it points to AAD */
210 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 if (!sg)
212 break;
213 put_page(sg_page(sg));
214 }
215 }
216
217 kfree(aead_req);
218
219 spin_lock_bh(&ctx->decrypt_compl_lock);
220 pending = atomic_dec_return(&ctx->decrypt_pending);
221
222 if (!pending && ctx->async_notify)
223 complete(&ctx->async_wait.completion);
224 spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
tls_do_decryption(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,bool async)227 static int tls_do_decryption(struct sock *sk,
228 struct sk_buff *skb,
229 struct scatterlist *sgin,
230 struct scatterlist *sgout,
231 char *iv_recv,
232 size_t data_len,
233 struct aead_request *aead_req,
234 bool async)
235 {
236 struct tls_context *tls_ctx = tls_get_ctx(sk);
237 struct tls_prot_info *prot = &tls_ctx->prot_info;
238 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239 int ret;
240
241 aead_request_set_tfm(aead_req, ctx->aead_recv);
242 aead_request_set_ad(aead_req, prot->aad_size);
243 aead_request_set_crypt(aead_req, sgin, sgout,
244 data_len + prot->tag_size,
245 (u8 *)iv_recv);
246
247 if (async) {
248 /* Using skb->sk to push sk through to crypto async callback
249 * handler. This allows propagating errors up to the socket
250 * if needed. It _must_ be cleared in the async handler
251 * before consume_skb is called. We _know_ skb->sk is NULL
252 * because it is a clone from strparser.
253 */
254 skb->sk = sk;
255 aead_request_set_callback(aead_req,
256 CRYPTO_TFM_REQ_MAY_BACKLOG,
257 tls_decrypt_done, skb);
258 atomic_inc(&ctx->decrypt_pending);
259 } else {
260 aead_request_set_callback(aead_req,
261 CRYPTO_TFM_REQ_MAY_BACKLOG,
262 crypto_req_done, &ctx->async_wait);
263 }
264
265 ret = crypto_aead_decrypt(aead_req);
266 if (ret == -EINPROGRESS) {
267 if (async)
268 return ret;
269
270 ret = crypto_wait_req(ret, &ctx->async_wait);
271 }
272
273 if (async)
274 atomic_dec(&ctx->decrypt_pending);
275
276 return ret;
277 }
278
tls_trim_both_msgs(struct sock * sk,int target_size)279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
282 struct tls_prot_info *prot = &tls_ctx->prot_info;
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
285
286 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287 if (target_size > 0)
288 target_size += prot->overhead_size;
289 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
tls_alloc_encrypted_msg(struct sock * sk,int len)292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294 struct tls_context *tls_ctx = tls_get_ctx(sk);
295 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296 struct tls_rec *rec = ctx->open_rec;
297 struct sk_msg *msg_en = &rec->msg_encrypted;
298
299 return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
tls_clone_plaintext_msg(struct sock * sk,int required)302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304 struct tls_context *tls_ctx = tls_get_ctx(sk);
305 struct tls_prot_info *prot = &tls_ctx->prot_info;
306 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307 struct tls_rec *rec = ctx->open_rec;
308 struct sk_msg *msg_pl = &rec->msg_plaintext;
309 struct sk_msg *msg_en = &rec->msg_encrypted;
310 int skip, len;
311
312 /* We add page references worth len bytes from encrypted sg
313 * at the end of plaintext sg. It is guaranteed that msg_en
314 * has enough required room (ensured by caller).
315 */
316 len = required - msg_pl->sg.size;
317
318 /* Skip initial bytes in msg_en's data to be able to use
319 * same offset of both plain and encrypted data.
320 */
321 skip = prot->prepend_size + msg_pl->sg.size;
322
323 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
tls_get_rec(struct sock * sk)326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328 struct tls_context *tls_ctx = tls_get_ctx(sk);
329 struct tls_prot_info *prot = &tls_ctx->prot_info;
330 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331 struct sk_msg *msg_pl, *msg_en;
332 struct tls_rec *rec;
333 int mem_size;
334
335 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337 rec = kzalloc(mem_size, sk->sk_allocation);
338 if (!rec)
339 return NULL;
340
341 msg_pl = &rec->msg_plaintext;
342 msg_en = &rec->msg_encrypted;
343
344 sk_msg_init(msg_pl);
345 sk_msg_init(msg_en);
346
347 sg_init_table(rec->sg_aead_in, 2);
348 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_in[1]);
350
351 sg_init_table(rec->sg_aead_out, 2);
352 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353 sg_unmark_end(&rec->sg_aead_out[1]);
354
355 return rec;
356 }
357
tls_free_rec(struct sock * sk,struct tls_rec * rec)358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360 sk_msg_free(sk, &rec->msg_encrypted);
361 sk_msg_free(sk, &rec->msg_plaintext);
362 kfree(rec);
363 }
364
tls_free_open_rec(struct sock * sk)365 static void tls_free_open_rec(struct sock *sk)
366 {
367 struct tls_context *tls_ctx = tls_get_ctx(sk);
368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 struct tls_rec *rec = ctx->open_rec;
370
371 if (rec) {
372 tls_free_rec(sk, rec);
373 ctx->open_rec = NULL;
374 }
375 }
376
tls_tx_records(struct sock * sk,int flags)377 int tls_tx_records(struct sock *sk, int flags)
378 {
379 struct tls_context *tls_ctx = tls_get_ctx(sk);
380 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381 struct tls_rec *rec, *tmp;
382 struct sk_msg *msg_en;
383 int tx_flags, rc = 0;
384
385 if (tls_is_partially_sent_record(tls_ctx)) {
386 rec = list_first_entry(&ctx->tx_list,
387 struct tls_rec, list);
388
389 if (flags == -1)
390 tx_flags = rec->tx_flags;
391 else
392 tx_flags = flags;
393
394 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395 if (rc)
396 goto tx_err;
397
398 /* Full record has been transmitted.
399 * Remove the head of tx_list
400 */
401 list_del(&rec->list);
402 sk_msg_free(sk, &rec->msg_plaintext);
403 kfree(rec);
404 }
405
406 /* Tx all ready records */
407 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408 if (READ_ONCE(rec->tx_ready)) {
409 if (flags == -1)
410 tx_flags = rec->tx_flags;
411 else
412 tx_flags = flags;
413
414 msg_en = &rec->msg_encrypted;
415 rc = tls_push_sg(sk, tls_ctx,
416 &msg_en->sg.data[msg_en->sg.curr],
417 0, tx_flags);
418 if (rc)
419 goto tx_err;
420
421 list_del(&rec->list);
422 sk_msg_free(sk, &rec->msg_plaintext);
423 kfree(rec);
424 } else {
425 break;
426 }
427 }
428
429 tx_err:
430 if (rc < 0 && rc != -EAGAIN)
431 tls_err_abort(sk, -EBADMSG);
432
433 return rc;
434 }
435
tls_encrypt_done(struct crypto_async_request * req,int err)436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438 struct aead_request *aead_req = (struct aead_request *)req;
439 struct sock *sk = req->data;
440 struct tls_context *tls_ctx = tls_get_ctx(sk);
441 struct tls_prot_info *prot = &tls_ctx->prot_info;
442 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443 struct scatterlist *sge;
444 struct sk_msg *msg_en;
445 struct tls_rec *rec;
446 bool ready = false;
447 int pending;
448
449 rec = container_of(aead_req, struct tls_rec, aead_req);
450 msg_en = &rec->msg_encrypted;
451
452 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453 sge->offset -= prot->prepend_size;
454 sge->length += prot->prepend_size;
455
456 /* Check if error is previously set on socket */
457 if (err || sk->sk_err) {
458 rec = NULL;
459
460 /* If err is already set on socket, return the same code */
461 if (sk->sk_err) {
462 ctx->async_wait.err = -sk->sk_err;
463 } else {
464 ctx->async_wait.err = err;
465 tls_err_abort(sk, err);
466 }
467 }
468
469 if (rec) {
470 struct tls_rec *first_rec;
471
472 /* Mark the record as ready for transmission */
473 smp_store_mb(rec->tx_ready, true);
474
475 /* If received record is at head of tx_list, schedule tx */
476 first_rec = list_first_entry(&ctx->tx_list,
477 struct tls_rec, list);
478 if (rec == first_rec)
479 ready = true;
480 }
481
482 spin_lock_bh(&ctx->encrypt_compl_lock);
483 pending = atomic_dec_return(&ctx->encrypt_pending);
484
485 if (!pending && ctx->async_notify)
486 complete(&ctx->async_wait.completion);
487 spin_unlock_bh(&ctx->encrypt_compl_lock);
488
489 if (!ready)
490 return;
491
492 /* Schedule the transmission */
493 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494 schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)497 static int tls_do_encryption(struct sock *sk,
498 struct tls_context *tls_ctx,
499 struct tls_sw_context_tx *ctx,
500 struct aead_request *aead_req,
501 size_t data_len, u32 start)
502 {
503 struct tls_prot_info *prot = &tls_ctx->prot_info;
504 struct tls_rec *rec = ctx->open_rec;
505 struct sk_msg *msg_en = &rec->msg_encrypted;
506 struct scatterlist *sge = sk_msg_elem(msg_en, start);
507 int rc, iv_offset = 0;
508
509 /* For CCM based ciphers, first byte of IV is a constant */
510 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512 iv_offset = 1;
513 }
514
515 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516 prot->iv_size + prot->salt_size);
517
518 xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
519
520 sge->offset += prot->prepend_size;
521 sge->length -= prot->prepend_size;
522
523 msg_en->sg.curr = start;
524
525 aead_request_set_tfm(aead_req, ctx->aead_send);
526 aead_request_set_ad(aead_req, prot->aad_size);
527 aead_request_set_crypt(aead_req, rec->sg_aead_in,
528 rec->sg_aead_out,
529 data_len, rec->iv_data);
530
531 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532 tls_encrypt_done, sk);
533
534 /* Add the record in tx_list */
535 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536 atomic_inc(&ctx->encrypt_pending);
537
538 rc = crypto_aead_encrypt(aead_req);
539 if (!rc || rc != -EINPROGRESS) {
540 atomic_dec(&ctx->encrypt_pending);
541 sge->offset -= prot->prepend_size;
542 sge->length += prot->prepend_size;
543 }
544
545 if (!rc) {
546 WRITE_ONCE(rec->tx_ready, true);
547 } else if (rc != -EINPROGRESS) {
548 list_del(&rec->list);
549 return rc;
550 }
551
552 /* Unhook the record from context if encryption is not failure */
553 ctx->open_rec = NULL;
554 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555 return rc;
556 }
557
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559 struct tls_rec **to, struct sk_msg *msg_opl,
560 struct sk_msg *msg_oen, u32 split_point,
561 u32 tx_overhead_size, u32 *orig_end)
562 {
563 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564 struct scatterlist *sge, *osge, *nsge;
565 u32 orig_size = msg_opl->sg.size;
566 struct scatterlist tmp = { };
567 struct sk_msg *msg_npl;
568 struct tls_rec *new;
569 int ret;
570
571 new = tls_get_rec(sk);
572 if (!new)
573 return -ENOMEM;
574 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575 tx_overhead_size, 0);
576 if (ret < 0) {
577 tls_free_rec(sk, new);
578 return ret;
579 }
580
581 *orig_end = msg_opl->sg.end;
582 i = msg_opl->sg.start;
583 sge = sk_msg_elem(msg_opl, i);
584 while (apply && sge->length) {
585 if (sge->length > apply) {
586 u32 len = sge->length - apply;
587
588 get_page(sg_page(sge));
589 sg_set_page(&tmp, sg_page(sge), len,
590 sge->offset + apply);
591 sge->length = apply;
592 bytes += apply;
593 apply = 0;
594 } else {
595 apply -= sge->length;
596 bytes += sge->length;
597 }
598
599 sk_msg_iter_var_next(i);
600 if (i == msg_opl->sg.end)
601 break;
602 sge = sk_msg_elem(msg_opl, i);
603 }
604
605 msg_opl->sg.end = i;
606 msg_opl->sg.curr = i;
607 msg_opl->sg.copybreak = 0;
608 msg_opl->apply_bytes = 0;
609 msg_opl->sg.size = bytes;
610
611 msg_npl = &new->msg_plaintext;
612 msg_npl->apply_bytes = apply;
613 msg_npl->sg.size = orig_size - bytes;
614
615 j = msg_npl->sg.start;
616 nsge = sk_msg_elem(msg_npl, j);
617 if (tmp.length) {
618 memcpy(nsge, &tmp, sizeof(*nsge));
619 sk_msg_iter_var_next(j);
620 nsge = sk_msg_elem(msg_npl, j);
621 }
622
623 osge = sk_msg_elem(msg_opl, i);
624 while (osge->length) {
625 memcpy(nsge, osge, sizeof(*nsge));
626 sg_unmark_end(nsge);
627 sk_msg_iter_var_next(i);
628 sk_msg_iter_var_next(j);
629 if (i == *orig_end)
630 break;
631 osge = sk_msg_elem(msg_opl, i);
632 nsge = sk_msg_elem(msg_npl, j);
633 }
634
635 msg_npl->sg.end = j;
636 msg_npl->sg.curr = j;
637 msg_npl->sg.copybreak = 0;
638
639 *to = new;
640 return 0;
641 }
642
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644 struct tls_rec *from, u32 orig_end)
645 {
646 struct sk_msg *msg_npl = &from->msg_plaintext;
647 struct sk_msg *msg_opl = &to->msg_plaintext;
648 struct scatterlist *osge, *nsge;
649 u32 i, j;
650
651 i = msg_opl->sg.end;
652 sk_msg_iter_var_prev(i);
653 j = msg_npl->sg.start;
654
655 osge = sk_msg_elem(msg_opl, i);
656 nsge = sk_msg_elem(msg_npl, j);
657
658 if (sg_page(osge) == sg_page(nsge) &&
659 osge->offset + osge->length == nsge->offset) {
660 osge->length += nsge->length;
661 put_page(sg_page(nsge));
662 }
663
664 msg_opl->sg.end = orig_end;
665 msg_opl->sg.curr = orig_end;
666 msg_opl->sg.copybreak = 0;
667 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668 msg_opl->sg.size += msg_npl->sg.size;
669
670 sk_msg_free(sk, &to->msg_encrypted);
671 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673 kfree(from);
674 }
675
tls_push_record(struct sock * sk,int flags,unsigned char record_type)676 static int tls_push_record(struct sock *sk, int flags,
677 unsigned char record_type)
678 {
679 struct tls_context *tls_ctx = tls_get_ctx(sk);
680 struct tls_prot_info *prot = &tls_ctx->prot_info;
681 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683 u32 i, split_point, orig_end;
684 struct sk_msg *msg_pl, *msg_en;
685 struct aead_request *req;
686 bool split;
687 int rc;
688
689 if (!rec)
690 return 0;
691
692 msg_pl = &rec->msg_plaintext;
693 msg_en = &rec->msg_encrypted;
694
695 split_point = msg_pl->apply_bytes;
696 split = split_point && split_point < msg_pl->sg.size;
697 if (unlikely((!split &&
698 msg_pl->sg.size +
699 prot->overhead_size > msg_en->sg.size) ||
700 (split &&
701 split_point +
702 prot->overhead_size > msg_en->sg.size))) {
703 split = true;
704 split_point = msg_en->sg.size;
705 }
706 if (split) {
707 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708 split_point, prot->overhead_size,
709 &orig_end);
710 if (rc < 0)
711 return rc;
712 /* This can happen if above tls_split_open_record allocates
713 * a single large encryption buffer instead of two smaller
714 * ones. In this case adjust pointers and continue without
715 * split.
716 */
717 if (!msg_pl->sg.size) {
718 tls_merge_open_record(sk, rec, tmp, orig_end);
719 msg_pl = &rec->msg_plaintext;
720 msg_en = &rec->msg_encrypted;
721 split = false;
722 }
723 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724 prot->overhead_size);
725 }
726
727 rec->tx_flags = flags;
728 req = &rec->aead_req;
729
730 i = msg_pl->sg.end;
731 sk_msg_iter_var_prev(i);
732
733 rec->content_type = record_type;
734 if (prot->version == TLS_1_3_VERSION) {
735 /* Add content type to end of message. No padding added */
736 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737 sg_mark_end(&rec->sg_content_type);
738 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739 &rec->sg_content_type);
740 } else {
741 sg_mark_end(sk_msg_elem(msg_pl, i));
742 }
743
744 if (msg_pl->sg.end < msg_pl->sg.start) {
745 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747 msg_pl->sg.data);
748 }
749
750 i = msg_pl->sg.start;
751 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753 i = msg_en->sg.end;
754 sk_msg_iter_var_prev(i);
755 sg_mark_end(sk_msg_elem(msg_en, i));
756
757 i = msg_en->sg.start;
758 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761 tls_ctx->tx.rec_seq, prot->rec_seq_size,
762 record_type, prot->version);
763
764 tls_fill_prepend(tls_ctx,
765 page_address(sg_page(&msg_en->sg.data[i])) +
766 msg_en->sg.data[i].offset,
767 msg_pl->sg.size + prot->tail_size,
768 record_type, prot->version);
769
770 tls_ctx->pending_open_record_frags = false;
771
772 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
773 msg_pl->sg.size + prot->tail_size, i);
774 if (rc < 0) {
775 if (rc != -EINPROGRESS) {
776 tls_err_abort(sk, -EBADMSG);
777 if (split) {
778 tls_ctx->pending_open_record_frags = true;
779 tls_merge_open_record(sk, rec, tmp, orig_end);
780 }
781 }
782 ctx->async_capable = 1;
783 return rc;
784 } else if (split) {
785 msg_pl = &tmp->msg_plaintext;
786 msg_en = &tmp->msg_encrypted;
787 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
788 tls_ctx->pending_open_record_frags = true;
789 ctx->open_rec = tmp;
790 }
791
792 return tls_tx_records(sk, flags);
793 }
794
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)795 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
796 bool full_record, u8 record_type,
797 ssize_t *copied, int flags)
798 {
799 struct tls_context *tls_ctx = tls_get_ctx(sk);
800 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
801 struct sk_msg msg_redir = { };
802 struct sk_psock *psock;
803 struct sock *sk_redir;
804 struct tls_rec *rec;
805 bool enospc, policy;
806 int err = 0, send;
807 u32 delta = 0;
808
809 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
810 psock = sk_psock_get(sk);
811 if (!psock || !policy) {
812 err = tls_push_record(sk, flags, record_type);
813 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
814 *copied -= sk_msg_free(sk, msg);
815 tls_free_open_rec(sk);
816 err = -sk->sk_err;
817 }
818 if (psock)
819 sk_psock_put(sk, psock);
820 return err;
821 }
822 more_data:
823 enospc = sk_msg_full(msg);
824 if (psock->eval == __SK_NONE) {
825 delta = msg->sg.size;
826 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
827 delta -= msg->sg.size;
828 }
829 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
830 !enospc && !full_record) {
831 err = -ENOSPC;
832 goto out_err;
833 }
834 msg->cork_bytes = 0;
835 send = msg->sg.size;
836 if (msg->apply_bytes && msg->apply_bytes < send)
837 send = msg->apply_bytes;
838
839 switch (psock->eval) {
840 case __SK_PASS:
841 err = tls_push_record(sk, flags, record_type);
842 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
843 *copied -= sk_msg_free(sk, msg);
844 tls_free_open_rec(sk);
845 err = -sk->sk_err;
846 goto out_err;
847 }
848 break;
849 case __SK_REDIRECT:
850 sk_redir = psock->sk_redir;
851 memcpy(&msg_redir, msg, sizeof(*msg));
852 if (msg->apply_bytes < send)
853 msg->apply_bytes = 0;
854 else
855 msg->apply_bytes -= send;
856 sk_msg_return_zero(sk, msg, send);
857 msg->sg.size -= send;
858 release_sock(sk);
859 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
860 lock_sock(sk);
861 if (err < 0) {
862 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
863 msg->sg.size = 0;
864 }
865 if (msg->sg.size == 0)
866 tls_free_open_rec(sk);
867 break;
868 case __SK_DROP:
869 default:
870 sk_msg_free_partial(sk, msg, send);
871 if (msg->apply_bytes < send)
872 msg->apply_bytes = 0;
873 else
874 msg->apply_bytes -= send;
875 if (msg->sg.size == 0)
876 tls_free_open_rec(sk);
877 *copied -= (send + delta);
878 err = -EACCES;
879 }
880
881 if (likely(!err)) {
882 bool reset_eval = !ctx->open_rec;
883
884 rec = ctx->open_rec;
885 if (rec) {
886 msg = &rec->msg_plaintext;
887 if (!msg->apply_bytes)
888 reset_eval = true;
889 }
890 if (reset_eval) {
891 psock->eval = __SK_NONE;
892 if (psock->sk_redir) {
893 sock_put(psock->sk_redir);
894 psock->sk_redir = NULL;
895 }
896 }
897 if (rec)
898 goto more_data;
899 }
900 out_err:
901 sk_psock_put(sk, psock);
902 return err;
903 }
904
tls_sw_push_pending_record(struct sock * sk,int flags)905 static int tls_sw_push_pending_record(struct sock *sk, int flags)
906 {
907 struct tls_context *tls_ctx = tls_get_ctx(sk);
908 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
909 struct tls_rec *rec = ctx->open_rec;
910 struct sk_msg *msg_pl;
911 size_t copied;
912
913 if (!rec)
914 return 0;
915
916 msg_pl = &rec->msg_plaintext;
917 copied = msg_pl->sg.size;
918 if (!copied)
919 return 0;
920
921 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
922 &copied, flags);
923 }
924
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)925 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
926 {
927 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
928 struct tls_context *tls_ctx = tls_get_ctx(sk);
929 struct tls_prot_info *prot = &tls_ctx->prot_info;
930 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
931 bool async_capable = ctx->async_capable;
932 unsigned char record_type = TLS_RECORD_TYPE_DATA;
933 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
934 bool eor = !(msg->msg_flags & MSG_MORE);
935 size_t try_to_copy;
936 ssize_t copied = 0;
937 struct sk_msg *msg_pl, *msg_en;
938 struct tls_rec *rec;
939 int required_size;
940 int num_async = 0;
941 bool full_record;
942 int record_room;
943 int num_zc = 0;
944 int orig_size;
945 int ret = 0;
946 int pending;
947
948 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
949 MSG_CMSG_COMPAT))
950 return -EOPNOTSUPP;
951
952 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
953 if (ret)
954 return ret;
955 lock_sock(sk);
956
957 if (unlikely(msg->msg_controllen)) {
958 ret = tls_proccess_cmsg(sk, msg, &record_type);
959 if (ret) {
960 if (ret == -EINPROGRESS)
961 num_async++;
962 else if (ret != -EAGAIN)
963 goto send_end;
964 }
965 }
966
967 while (msg_data_left(msg)) {
968 if (sk->sk_err) {
969 ret = -sk->sk_err;
970 goto send_end;
971 }
972
973 if (ctx->open_rec)
974 rec = ctx->open_rec;
975 else
976 rec = ctx->open_rec = tls_get_rec(sk);
977 if (!rec) {
978 ret = -ENOMEM;
979 goto send_end;
980 }
981
982 msg_pl = &rec->msg_plaintext;
983 msg_en = &rec->msg_encrypted;
984
985 orig_size = msg_pl->sg.size;
986 full_record = false;
987 try_to_copy = msg_data_left(msg);
988 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
989 if (try_to_copy >= record_room) {
990 try_to_copy = record_room;
991 full_record = true;
992 }
993
994 required_size = msg_pl->sg.size + try_to_copy +
995 prot->overhead_size;
996
997 if (!sk_stream_memory_free(sk))
998 goto wait_for_sndbuf;
999
1000 alloc_encrypted:
1001 ret = tls_alloc_encrypted_msg(sk, required_size);
1002 if (ret) {
1003 if (ret != -ENOSPC)
1004 goto wait_for_memory;
1005
1006 /* Adjust try_to_copy according to the amount that was
1007 * actually allocated. The difference is due
1008 * to max sg elements limit
1009 */
1010 try_to_copy -= required_size - msg_en->sg.size;
1011 full_record = true;
1012 }
1013
1014 if (!is_kvec && (full_record || eor) && !async_capable) {
1015 u32 first = msg_pl->sg.end;
1016
1017 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1018 msg_pl, try_to_copy);
1019 if (ret)
1020 goto fallback_to_reg_send;
1021
1022 num_zc++;
1023 copied += try_to_copy;
1024
1025 sk_msg_sg_copy_set(msg_pl, first);
1026 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1027 record_type, &copied,
1028 msg->msg_flags);
1029 if (ret) {
1030 if (ret == -EINPROGRESS)
1031 num_async++;
1032 else if (ret == -ENOMEM)
1033 goto wait_for_memory;
1034 else if (ctx->open_rec && ret == -ENOSPC)
1035 goto rollback_iter;
1036 else if (ret != -EAGAIN)
1037 goto send_end;
1038 }
1039 continue;
1040 rollback_iter:
1041 copied -= try_to_copy;
1042 sk_msg_sg_copy_clear(msg_pl, first);
1043 iov_iter_revert(&msg->msg_iter,
1044 msg_pl->sg.size - orig_size);
1045 fallback_to_reg_send:
1046 sk_msg_trim(sk, msg_pl, orig_size);
1047 }
1048
1049 required_size = msg_pl->sg.size + try_to_copy;
1050
1051 ret = tls_clone_plaintext_msg(sk, required_size);
1052 if (ret) {
1053 if (ret != -ENOSPC)
1054 goto send_end;
1055
1056 /* Adjust try_to_copy according to the amount that was
1057 * actually allocated. The difference is due
1058 * to max sg elements limit
1059 */
1060 try_to_copy -= required_size - msg_pl->sg.size;
1061 full_record = true;
1062 sk_msg_trim(sk, msg_en,
1063 msg_pl->sg.size + prot->overhead_size);
1064 }
1065
1066 if (try_to_copy) {
1067 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1068 msg_pl, try_to_copy);
1069 if (ret < 0)
1070 goto trim_sgl;
1071 }
1072
1073 /* Open records defined only if successfully copied, otherwise
1074 * we would trim the sg but not reset the open record frags.
1075 */
1076 tls_ctx->pending_open_record_frags = true;
1077 copied += try_to_copy;
1078 if (full_record || eor) {
1079 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1080 record_type, &copied,
1081 msg->msg_flags);
1082 if (ret) {
1083 if (ret == -EINPROGRESS)
1084 num_async++;
1085 else if (ret == -ENOMEM)
1086 goto wait_for_memory;
1087 else if (ret != -EAGAIN) {
1088 if (ret == -ENOSPC)
1089 ret = 0;
1090 goto send_end;
1091 }
1092 }
1093 }
1094
1095 continue;
1096
1097 wait_for_sndbuf:
1098 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1099 wait_for_memory:
1100 ret = sk_stream_wait_memory(sk, &timeo);
1101 if (ret) {
1102 trim_sgl:
1103 if (ctx->open_rec)
1104 tls_trim_both_msgs(sk, orig_size);
1105 goto send_end;
1106 }
1107
1108 if (ctx->open_rec && msg_en->sg.size < required_size)
1109 goto alloc_encrypted;
1110 }
1111
1112 if (!num_async) {
1113 goto send_end;
1114 } else if (num_zc) {
1115 /* Wait for pending encryptions to get completed */
1116 spin_lock_bh(&ctx->encrypt_compl_lock);
1117 ctx->async_notify = true;
1118
1119 pending = atomic_read(&ctx->encrypt_pending);
1120 spin_unlock_bh(&ctx->encrypt_compl_lock);
1121 if (pending)
1122 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1123 else
1124 reinit_completion(&ctx->async_wait.completion);
1125
1126 /* There can be no concurrent accesses, since we have no
1127 * pending encrypt operations
1128 */
1129 WRITE_ONCE(ctx->async_notify, false);
1130
1131 if (ctx->async_wait.err) {
1132 ret = ctx->async_wait.err;
1133 copied = 0;
1134 }
1135 }
1136
1137 /* Transmit if any encryptions have completed */
1138 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1139 cancel_delayed_work(&ctx->tx_work.work);
1140 tls_tx_records(sk, msg->msg_flags);
1141 }
1142
1143 send_end:
1144 ret = sk_stream_error(sk, msg->msg_flags, ret);
1145
1146 release_sock(sk);
1147 mutex_unlock(&tls_ctx->tx_lock);
1148 return copied > 0 ? copied : ret;
1149 }
1150
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1151 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1152 int offset, size_t size, int flags)
1153 {
1154 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1155 struct tls_context *tls_ctx = tls_get_ctx(sk);
1156 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1157 struct tls_prot_info *prot = &tls_ctx->prot_info;
1158 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1159 struct sk_msg *msg_pl;
1160 struct tls_rec *rec;
1161 int num_async = 0;
1162 ssize_t copied = 0;
1163 bool full_record;
1164 int record_room;
1165 int ret = 0;
1166 bool eor;
1167
1168 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1169 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1170
1171 /* Call the sk_stream functions to manage the sndbuf mem. */
1172 while (size > 0) {
1173 size_t copy, required_size;
1174
1175 if (sk->sk_err) {
1176 ret = -sk->sk_err;
1177 goto sendpage_end;
1178 }
1179
1180 if (ctx->open_rec)
1181 rec = ctx->open_rec;
1182 else
1183 rec = ctx->open_rec = tls_get_rec(sk);
1184 if (!rec) {
1185 ret = -ENOMEM;
1186 goto sendpage_end;
1187 }
1188
1189 msg_pl = &rec->msg_plaintext;
1190
1191 full_record = false;
1192 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1193 copy = size;
1194 if (copy >= record_room) {
1195 copy = record_room;
1196 full_record = true;
1197 }
1198
1199 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1200
1201 if (!sk_stream_memory_free(sk))
1202 goto wait_for_sndbuf;
1203 alloc_payload:
1204 ret = tls_alloc_encrypted_msg(sk, required_size);
1205 if (ret) {
1206 if (ret != -ENOSPC)
1207 goto wait_for_memory;
1208
1209 /* Adjust copy according to the amount that was
1210 * actually allocated. The difference is due
1211 * to max sg elements limit
1212 */
1213 copy -= required_size - msg_pl->sg.size;
1214 full_record = true;
1215 }
1216
1217 sk_msg_page_add(msg_pl, page, copy, offset);
1218 msg_pl->sg.copybreak = 0;
1219 msg_pl->sg.curr = msg_pl->sg.end;
1220 sk_mem_charge(sk, copy);
1221
1222 offset += copy;
1223 size -= copy;
1224 copied += copy;
1225
1226 tls_ctx->pending_open_record_frags = true;
1227 if (full_record || eor || sk_msg_full(msg_pl)) {
1228 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1229 record_type, &copied, flags);
1230 if (ret) {
1231 if (ret == -EINPROGRESS)
1232 num_async++;
1233 else if (ret == -ENOMEM)
1234 goto wait_for_memory;
1235 else if (ret != -EAGAIN) {
1236 if (ret == -ENOSPC)
1237 ret = 0;
1238 goto sendpage_end;
1239 }
1240 }
1241 }
1242 continue;
1243 wait_for_sndbuf:
1244 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245 wait_for_memory:
1246 ret = sk_stream_wait_memory(sk, &timeo);
1247 if (ret) {
1248 if (ctx->open_rec)
1249 tls_trim_both_msgs(sk, msg_pl->sg.size);
1250 goto sendpage_end;
1251 }
1252
1253 if (ctx->open_rec)
1254 goto alloc_payload;
1255 }
1256
1257 if (num_async) {
1258 /* Transmit if any encryptions have completed */
1259 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1260 cancel_delayed_work(&ctx->tx_work.work);
1261 tls_tx_records(sk, flags);
1262 }
1263 }
1264 sendpage_end:
1265 ret = sk_stream_error(sk, flags, ret);
1266 return copied > 0 ? copied : ret;
1267 }
1268
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1269 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1270 int offset, size_t size, int flags)
1271 {
1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1274 MSG_NO_SHARED_FRAGS))
1275 return -EOPNOTSUPP;
1276
1277 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1278 }
1279
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1280 int tls_sw_sendpage(struct sock *sk, struct page *page,
1281 int offset, size_t size, int flags)
1282 {
1283 struct tls_context *tls_ctx = tls_get_ctx(sk);
1284 int ret;
1285
1286 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1287 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1288 return -EOPNOTSUPP;
1289
1290 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1291 if (ret)
1292 return ret;
1293 lock_sock(sk);
1294 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1295 release_sock(sk);
1296 mutex_unlock(&tls_ctx->tx_lock);
1297 return ret;
1298 }
1299
tls_wait_data(struct sock * sk,struct sk_psock * psock,bool nonblock,long timeo,int * err)1300 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1301 bool nonblock, long timeo, int *err)
1302 {
1303 struct tls_context *tls_ctx = tls_get_ctx(sk);
1304 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1305 struct sk_buff *skb;
1306 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1307
1308 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1309 if (sk->sk_err) {
1310 *err = sock_error(sk);
1311 return NULL;
1312 }
1313
1314 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1315 __strp_unpause(&ctx->strp);
1316 if (ctx->recv_pkt)
1317 return ctx->recv_pkt;
1318 }
1319
1320 if (sk->sk_shutdown & RCV_SHUTDOWN)
1321 return NULL;
1322
1323 if (sock_flag(sk, SOCK_DONE))
1324 return NULL;
1325
1326 if (nonblock || !timeo) {
1327 *err = -EAGAIN;
1328 return NULL;
1329 }
1330
1331 add_wait_queue(sk_sleep(sk), &wait);
1332 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1333 sk_wait_event(sk, &timeo,
1334 ctx->recv_pkt != skb ||
1335 !sk_psock_queue_empty(psock),
1336 &wait);
1337 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1338 remove_wait_queue(sk_sleep(sk), &wait);
1339
1340 /* Handle signals */
1341 if (signal_pending(current)) {
1342 *err = sock_intr_errno(timeo);
1343 return NULL;
1344 }
1345 }
1346
1347 return skb;
1348 }
1349
tls_setup_from_iter(struct sock * sk,struct iov_iter * from,int length,int * pages_used,unsigned int * size_used,struct scatterlist * to,int to_max_pages)1350 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1351 int length, int *pages_used,
1352 unsigned int *size_used,
1353 struct scatterlist *to,
1354 int to_max_pages)
1355 {
1356 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1357 struct page *pages[MAX_SKB_FRAGS];
1358 unsigned int size = *size_used;
1359 ssize_t copied, use;
1360 size_t offset;
1361
1362 while (length > 0) {
1363 i = 0;
1364 maxpages = to_max_pages - num_elem;
1365 if (maxpages == 0) {
1366 rc = -EFAULT;
1367 goto out;
1368 }
1369 copied = iov_iter_get_pages(from, pages,
1370 length,
1371 maxpages, &offset);
1372 if (copied <= 0) {
1373 rc = -EFAULT;
1374 goto out;
1375 }
1376
1377 iov_iter_advance(from, copied);
1378
1379 length -= copied;
1380 size += copied;
1381 while (copied) {
1382 use = min_t(int, copied, PAGE_SIZE - offset);
1383
1384 sg_set_page(&to[num_elem],
1385 pages[i], use, offset);
1386 sg_unmark_end(&to[num_elem]);
1387 /* We do not uncharge memory from this API */
1388
1389 offset = 0;
1390 copied -= use;
1391
1392 i++;
1393 num_elem++;
1394 }
1395 }
1396 /* Mark the end in the last sg entry if newly added */
1397 if (num_elem > *pages_used)
1398 sg_mark_end(&to[num_elem - 1]);
1399 out:
1400 if (rc)
1401 iov_iter_revert(from, size - *size_used);
1402 *size_used = size;
1403 *pages_used = num_elem;
1404
1405 return rc;
1406 }
1407
1408 /* This function decrypts the input skb into either out_iov or in out_sg
1409 * or in skb buffers itself. The input parameter 'zc' indicates if
1410 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1411 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1412 * NULL, then the decryption happens inside skb buffers itself, i.e.
1413 * zero-copy gets disabled and 'zc' is updated.
1414 */
1415
decrypt_internal(struct sock * sk,struct sk_buff * skb,struct iov_iter * out_iov,struct scatterlist * out_sg,int * chunk,bool * zc,bool async)1416 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1417 struct iov_iter *out_iov,
1418 struct scatterlist *out_sg,
1419 int *chunk, bool *zc, bool async)
1420 {
1421 struct tls_context *tls_ctx = tls_get_ctx(sk);
1422 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1423 struct tls_prot_info *prot = &tls_ctx->prot_info;
1424 struct strp_msg *rxm = strp_msg(skb);
1425 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1426 struct aead_request *aead_req;
1427 struct sk_buff *unused;
1428 u8 *aad, *iv, *mem = NULL;
1429 struct scatterlist *sgin = NULL;
1430 struct scatterlist *sgout = NULL;
1431 const int data_len = rxm->full_len - prot->overhead_size +
1432 prot->tail_size;
1433 int iv_offset = 0;
1434
1435 if (*zc && (out_iov || out_sg)) {
1436 if (out_iov)
1437 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1438 else
1439 n_sgout = sg_nents(out_sg);
1440 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1441 rxm->full_len - prot->prepend_size);
1442 } else {
1443 n_sgout = 0;
1444 *zc = false;
1445 n_sgin = skb_cow_data(skb, 0, &unused);
1446 }
1447
1448 if (n_sgin < 1)
1449 return -EBADMSG;
1450
1451 /* Increment to accommodate AAD */
1452 n_sgin = n_sgin + 1;
1453
1454 nsg = n_sgin + n_sgout;
1455
1456 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1457 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1458 mem_size = mem_size + prot->aad_size;
1459 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1460
1461 /* Allocate a single block of memory which contains
1462 * aead_req || sgin[] || sgout[] || aad || iv.
1463 * This order achieves correct alignment for aead_req, sgin, sgout.
1464 */
1465 mem = kmalloc(mem_size, sk->sk_allocation);
1466 if (!mem)
1467 return -ENOMEM;
1468
1469 /* Segment the allocated memory */
1470 aead_req = (struct aead_request *)mem;
1471 sgin = (struct scatterlist *)(mem + aead_size);
1472 sgout = sgin + n_sgin;
1473 aad = (u8 *)(sgout + n_sgout);
1474 iv = aad + prot->aad_size;
1475
1476 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1477 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1478 iv[0] = 2;
1479 iv_offset = 1;
1480 }
1481
1482 /* Prepare IV */
1483 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1484 iv + iv_offset + prot->salt_size,
1485 prot->iv_size);
1486 if (err < 0) {
1487 kfree(mem);
1488 return err;
1489 }
1490 if (prot->version == TLS_1_3_VERSION)
1491 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1492 prot->iv_size + prot->salt_size);
1493 else
1494 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1495
1496 xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1497
1498 /* Prepare AAD */
1499 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1500 prot->tail_size,
1501 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1502 ctx->control, prot->version);
1503
1504 /* Prepare sgin */
1505 sg_init_table(sgin, n_sgin);
1506 sg_set_buf(&sgin[0], aad, prot->aad_size);
1507 err = skb_to_sgvec(skb, &sgin[1],
1508 rxm->offset + prot->prepend_size,
1509 rxm->full_len - prot->prepend_size);
1510 if (err < 0) {
1511 kfree(mem);
1512 return err;
1513 }
1514
1515 if (n_sgout) {
1516 if (out_iov) {
1517 sg_init_table(sgout, n_sgout);
1518 sg_set_buf(&sgout[0], aad, prot->aad_size);
1519
1520 *chunk = 0;
1521 err = tls_setup_from_iter(sk, out_iov, data_len,
1522 &pages, chunk, &sgout[1],
1523 (n_sgout - 1));
1524 if (err < 0)
1525 goto fallback_to_reg_recv;
1526 } else if (out_sg) {
1527 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1528 } else {
1529 goto fallback_to_reg_recv;
1530 }
1531 } else {
1532 fallback_to_reg_recv:
1533 sgout = sgin;
1534 pages = 0;
1535 *chunk = data_len;
1536 *zc = false;
1537 }
1538
1539 /* Prepare and submit AEAD request */
1540 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1541 data_len, aead_req, async);
1542 if (err == -EINPROGRESS)
1543 return err;
1544
1545 /* Release the pages in case iov was mapped to pages */
1546 for (; pages > 0; pages--)
1547 put_page(sg_page(&sgout[pages]));
1548
1549 kfree(mem);
1550 return err;
1551 }
1552
decrypt_skb_update(struct sock * sk,struct sk_buff * skb,struct iov_iter * dest,int * chunk,bool * zc,bool async)1553 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1554 struct iov_iter *dest, int *chunk, bool *zc,
1555 bool async)
1556 {
1557 struct tls_context *tls_ctx = tls_get_ctx(sk);
1558 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1559 struct tls_prot_info *prot = &tls_ctx->prot_info;
1560 struct strp_msg *rxm = strp_msg(skb);
1561 int pad, err = 0;
1562
1563 if (!ctx->decrypted) {
1564 if (tls_ctx->rx_conf == TLS_HW) {
1565 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1566 if (err < 0)
1567 return err;
1568 }
1569
1570 /* Still not decrypted after tls_device */
1571 if (!ctx->decrypted) {
1572 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1573 async);
1574 if (err < 0) {
1575 if (err == -EINPROGRESS)
1576 tls_advance_record_sn(sk, prot,
1577 &tls_ctx->rx);
1578 else if (err == -EBADMSG)
1579 TLS_INC_STATS(sock_net(sk),
1580 LINUX_MIB_TLSDECRYPTERROR);
1581 return err;
1582 }
1583 } else {
1584 *zc = false;
1585 }
1586
1587 pad = padding_length(ctx, prot, skb);
1588 if (pad < 0)
1589 return pad;
1590
1591 rxm->full_len -= pad;
1592 rxm->offset += prot->prepend_size;
1593 rxm->full_len -= prot->overhead_size;
1594 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1595 ctx->decrypted = 1;
1596 ctx->saved_data_ready(sk);
1597 } else {
1598 *zc = false;
1599 }
1600
1601 return err;
1602 }
1603
decrypt_skb(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgout)1604 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1605 struct scatterlist *sgout)
1606 {
1607 bool zc = true;
1608 int chunk;
1609
1610 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1611 }
1612
tls_sw_advance_skb(struct sock * sk,struct sk_buff * skb,unsigned int len)1613 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1614 unsigned int len)
1615 {
1616 struct tls_context *tls_ctx = tls_get_ctx(sk);
1617 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1618
1619 if (skb) {
1620 struct strp_msg *rxm = strp_msg(skb);
1621
1622 if (len < rxm->full_len) {
1623 rxm->offset += len;
1624 rxm->full_len -= len;
1625 return false;
1626 }
1627 consume_skb(skb);
1628 }
1629
1630 /* Finished with message */
1631 ctx->recv_pkt = NULL;
1632 __strp_unpause(&ctx->strp);
1633
1634 return true;
1635 }
1636
1637 /* This function traverses the rx_list in tls receive context to copies the
1638 * decrypted records into the buffer provided by caller zero copy is not
1639 * true. Further, the records are removed from the rx_list if it is not a peek
1640 * case and the record has been consumed completely.
1641 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,bool * cmsg,size_t skip,size_t len,bool zc,bool is_peek)1642 static int process_rx_list(struct tls_sw_context_rx *ctx,
1643 struct msghdr *msg,
1644 u8 *control,
1645 bool *cmsg,
1646 size_t skip,
1647 size_t len,
1648 bool zc,
1649 bool is_peek)
1650 {
1651 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1652 u8 ctrl = *control;
1653 u8 msgc = *cmsg;
1654 struct tls_msg *tlm;
1655 ssize_t copied = 0;
1656
1657 /* Set the record type in 'control' if caller didn't pass it */
1658 if (!ctrl && skb) {
1659 tlm = tls_msg(skb);
1660 ctrl = tlm->control;
1661 }
1662
1663 while (skip && skb) {
1664 struct strp_msg *rxm = strp_msg(skb);
1665 tlm = tls_msg(skb);
1666
1667 /* Cannot process a record of different type */
1668 if (ctrl != tlm->control)
1669 return 0;
1670
1671 if (skip < rxm->full_len)
1672 break;
1673
1674 skip = skip - rxm->full_len;
1675 skb = skb_peek_next(skb, &ctx->rx_list);
1676 }
1677
1678 while (len && skb) {
1679 struct sk_buff *next_skb;
1680 struct strp_msg *rxm = strp_msg(skb);
1681 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1682
1683 tlm = tls_msg(skb);
1684
1685 /* Cannot process a record of different type */
1686 if (ctrl != tlm->control)
1687 return 0;
1688
1689 /* Set record type if not already done. For a non-data record,
1690 * do not proceed if record type could not be copied.
1691 */
1692 if (!msgc) {
1693 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1694 sizeof(ctrl), &ctrl);
1695 msgc = true;
1696 if (ctrl != TLS_RECORD_TYPE_DATA) {
1697 if (cerr || msg->msg_flags & MSG_CTRUNC)
1698 return -EIO;
1699
1700 *cmsg = msgc;
1701 }
1702 }
1703
1704 if (!zc || (rxm->full_len - skip) > len) {
1705 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1706 msg, chunk);
1707 if (err < 0)
1708 return err;
1709 }
1710
1711 len = len - chunk;
1712 copied = copied + chunk;
1713
1714 /* Consume the data from record if it is non-peek case*/
1715 if (!is_peek) {
1716 rxm->offset = rxm->offset + chunk;
1717 rxm->full_len = rxm->full_len - chunk;
1718
1719 /* Return if there is unconsumed data in the record */
1720 if (rxm->full_len - skip)
1721 break;
1722 }
1723
1724 /* The remaining skip-bytes must lie in 1st record in rx_list.
1725 * So from the 2nd record, 'skip' should be 0.
1726 */
1727 skip = 0;
1728
1729 if (msg)
1730 msg->msg_flags |= MSG_EOR;
1731
1732 next_skb = skb_peek_next(skb, &ctx->rx_list);
1733
1734 if (!is_peek) {
1735 skb_unlink(skb, &ctx->rx_list);
1736 consume_skb(skb);
1737 }
1738
1739 skb = next_skb;
1740 }
1741
1742 *control = ctrl;
1743 return copied;
1744 }
1745
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1746 int tls_sw_recvmsg(struct sock *sk,
1747 struct msghdr *msg,
1748 size_t len,
1749 int nonblock,
1750 int flags,
1751 int *addr_len)
1752 {
1753 struct tls_context *tls_ctx = tls_get_ctx(sk);
1754 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1755 struct tls_prot_info *prot = &tls_ctx->prot_info;
1756 struct sk_psock *psock;
1757 int num_async, pending;
1758 unsigned char control = 0;
1759 ssize_t decrypted = 0;
1760 struct strp_msg *rxm;
1761 struct tls_msg *tlm;
1762 struct sk_buff *skb;
1763 ssize_t copied = 0;
1764 bool cmsg = false;
1765 int target, err = 0;
1766 long timeo;
1767 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1768 bool is_peek = flags & MSG_PEEK;
1769 bool bpf_strp_enabled;
1770
1771 flags |= nonblock;
1772
1773 if (unlikely(flags & MSG_ERRQUEUE))
1774 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1775
1776 psock = sk_psock_get(sk);
1777 lock_sock(sk);
1778 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1779
1780 /* Process pending decrypted records. It must be non-zero-copy */
1781 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1782 is_peek);
1783 if (err < 0) {
1784 tls_err_abort(sk, err);
1785 goto end;
1786 }
1787
1788 copied = err;
1789 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA))
1790 goto end;
1791
1792 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1793 len = len - copied;
1794 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1795
1796 decrypted = 0;
1797 num_async = 0;
1798 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1799 bool retain_skb = false;
1800 bool zc = false;
1801 int to_decrypt;
1802 int chunk = 0;
1803 bool async_capable;
1804 bool async = false;
1805
1806 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1807 if (!skb) {
1808 if (psock) {
1809 int ret = __tcp_bpf_recvmsg(sk, psock,
1810 msg, len, flags);
1811
1812 if (ret > 0) {
1813 decrypted += ret;
1814 len -= ret;
1815 continue;
1816 }
1817 }
1818 goto recv_end;
1819 } else {
1820 tlm = tls_msg(skb);
1821 if (prot->version == TLS_1_3_VERSION)
1822 tlm->control = 0;
1823 else
1824 tlm->control = ctx->control;
1825 }
1826
1827 rxm = strp_msg(skb);
1828
1829 to_decrypt = rxm->full_len - prot->overhead_size;
1830
1831 if (to_decrypt <= len && !is_kvec && !is_peek &&
1832 ctx->control == TLS_RECORD_TYPE_DATA &&
1833 prot->version != TLS_1_3_VERSION &&
1834 !bpf_strp_enabled)
1835 zc = true;
1836
1837 /* Do not use async mode if record is non-data */
1838 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1839 async_capable = ctx->async_capable;
1840 else
1841 async_capable = false;
1842
1843 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1844 &chunk, &zc, async_capable);
1845 if (err < 0 && err != -EINPROGRESS) {
1846 tls_err_abort(sk, -EBADMSG);
1847 goto recv_end;
1848 }
1849
1850 if (err == -EINPROGRESS) {
1851 async = true;
1852 num_async++;
1853 } else if (prot->version == TLS_1_3_VERSION) {
1854 tlm->control = ctx->control;
1855 }
1856
1857 /* If the type of records being processed is not known yet,
1858 * set it to record type just dequeued. If it is already known,
1859 * but does not match the record type just dequeued, go to end.
1860 * We always get record type here since for tls1.2, record type
1861 * is known just after record is dequeued from stream parser.
1862 * For tls1.3, we disable async.
1863 */
1864
1865 if (!control)
1866 control = tlm->control;
1867 else if (control != tlm->control)
1868 goto recv_end;
1869
1870 if (!cmsg) {
1871 int cerr;
1872
1873 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1874 sizeof(control), &control);
1875 cmsg = true;
1876 if (control != TLS_RECORD_TYPE_DATA) {
1877 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1878 err = -EIO;
1879 goto recv_end;
1880 }
1881 }
1882 }
1883
1884 if (async)
1885 goto pick_next_record;
1886
1887 if (!zc) {
1888 if (bpf_strp_enabled) {
1889 err = sk_psock_tls_strp_read(psock, skb);
1890 if (err != __SK_PASS) {
1891 rxm->offset = rxm->offset + rxm->full_len;
1892 rxm->full_len = 0;
1893 if (err == __SK_DROP)
1894 consume_skb(skb);
1895 ctx->recv_pkt = NULL;
1896 __strp_unpause(&ctx->strp);
1897 continue;
1898 }
1899 }
1900
1901 if (rxm->full_len > len) {
1902 retain_skb = true;
1903 chunk = len;
1904 } else {
1905 chunk = rxm->full_len;
1906 }
1907
1908 err = skb_copy_datagram_msg(skb, rxm->offset,
1909 msg, chunk);
1910 if (err < 0)
1911 goto recv_end;
1912
1913 if (!is_peek) {
1914 rxm->offset = rxm->offset + chunk;
1915 rxm->full_len = rxm->full_len - chunk;
1916 }
1917 }
1918
1919 pick_next_record:
1920 if (chunk > len)
1921 chunk = len;
1922
1923 decrypted += chunk;
1924 len -= chunk;
1925
1926 /* For async or peek case, queue the current skb */
1927 if (async || is_peek || retain_skb) {
1928 skb_queue_tail(&ctx->rx_list, skb);
1929 skb = NULL;
1930 }
1931
1932 if (tls_sw_advance_skb(sk, skb, chunk)) {
1933 /* Return full control message to
1934 * userspace before trying to parse
1935 * another message type
1936 */
1937 msg->msg_flags |= MSG_EOR;
1938 if (control != TLS_RECORD_TYPE_DATA)
1939 goto recv_end;
1940 } else {
1941 break;
1942 }
1943 }
1944
1945 recv_end:
1946 if (num_async) {
1947 /* Wait for all previously submitted records to be decrypted */
1948 spin_lock_bh(&ctx->decrypt_compl_lock);
1949 ctx->async_notify = true;
1950 pending = atomic_read(&ctx->decrypt_pending);
1951 spin_unlock_bh(&ctx->decrypt_compl_lock);
1952 if (pending) {
1953 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1954 if (err) {
1955 /* one of async decrypt failed */
1956 tls_err_abort(sk, err);
1957 copied = 0;
1958 decrypted = 0;
1959 goto end;
1960 }
1961 } else {
1962 reinit_completion(&ctx->async_wait.completion);
1963 }
1964
1965 /* There can be no concurrent accesses, since we have no
1966 * pending decrypt operations
1967 */
1968 WRITE_ONCE(ctx->async_notify, false);
1969
1970 /* Drain records from the rx_list & copy if required */
1971 if (is_peek || is_kvec)
1972 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1973 decrypted, false, is_peek);
1974 else
1975 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1976 decrypted, true, is_peek);
1977 if (err < 0) {
1978 tls_err_abort(sk, err);
1979 copied = 0;
1980 goto end;
1981 }
1982 }
1983
1984 copied += decrypted;
1985
1986 end:
1987 release_sock(sk);
1988 if (psock)
1989 sk_psock_put(sk, psock);
1990 return copied ? : err;
1991 }
1992
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1993 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1994 struct pipe_inode_info *pipe,
1995 size_t len, unsigned int flags)
1996 {
1997 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1998 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1999 struct strp_msg *rxm = NULL;
2000 struct sock *sk = sock->sk;
2001 struct sk_buff *skb;
2002 ssize_t copied = 0;
2003 int err = 0;
2004 long timeo;
2005 int chunk;
2006 bool zc = false;
2007
2008 lock_sock(sk);
2009
2010 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2011
2012 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2013 if (!skb)
2014 goto splice_read_end;
2015
2016 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2017 if (err < 0) {
2018 tls_err_abort(sk, -EBADMSG);
2019 goto splice_read_end;
2020 }
2021
2022 /* splice does not support reading control messages */
2023 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2024 err = -EINVAL;
2025 goto splice_read_end;
2026 }
2027
2028 rxm = strp_msg(skb);
2029
2030 chunk = min_t(unsigned int, rxm->full_len, len);
2031 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2032 if (copied < 0)
2033 goto splice_read_end;
2034
2035 if (likely(!(flags & MSG_PEEK)))
2036 tls_sw_advance_skb(sk, skb, copied);
2037
2038 splice_read_end:
2039 release_sock(sk);
2040 return copied ? : err;
2041 }
2042
tls_sw_stream_read(const struct sock * sk)2043 bool tls_sw_stream_read(const struct sock *sk)
2044 {
2045 struct tls_context *tls_ctx = tls_get_ctx(sk);
2046 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2047 bool ingress_empty = true;
2048 struct sk_psock *psock;
2049
2050 rcu_read_lock();
2051 psock = sk_psock(sk);
2052 if (psock)
2053 ingress_empty = list_empty(&psock->ingress_msg);
2054 rcu_read_unlock();
2055
2056 return !ingress_empty || ctx->recv_pkt ||
2057 !skb_queue_empty(&ctx->rx_list);
2058 }
2059
tls_read_size(struct strparser * strp,struct sk_buff * skb)2060 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2061 {
2062 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2063 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2064 struct tls_prot_info *prot = &tls_ctx->prot_info;
2065 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2066 struct strp_msg *rxm = strp_msg(skb);
2067 size_t cipher_overhead;
2068 size_t data_len = 0;
2069 int ret;
2070
2071 /* Verify that we have a full TLS header, or wait for more data */
2072 if (rxm->offset + prot->prepend_size > skb->len)
2073 return 0;
2074
2075 /* Sanity-check size of on-stack buffer. */
2076 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2077 ret = -EINVAL;
2078 goto read_failure;
2079 }
2080
2081 /* Linearize header to local buffer */
2082 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2083
2084 if (ret < 0)
2085 goto read_failure;
2086
2087 ctx->control = header[0];
2088
2089 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2090
2091 cipher_overhead = prot->tag_size;
2092 if (prot->version != TLS_1_3_VERSION)
2093 cipher_overhead += prot->iv_size;
2094
2095 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2096 prot->tail_size) {
2097 ret = -EMSGSIZE;
2098 goto read_failure;
2099 }
2100 if (data_len < cipher_overhead) {
2101 ret = -EBADMSG;
2102 goto read_failure;
2103 }
2104
2105 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2106 if (header[1] != TLS_1_2_VERSION_MINOR ||
2107 header[2] != TLS_1_2_VERSION_MAJOR) {
2108 ret = -EINVAL;
2109 goto read_failure;
2110 }
2111
2112 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2113 TCP_SKB_CB(skb)->seq + rxm->offset);
2114 return data_len + TLS_HEADER_SIZE;
2115
2116 read_failure:
2117 tls_err_abort(strp->sk, ret);
2118
2119 return ret;
2120 }
2121
tls_queue(struct strparser * strp,struct sk_buff * skb)2122 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2123 {
2124 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2125 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126
2127 ctx->decrypted = 0;
2128
2129 ctx->recv_pkt = skb;
2130 strp_pause(strp);
2131
2132 ctx->saved_data_ready(strp->sk);
2133 }
2134
tls_data_ready(struct sock * sk)2135 static void tls_data_ready(struct sock *sk)
2136 {
2137 struct tls_context *tls_ctx = tls_get_ctx(sk);
2138 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2139 struct sk_psock *psock;
2140
2141 strp_data_ready(&ctx->strp);
2142
2143 psock = sk_psock_get(sk);
2144 if (psock) {
2145 if (!list_empty(&psock->ingress_msg))
2146 ctx->saved_data_ready(sk);
2147 sk_psock_put(sk, psock);
2148 }
2149 }
2150
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2151 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2152 {
2153 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2154
2155 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2156 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2157 cancel_delayed_work_sync(&ctx->tx_work.work);
2158 }
2159
tls_sw_release_resources_tx(struct sock * sk)2160 void tls_sw_release_resources_tx(struct sock *sk)
2161 {
2162 struct tls_context *tls_ctx = tls_get_ctx(sk);
2163 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2164 struct tls_rec *rec, *tmp;
2165 int pending;
2166
2167 /* Wait for any pending async encryptions to complete */
2168 spin_lock_bh(&ctx->encrypt_compl_lock);
2169 ctx->async_notify = true;
2170 pending = atomic_read(&ctx->encrypt_pending);
2171 spin_unlock_bh(&ctx->encrypt_compl_lock);
2172
2173 if (pending)
2174 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2175
2176 tls_tx_records(sk, -1);
2177
2178 /* Free up un-sent records in tx_list. First, free
2179 * the partially sent record if any at head of tx_list.
2180 */
2181 if (tls_ctx->partially_sent_record) {
2182 tls_free_partial_record(sk, tls_ctx);
2183 rec = list_first_entry(&ctx->tx_list,
2184 struct tls_rec, list);
2185 list_del(&rec->list);
2186 sk_msg_free(sk, &rec->msg_plaintext);
2187 kfree(rec);
2188 }
2189
2190 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2191 list_del(&rec->list);
2192 sk_msg_free(sk, &rec->msg_encrypted);
2193 sk_msg_free(sk, &rec->msg_plaintext);
2194 kfree(rec);
2195 }
2196
2197 crypto_free_aead(ctx->aead_send);
2198 tls_free_open_rec(sk);
2199 }
2200
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2201 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2202 {
2203 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2204
2205 kfree(ctx);
2206 }
2207
tls_sw_release_resources_rx(struct sock * sk)2208 void tls_sw_release_resources_rx(struct sock *sk)
2209 {
2210 struct tls_context *tls_ctx = tls_get_ctx(sk);
2211 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2212
2213 kfree(tls_ctx->rx.rec_seq);
2214 kfree(tls_ctx->rx.iv);
2215
2216 if (ctx->aead_recv) {
2217 kfree_skb(ctx->recv_pkt);
2218 ctx->recv_pkt = NULL;
2219 skb_queue_purge(&ctx->rx_list);
2220 crypto_free_aead(ctx->aead_recv);
2221 strp_stop(&ctx->strp);
2222 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2223 * we still want to strp_stop(), but sk->sk_data_ready was
2224 * never swapped.
2225 */
2226 if (ctx->saved_data_ready) {
2227 write_lock_bh(&sk->sk_callback_lock);
2228 sk->sk_data_ready = ctx->saved_data_ready;
2229 write_unlock_bh(&sk->sk_callback_lock);
2230 }
2231 }
2232 }
2233
tls_sw_strparser_done(struct tls_context * tls_ctx)2234 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2235 {
2236 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2237
2238 strp_done(&ctx->strp);
2239 }
2240
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2241 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2242 {
2243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2244
2245 kfree(ctx);
2246 }
2247
tls_sw_free_resources_rx(struct sock * sk)2248 void tls_sw_free_resources_rx(struct sock *sk)
2249 {
2250 struct tls_context *tls_ctx = tls_get_ctx(sk);
2251
2252 tls_sw_release_resources_rx(sk);
2253 tls_sw_free_ctx_rx(tls_ctx);
2254 }
2255
2256 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2257 static void tx_work_handler(struct work_struct *work)
2258 {
2259 struct delayed_work *delayed_work = to_delayed_work(work);
2260 struct tx_work *tx_work = container_of(delayed_work,
2261 struct tx_work, work);
2262 struct sock *sk = tx_work->sk;
2263 struct tls_context *tls_ctx = tls_get_ctx(sk);
2264 struct tls_sw_context_tx *ctx;
2265
2266 if (unlikely(!tls_ctx))
2267 return;
2268
2269 ctx = tls_sw_ctx_tx(tls_ctx);
2270 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2271 return;
2272
2273 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2274 return;
2275
2276 if (mutex_trylock(&tls_ctx->tx_lock)) {
2277 lock_sock(sk);
2278 tls_tx_records(sk, -1);
2279 release_sock(sk);
2280 mutex_unlock(&tls_ctx->tx_lock);
2281 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2282 /* Someone is holding the tx_lock, they will likely run Tx
2283 * and cancel the work on their way out of the lock section.
2284 * Schedule a long delay just in case.
2285 */
2286 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2287 }
2288 }
2289
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2290 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2291 {
2292 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2293
2294 /* Schedule the transmission if tx list is ready */
2295 if (is_tx_ready(tx_ctx) &&
2296 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2297 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2298 }
2299
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2300 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2301 {
2302 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2303
2304 write_lock_bh(&sk->sk_callback_lock);
2305 rx_ctx->saved_data_ready = sk->sk_data_ready;
2306 sk->sk_data_ready = tls_data_ready;
2307 write_unlock_bh(&sk->sk_callback_lock);
2308
2309 strp_check_rcv(&rx_ctx->strp);
2310 }
2311
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2312 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2313 {
2314 struct tls_context *tls_ctx = tls_get_ctx(sk);
2315 struct tls_prot_info *prot = &tls_ctx->prot_info;
2316 struct tls_crypto_info *crypto_info;
2317 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2318 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2319 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2320 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2321 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2322 struct cipher_context *cctx;
2323 struct crypto_aead **aead;
2324 struct strp_callbacks cb;
2325 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2326 struct crypto_tfm *tfm;
2327 char *iv, *rec_seq, *key, *salt, *cipher_name;
2328 size_t keysize;
2329 int rc = 0;
2330
2331 if (!ctx) {
2332 rc = -EINVAL;
2333 goto out;
2334 }
2335
2336 if (tx) {
2337 if (!ctx->priv_ctx_tx) {
2338 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2339 if (!sw_ctx_tx) {
2340 rc = -ENOMEM;
2341 goto out;
2342 }
2343 ctx->priv_ctx_tx = sw_ctx_tx;
2344 } else {
2345 sw_ctx_tx =
2346 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2347 }
2348 } else {
2349 if (!ctx->priv_ctx_rx) {
2350 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2351 if (!sw_ctx_rx) {
2352 rc = -ENOMEM;
2353 goto out;
2354 }
2355 ctx->priv_ctx_rx = sw_ctx_rx;
2356 } else {
2357 sw_ctx_rx =
2358 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2359 }
2360 }
2361
2362 if (tx) {
2363 crypto_init_wait(&sw_ctx_tx->async_wait);
2364 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2365 crypto_info = &ctx->crypto_send.info;
2366 cctx = &ctx->tx;
2367 aead = &sw_ctx_tx->aead_send;
2368 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2369 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2370 sw_ctx_tx->tx_work.sk = sk;
2371 } else {
2372 crypto_init_wait(&sw_ctx_rx->async_wait);
2373 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2374 crypto_info = &ctx->crypto_recv.info;
2375 cctx = &ctx->rx;
2376 skb_queue_head_init(&sw_ctx_rx->rx_list);
2377 aead = &sw_ctx_rx->aead_recv;
2378 }
2379
2380 switch (crypto_info->cipher_type) {
2381 case TLS_CIPHER_AES_GCM_128: {
2382 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2383 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2384 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2385 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2386 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2387 rec_seq =
2388 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2389 gcm_128_info =
2390 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2391 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2392 key = gcm_128_info->key;
2393 salt = gcm_128_info->salt;
2394 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2395 cipher_name = "gcm(aes)";
2396 break;
2397 }
2398 case TLS_CIPHER_AES_GCM_256: {
2399 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2400 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2401 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2402 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2403 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2404 rec_seq =
2405 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2406 gcm_256_info =
2407 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2408 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2409 key = gcm_256_info->key;
2410 salt = gcm_256_info->salt;
2411 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2412 cipher_name = "gcm(aes)";
2413 break;
2414 }
2415 case TLS_CIPHER_AES_CCM_128: {
2416 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2417 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2418 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2419 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2420 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2421 rec_seq =
2422 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2423 ccm_128_info =
2424 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2425 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2426 key = ccm_128_info->key;
2427 salt = ccm_128_info->salt;
2428 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2429 cipher_name = "ccm(aes)";
2430 break;
2431 }
2432 default:
2433 rc = -EINVAL;
2434 goto free_priv;
2435 }
2436
2437 /* Sanity-check the sizes for stack allocations. */
2438 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2439 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2440 rc = -EINVAL;
2441 goto free_priv;
2442 }
2443
2444 if (crypto_info->version == TLS_1_3_VERSION) {
2445 nonce_size = 0;
2446 prot->aad_size = TLS_HEADER_SIZE;
2447 prot->tail_size = 1;
2448 } else {
2449 prot->aad_size = TLS_AAD_SPACE_SIZE;
2450 prot->tail_size = 0;
2451 }
2452
2453 prot->version = crypto_info->version;
2454 prot->cipher_type = crypto_info->cipher_type;
2455 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2456 prot->tag_size = tag_size;
2457 prot->overhead_size = prot->prepend_size +
2458 prot->tag_size + prot->tail_size;
2459 prot->iv_size = iv_size;
2460 prot->salt_size = salt_size;
2461 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2462 if (!cctx->iv) {
2463 rc = -ENOMEM;
2464 goto free_priv;
2465 }
2466 /* Note: 128 & 256 bit salt are the same size */
2467 prot->rec_seq_size = rec_seq_size;
2468 memcpy(cctx->iv, salt, salt_size);
2469 memcpy(cctx->iv + salt_size, iv, iv_size);
2470 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2471 if (!cctx->rec_seq) {
2472 rc = -ENOMEM;
2473 goto free_iv;
2474 }
2475
2476 if (!*aead) {
2477 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2478 if (IS_ERR(*aead)) {
2479 rc = PTR_ERR(*aead);
2480 *aead = NULL;
2481 goto free_rec_seq;
2482 }
2483 }
2484
2485 ctx->push_pending_record = tls_sw_push_pending_record;
2486
2487 rc = crypto_aead_setkey(*aead, key, keysize);
2488
2489 if (rc)
2490 goto free_aead;
2491
2492 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2493 if (rc)
2494 goto free_aead;
2495
2496 if (sw_ctx_rx) {
2497 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2498
2499 if (crypto_info->version == TLS_1_3_VERSION)
2500 sw_ctx_rx->async_capable = 0;
2501 else
2502 sw_ctx_rx->async_capable =
2503 !!(tfm->__crt_alg->cra_flags &
2504 CRYPTO_ALG_ASYNC);
2505
2506 /* Set up strparser */
2507 memset(&cb, 0, sizeof(cb));
2508 cb.rcv_msg = tls_queue;
2509 cb.parse_msg = tls_read_size;
2510
2511 strp_init(&sw_ctx_rx->strp, sk, &cb);
2512 }
2513
2514 goto out;
2515
2516 free_aead:
2517 crypto_free_aead(*aead);
2518 *aead = NULL;
2519 free_rec_seq:
2520 kfree(cctx->rec_seq);
2521 cctx->rec_seq = NULL;
2522 free_iv:
2523 kfree(cctx->iv);
2524 cctx->iv = NULL;
2525 free_priv:
2526 if (tx) {
2527 kfree(ctx->priv_ctx_tx);
2528 ctx->priv_ctx_tx = NULL;
2529 } else {
2530 kfree(ctx->priv_ctx_rx);
2531 ctx->priv_ctx_rx = NULL;
2532 }
2533 out:
2534 return rc;
2535 }
2536