• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40 
41 static struct kmem_cache *lsm_file_cache;
42 static struct kmem_cache *lsm_inode_cache;
43 
44 char *lsm_names;
45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46 
47 /* Boot-time LSM user choice */
48 static __initdata const char *chosen_lsm_order;
49 static __initdata const char *chosen_major_lsm;
50 
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52 
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55 static __initdata struct lsm_info *exclusive;
56 
57 static __initdata bool debug;
58 #define init_debug(...)						\
59 	do {							\
60 		if (debug)					\
61 			pr_info(__VA_ARGS__);			\
62 	} while (0)
63 
is_enabled(struct lsm_info * lsm)64 static bool __init is_enabled(struct lsm_info *lsm)
65 {
66 	if (!lsm->enabled)
67 		return false;
68 
69 	return *lsm->enabled;
70 }
71 
72 /* Mark an LSM's enabled flag. */
73 static int lsm_enabled_true __initdata = 1;
74 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76 {
77 	/*
78 	 * When an LSM hasn't configured an enable variable, we can use
79 	 * a hard-coded location for storing the default enabled state.
80 	 */
81 	if (!lsm->enabled) {
82 		if (enabled)
83 			lsm->enabled = &lsm_enabled_true;
84 		else
85 			lsm->enabled = &lsm_enabled_false;
86 	} else if (lsm->enabled == &lsm_enabled_true) {
87 		if (!enabled)
88 			lsm->enabled = &lsm_enabled_false;
89 	} else if (lsm->enabled == &lsm_enabled_false) {
90 		if (enabled)
91 			lsm->enabled = &lsm_enabled_true;
92 	} else {
93 		*lsm->enabled = enabled;
94 	}
95 }
96 
97 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99 {
100 	struct lsm_info **check;
101 
102 	for (check = ordered_lsms; *check; check++)
103 		if (*check == lsm)
104 			return true;
105 
106 	return false;
107 }
108 
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113 	/* Ignore duplicate selections. */
114 	if (exists_ordered_lsm(lsm))
115 		return;
116 
117 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 		return;
119 
120 	/* Enable this LSM, if it is not already set. */
121 	if (!lsm->enabled)
122 		lsm->enabled = &lsm_enabled_true;
123 	ordered_lsms[last_lsm++] = lsm;
124 
125 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 		   is_enabled(lsm) ? "en" : "dis");
127 }
128 
129 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132 	/* Skip if the LSM is disabled. */
133 	if (!is_enabled(lsm))
134 		return false;
135 
136 	/* Not allowed if another exclusive LSM already initialized. */
137 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 		init_debug("exclusive disabled: %s\n", lsm->name);
139 		return false;
140 	}
141 
142 	return true;
143 }
144 
lsm_set_blob_size(int * need,int * lbs)145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147 	int offset;
148 
149 	if (*need > 0) {
150 		offset = *lbs;
151 		*lbs += *need;
152 		*need = offset;
153 	}
154 }
155 
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158 	if (!needed)
159 		return;
160 
161 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 	/*
164 	 * The inode blob gets an rcu_head in addition to
165 	 * what the modules might need.
166 	 */
167 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174 
175 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178 	int enabled = lsm_allowed(lsm);
179 
180 	/* Record enablement (to handle any following exclusive LSMs). */
181 	set_enabled(lsm, enabled);
182 
183 	/* If enabled, do pre-initialization work. */
184 	if (enabled) {
185 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 			exclusive = lsm;
187 			init_debug("exclusive chosen: %s\n", lsm->name);
188 		}
189 
190 		lsm_set_blob_sizes(lsm->blobs);
191 	}
192 }
193 
194 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197 	if (is_enabled(lsm)) {
198 		int ret;
199 
200 		init_debug("initializing %s\n", lsm->name);
201 		ret = lsm->init();
202 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 	}
204 }
205 
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209 	struct lsm_info *lsm;
210 	char *sep, *name, *next;
211 
212 	/* LSM_ORDER_FIRST is always first. */
213 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 		if (lsm->order == LSM_ORDER_FIRST)
215 			append_ordered_lsm(lsm, "first");
216 	}
217 
218 	/* Process "security=", if given. */
219 	if (chosen_major_lsm) {
220 		struct lsm_info *major;
221 
222 		/*
223 		 * To match the original "security=" behavior, this
224 		 * explicitly does NOT fallback to another Legacy Major
225 		 * if the selected one was separately disabled: disable
226 		 * all non-matching Legacy Major LSMs.
227 		 */
228 		for (major = __start_lsm_info; major < __end_lsm_info;
229 		     major++) {
230 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 			    strcmp(major->name, chosen_major_lsm) != 0) {
232 				set_enabled(major, false);
233 				init_debug("security=%s disabled: %s\n",
234 					   chosen_major_lsm, major->name);
235 			}
236 		}
237 	}
238 
239 	sep = kstrdup(order, GFP_KERNEL);
240 	next = sep;
241 	/* Walk the list, looking for matching LSMs. */
242 	while ((name = strsep(&next, ",")) != NULL) {
243 		bool found = false;
244 
245 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 			if (lsm->order == LSM_ORDER_MUTABLE &&
247 			    strcmp(lsm->name, name) == 0) {
248 				append_ordered_lsm(lsm, origin);
249 				found = true;
250 			}
251 		}
252 
253 		if (!found)
254 			init_debug("%s ignored: %s\n", origin, name);
255 	}
256 
257 	/* Process "security=", if given. */
258 	if (chosen_major_lsm) {
259 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 			if (exists_ordered_lsm(lsm))
261 				continue;
262 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 				append_ordered_lsm(lsm, "security=");
264 		}
265 	}
266 
267 	/* Disable all LSMs not in the ordered list. */
268 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 		if (exists_ordered_lsm(lsm))
270 			continue;
271 		set_enabled(lsm, false);
272 		init_debug("%s disabled: %s\n", origin, lsm->name);
273 	}
274 
275 	kfree(sep);
276 }
277 
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280 
281 static int lsm_append(const char *new, char **result);
282 
ordered_lsm_init(void)283 static void __init ordered_lsm_init(void)
284 {
285 	struct lsm_info **lsm;
286 
287 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 				GFP_KERNEL);
289 
290 	if (chosen_lsm_order) {
291 		if (chosen_major_lsm) {
292 			pr_info("security= is ignored because it is superseded by lsm=\n");
293 			chosen_major_lsm = NULL;
294 		}
295 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 	} else
297 		ordered_lsm_parse(builtin_lsm_order, "builtin");
298 
299 	for (lsm = ordered_lsms; *lsm; lsm++)
300 		prepare_lsm(*lsm);
301 
302 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
303 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
304 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
305 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
306 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
307 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
308 
309 	/*
310 	 * Create any kmem_caches needed for blobs
311 	 */
312 	if (blob_sizes.lbs_file)
313 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 						   blob_sizes.lbs_file, 0,
315 						   SLAB_PANIC, NULL);
316 	if (blob_sizes.lbs_inode)
317 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 						    blob_sizes.lbs_inode, 0,
319 						    SLAB_PANIC, NULL);
320 
321 	lsm_early_cred((struct cred *) current->cred);
322 	lsm_early_task(current);
323 	for (lsm = ordered_lsms; *lsm; lsm++)
324 		initialize_lsm(*lsm);
325 
326 	kfree(ordered_lsms);
327 }
328 
early_security_init(void)329 int __init early_security_init(void)
330 {
331 	int i;
332 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 	struct lsm_info *lsm;
334 
335 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 	     i++)
337 		INIT_HLIST_HEAD(&list[i]);
338 
339 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 		if (!lsm->enabled)
341 			lsm->enabled = &lsm_enabled_true;
342 		prepare_lsm(lsm);
343 		initialize_lsm(lsm);
344 	}
345 
346 	return 0;
347 }
348 
349 /**
350  * security_init - initializes the security framework
351  *
352  * This should be called early in the kernel initialization sequence.
353  */
security_init(void)354 int __init security_init(void)
355 {
356 	struct lsm_info *lsm;
357 
358 	pr_info("Security Framework initializing\n");
359 
360 	/*
361 	 * Append the names of the early LSM modules now that kmalloc() is
362 	 * available
363 	 */
364 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 		if (lsm->enabled)
366 			lsm_append(lsm->name, &lsm_names);
367 	}
368 
369 	/* Load LSMs in specified order. */
370 	ordered_lsm_init();
371 
372 	return 0;
373 }
374 
375 /* Save user chosen LSM */
choose_major_lsm(char * str)376 static int __init choose_major_lsm(char *str)
377 {
378 	chosen_major_lsm = str;
379 	return 1;
380 }
381 __setup("security=", choose_major_lsm);
382 
383 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)384 static int __init choose_lsm_order(char *str)
385 {
386 	chosen_lsm_order = str;
387 	return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390 
391 /* Enable LSM order debugging. */
enable_debug(char * str)392 static int __init enable_debug(char *str)
393 {
394 	debug = true;
395 	return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398 
match_last_lsm(const char * list,const char * lsm)399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401 	const char *last;
402 
403 	if (WARN_ON(!list || !lsm))
404 		return false;
405 	last = strrchr(list, ',');
406 	if (last)
407 		/* Pass the comma, strcmp() will check for '\0' */
408 		last++;
409 	else
410 		last = list;
411 	return !strcmp(last, lsm);
412 }
413 
lsm_append(const char * new,char ** result)414 static int lsm_append(const char *new, char **result)
415 {
416 	char *cp;
417 
418 	if (*result == NULL) {
419 		*result = kstrdup(new, GFP_KERNEL);
420 		if (*result == NULL)
421 			return -ENOMEM;
422 	} else {
423 		/* Check if it is the last registered name */
424 		if (match_last_lsm(*result, new))
425 			return 0;
426 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 		if (cp == NULL)
428 			return -ENOMEM;
429 		kfree(*result);
430 		*result = cp;
431 	}
432 	return 0;
433 }
434 
435 /**
436  * security_add_hooks - Add a modules hooks to the hook lists.
437  * @hooks: the hooks to add
438  * @count: the number of hooks to add
439  * @lsm: the name of the security module
440  *
441  * Each LSM has to register its hooks with the infrastructure.
442  */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 				char *lsm)
445 {
446 	int i;
447 
448 	for (i = 0; i < count; i++) {
449 		hooks[i].lsm = lsm;
450 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 	}
452 
453 	/*
454 	 * Don't try to append during early_security_init(), we'll come back
455 	 * and fix this up afterwards.
456 	 */
457 	if (slab_is_available()) {
458 		if (lsm_append(lsm, &lsm_names) < 0)
459 			panic("%s - Cannot get early memory.\n", __func__);
460 	}
461 }
462 
call_blocking_lsm_notifier(enum lsm_event event,void * data)463 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464 {
465 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 					    event, data);
467 }
468 EXPORT_SYMBOL(call_blocking_lsm_notifier);
469 
register_blocking_lsm_notifier(struct notifier_block * nb)470 int register_blocking_lsm_notifier(struct notifier_block *nb)
471 {
472 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 						nb);
474 }
475 EXPORT_SYMBOL(register_blocking_lsm_notifier);
476 
unregister_blocking_lsm_notifier(struct notifier_block * nb)477 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478 {
479 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 						  nb);
481 }
482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483 
484 /**
485  * lsm_cred_alloc - allocate a composite cred blob
486  * @cred: the cred that needs a blob
487  * @gfp: allocation type
488  *
489  * Allocate the cred blob for all the modules
490  *
491  * Returns 0, or -ENOMEM if memory can't be allocated.
492  */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494 {
495 	if (blob_sizes.lbs_cred == 0) {
496 		cred->security = NULL;
497 		return 0;
498 	}
499 
500 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 	if (cred->security == NULL)
502 		return -ENOMEM;
503 	return 0;
504 }
505 
506 /**
507  * lsm_early_cred - during initialization allocate a composite cred blob
508  * @cred: the cred that needs a blob
509  *
510  * Allocate the cred blob for all the modules
511  */
lsm_early_cred(struct cred * cred)512 static void __init lsm_early_cred(struct cred *cred)
513 {
514 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515 
516 	if (rc)
517 		panic("%s: Early cred alloc failed.\n", __func__);
518 }
519 
520 /**
521  * lsm_file_alloc - allocate a composite file blob
522  * @file: the file that needs a blob
523  *
524  * Allocate the file blob for all the modules
525  *
526  * Returns 0, or -ENOMEM if memory can't be allocated.
527  */
lsm_file_alloc(struct file * file)528 static int lsm_file_alloc(struct file *file)
529 {
530 	if (!lsm_file_cache) {
531 		file->f_security = NULL;
532 		return 0;
533 	}
534 
535 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 	if (file->f_security == NULL)
537 		return -ENOMEM;
538 	return 0;
539 }
540 
541 /**
542  * lsm_inode_alloc - allocate a composite inode blob
543  * @inode: the inode that needs a blob
544  *
545  * Allocate the inode blob for all the modules
546  *
547  * Returns 0, or -ENOMEM if memory can't be allocated.
548  */
lsm_inode_alloc(struct inode * inode)549 int lsm_inode_alloc(struct inode *inode)
550 {
551 	if (!lsm_inode_cache) {
552 		inode->i_security = NULL;
553 		return 0;
554 	}
555 
556 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 	if (inode->i_security == NULL)
558 		return -ENOMEM;
559 	return 0;
560 }
561 
562 /**
563  * lsm_task_alloc - allocate a composite task blob
564  * @task: the task that needs a blob
565  *
566  * Allocate the task blob for all the modules
567  *
568  * Returns 0, or -ENOMEM if memory can't be allocated.
569  */
lsm_task_alloc(struct task_struct * task)570 static int lsm_task_alloc(struct task_struct *task)
571 {
572 	if (blob_sizes.lbs_task == 0) {
573 		task->security = NULL;
574 		return 0;
575 	}
576 
577 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 	if (task->security == NULL)
579 		return -ENOMEM;
580 	return 0;
581 }
582 
583 /**
584  * lsm_ipc_alloc - allocate a composite ipc blob
585  * @kip: the ipc that needs a blob
586  *
587  * Allocate the ipc blob for all the modules
588  *
589  * Returns 0, or -ENOMEM if memory can't be allocated.
590  */
lsm_ipc_alloc(struct kern_ipc_perm * kip)591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592 {
593 	if (blob_sizes.lbs_ipc == 0) {
594 		kip->security = NULL;
595 		return 0;
596 	}
597 
598 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 	if (kip->security == NULL)
600 		return -ENOMEM;
601 	return 0;
602 }
603 
604 /**
605  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606  * @mp: the msg_msg that needs a blob
607  *
608  * Allocate the ipc blob for all the modules
609  *
610  * Returns 0, or -ENOMEM if memory can't be allocated.
611  */
lsm_msg_msg_alloc(struct msg_msg * mp)612 static int lsm_msg_msg_alloc(struct msg_msg *mp)
613 {
614 	if (blob_sizes.lbs_msg_msg == 0) {
615 		mp->security = NULL;
616 		return 0;
617 	}
618 
619 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 	if (mp->security == NULL)
621 		return -ENOMEM;
622 	return 0;
623 }
624 
625 /**
626  * lsm_early_task - during initialization allocate a composite task blob
627  * @task: the task that needs a blob
628  *
629  * Allocate the task blob for all the modules
630  */
lsm_early_task(struct task_struct * task)631 static void __init lsm_early_task(struct task_struct *task)
632 {
633 	int rc = lsm_task_alloc(task);
634 
635 	if (rc)
636 		panic("%s: Early task alloc failed.\n", __func__);
637 }
638 
639 /*
640  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
641  * can be accessed with:
642  *
643  *	LSM_RET_DEFAULT(<hook_name>)
644  *
645  * The macros below define static constants for the default value of each
646  * LSM hook.
647  */
648 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
649 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
650 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
651 	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
652 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
653 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
654 
655 #include <linux/lsm_hook_defs.h>
656 #undef LSM_HOOK
657 
658 /*
659  * Hook list operation macros.
660  *
661  * call_void_hook:
662  *	This is a hook that does not return a value.
663  *
664  * call_int_hook:
665  *	This is a hook that returns a value.
666  */
667 
668 #define call_void_hook(FUNC, ...)				\
669 	do {							\
670 		struct security_hook_list *P;			\
671 								\
672 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
673 			P->hook.FUNC(__VA_ARGS__);		\
674 	} while (0)
675 
676 #define call_int_hook(FUNC, IRC, ...) ({			\
677 	int RC = IRC;						\
678 	do {							\
679 		struct security_hook_list *P;			\
680 								\
681 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
682 			RC = P->hook.FUNC(__VA_ARGS__);		\
683 			if (RC != 0)				\
684 				break;				\
685 		}						\
686 	} while (0);						\
687 	RC;							\
688 })
689 
690 /* Security operations */
691 
security_binder_set_context_mgr(const struct cred * mgr)692 int security_binder_set_context_mgr(const struct cred *mgr)
693 {
694 	return call_int_hook(binder_set_context_mgr, 0, mgr);
695 }
696 
security_binder_transaction(const struct cred * from,const struct cred * to)697 int security_binder_transaction(const struct cred *from,
698 				const struct cred *to)
699 {
700 	return call_int_hook(binder_transaction, 0, from, to);
701 }
702 
security_binder_transfer_binder(const struct cred * from,const struct cred * to)703 int security_binder_transfer_binder(const struct cred *from,
704 				    const struct cred *to)
705 {
706 	return call_int_hook(binder_transfer_binder, 0, from, to);
707 }
708 
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)709 int security_binder_transfer_file(const struct cred *from,
710 				  const struct cred *to, struct file *file)
711 {
712 	return call_int_hook(binder_transfer_file, 0, from, to, file);
713 }
714 
security_ptrace_access_check(struct task_struct * child,unsigned int mode)715 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
716 {
717 	return call_int_hook(ptrace_access_check, 0, child, mode);
718 }
719 
security_ptrace_traceme(struct task_struct * parent)720 int security_ptrace_traceme(struct task_struct *parent)
721 {
722 	return call_int_hook(ptrace_traceme, 0, parent);
723 }
724 
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)725 int security_capget(struct task_struct *target,
726 		     kernel_cap_t *effective,
727 		     kernel_cap_t *inheritable,
728 		     kernel_cap_t *permitted)
729 {
730 	return call_int_hook(capget, 0, target,
731 				effective, inheritable, permitted);
732 }
733 
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)734 int security_capset(struct cred *new, const struct cred *old,
735 		    const kernel_cap_t *effective,
736 		    const kernel_cap_t *inheritable,
737 		    const kernel_cap_t *permitted)
738 {
739 	return call_int_hook(capset, 0, new, old,
740 				effective, inheritable, permitted);
741 }
742 
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)743 int security_capable(const struct cred *cred,
744 		     struct user_namespace *ns,
745 		     int cap,
746 		     unsigned int opts)
747 {
748 	return call_int_hook(capable, 0, cred, ns, cap, opts);
749 }
750 
security_quotactl(int cmds,int type,int id,struct super_block * sb)751 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
752 {
753 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
754 }
755 
security_quota_on(struct dentry * dentry)756 int security_quota_on(struct dentry *dentry)
757 {
758 	return call_int_hook(quota_on, 0, dentry);
759 }
760 
security_syslog(int type)761 int security_syslog(int type)
762 {
763 	return call_int_hook(syslog, 0, type);
764 }
765 
security_settime64(const struct timespec64 * ts,const struct timezone * tz)766 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
767 {
768 	return call_int_hook(settime, 0, ts, tz);
769 }
770 
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)771 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
772 {
773 	struct security_hook_list *hp;
774 	int cap_sys_admin = 1;
775 	int rc;
776 
777 	/*
778 	 * The module will respond with a positive value if
779 	 * it thinks the __vm_enough_memory() call should be
780 	 * made with the cap_sys_admin set. If all of the modules
781 	 * agree that it should be set it will. If any module
782 	 * thinks it should not be set it won't.
783 	 */
784 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
785 		rc = hp->hook.vm_enough_memory(mm, pages);
786 		if (rc <= 0) {
787 			cap_sys_admin = 0;
788 			break;
789 		}
790 	}
791 	return __vm_enough_memory(mm, pages, cap_sys_admin);
792 }
793 
security_bprm_creds_for_exec(struct linux_binprm * bprm)794 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
795 {
796 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
797 }
798 
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)799 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
800 {
801 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
802 }
803 
security_bprm_check(struct linux_binprm * bprm)804 int security_bprm_check(struct linux_binprm *bprm)
805 {
806 	int ret;
807 
808 	ret = call_int_hook(bprm_check_security, 0, bprm);
809 	if (ret)
810 		return ret;
811 	return ima_bprm_check(bprm);
812 }
813 
security_bprm_committing_creds(struct linux_binprm * bprm)814 void security_bprm_committing_creds(struct linux_binprm *bprm)
815 {
816 	call_void_hook(bprm_committing_creds, bprm);
817 }
818 
security_bprm_committed_creds(struct linux_binprm * bprm)819 void security_bprm_committed_creds(struct linux_binprm *bprm)
820 {
821 	call_void_hook(bprm_committed_creds, bprm);
822 }
823 
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)824 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
825 {
826 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
827 }
828 
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)829 int security_fs_context_parse_param(struct fs_context *fc,
830 				    struct fs_parameter *param)
831 {
832 	struct security_hook_list *hp;
833 	int trc;
834 	int rc = -ENOPARAM;
835 
836 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
837 			     list) {
838 		trc = hp->hook.fs_context_parse_param(fc, param);
839 		if (trc == 0)
840 			rc = 0;
841 		else if (trc != -ENOPARAM)
842 			return trc;
843 	}
844 	return rc;
845 }
846 
security_sb_alloc(struct super_block * sb)847 int security_sb_alloc(struct super_block *sb)
848 {
849 	return call_int_hook(sb_alloc_security, 0, sb);
850 }
851 
security_sb_free(struct super_block * sb)852 void security_sb_free(struct super_block *sb)
853 {
854 	call_void_hook(sb_free_security, sb);
855 }
856 
security_free_mnt_opts(void ** mnt_opts)857 void security_free_mnt_opts(void **mnt_opts)
858 {
859 	if (!*mnt_opts)
860 		return;
861 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
862 	*mnt_opts = NULL;
863 }
864 EXPORT_SYMBOL(security_free_mnt_opts);
865 
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)866 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
867 {
868 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
869 }
870 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
871 
security_sb_remount(struct super_block * sb,void * mnt_opts)872 int security_sb_remount(struct super_block *sb,
873 			void *mnt_opts)
874 {
875 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
876 }
877 EXPORT_SYMBOL(security_sb_remount);
878 
security_sb_kern_mount(struct super_block * sb)879 int security_sb_kern_mount(struct super_block *sb)
880 {
881 	return call_int_hook(sb_kern_mount, 0, sb);
882 }
883 
security_sb_show_options(struct seq_file * m,struct super_block * sb)884 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
885 {
886 	return call_int_hook(sb_show_options, 0, m, sb);
887 }
888 
security_sb_statfs(struct dentry * dentry)889 int security_sb_statfs(struct dentry *dentry)
890 {
891 	return call_int_hook(sb_statfs, 0, dentry);
892 }
893 
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)894 int security_sb_mount(const char *dev_name, const struct path *path,
895                        const char *type, unsigned long flags, void *data)
896 {
897 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
898 }
899 
security_sb_umount(struct vfsmount * mnt,int flags)900 int security_sb_umount(struct vfsmount *mnt, int flags)
901 {
902 	return call_int_hook(sb_umount, 0, mnt, flags);
903 }
904 
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)905 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
906 {
907 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
908 }
909 
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)910 int security_sb_set_mnt_opts(struct super_block *sb,
911 				void *mnt_opts,
912 				unsigned long kern_flags,
913 				unsigned long *set_kern_flags)
914 {
915 	return call_int_hook(sb_set_mnt_opts,
916 				mnt_opts ? -EOPNOTSUPP : 0, sb,
917 				mnt_opts, kern_flags, set_kern_flags);
918 }
919 EXPORT_SYMBOL(security_sb_set_mnt_opts);
920 
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)921 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
922 				struct super_block *newsb,
923 				unsigned long kern_flags,
924 				unsigned long *set_kern_flags)
925 {
926 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
927 				kern_flags, set_kern_flags);
928 }
929 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
930 
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)931 int security_add_mnt_opt(const char *option, const char *val, int len,
932 			 void **mnt_opts)
933 {
934 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
935 					option, val, len, mnt_opts);
936 }
937 EXPORT_SYMBOL(security_add_mnt_opt);
938 
security_move_mount(const struct path * from_path,const struct path * to_path)939 int security_move_mount(const struct path *from_path, const struct path *to_path)
940 {
941 	return call_int_hook(move_mount, 0, from_path, to_path);
942 }
943 
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)944 int security_path_notify(const struct path *path, u64 mask,
945 				unsigned int obj_type)
946 {
947 	return call_int_hook(path_notify, 0, path, mask, obj_type);
948 }
949 
security_inode_alloc(struct inode * inode)950 int security_inode_alloc(struct inode *inode)
951 {
952 	int rc = lsm_inode_alloc(inode);
953 
954 	if (unlikely(rc))
955 		return rc;
956 	rc = call_int_hook(inode_alloc_security, 0, inode);
957 	if (unlikely(rc))
958 		security_inode_free(inode);
959 	return rc;
960 }
961 
inode_free_by_rcu(struct rcu_head * head)962 static void inode_free_by_rcu(struct rcu_head *head)
963 {
964 	/*
965 	 * The rcu head is at the start of the inode blob
966 	 */
967 	kmem_cache_free(lsm_inode_cache, head);
968 }
969 
security_inode_free(struct inode * inode)970 void security_inode_free(struct inode *inode)
971 {
972 	integrity_inode_free(inode);
973 	call_void_hook(inode_free_security, inode);
974 	/*
975 	 * The inode may still be referenced in a path walk and
976 	 * a call to security_inode_permission() can be made
977 	 * after inode_free_security() is called. Ideally, the VFS
978 	 * wouldn't do this, but fixing that is a much harder
979 	 * job. For now, simply free the i_security via RCU, and
980 	 * leave the current inode->i_security pointer intact.
981 	 * The inode will be freed after the RCU grace period too.
982 	 */
983 	if (inode->i_security)
984 		call_rcu((struct rcu_head *)inode->i_security,
985 				inode_free_by_rcu);
986 }
987 
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,void ** ctx,u32 * ctxlen)988 int security_dentry_init_security(struct dentry *dentry, int mode,
989 					const struct qstr *name, void **ctx,
990 					u32 *ctxlen)
991 {
992 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
993 				name, ctx, ctxlen);
994 }
995 EXPORT_SYMBOL(security_dentry_init_security);
996 
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)997 int security_dentry_create_files_as(struct dentry *dentry, int mode,
998 				    struct qstr *name,
999 				    const struct cred *old, struct cred *new)
1000 {
1001 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1002 				name, old, new);
1003 }
1004 EXPORT_SYMBOL(security_dentry_create_files_as);
1005 
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1006 int security_inode_init_security(struct inode *inode, struct inode *dir,
1007 				 const struct qstr *qstr,
1008 				 const initxattrs initxattrs, void *fs_data)
1009 {
1010 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1011 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1012 	int ret;
1013 
1014 	if (unlikely(IS_PRIVATE(inode)))
1015 		return 0;
1016 
1017 	if (!initxattrs)
1018 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1019 				     dir, qstr, NULL, NULL, NULL);
1020 	memset(new_xattrs, 0, sizeof(new_xattrs));
1021 	lsm_xattr = new_xattrs;
1022 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1023 						&lsm_xattr->name,
1024 						&lsm_xattr->value,
1025 						&lsm_xattr->value_len);
1026 	if (ret)
1027 		goto out;
1028 
1029 	evm_xattr = lsm_xattr + 1;
1030 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1031 	if (ret)
1032 		goto out;
1033 	ret = initxattrs(inode, new_xattrs, fs_data);
1034 out:
1035 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1036 		kfree(xattr->value);
1037 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1038 }
1039 EXPORT_SYMBOL(security_inode_init_security);
1040 
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1041 int security_inode_init_security_anon(struct inode *inode,
1042 				      const struct qstr *name,
1043 				      const struct inode *context_inode)
1044 {
1045 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1046 			     context_inode);
1047 }
1048 
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1049 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1050 				     const struct qstr *qstr, const char **name,
1051 				     void **value, size_t *len)
1052 {
1053 	if (unlikely(IS_PRIVATE(inode)))
1054 		return -EOPNOTSUPP;
1055 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1056 			     qstr, name, value, len);
1057 }
1058 EXPORT_SYMBOL(security_old_inode_init_security);
1059 
1060 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1061 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1062 			unsigned int dev)
1063 {
1064 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1065 		return 0;
1066 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1067 }
1068 EXPORT_SYMBOL(security_path_mknod);
1069 
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1070 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1071 {
1072 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1073 		return 0;
1074 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1075 }
1076 EXPORT_SYMBOL(security_path_mkdir);
1077 
security_path_rmdir(const struct path * dir,struct dentry * dentry)1078 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1079 {
1080 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1081 		return 0;
1082 	return call_int_hook(path_rmdir, 0, dir, dentry);
1083 }
1084 
security_path_unlink(const struct path * dir,struct dentry * dentry)1085 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1086 {
1087 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1088 		return 0;
1089 	return call_int_hook(path_unlink, 0, dir, dentry);
1090 }
1091 EXPORT_SYMBOL(security_path_unlink);
1092 
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1093 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1094 			  const char *old_name)
1095 {
1096 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1097 		return 0;
1098 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1099 }
1100 
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1101 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1102 		       struct dentry *new_dentry)
1103 {
1104 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1105 		return 0;
1106 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1107 }
1108 
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1109 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1110 			 const struct path *new_dir, struct dentry *new_dentry,
1111 			 unsigned int flags)
1112 {
1113 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1114 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1115 		return 0;
1116 
1117 	if (flags & RENAME_EXCHANGE) {
1118 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1119 					old_dir, old_dentry);
1120 		if (err)
1121 			return err;
1122 	}
1123 
1124 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1125 				new_dentry);
1126 }
1127 EXPORT_SYMBOL(security_path_rename);
1128 
security_path_truncate(const struct path * path)1129 int security_path_truncate(const struct path *path)
1130 {
1131 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1132 		return 0;
1133 	return call_int_hook(path_truncate, 0, path);
1134 }
1135 
security_path_chmod(const struct path * path,umode_t mode)1136 int security_path_chmod(const struct path *path, umode_t mode)
1137 {
1138 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1139 		return 0;
1140 	return call_int_hook(path_chmod, 0, path, mode);
1141 }
1142 
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1143 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1144 {
1145 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1146 		return 0;
1147 	return call_int_hook(path_chown, 0, path, uid, gid);
1148 }
1149 
security_path_chroot(const struct path * path)1150 int security_path_chroot(const struct path *path)
1151 {
1152 	return call_int_hook(path_chroot, 0, path);
1153 }
1154 #endif
1155 
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1156 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1157 {
1158 	if (unlikely(IS_PRIVATE(dir)))
1159 		return 0;
1160 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1161 }
1162 EXPORT_SYMBOL_GPL(security_inode_create);
1163 
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1164 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1165 			 struct dentry *new_dentry)
1166 {
1167 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1168 		return 0;
1169 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1170 }
1171 
security_inode_unlink(struct inode * dir,struct dentry * dentry)1172 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1173 {
1174 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1175 		return 0;
1176 	return call_int_hook(inode_unlink, 0, dir, dentry);
1177 }
1178 
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1179 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1180 			    const char *old_name)
1181 {
1182 	if (unlikely(IS_PRIVATE(dir)))
1183 		return 0;
1184 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1185 }
1186 
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1187 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1188 {
1189 	if (unlikely(IS_PRIVATE(dir)))
1190 		return 0;
1191 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1192 }
1193 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1194 
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1195 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1196 {
1197 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1198 		return 0;
1199 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1200 }
1201 
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1202 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1203 {
1204 	if (unlikely(IS_PRIVATE(dir)))
1205 		return 0;
1206 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1207 }
1208 
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1209 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1210 			   struct inode *new_dir, struct dentry *new_dentry,
1211 			   unsigned int flags)
1212 {
1213         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1214             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1215 		return 0;
1216 
1217 	if (flags & RENAME_EXCHANGE) {
1218 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1219 						     old_dir, old_dentry);
1220 		if (err)
1221 			return err;
1222 	}
1223 
1224 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1225 					   new_dir, new_dentry);
1226 }
1227 
security_inode_readlink(struct dentry * dentry)1228 int security_inode_readlink(struct dentry *dentry)
1229 {
1230 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231 		return 0;
1232 	return call_int_hook(inode_readlink, 0, dentry);
1233 }
1234 
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1235 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1236 			       bool rcu)
1237 {
1238 	if (unlikely(IS_PRIVATE(inode)))
1239 		return 0;
1240 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1241 }
1242 
security_inode_permission(struct inode * inode,int mask)1243 int security_inode_permission(struct inode *inode, int mask)
1244 {
1245 	if (unlikely(IS_PRIVATE(inode)))
1246 		return 0;
1247 	return call_int_hook(inode_permission, 0, inode, mask);
1248 }
1249 
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1250 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1251 {
1252 	int ret;
1253 
1254 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1255 		return 0;
1256 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1257 	if (ret)
1258 		return ret;
1259 	return evm_inode_setattr(dentry, attr);
1260 }
1261 EXPORT_SYMBOL_GPL(security_inode_setattr);
1262 
security_inode_getattr(const struct path * path)1263 int security_inode_getattr(const struct path *path)
1264 {
1265 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1266 		return 0;
1267 	return call_int_hook(inode_getattr, 0, path);
1268 }
1269 
security_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1270 int security_inode_setxattr(struct dentry *dentry, const char *name,
1271 			    const void *value, size_t size, int flags)
1272 {
1273 	int ret;
1274 
1275 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1276 		return 0;
1277 	/*
1278 	 * SELinux and Smack integrate the cap call,
1279 	 * so assume that all LSMs supplying this call do so.
1280 	 */
1281 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1282 				flags);
1283 
1284 	if (ret == 1)
1285 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1286 	if (ret)
1287 		return ret;
1288 	ret = ima_inode_setxattr(dentry, name, value, size);
1289 	if (ret)
1290 		return ret;
1291 	return evm_inode_setxattr(dentry, name, value, size);
1292 }
1293 
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1294 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1295 				  const void *value, size_t size, int flags)
1296 {
1297 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1298 		return;
1299 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1300 	evm_inode_post_setxattr(dentry, name, value, size);
1301 }
1302 
security_inode_getxattr(struct dentry * dentry,const char * name)1303 int security_inode_getxattr(struct dentry *dentry, const char *name)
1304 {
1305 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1306 		return 0;
1307 	return call_int_hook(inode_getxattr, 0, dentry, name);
1308 }
1309 
security_inode_listxattr(struct dentry * dentry)1310 int security_inode_listxattr(struct dentry *dentry)
1311 {
1312 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1313 		return 0;
1314 	return call_int_hook(inode_listxattr, 0, dentry);
1315 }
1316 
security_inode_removexattr(struct dentry * dentry,const char * name)1317 int security_inode_removexattr(struct dentry *dentry, const char *name)
1318 {
1319 	int ret;
1320 
1321 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1322 		return 0;
1323 	/*
1324 	 * SELinux and Smack integrate the cap call,
1325 	 * so assume that all LSMs supplying this call do so.
1326 	 */
1327 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1328 	if (ret == 1)
1329 		ret = cap_inode_removexattr(dentry, name);
1330 	if (ret)
1331 		return ret;
1332 	ret = ima_inode_removexattr(dentry, name);
1333 	if (ret)
1334 		return ret;
1335 	return evm_inode_removexattr(dentry, name);
1336 }
1337 
security_inode_need_killpriv(struct dentry * dentry)1338 int security_inode_need_killpriv(struct dentry *dentry)
1339 {
1340 	return call_int_hook(inode_need_killpriv, 0, dentry);
1341 }
1342 
security_inode_killpriv(struct dentry * dentry)1343 int security_inode_killpriv(struct dentry *dentry)
1344 {
1345 	return call_int_hook(inode_killpriv, 0, dentry);
1346 }
1347 
security_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)1348 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1349 {
1350 	struct security_hook_list *hp;
1351 	int rc;
1352 
1353 	if (unlikely(IS_PRIVATE(inode)))
1354 		return LSM_RET_DEFAULT(inode_getsecurity);
1355 	/*
1356 	 * Only one module will provide an attribute with a given name.
1357 	 */
1358 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1359 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1360 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1361 			return rc;
1362 	}
1363 	return LSM_RET_DEFAULT(inode_getsecurity);
1364 }
1365 
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1366 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1367 {
1368 	struct security_hook_list *hp;
1369 	int rc;
1370 
1371 	if (unlikely(IS_PRIVATE(inode)))
1372 		return LSM_RET_DEFAULT(inode_setsecurity);
1373 	/*
1374 	 * Only one module will provide an attribute with a given name.
1375 	 */
1376 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1377 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1378 								flags);
1379 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1380 			return rc;
1381 	}
1382 	return LSM_RET_DEFAULT(inode_setsecurity);
1383 }
1384 
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1385 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1386 {
1387 	if (unlikely(IS_PRIVATE(inode)))
1388 		return 0;
1389 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1390 }
1391 EXPORT_SYMBOL(security_inode_listsecurity);
1392 
security_inode_getsecid(struct inode * inode,u32 * secid)1393 void security_inode_getsecid(struct inode *inode, u32 *secid)
1394 {
1395 	call_void_hook(inode_getsecid, inode, secid);
1396 }
1397 
security_inode_copy_up(struct dentry * src,struct cred ** new)1398 int security_inode_copy_up(struct dentry *src, struct cred **new)
1399 {
1400 	return call_int_hook(inode_copy_up, 0, src, new);
1401 }
1402 EXPORT_SYMBOL(security_inode_copy_up);
1403 
security_inode_copy_up_xattr(const char * name)1404 int security_inode_copy_up_xattr(const char *name)
1405 {
1406 	struct security_hook_list *hp;
1407 	int rc;
1408 
1409 	/*
1410 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1411 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1412 	 * any other error code incase of an error.
1413 	 */
1414 	hlist_for_each_entry(hp,
1415 		&security_hook_heads.inode_copy_up_xattr, list) {
1416 		rc = hp->hook.inode_copy_up_xattr(name);
1417 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1418 			return rc;
1419 	}
1420 
1421 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1422 }
1423 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1424 
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1425 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1426 				  struct kernfs_node *kn)
1427 {
1428 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1429 }
1430 
security_file_permission(struct file * file,int mask)1431 int security_file_permission(struct file *file, int mask)
1432 {
1433 	int ret;
1434 
1435 	ret = call_int_hook(file_permission, 0, file, mask);
1436 	if (ret)
1437 		return ret;
1438 
1439 	return fsnotify_perm(file, mask);
1440 }
1441 
security_file_alloc(struct file * file)1442 int security_file_alloc(struct file *file)
1443 {
1444 	int rc = lsm_file_alloc(file);
1445 
1446 	if (rc)
1447 		return rc;
1448 	rc = call_int_hook(file_alloc_security, 0, file);
1449 	if (unlikely(rc))
1450 		security_file_free(file);
1451 	return rc;
1452 }
1453 
security_file_free(struct file * file)1454 void security_file_free(struct file *file)
1455 {
1456 	void *blob;
1457 
1458 	call_void_hook(file_free_security, file);
1459 
1460 	blob = file->f_security;
1461 	if (blob) {
1462 		file->f_security = NULL;
1463 		kmem_cache_free(lsm_file_cache, blob);
1464 	}
1465 }
1466 
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1467 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1468 {
1469 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1470 }
1471 EXPORT_SYMBOL_GPL(security_file_ioctl);
1472 
1473 /**
1474  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
1475  * @file: associated file
1476  * @cmd: ioctl cmd
1477  * @arg: ioctl arguments
1478  *
1479  * Compat version of security_file_ioctl() that correctly handles 32-bit
1480  * processes running on 64-bit kernels.
1481  *
1482  * Return: Returns 0 if permission is granted.
1483  */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1484 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
1485 			       unsigned long arg)
1486 {
1487 	return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
1488 }
1489 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
1490 
mmap_prot(struct file * file,unsigned long prot)1491 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1492 {
1493 	/*
1494 	 * Does we have PROT_READ and does the application expect
1495 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1496 	 */
1497 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1498 		return prot;
1499 	if (!(current->personality & READ_IMPLIES_EXEC))
1500 		return prot;
1501 	/*
1502 	 * if that's an anonymous mapping, let it.
1503 	 */
1504 	if (!file)
1505 		return prot | PROT_EXEC;
1506 	/*
1507 	 * ditto if it's not on noexec mount, except that on !MMU we need
1508 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1509 	 */
1510 	if (!path_noexec(&file->f_path)) {
1511 #ifndef CONFIG_MMU
1512 		if (file->f_op->mmap_capabilities) {
1513 			unsigned caps = file->f_op->mmap_capabilities(file);
1514 			if (!(caps & NOMMU_MAP_EXEC))
1515 				return prot;
1516 		}
1517 #endif
1518 		return prot | PROT_EXEC;
1519 	}
1520 	/* anything on noexec mount won't get PROT_EXEC */
1521 	return prot;
1522 }
1523 
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1524 int security_mmap_file(struct file *file, unsigned long prot,
1525 			unsigned long flags)
1526 {
1527 	unsigned long prot_adj = mmap_prot(file, prot);
1528 	int ret;
1529 
1530 	ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1531 	if (ret)
1532 		return ret;
1533 	return ima_file_mmap(file, prot, prot_adj, flags);
1534 }
1535 
security_mmap_addr(unsigned long addr)1536 int security_mmap_addr(unsigned long addr)
1537 {
1538 	return call_int_hook(mmap_addr, 0, addr);
1539 }
1540 
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1541 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1542 			    unsigned long prot)
1543 {
1544 	int ret;
1545 
1546 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1547 	if (ret)
1548 		return ret;
1549 	return ima_file_mprotect(vma, prot);
1550 }
1551 
security_file_lock(struct file * file,unsigned int cmd)1552 int security_file_lock(struct file *file, unsigned int cmd)
1553 {
1554 	return call_int_hook(file_lock, 0, file, cmd);
1555 }
1556 
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1557 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1558 {
1559 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1560 }
1561 
security_file_set_fowner(struct file * file)1562 void security_file_set_fowner(struct file *file)
1563 {
1564 	call_void_hook(file_set_fowner, file);
1565 }
1566 
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1567 int security_file_send_sigiotask(struct task_struct *tsk,
1568 				  struct fown_struct *fown, int sig)
1569 {
1570 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1571 }
1572 
security_file_receive(struct file * file)1573 int security_file_receive(struct file *file)
1574 {
1575 	return call_int_hook(file_receive, 0, file);
1576 }
1577 
security_file_open(struct file * file)1578 int security_file_open(struct file *file)
1579 {
1580 	int ret;
1581 
1582 	ret = call_int_hook(file_open, 0, file);
1583 	if (ret)
1584 		return ret;
1585 
1586 	return fsnotify_perm(file, MAY_OPEN);
1587 }
1588 
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1589 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1590 {
1591 	int rc = lsm_task_alloc(task);
1592 
1593 	if (rc)
1594 		return rc;
1595 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1596 	if (unlikely(rc))
1597 		security_task_free(task);
1598 	return rc;
1599 }
1600 
security_task_free(struct task_struct * task)1601 void security_task_free(struct task_struct *task)
1602 {
1603 	call_void_hook(task_free, task);
1604 
1605 	kfree(task->security);
1606 	task->security = NULL;
1607 }
1608 
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1609 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1610 {
1611 	int rc = lsm_cred_alloc(cred, gfp);
1612 
1613 	if (rc)
1614 		return rc;
1615 
1616 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1617 	if (unlikely(rc))
1618 		security_cred_free(cred);
1619 	return rc;
1620 }
1621 
security_cred_free(struct cred * cred)1622 void security_cred_free(struct cred *cred)
1623 {
1624 	/*
1625 	 * There is a failure case in prepare_creds() that
1626 	 * may result in a call here with ->security being NULL.
1627 	 */
1628 	if (unlikely(cred->security == NULL))
1629 		return;
1630 
1631 	call_void_hook(cred_free, cred);
1632 
1633 	kfree(cred->security);
1634 	cred->security = NULL;
1635 }
1636 
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1637 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1638 {
1639 	int rc = lsm_cred_alloc(new, gfp);
1640 
1641 	if (rc)
1642 		return rc;
1643 
1644 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1645 	if (unlikely(rc))
1646 		security_cred_free(new);
1647 	return rc;
1648 }
1649 
security_transfer_creds(struct cred * new,const struct cred * old)1650 void security_transfer_creds(struct cred *new, const struct cred *old)
1651 {
1652 	call_void_hook(cred_transfer, new, old);
1653 }
1654 
security_cred_getsecid(const struct cred * c,u32 * secid)1655 void security_cred_getsecid(const struct cred *c, u32 *secid)
1656 {
1657 	*secid = 0;
1658 	call_void_hook(cred_getsecid, c, secid);
1659 }
1660 EXPORT_SYMBOL(security_cred_getsecid);
1661 
security_kernel_act_as(struct cred * new,u32 secid)1662 int security_kernel_act_as(struct cred *new, u32 secid)
1663 {
1664 	return call_int_hook(kernel_act_as, 0, new, secid);
1665 }
1666 
security_kernel_create_files_as(struct cred * new,struct inode * inode)1667 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1668 {
1669 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1670 }
1671 
security_kernel_module_request(char * kmod_name)1672 int security_kernel_module_request(char *kmod_name)
1673 {
1674 	int ret;
1675 
1676 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1677 	if (ret)
1678 		return ret;
1679 	return integrity_kernel_module_request(kmod_name);
1680 }
1681 
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1682 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1683 			      bool contents)
1684 {
1685 	int ret;
1686 
1687 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1688 	if (ret)
1689 		return ret;
1690 	return ima_read_file(file, id, contents);
1691 }
1692 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1693 
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1694 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1695 				   enum kernel_read_file_id id)
1696 {
1697 	int ret;
1698 
1699 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1700 	if (ret)
1701 		return ret;
1702 	return ima_post_read_file(file, buf, size, id);
1703 }
1704 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1705 
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1706 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1707 {
1708 	int ret;
1709 
1710 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1711 	if (ret)
1712 		return ret;
1713 	return ima_load_data(id, contents);
1714 }
1715 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1716 
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1717 int security_kernel_post_load_data(char *buf, loff_t size,
1718 				   enum kernel_load_data_id id,
1719 				   char *description)
1720 {
1721 	int ret;
1722 
1723 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1724 			    description);
1725 	if (ret)
1726 		return ret;
1727 	return ima_post_load_data(buf, size, id, description);
1728 }
1729 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1730 
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1731 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1732 			     int flags)
1733 {
1734 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1735 }
1736 
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1737 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1738 				 int flags)
1739 {
1740 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1741 }
1742 
security_task_setpgid(struct task_struct * p,pid_t pgid)1743 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1744 {
1745 	return call_int_hook(task_setpgid, 0, p, pgid);
1746 }
1747 
security_task_getpgid(struct task_struct * p)1748 int security_task_getpgid(struct task_struct *p)
1749 {
1750 	return call_int_hook(task_getpgid, 0, p);
1751 }
1752 
security_task_getsid(struct task_struct * p)1753 int security_task_getsid(struct task_struct *p)
1754 {
1755 	return call_int_hook(task_getsid, 0, p);
1756 }
1757 
security_task_getsecid(struct task_struct * p,u32 * secid)1758 void security_task_getsecid(struct task_struct *p, u32 *secid)
1759 {
1760 	*secid = 0;
1761 	call_void_hook(task_getsecid, p, secid);
1762 }
1763 EXPORT_SYMBOL(security_task_getsecid);
1764 
security_task_setnice(struct task_struct * p,int nice)1765 int security_task_setnice(struct task_struct *p, int nice)
1766 {
1767 	return call_int_hook(task_setnice, 0, p, nice);
1768 }
1769 
security_task_setioprio(struct task_struct * p,int ioprio)1770 int security_task_setioprio(struct task_struct *p, int ioprio)
1771 {
1772 	return call_int_hook(task_setioprio, 0, p, ioprio);
1773 }
1774 
security_task_getioprio(struct task_struct * p)1775 int security_task_getioprio(struct task_struct *p)
1776 {
1777 	return call_int_hook(task_getioprio, 0, p);
1778 }
1779 
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1780 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1781 			  unsigned int flags)
1782 {
1783 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1784 }
1785 
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1786 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1787 		struct rlimit *new_rlim)
1788 {
1789 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1790 }
1791 
security_task_setscheduler(struct task_struct * p)1792 int security_task_setscheduler(struct task_struct *p)
1793 {
1794 	return call_int_hook(task_setscheduler, 0, p);
1795 }
1796 
security_task_getscheduler(struct task_struct * p)1797 int security_task_getscheduler(struct task_struct *p)
1798 {
1799 	return call_int_hook(task_getscheduler, 0, p);
1800 }
1801 
security_task_movememory(struct task_struct * p)1802 int security_task_movememory(struct task_struct *p)
1803 {
1804 	return call_int_hook(task_movememory, 0, p);
1805 }
1806 
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1807 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1808 			int sig, const struct cred *cred)
1809 {
1810 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1811 }
1812 
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1813 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1814 			 unsigned long arg4, unsigned long arg5)
1815 {
1816 	int thisrc;
1817 	int rc = LSM_RET_DEFAULT(task_prctl);
1818 	struct security_hook_list *hp;
1819 
1820 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1821 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1822 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1823 			rc = thisrc;
1824 			if (thisrc != 0)
1825 				break;
1826 		}
1827 	}
1828 	return rc;
1829 }
1830 
security_task_to_inode(struct task_struct * p,struct inode * inode)1831 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1832 {
1833 	call_void_hook(task_to_inode, p, inode);
1834 }
1835 
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1836 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1837 {
1838 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1839 }
1840 
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1841 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1842 {
1843 	*secid = 0;
1844 	call_void_hook(ipc_getsecid, ipcp, secid);
1845 }
1846 
security_msg_msg_alloc(struct msg_msg * msg)1847 int security_msg_msg_alloc(struct msg_msg *msg)
1848 {
1849 	int rc = lsm_msg_msg_alloc(msg);
1850 
1851 	if (unlikely(rc))
1852 		return rc;
1853 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1854 	if (unlikely(rc))
1855 		security_msg_msg_free(msg);
1856 	return rc;
1857 }
1858 
security_msg_msg_free(struct msg_msg * msg)1859 void security_msg_msg_free(struct msg_msg *msg)
1860 {
1861 	call_void_hook(msg_msg_free_security, msg);
1862 	kfree(msg->security);
1863 	msg->security = NULL;
1864 }
1865 
security_msg_queue_alloc(struct kern_ipc_perm * msq)1866 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1867 {
1868 	int rc = lsm_ipc_alloc(msq);
1869 
1870 	if (unlikely(rc))
1871 		return rc;
1872 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1873 	if (unlikely(rc))
1874 		security_msg_queue_free(msq);
1875 	return rc;
1876 }
1877 
security_msg_queue_free(struct kern_ipc_perm * msq)1878 void security_msg_queue_free(struct kern_ipc_perm *msq)
1879 {
1880 	call_void_hook(msg_queue_free_security, msq);
1881 	kfree(msq->security);
1882 	msq->security = NULL;
1883 }
1884 
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1885 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1886 {
1887 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1888 }
1889 
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1890 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1891 {
1892 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1893 }
1894 
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1895 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1896 			       struct msg_msg *msg, int msqflg)
1897 {
1898 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1899 }
1900 
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1901 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1902 			       struct task_struct *target, long type, int mode)
1903 {
1904 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1905 }
1906 
security_shm_alloc(struct kern_ipc_perm * shp)1907 int security_shm_alloc(struct kern_ipc_perm *shp)
1908 {
1909 	int rc = lsm_ipc_alloc(shp);
1910 
1911 	if (unlikely(rc))
1912 		return rc;
1913 	rc = call_int_hook(shm_alloc_security, 0, shp);
1914 	if (unlikely(rc))
1915 		security_shm_free(shp);
1916 	return rc;
1917 }
1918 
security_shm_free(struct kern_ipc_perm * shp)1919 void security_shm_free(struct kern_ipc_perm *shp)
1920 {
1921 	call_void_hook(shm_free_security, shp);
1922 	kfree(shp->security);
1923 	shp->security = NULL;
1924 }
1925 
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1926 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1927 {
1928 	return call_int_hook(shm_associate, 0, shp, shmflg);
1929 }
1930 
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1931 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1932 {
1933 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1934 }
1935 
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1936 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1937 {
1938 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1939 }
1940 
security_sem_alloc(struct kern_ipc_perm * sma)1941 int security_sem_alloc(struct kern_ipc_perm *sma)
1942 {
1943 	int rc = lsm_ipc_alloc(sma);
1944 
1945 	if (unlikely(rc))
1946 		return rc;
1947 	rc = call_int_hook(sem_alloc_security, 0, sma);
1948 	if (unlikely(rc))
1949 		security_sem_free(sma);
1950 	return rc;
1951 }
1952 
security_sem_free(struct kern_ipc_perm * sma)1953 void security_sem_free(struct kern_ipc_perm *sma)
1954 {
1955 	call_void_hook(sem_free_security, sma);
1956 	kfree(sma->security);
1957 	sma->security = NULL;
1958 }
1959 
security_sem_associate(struct kern_ipc_perm * sma,int semflg)1960 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1961 {
1962 	return call_int_hook(sem_associate, 0, sma, semflg);
1963 }
1964 
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)1965 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1966 {
1967 	return call_int_hook(sem_semctl, 0, sma, cmd);
1968 }
1969 
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)1970 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1971 			unsigned nsops, int alter)
1972 {
1973 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1974 }
1975 
security_d_instantiate(struct dentry * dentry,struct inode * inode)1976 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1977 {
1978 	if (unlikely(inode && IS_PRIVATE(inode)))
1979 		return;
1980 	call_void_hook(d_instantiate, dentry, inode);
1981 }
1982 EXPORT_SYMBOL(security_d_instantiate);
1983 
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)1984 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1985 				char **value)
1986 {
1987 	struct security_hook_list *hp;
1988 
1989 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1990 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1991 			continue;
1992 		return hp->hook.getprocattr(p, name, value);
1993 	}
1994 	return LSM_RET_DEFAULT(getprocattr);
1995 }
1996 
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)1997 int security_setprocattr(const char *lsm, const char *name, void *value,
1998 			 size_t size)
1999 {
2000 	struct security_hook_list *hp;
2001 
2002 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2003 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2004 			continue;
2005 		return hp->hook.setprocattr(name, value, size);
2006 	}
2007 	return LSM_RET_DEFAULT(setprocattr);
2008 }
2009 
security_netlink_send(struct sock * sk,struct sk_buff * skb)2010 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2011 {
2012 	return call_int_hook(netlink_send, 0, sk, skb);
2013 }
2014 
security_ismaclabel(const char * name)2015 int security_ismaclabel(const char *name)
2016 {
2017 	return call_int_hook(ismaclabel, 0, name);
2018 }
2019 EXPORT_SYMBOL(security_ismaclabel);
2020 
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2021 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2022 {
2023 	struct security_hook_list *hp;
2024 	int rc;
2025 
2026 	/*
2027 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2028 	 * LSM hook is not "stackable").
2029 	 */
2030 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2031 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2032 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2033 			return rc;
2034 	}
2035 
2036 	return LSM_RET_DEFAULT(secid_to_secctx);
2037 }
2038 EXPORT_SYMBOL(security_secid_to_secctx);
2039 
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2040 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2041 {
2042 	*secid = 0;
2043 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2044 }
2045 EXPORT_SYMBOL(security_secctx_to_secid);
2046 
security_release_secctx(char * secdata,u32 seclen)2047 void security_release_secctx(char *secdata, u32 seclen)
2048 {
2049 	call_void_hook(release_secctx, secdata, seclen);
2050 }
2051 EXPORT_SYMBOL(security_release_secctx);
2052 
security_inode_invalidate_secctx(struct inode * inode)2053 void security_inode_invalidate_secctx(struct inode *inode)
2054 {
2055 	call_void_hook(inode_invalidate_secctx, inode);
2056 }
2057 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2058 
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2059 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2060 {
2061 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2062 }
2063 EXPORT_SYMBOL(security_inode_notifysecctx);
2064 
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2065 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2066 {
2067 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2068 }
2069 EXPORT_SYMBOL(security_inode_setsecctx);
2070 
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2071 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2072 {
2073 	struct security_hook_list *hp;
2074 	int rc;
2075 
2076 	/*
2077 	 * Only one module will provide a security context.
2078 	 */
2079 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
2080 		rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
2081 		if (rc != LSM_RET_DEFAULT(inode_getsecctx))
2082 			return rc;
2083 	}
2084 
2085 	return LSM_RET_DEFAULT(inode_getsecctx);
2086 }
2087 EXPORT_SYMBOL(security_inode_getsecctx);
2088 
2089 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2090 int security_post_notification(const struct cred *w_cred,
2091 			       const struct cred *cred,
2092 			       struct watch_notification *n)
2093 {
2094 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2095 }
2096 #endif /* CONFIG_WATCH_QUEUE */
2097 
2098 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2099 int security_watch_key(struct key *key)
2100 {
2101 	return call_int_hook(watch_key, 0, key);
2102 }
2103 #endif
2104 
2105 #ifdef CONFIG_SECURITY_NETWORK
2106 
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2107 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2108 {
2109 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2110 }
2111 EXPORT_SYMBOL(security_unix_stream_connect);
2112 
security_unix_may_send(struct socket * sock,struct socket * other)2113 int security_unix_may_send(struct socket *sock,  struct socket *other)
2114 {
2115 	return call_int_hook(unix_may_send, 0, sock, other);
2116 }
2117 EXPORT_SYMBOL(security_unix_may_send);
2118 
security_socket_create(int family,int type,int protocol,int kern)2119 int security_socket_create(int family, int type, int protocol, int kern)
2120 {
2121 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2122 }
2123 
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2124 int security_socket_post_create(struct socket *sock, int family,
2125 				int type, int protocol, int kern)
2126 {
2127 	return call_int_hook(socket_post_create, 0, sock, family, type,
2128 						protocol, kern);
2129 }
2130 
security_socket_socketpair(struct socket * socka,struct socket * sockb)2131 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2132 {
2133 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2134 }
2135 EXPORT_SYMBOL(security_socket_socketpair);
2136 
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2137 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2138 {
2139 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2140 }
2141 
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2142 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2143 {
2144 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2145 }
2146 
security_socket_listen(struct socket * sock,int backlog)2147 int security_socket_listen(struct socket *sock, int backlog)
2148 {
2149 	return call_int_hook(socket_listen, 0, sock, backlog);
2150 }
2151 
security_socket_accept(struct socket * sock,struct socket * newsock)2152 int security_socket_accept(struct socket *sock, struct socket *newsock)
2153 {
2154 	return call_int_hook(socket_accept, 0, sock, newsock);
2155 }
2156 
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2157 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2158 {
2159 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2160 }
2161 
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2162 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2163 			    int size, int flags)
2164 {
2165 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2166 }
2167 
security_socket_getsockname(struct socket * sock)2168 int security_socket_getsockname(struct socket *sock)
2169 {
2170 	return call_int_hook(socket_getsockname, 0, sock);
2171 }
2172 
security_socket_getpeername(struct socket * sock)2173 int security_socket_getpeername(struct socket *sock)
2174 {
2175 	return call_int_hook(socket_getpeername, 0, sock);
2176 }
2177 
security_socket_getsockopt(struct socket * sock,int level,int optname)2178 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2179 {
2180 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2181 }
2182 
security_socket_setsockopt(struct socket * sock,int level,int optname)2183 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2184 {
2185 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2186 }
2187 
security_socket_shutdown(struct socket * sock,int how)2188 int security_socket_shutdown(struct socket *sock, int how)
2189 {
2190 	return call_int_hook(socket_shutdown, 0, sock, how);
2191 }
2192 
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2193 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2194 {
2195 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2196 }
2197 EXPORT_SYMBOL(security_sock_rcv_skb);
2198 
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)2199 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
2200 				      sockptr_t optlen, unsigned int len)
2201 {
2202 	struct security_hook_list *hp;
2203 	int rc;
2204 
2205 	/*
2206 	 * Only one module will provide a security context.
2207 	 */
2208 	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
2209 			     list) {
2210 		rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
2211 						       len);
2212 		if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
2213 			return rc;
2214 	}
2215 	return LSM_RET_DEFAULT(socket_getpeersec_stream);
2216 }
2217 
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2218 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2219 {
2220 	struct security_hook_list *hp;
2221 	int rc;
2222 
2223 	/*
2224 	 * Only one module will provide a security context.
2225 	 */
2226 	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
2227 			     list) {
2228 		rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
2229 		if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
2230 			return rc;
2231 	}
2232 	return LSM_RET_DEFAULT(socket_getpeersec_dgram);
2233 }
2234 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2235 
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2236 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2237 {
2238 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2239 }
2240 
security_sk_free(struct sock * sk)2241 void security_sk_free(struct sock *sk)
2242 {
2243 	call_void_hook(sk_free_security, sk);
2244 }
2245 
security_sk_clone(const struct sock * sk,struct sock * newsk)2246 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2247 {
2248 	call_void_hook(sk_clone_security, sk, newsk);
2249 }
2250 EXPORT_SYMBOL(security_sk_clone);
2251 
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2252 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2253 {
2254 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2255 }
2256 EXPORT_SYMBOL(security_sk_classify_flow);
2257 
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2258 void security_req_classify_flow(const struct request_sock *req,
2259 				struct flowi_common *flic)
2260 {
2261 	call_void_hook(req_classify_flow, req, flic);
2262 }
2263 EXPORT_SYMBOL(security_req_classify_flow);
2264 
security_sock_graft(struct sock * sk,struct socket * parent)2265 void security_sock_graft(struct sock *sk, struct socket *parent)
2266 {
2267 	call_void_hook(sock_graft, sk, parent);
2268 }
2269 EXPORT_SYMBOL(security_sock_graft);
2270 
security_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)2271 int security_inet_conn_request(struct sock *sk,
2272 			struct sk_buff *skb, struct request_sock *req)
2273 {
2274 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2275 }
2276 EXPORT_SYMBOL(security_inet_conn_request);
2277 
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2278 void security_inet_csk_clone(struct sock *newsk,
2279 			const struct request_sock *req)
2280 {
2281 	call_void_hook(inet_csk_clone, newsk, req);
2282 }
2283 
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2284 void security_inet_conn_established(struct sock *sk,
2285 			struct sk_buff *skb)
2286 {
2287 	call_void_hook(inet_conn_established, sk, skb);
2288 }
2289 EXPORT_SYMBOL(security_inet_conn_established);
2290 
security_secmark_relabel_packet(u32 secid)2291 int security_secmark_relabel_packet(u32 secid)
2292 {
2293 	return call_int_hook(secmark_relabel_packet, 0, secid);
2294 }
2295 EXPORT_SYMBOL(security_secmark_relabel_packet);
2296 
security_secmark_refcount_inc(void)2297 void security_secmark_refcount_inc(void)
2298 {
2299 	call_void_hook(secmark_refcount_inc);
2300 }
2301 EXPORT_SYMBOL(security_secmark_refcount_inc);
2302 
security_secmark_refcount_dec(void)2303 void security_secmark_refcount_dec(void)
2304 {
2305 	call_void_hook(secmark_refcount_dec);
2306 }
2307 EXPORT_SYMBOL(security_secmark_refcount_dec);
2308 
security_tun_dev_alloc_security(void ** security)2309 int security_tun_dev_alloc_security(void **security)
2310 {
2311 	return call_int_hook(tun_dev_alloc_security, 0, security);
2312 }
2313 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2314 
security_tun_dev_free_security(void * security)2315 void security_tun_dev_free_security(void *security)
2316 {
2317 	call_void_hook(tun_dev_free_security, security);
2318 }
2319 EXPORT_SYMBOL(security_tun_dev_free_security);
2320 
security_tun_dev_create(void)2321 int security_tun_dev_create(void)
2322 {
2323 	return call_int_hook(tun_dev_create, 0);
2324 }
2325 EXPORT_SYMBOL(security_tun_dev_create);
2326 
security_tun_dev_attach_queue(void * security)2327 int security_tun_dev_attach_queue(void *security)
2328 {
2329 	return call_int_hook(tun_dev_attach_queue, 0, security);
2330 }
2331 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2332 
security_tun_dev_attach(struct sock * sk,void * security)2333 int security_tun_dev_attach(struct sock *sk, void *security)
2334 {
2335 	return call_int_hook(tun_dev_attach, 0, sk, security);
2336 }
2337 EXPORT_SYMBOL(security_tun_dev_attach);
2338 
security_tun_dev_open(void * security)2339 int security_tun_dev_open(void *security)
2340 {
2341 	return call_int_hook(tun_dev_open, 0, security);
2342 }
2343 EXPORT_SYMBOL(security_tun_dev_open);
2344 
security_sctp_assoc_request(struct sctp_endpoint * ep,struct sk_buff * skb)2345 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2346 {
2347 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2348 }
2349 EXPORT_SYMBOL(security_sctp_assoc_request);
2350 
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2351 int security_sctp_bind_connect(struct sock *sk, int optname,
2352 			       struct sockaddr *address, int addrlen)
2353 {
2354 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2355 			     address, addrlen);
2356 }
2357 EXPORT_SYMBOL(security_sctp_bind_connect);
2358 
security_sctp_sk_clone(struct sctp_endpoint * ep,struct sock * sk,struct sock * newsk)2359 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2360 			    struct sock *newsk)
2361 {
2362 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2363 }
2364 EXPORT_SYMBOL(security_sctp_sk_clone);
2365 
2366 #endif	/* CONFIG_SECURITY_NETWORK */
2367 
2368 #ifdef CONFIG_SECURITY_INFINIBAND
2369 
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2370 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2371 {
2372 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2373 }
2374 EXPORT_SYMBOL(security_ib_pkey_access);
2375 
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2376 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2377 {
2378 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2379 }
2380 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2381 
security_ib_alloc_security(void ** sec)2382 int security_ib_alloc_security(void **sec)
2383 {
2384 	return call_int_hook(ib_alloc_security, 0, sec);
2385 }
2386 EXPORT_SYMBOL(security_ib_alloc_security);
2387 
security_ib_free_security(void * sec)2388 void security_ib_free_security(void *sec)
2389 {
2390 	call_void_hook(ib_free_security, sec);
2391 }
2392 EXPORT_SYMBOL(security_ib_free_security);
2393 #endif	/* CONFIG_SECURITY_INFINIBAND */
2394 
2395 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2396 
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2397 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2398 			       struct xfrm_user_sec_ctx *sec_ctx,
2399 			       gfp_t gfp)
2400 {
2401 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2402 }
2403 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2404 
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2405 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2406 			      struct xfrm_sec_ctx **new_ctxp)
2407 {
2408 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2409 }
2410 
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2411 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2412 {
2413 	call_void_hook(xfrm_policy_free_security, ctx);
2414 }
2415 EXPORT_SYMBOL(security_xfrm_policy_free);
2416 
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2417 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2418 {
2419 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2420 }
2421 
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2422 int security_xfrm_state_alloc(struct xfrm_state *x,
2423 			      struct xfrm_user_sec_ctx *sec_ctx)
2424 {
2425 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2426 }
2427 EXPORT_SYMBOL(security_xfrm_state_alloc);
2428 
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2429 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2430 				      struct xfrm_sec_ctx *polsec, u32 secid)
2431 {
2432 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2433 }
2434 
security_xfrm_state_delete(struct xfrm_state * x)2435 int security_xfrm_state_delete(struct xfrm_state *x)
2436 {
2437 	return call_int_hook(xfrm_state_delete_security, 0, x);
2438 }
2439 EXPORT_SYMBOL(security_xfrm_state_delete);
2440 
security_xfrm_state_free(struct xfrm_state * x)2441 void security_xfrm_state_free(struct xfrm_state *x)
2442 {
2443 	call_void_hook(xfrm_state_free_security, x);
2444 }
2445 
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)2446 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2447 {
2448 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2449 }
2450 
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2451 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2452 				       struct xfrm_policy *xp,
2453 				       const struct flowi_common *flic)
2454 {
2455 	struct security_hook_list *hp;
2456 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2457 
2458 	/*
2459 	 * Since this function is expected to return 0 or 1, the judgment
2460 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2461 	 * we can use the first LSM's judgment because currently only SELinux
2462 	 * supplies this call.
2463 	 *
2464 	 * For speed optimization, we explicitly break the loop rather than
2465 	 * using the macro
2466 	 */
2467 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2468 				list) {
2469 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2470 		break;
2471 	}
2472 	return rc;
2473 }
2474 
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2475 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2476 {
2477 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2478 }
2479 
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2480 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2481 {
2482 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2483 				0);
2484 
2485 	BUG_ON(rc);
2486 }
2487 EXPORT_SYMBOL(security_skb_classify_flow);
2488 
2489 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2490 
2491 #ifdef CONFIG_KEYS
2492 
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2493 int security_key_alloc(struct key *key, const struct cred *cred,
2494 		       unsigned long flags)
2495 {
2496 	return call_int_hook(key_alloc, 0, key, cred, flags);
2497 }
2498 
security_key_free(struct key * key)2499 void security_key_free(struct key *key)
2500 {
2501 	call_void_hook(key_free, key);
2502 }
2503 
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2504 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2505 			    enum key_need_perm need_perm)
2506 {
2507 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2508 }
2509 
security_key_getsecurity(struct key * key,char ** _buffer)2510 int security_key_getsecurity(struct key *key, char **_buffer)
2511 {
2512 	*_buffer = NULL;
2513 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2514 }
2515 
2516 #endif	/* CONFIG_KEYS */
2517 
2518 #ifdef CONFIG_AUDIT
2519 
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2520 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2521 {
2522 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2523 }
2524 
security_audit_rule_known(struct audit_krule * krule)2525 int security_audit_rule_known(struct audit_krule *krule)
2526 {
2527 	return call_int_hook(audit_rule_known, 0, krule);
2528 }
2529 
security_audit_rule_free(void * lsmrule)2530 void security_audit_rule_free(void *lsmrule)
2531 {
2532 	call_void_hook(audit_rule_free, lsmrule);
2533 }
2534 
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2535 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2536 {
2537 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2538 }
2539 #endif /* CONFIG_AUDIT */
2540 
2541 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2542 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2543 {
2544 	return call_int_hook(bpf, 0, cmd, attr, size);
2545 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2546 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2547 {
2548 	return call_int_hook(bpf_map, 0, map, fmode);
2549 }
security_bpf_prog(struct bpf_prog * prog)2550 int security_bpf_prog(struct bpf_prog *prog)
2551 {
2552 	return call_int_hook(bpf_prog, 0, prog);
2553 }
security_bpf_map_alloc(struct bpf_map * map)2554 int security_bpf_map_alloc(struct bpf_map *map)
2555 {
2556 	return call_int_hook(bpf_map_alloc_security, 0, map);
2557 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2558 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2559 {
2560 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2561 }
security_bpf_map_free(struct bpf_map * map)2562 void security_bpf_map_free(struct bpf_map *map)
2563 {
2564 	call_void_hook(bpf_map_free_security, map);
2565 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2566 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2567 {
2568 	call_void_hook(bpf_prog_free_security, aux);
2569 }
2570 #endif /* CONFIG_BPF_SYSCALL */
2571 
security_locked_down(enum lockdown_reason what)2572 int security_locked_down(enum lockdown_reason what)
2573 {
2574 	return call_int_hook(locked_down, 0, what);
2575 }
2576 EXPORT_SYMBOL(security_locked_down);
2577 
2578 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2579 int security_perf_event_open(struct perf_event_attr *attr, int type)
2580 {
2581 	return call_int_hook(perf_event_open, 0, attr, type);
2582 }
2583 
security_perf_event_alloc(struct perf_event * event)2584 int security_perf_event_alloc(struct perf_event *event)
2585 {
2586 	return call_int_hook(perf_event_alloc, 0, event);
2587 }
2588 
security_perf_event_free(struct perf_event * event)2589 void security_perf_event_free(struct perf_event *event)
2590 {
2591 	call_void_hook(perf_event_free, event);
2592 }
2593 
security_perf_event_read(struct perf_event * event)2594 int security_perf_event_read(struct perf_event *event)
2595 {
2596 	return call_int_hook(perf_event_read, 0, event);
2597 }
2598 
security_perf_event_write(struct perf_event * event)2599 int security_perf_event_write(struct perf_event *event)
2600 {
2601 	return call_int_hook(perf_event_write, 0, event);
2602 }
2603 #endif /* CONFIG_PERF_EVENTS */
2604