• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23 
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27 
28 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29 
30 enum {
31 	OMAP_MCBSP_WORD_8 = 0,
32 	OMAP_MCBSP_WORD_12,
33 	OMAP_MCBSP_WORD_16,
34 	OMAP_MCBSP_WORD_20,
35 	OMAP_MCBSP_WORD_24,
36 	OMAP_MCBSP_WORD_32,
37 };
38 
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 	dev_dbg(mcbsp->dev, "***********************\n");
56 }
57 
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 	struct clk *fck_src;
61 	const char *src;
62 	int r;
63 
64 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 		src = "pad_fck";
66 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 		src = "prcm_fck";
68 	else
69 		return -EINVAL;
70 
71 	fck_src = clk_get(mcbsp->dev, src);
72 	if (IS_ERR(fck_src)) {
73 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 		return -EINVAL;
75 	}
76 
77 	if (mcbsp->active)
78 		pm_runtime_put_sync(mcbsp->dev);
79 
80 	r = clk_set_parent(mcbsp->fclk, fck_src);
81 	if (r)
82 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
83 			src);
84 
85 	if (mcbsp->active)
86 		pm_runtime_get_sync(mcbsp->dev);
87 
88 	clk_put(fck_src);
89 
90 	return r;
91 }
92 
omap_mcbsp_irq_handler(int irq,void * data)93 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
94 {
95 	struct omap_mcbsp *mcbsp = data;
96 	u16 irqst;
97 
98 	irqst = MCBSP_READ(mcbsp, IRQST);
99 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
100 
101 	if (irqst & RSYNCERREN)
102 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
103 	if (irqst & RFSREN)
104 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
105 	if (irqst & REOFEN)
106 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
107 	if (irqst & RRDYEN)
108 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
109 	if (irqst & RUNDFLEN)
110 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
111 	if (irqst & ROVFLEN)
112 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
113 
114 	if (irqst & XSYNCERREN)
115 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
116 	if (irqst & XFSXEN)
117 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
118 	if (irqst & XEOFEN)
119 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
120 	if (irqst & XRDYEN)
121 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
122 	if (irqst & XUNDFLEN)
123 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
124 	if (irqst & XOVFLEN)
125 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
126 	if (irqst & XEMPTYEOFEN)
127 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
128 
129 	MCBSP_WRITE(mcbsp, IRQST, irqst);
130 
131 	return IRQ_HANDLED;
132 }
133 
omap_mcbsp_tx_irq_handler(int irq,void * data)134 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
135 {
136 	struct omap_mcbsp *mcbsp = data;
137 	u16 irqst_spcr2;
138 
139 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
140 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
141 
142 	if (irqst_spcr2 & XSYNC_ERR) {
143 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
144 			irqst_spcr2);
145 		/* Writing zero to XSYNC_ERR clears the IRQ */
146 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
147 	}
148 
149 	return IRQ_HANDLED;
150 }
151 
omap_mcbsp_rx_irq_handler(int irq,void * data)152 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
153 {
154 	struct omap_mcbsp *mcbsp = data;
155 	u16 irqst_spcr1;
156 
157 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
158 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
159 
160 	if (irqst_spcr1 & RSYNC_ERR) {
161 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
162 			irqst_spcr1);
163 		/* Writing zero to RSYNC_ERR clears the IRQ */
164 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
165 	}
166 
167 	return IRQ_HANDLED;
168 }
169 
170 /*
171  * omap_mcbsp_config simply write a config to the
172  * appropriate McBSP.
173  * You either call this function or set the McBSP registers
174  * by yourself before calling omap_mcbsp_start().
175  */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)176 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
177 			      const struct omap_mcbsp_reg_cfg *config)
178 {
179 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
180 		mcbsp->id, mcbsp->phys_base);
181 
182 	/* We write the given config */
183 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
184 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
185 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
186 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
187 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
188 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
189 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
190 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
191 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
192 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
193 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
194 	if (mcbsp->pdata->has_ccr) {
195 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
196 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
197 	}
198 	/* Enable wakeup behavior */
199 	if (mcbsp->pdata->has_wakeup)
200 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
201 
202 	/* Enable TX/RX sync error interrupts by default */
203 	if (mcbsp->irq)
204 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
205 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
206 }
207 
208 /**
209  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
210  * @mcbsp: omap_mcbsp struct for the McBSP instance
211  * @stream: Stream direction (playback/capture)
212  *
213  * Returns the address of mcbsp data transmit register or data receive register
214  * to be used by DMA for transferring/receiving data
215  */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)216 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
217 				     unsigned int stream)
218 {
219 	int data_reg;
220 
221 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
222 		if (mcbsp->pdata->reg_size == 2)
223 			data_reg = OMAP_MCBSP_REG_DXR1;
224 		else
225 			data_reg = OMAP_MCBSP_REG_DXR;
226 	} else {
227 		if (mcbsp->pdata->reg_size == 2)
228 			data_reg = OMAP_MCBSP_REG_DRR1;
229 		else
230 			data_reg = OMAP_MCBSP_REG_DRR;
231 	}
232 
233 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
234 }
235 
236 /*
237  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
238  * The threshold parameter is 1 based, and it is converted (threshold - 1)
239  * for the THRSH2 register.
240  */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)241 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
242 {
243 	if (threshold && threshold <= mcbsp->max_tx_thres)
244 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
245 }
246 
247 /*
248  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
249  * The threshold parameter is 1 based, and it is converted (threshold - 1)
250  * for the THRSH1 register.
251  */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)252 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
253 {
254 	if (threshold && threshold <= mcbsp->max_rx_thres)
255 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
256 }
257 
258 /*
259  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
260  */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)261 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
262 {
263 	u16 buffstat;
264 
265 	/* Returns the number of free locations in the buffer */
266 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
267 
268 	/* Number of slots are different in McBSP ports */
269 	return mcbsp->pdata->buffer_size - buffstat;
270 }
271 
272 /*
273  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
274  * to reach the threshold value (when the DMA will be triggered to read it)
275  */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)276 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
277 {
278 	u16 buffstat, threshold;
279 
280 	/* Returns the number of used locations in the buffer */
281 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
282 	/* RX threshold */
283 	threshold = MCBSP_READ(mcbsp, THRSH1);
284 
285 	/* Return the number of location till we reach the threshold limit */
286 	if (threshold <= buffstat)
287 		return 0;
288 	else
289 		return threshold - buffstat;
290 }
291 
omap_mcbsp_request(struct omap_mcbsp * mcbsp)292 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
293 {
294 	void *reg_cache;
295 	int err;
296 
297 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
298 	if (!reg_cache)
299 		return -ENOMEM;
300 
301 	spin_lock(&mcbsp->lock);
302 	if (!mcbsp->free) {
303 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
304 		err = -EBUSY;
305 		goto err_kfree;
306 	}
307 
308 	mcbsp->free = false;
309 	mcbsp->reg_cache = reg_cache;
310 	spin_unlock(&mcbsp->lock);
311 
312 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
313 		mcbsp->pdata->ops->request(mcbsp->id - 1);
314 
315 	/*
316 	 * Make sure that transmitter, receiver and sample-rate generator are
317 	 * not running before activating IRQs.
318 	 */
319 	MCBSP_WRITE(mcbsp, SPCR1, 0);
320 	MCBSP_WRITE(mcbsp, SPCR2, 0);
321 
322 	if (mcbsp->irq) {
323 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
324 				  "McBSP", (void *)mcbsp);
325 		if (err != 0) {
326 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
327 			goto err_clk_disable;
328 		}
329 	} else {
330 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
331 				  "McBSP TX", (void *)mcbsp);
332 		if (err != 0) {
333 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
334 			goto err_clk_disable;
335 		}
336 
337 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
338 				  "McBSP RX", (void *)mcbsp);
339 		if (err != 0) {
340 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
341 			goto err_free_irq;
342 		}
343 	}
344 
345 	return 0;
346 err_free_irq:
347 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
348 err_clk_disable:
349 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
350 		mcbsp->pdata->ops->free(mcbsp->id - 1);
351 
352 	/* Disable wakeup behavior */
353 	if (mcbsp->pdata->has_wakeup)
354 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
355 
356 	spin_lock(&mcbsp->lock);
357 	mcbsp->free = true;
358 	mcbsp->reg_cache = NULL;
359 err_kfree:
360 	spin_unlock(&mcbsp->lock);
361 	kfree(reg_cache);
362 
363 	return err;
364 }
365 
omap_mcbsp_free(struct omap_mcbsp * mcbsp)366 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
367 {
368 	void *reg_cache;
369 
370 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
371 		mcbsp->pdata->ops->free(mcbsp->id - 1);
372 
373 	/* Disable wakeup behavior */
374 	if (mcbsp->pdata->has_wakeup)
375 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
376 
377 	/* Disable interrupt requests */
378 	if (mcbsp->irq)
379 		MCBSP_WRITE(mcbsp, IRQEN, 0);
380 
381 	if (mcbsp->irq) {
382 		free_irq(mcbsp->irq, (void *)mcbsp);
383 	} else {
384 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
385 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
386 	}
387 
388 	reg_cache = mcbsp->reg_cache;
389 
390 	/*
391 	 * Select CLKS source from internal source unconditionally before
392 	 * marking the McBSP port as free.
393 	 * If the external clock source via MCBSP_CLKS pin has been selected the
394 	 * system will refuse to enter idle if the CLKS pin source is not reset
395 	 * back to internal source.
396 	 */
397 	if (!mcbsp_omap1())
398 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
399 
400 	spin_lock(&mcbsp->lock);
401 	if (mcbsp->free)
402 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
403 	else
404 		mcbsp->free = true;
405 	mcbsp->reg_cache = NULL;
406 	spin_unlock(&mcbsp->lock);
407 
408 	kfree(reg_cache);
409 }
410 
411 /*
412  * Here we start the McBSP, by enabling transmitter, receiver or both.
413  * If no transmitter or receiver is active prior calling, then sample-rate
414  * generator and frame sync are started.
415  */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)416 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
417 {
418 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
419 	int rx = !tx;
420 	int enable_srg = 0;
421 	u16 w;
422 
423 	if (mcbsp->st_data)
424 		omap_mcbsp_st_start(mcbsp);
425 
426 	/* Only enable SRG, if McBSP is master */
427 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
428 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
429 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
430 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
431 
432 	if (enable_srg) {
433 		/* Start the sample generator */
434 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
435 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
436 	}
437 
438 	/* Enable transmitter and receiver */
439 	tx &= 1;
440 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
441 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
442 
443 	rx &= 1;
444 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
445 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
446 
447 	/*
448 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
449 	 * REVISIT: 100us may give enough time for two CLKSRG, however
450 	 * due to some unknown PM related, clock gating etc. reason it
451 	 * is now at 500us.
452 	 */
453 	udelay(500);
454 
455 	if (enable_srg) {
456 		/* Start frame sync */
457 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
458 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
459 	}
460 
461 	if (mcbsp->pdata->has_ccr) {
462 		/* Release the transmitter and receiver */
463 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
464 		w &= ~(tx ? XDISABLE : 0);
465 		MCBSP_WRITE(mcbsp, XCCR, w);
466 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
467 		w &= ~(rx ? RDISABLE : 0);
468 		MCBSP_WRITE(mcbsp, RCCR, w);
469 	}
470 
471 	/* Dump McBSP Regs */
472 	omap_mcbsp_dump_reg(mcbsp);
473 }
474 
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)475 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
476 {
477 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
478 	int rx = !tx;
479 	int idle;
480 	u16 w;
481 
482 	/* Reset transmitter */
483 	tx &= 1;
484 	if (mcbsp->pdata->has_ccr) {
485 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
486 		w |= (tx ? XDISABLE : 0);
487 		MCBSP_WRITE(mcbsp, XCCR, w);
488 	}
489 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
490 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
491 
492 	/* Reset receiver */
493 	rx &= 1;
494 	if (mcbsp->pdata->has_ccr) {
495 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
496 		w |= (rx ? RDISABLE : 0);
497 		MCBSP_WRITE(mcbsp, RCCR, w);
498 	}
499 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
500 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
501 
502 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
503 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
504 
505 	if (idle) {
506 		/* Reset the sample rate generator */
507 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
508 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
509 	}
510 
511 	if (mcbsp->st_data)
512 		omap_mcbsp_st_stop(mcbsp);
513 }
514 
515 #define max_thres(m)			(mcbsp->pdata->buffer_size)
516 #define valid_threshold(m, val)		((val) <= max_thres(m))
517 #define THRESHOLD_PROP_BUILDER(prop)					\
518 static ssize_t prop##_show(struct device *dev,				\
519 			struct device_attribute *attr, char *buf)	\
520 {									\
521 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
522 									\
523 	return sprintf(buf, "%u\n", mcbsp->prop);			\
524 }									\
525 									\
526 static ssize_t prop##_store(struct device *dev,				\
527 				struct device_attribute *attr,		\
528 				const char *buf, size_t size)		\
529 {									\
530 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
531 	unsigned long val;						\
532 	int status;							\
533 									\
534 	status = kstrtoul(buf, 0, &val);				\
535 	if (status)							\
536 		return status;						\
537 									\
538 	if (!valid_threshold(mcbsp, val))				\
539 		return -EDOM;						\
540 									\
541 	mcbsp->prop = val;						\
542 	return size;							\
543 }									\
544 									\
545 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
546 
547 THRESHOLD_PROP_BUILDER(max_tx_thres);
548 THRESHOLD_PROP_BUILDER(max_rx_thres);
549 
550 static const char * const dma_op_modes[] = {
551 	"element", "threshold",
552 };
553 
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t dma_op_mode_show(struct device *dev,
555 				struct device_attribute *attr, char *buf)
556 {
557 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
558 	int dma_op_mode, i = 0;
559 	ssize_t len = 0;
560 	const char * const *s;
561 
562 	dma_op_mode = mcbsp->dma_op_mode;
563 
564 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
565 		if (dma_op_mode == i)
566 			len += sprintf(buf + len, "[%s] ", *s);
567 		else
568 			len += sprintf(buf + len, "%s ", *s);
569 	}
570 	len += sprintf(buf + len, "\n");
571 
572 	return len;
573 }
574 
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)575 static ssize_t dma_op_mode_store(struct device *dev,
576 				 struct device_attribute *attr, const char *buf,
577 				 size_t size)
578 {
579 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
580 	int i;
581 
582 	i = sysfs_match_string(dma_op_modes, buf);
583 	if (i < 0)
584 		return i;
585 
586 	spin_lock_irq(&mcbsp->lock);
587 	if (!mcbsp->free) {
588 		size = -EBUSY;
589 		goto unlock;
590 	}
591 	mcbsp->dma_op_mode = i;
592 
593 unlock:
594 	spin_unlock_irq(&mcbsp->lock);
595 
596 	return size;
597 }
598 
599 static DEVICE_ATTR_RW(dma_op_mode);
600 
601 static const struct attribute *additional_attrs[] = {
602 	&dev_attr_max_tx_thres.attr,
603 	&dev_attr_max_rx_thres.attr,
604 	&dev_attr_dma_op_mode.attr,
605 	NULL,
606 };
607 
608 static const struct attribute_group additional_attr_group = {
609 	.attrs = (struct attribute **)additional_attrs,
610 };
611 
612 /*
613  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
614  * 730 has only 2 McBSP, and both of them are MPU peripherals.
615  */
omap_mcbsp_init(struct platform_device * pdev)616 static int omap_mcbsp_init(struct platform_device *pdev)
617 {
618 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
619 	struct resource *res;
620 	int ret = 0;
621 
622 	spin_lock_init(&mcbsp->lock);
623 	mcbsp->free = true;
624 
625 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
626 	if (!res)
627 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
628 
629 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
630 	if (IS_ERR(mcbsp->io_base))
631 		return PTR_ERR(mcbsp->io_base);
632 
633 	mcbsp->phys_base = res->start;
634 	mcbsp->reg_cache_size = resource_size(res);
635 
636 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
637 	if (!res)
638 		mcbsp->phys_dma_base = mcbsp->phys_base;
639 	else
640 		mcbsp->phys_dma_base = res->start;
641 
642 	/*
643 	 * OMAP1, 2 uses two interrupt lines: TX, RX
644 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
645 	 * OMAP4 and newer SoC only have the combined IRQ line.
646 	 * Use the combined IRQ if available since it gives better debugging
647 	 * possibilities.
648 	 */
649 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
650 	if (mcbsp->irq == -ENXIO) {
651 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
652 
653 		if (mcbsp->tx_irq == -ENXIO) {
654 			mcbsp->irq = platform_get_irq(pdev, 0);
655 			mcbsp->tx_irq = 0;
656 		} else {
657 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
658 			mcbsp->irq = 0;
659 		}
660 	}
661 
662 	if (!pdev->dev.of_node) {
663 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
664 		if (!res) {
665 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
666 			return -ENODEV;
667 		}
668 		mcbsp->dma_req[0] = res->start;
669 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
670 
671 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
672 		if (!res) {
673 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
674 			return -ENODEV;
675 		}
676 		mcbsp->dma_req[1] = res->start;
677 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
678 	} else {
679 		mcbsp->dma_data[0].filter_data = "tx";
680 		mcbsp->dma_data[1].filter_data = "rx";
681 	}
682 
683 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
684 						SNDRV_PCM_STREAM_PLAYBACK);
685 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
686 						SNDRV_PCM_STREAM_CAPTURE);
687 
688 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
689 	if (IS_ERR(mcbsp->fclk)) {
690 		ret = PTR_ERR(mcbsp->fclk);
691 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
692 		return ret;
693 	}
694 
695 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
696 	if (mcbsp->pdata->buffer_size) {
697 		/*
698 		 * Initially configure the maximum thresholds to a safe value.
699 		 * The McBSP FIFO usage with these values should not go under
700 		 * 16 locations.
701 		 * If the whole FIFO without safety buffer is used, than there
702 		 * is a possibility that the DMA will be not able to push the
703 		 * new data on time, causing channel shifts in runtime.
704 		 */
705 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
706 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
707 
708 		ret = sysfs_create_group(&mcbsp->dev->kobj,
709 					 &additional_attr_group);
710 		if (ret) {
711 			dev_err(mcbsp->dev,
712 				"Unable to create additional controls\n");
713 			return ret;
714 		}
715 	}
716 
717 	ret = omap_mcbsp_st_init(pdev);
718 	if (ret)
719 		goto err_st;
720 
721 	return 0;
722 
723 err_st:
724 	if (mcbsp->pdata->buffer_size)
725 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
726 	return ret;
727 }
728 
729 /*
730  * Stream DMA parameters. DMA request line and port address are set runtime
731  * since they are different between OMAP1 and later OMAPs
732  */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)733 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
734 		unsigned int packet_size)
735 {
736 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
737 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
738 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
739 	int words;
740 
741 	/* No need to proceed further if McBSP does not have FIFO */
742 	if (mcbsp->pdata->buffer_size == 0)
743 		return;
744 
745 	/*
746 	 * Configure McBSP threshold based on either:
747 	 * packet_size, when the sDMA is in packet mode, or based on the
748 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
749 	 * for mono streams.
750 	 */
751 	if (packet_size)
752 		words = packet_size;
753 	else
754 		words = 1;
755 
756 	/* Configure McBSP internal buffer usage */
757 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
758 		omap_mcbsp_set_tx_threshold(mcbsp, words);
759 	else
760 		omap_mcbsp_set_rx_threshold(mcbsp, words);
761 }
762 
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)763 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
764 				    struct snd_pcm_hw_rule *rule)
765 {
766 	struct snd_interval *buffer_size = hw_param_interval(params,
767 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
768 	struct snd_interval *channels = hw_param_interval(params,
769 					SNDRV_PCM_HW_PARAM_CHANNELS);
770 	struct omap_mcbsp *mcbsp = rule->private;
771 	struct snd_interval frames;
772 	int size;
773 
774 	snd_interval_any(&frames);
775 	size = mcbsp->pdata->buffer_size;
776 
777 	frames.min = size / channels->min;
778 	frames.integer = 1;
779 	return snd_interval_refine(buffer_size, &frames);
780 }
781 
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)782 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
783 				  struct snd_soc_dai *cpu_dai)
784 {
785 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
786 	int err = 0;
787 
788 	if (!snd_soc_dai_active(cpu_dai))
789 		err = omap_mcbsp_request(mcbsp);
790 
791 	/*
792 	 * OMAP3 McBSP FIFO is word structured.
793 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
794 	 * McBSP1,3,4,5 has 128 word long buffer
795 	 * This means that the size of the FIFO depends on the sample format.
796 	 * For example on McBSP3:
797 	 * 16bit samples: size is 128 * 2 = 256 bytes
798 	 * 32bit samples: size is 128 * 4 = 512 bytes
799 	 * It is simpler to place constraint for buffer and period based on
800 	 * channels.
801 	 * McBSP3 as example again (16 or 32 bit samples):
802 	 * 1 channel (mono): size is 128 frames (128 words)
803 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
804 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
805 	 */
806 	if (mcbsp->pdata->buffer_size) {
807 		/*
808 		* Rule for the buffer size. We should not allow
809 		* smaller buffer than the FIFO size to avoid underruns.
810 		* This applies only for the playback stream.
811 		*/
812 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
813 			snd_pcm_hw_rule_add(substream->runtime, 0,
814 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
815 					    omap_mcbsp_hwrule_min_buffersize,
816 					    mcbsp,
817 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
818 
819 		/* Make sure, that the period size is always even */
820 		snd_pcm_hw_constraint_step(substream->runtime, 0,
821 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
822 	}
823 
824 	return err;
825 }
826 
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)827 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
828 				    struct snd_soc_dai *cpu_dai)
829 {
830 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
831 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
832 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
833 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
834 
835 	if (mcbsp->latency[stream2])
836 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
837 					       mcbsp->latency[stream2]);
838 	else if (mcbsp->latency[stream1])
839 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
840 
841 	mcbsp->latency[stream1] = 0;
842 
843 	if (!snd_soc_dai_active(cpu_dai)) {
844 		omap_mcbsp_free(mcbsp);
845 		mcbsp->configured = 0;
846 	}
847 }
848 
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)849 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
850 				  struct snd_soc_dai *cpu_dai)
851 {
852 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
853 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
854 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
855 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
856 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
857 	int latency = mcbsp->latency[stream2];
858 
859 	/* Prevent omap hardware from hitting off between FIFO fills */
860 	if (!latency || mcbsp->latency[stream1] < latency)
861 		latency = mcbsp->latency[stream1];
862 
863 	if (cpu_latency_qos_request_active(pm_qos_req))
864 		cpu_latency_qos_update_request(pm_qos_req, latency);
865 	else if (latency)
866 		cpu_latency_qos_add_request(pm_qos_req, latency);
867 
868 	return 0;
869 }
870 
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)871 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
872 				  struct snd_soc_dai *cpu_dai)
873 {
874 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
875 
876 	switch (cmd) {
877 	case SNDRV_PCM_TRIGGER_START:
878 	case SNDRV_PCM_TRIGGER_RESUME:
879 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
880 		mcbsp->active++;
881 		omap_mcbsp_start(mcbsp, substream->stream);
882 		break;
883 
884 	case SNDRV_PCM_TRIGGER_STOP:
885 	case SNDRV_PCM_TRIGGER_SUSPEND:
886 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
887 		omap_mcbsp_stop(mcbsp, substream->stream);
888 		mcbsp->active--;
889 		break;
890 	default:
891 		return -EINVAL;
892 	}
893 
894 	return 0;
895 }
896 
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)897 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
898 			struct snd_pcm_substream *substream,
899 			struct snd_soc_dai *dai)
900 {
901 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
902 	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
903 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
904 	u16 fifo_use;
905 	snd_pcm_sframes_t delay;
906 
907 	/* No need to proceed further if McBSP does not have FIFO */
908 	if (mcbsp->pdata->buffer_size == 0)
909 		return 0;
910 
911 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
912 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
913 	else
914 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
915 
916 	/*
917 	 * Divide the used locations with the channel count to get the
918 	 * FIFO usage in samples (don't care about partial samples in the
919 	 * buffer).
920 	 */
921 	delay = fifo_use / substream->runtime->channels;
922 
923 	return delay;
924 }
925 
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)926 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
927 				    struct snd_pcm_hw_params *params,
928 				    struct snd_soc_dai *cpu_dai)
929 {
930 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
931 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
932 	struct snd_dmaengine_dai_dma_data *dma_data;
933 	int wlen, channels, wpf;
934 	int pkt_size = 0;
935 	unsigned int format, div, framesize, master;
936 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
937 
938 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
939 	channels = params_channels(params);
940 
941 	switch (params_format(params)) {
942 	case SNDRV_PCM_FORMAT_S16_LE:
943 		wlen = 16;
944 		break;
945 	case SNDRV_PCM_FORMAT_S32_LE:
946 		wlen = 32;
947 		break;
948 	default:
949 		return -EINVAL;
950 	}
951 	if (buffer_size) {
952 		int latency;
953 
954 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
955 			int period_words, max_thrsh;
956 			int divider = 0;
957 
958 			period_words = params_period_bytes(params) / (wlen / 8);
959 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
960 				max_thrsh = mcbsp->max_tx_thres;
961 			else
962 				max_thrsh = mcbsp->max_rx_thres;
963 			/*
964 			 * Use sDMA packet mode if McBSP is in threshold mode:
965 			 * If period words less than the FIFO size the packet
966 			 * size is set to the number of period words, otherwise
967 			 * Look for the biggest threshold value which divides
968 			 * the period size evenly.
969 			 */
970 			divider = period_words / max_thrsh;
971 			if (period_words % max_thrsh)
972 				divider++;
973 			while (period_words % divider &&
974 				divider < period_words)
975 				divider++;
976 			if (divider == period_words)
977 				return -EINVAL;
978 
979 			pkt_size = period_words / divider;
980 		} else if (channels > 1) {
981 			/* Use packet mode for non mono streams */
982 			pkt_size = channels;
983 		}
984 
985 		latency = (buffer_size - pkt_size) / channels;
986 		latency = latency * USEC_PER_SEC /
987 			  (params->rate_num / params->rate_den);
988 		mcbsp->latency[substream->stream] = latency;
989 
990 		omap_mcbsp_set_threshold(substream, pkt_size);
991 	}
992 
993 	dma_data->maxburst = pkt_size;
994 
995 	if (mcbsp->configured) {
996 		/* McBSP already configured by another stream */
997 		return 0;
998 	}
999 
1000 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
1001 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1002 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1003 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1004 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1005 	wpf = channels;
1006 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1007 			      format == SND_SOC_DAIFMT_LEFT_J)) {
1008 		/* Use dual-phase frames */
1009 		regs->rcr2	|= RPHASE;
1010 		regs->xcr2	|= XPHASE;
1011 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1012 		wpf--;
1013 		regs->rcr2	|= RFRLEN2(wpf - 1);
1014 		regs->xcr2	|= XFRLEN2(wpf - 1);
1015 	}
1016 
1017 	regs->rcr1	|= RFRLEN1(wpf - 1);
1018 	regs->xcr1	|= XFRLEN1(wpf - 1);
1019 
1020 	switch (params_format(params)) {
1021 	case SNDRV_PCM_FORMAT_S16_LE:
1022 		/* Set word lengths */
1023 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1024 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1025 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1026 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1027 		break;
1028 	case SNDRV_PCM_FORMAT_S32_LE:
1029 		/* Set word lengths */
1030 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1031 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1032 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1033 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1034 		break;
1035 	default:
1036 		/* Unsupported PCM format */
1037 		return -EINVAL;
1038 	}
1039 
1040 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1041 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1042 	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1043 	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1044 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1045 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1046 
1047 		if (framesize < wlen * channels) {
1048 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1049 					"channels\n", __func__);
1050 			return -EINVAL;
1051 		}
1052 	} else
1053 		framesize = wlen * channels;
1054 
1055 	/* Set FS period and length in terms of bit clock periods */
1056 	regs->srgr2	&= ~FPER(0xfff);
1057 	regs->srgr1	&= ~FWID(0xff);
1058 	switch (format) {
1059 	case SND_SOC_DAIFMT_I2S:
1060 	case SND_SOC_DAIFMT_LEFT_J:
1061 		regs->srgr2	|= FPER(framesize - 1);
1062 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1063 		break;
1064 	case SND_SOC_DAIFMT_DSP_A:
1065 	case SND_SOC_DAIFMT_DSP_B:
1066 		regs->srgr2	|= FPER(framesize - 1);
1067 		regs->srgr1	|= FWID(0);
1068 		break;
1069 	}
1070 
1071 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1072 	mcbsp->wlen = wlen;
1073 	mcbsp->configured = 1;
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1080  * cache is initialized here
1081  */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1082 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1083 				      unsigned int fmt)
1084 {
1085 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1086 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1087 	bool inv_fs = false;
1088 
1089 	if (mcbsp->configured)
1090 		return 0;
1091 
1092 	mcbsp->fmt = fmt;
1093 	memset(regs, 0, sizeof(*regs));
1094 	/* Generic McBSP register settings */
1095 	regs->spcr2	|= XINTM(3) | FREE;
1096 	regs->spcr1	|= RINTM(3);
1097 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1098 	if (!mcbsp->pdata->has_ccr) {
1099 		regs->rcr2	|= RFIG;
1100 		regs->xcr2	|= XFIG;
1101 	}
1102 
1103 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1104 	if (mcbsp->pdata->has_ccr) {
1105 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1106 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1107 	}
1108 
1109 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1110 	case SND_SOC_DAIFMT_I2S:
1111 		/* 1-bit data delay */
1112 		regs->rcr2	|= RDATDLY(1);
1113 		regs->xcr2	|= XDATDLY(1);
1114 		break;
1115 	case SND_SOC_DAIFMT_LEFT_J:
1116 		/* 0-bit data delay */
1117 		regs->rcr2	|= RDATDLY(0);
1118 		regs->xcr2	|= XDATDLY(0);
1119 		regs->spcr1	|= RJUST(2);
1120 		/* Invert FS polarity configuration */
1121 		inv_fs = true;
1122 		break;
1123 	case SND_SOC_DAIFMT_DSP_A:
1124 		/* 1-bit data delay */
1125 		regs->rcr2      |= RDATDLY(1);
1126 		regs->xcr2      |= XDATDLY(1);
1127 		/* Invert FS polarity configuration */
1128 		inv_fs = true;
1129 		break;
1130 	case SND_SOC_DAIFMT_DSP_B:
1131 		/* 0-bit data delay */
1132 		regs->rcr2      |= RDATDLY(0);
1133 		regs->xcr2      |= XDATDLY(0);
1134 		/* Invert FS polarity configuration */
1135 		inv_fs = true;
1136 		break;
1137 	default:
1138 		/* Unsupported data format */
1139 		return -EINVAL;
1140 	}
1141 
1142 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1143 	case SND_SOC_DAIFMT_CBS_CFS:
1144 		/* McBSP master. Set FS and bit clocks as outputs */
1145 		regs->pcr0	|= FSXM | FSRM |
1146 				   CLKXM | CLKRM;
1147 		/* Sample rate generator drives the FS */
1148 		regs->srgr2	|= FSGM;
1149 		break;
1150 	case SND_SOC_DAIFMT_CBM_CFS:
1151 		/* McBSP slave. FS clock as output */
1152 		regs->srgr2	|= FSGM;
1153 		regs->pcr0	|= FSXM | FSRM;
1154 		break;
1155 	case SND_SOC_DAIFMT_CBM_CFM:
1156 		/* McBSP slave */
1157 		break;
1158 	default:
1159 		/* Unsupported master/slave configuration */
1160 		return -EINVAL;
1161 	}
1162 
1163 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1164 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1165 	case SND_SOC_DAIFMT_NB_NF:
1166 		/*
1167 		 * Normal BCLK + FS.
1168 		 * FS active low. TX data driven on falling edge of bit clock
1169 		 * and RX data sampled on rising edge of bit clock.
1170 		 */
1171 		regs->pcr0	|= FSXP | FSRP |
1172 				   CLKXP | CLKRP;
1173 		break;
1174 	case SND_SOC_DAIFMT_NB_IF:
1175 		regs->pcr0	|= CLKXP | CLKRP;
1176 		break;
1177 	case SND_SOC_DAIFMT_IB_NF:
1178 		regs->pcr0	|= FSXP | FSRP;
1179 		break;
1180 	case SND_SOC_DAIFMT_IB_IF:
1181 		break;
1182 	default:
1183 		return -EINVAL;
1184 	}
1185 	if (inv_fs)
1186 		regs->pcr0 ^= FSXP | FSRP;
1187 
1188 	return 0;
1189 }
1190 
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1191 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1192 				     int div_id, int div)
1193 {
1194 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1195 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1196 
1197 	if (div_id != OMAP_MCBSP_CLKGDV)
1198 		return -ENODEV;
1199 
1200 	mcbsp->clk_div = div;
1201 	regs->srgr1	&= ~CLKGDV(0xff);
1202 	regs->srgr1	|= CLKGDV(div - 1);
1203 
1204 	return 0;
1205 }
1206 
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1207 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1208 					 int clk_id, unsigned int freq,
1209 					 int dir)
1210 {
1211 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1212 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1213 	int err = 0;
1214 
1215 	if (mcbsp->active) {
1216 		if (freq == mcbsp->in_freq)
1217 			return 0;
1218 		else
1219 			return -EBUSY;
1220 	}
1221 
1222 	mcbsp->in_freq = freq;
1223 	regs->srgr2 &= ~CLKSM;
1224 	regs->pcr0 &= ~SCLKME;
1225 
1226 	switch (clk_id) {
1227 	case OMAP_MCBSP_SYSCLK_CLK:
1228 		regs->srgr2	|= CLKSM;
1229 		break;
1230 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1231 		if (mcbsp_omap1()) {
1232 			err = -EINVAL;
1233 			break;
1234 		}
1235 		err = omap2_mcbsp_set_clks_src(mcbsp,
1236 					       MCBSP_CLKS_PRCM_SRC);
1237 		break;
1238 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1239 		if (mcbsp_omap1()) {
1240 			err = 0;
1241 			break;
1242 		}
1243 		err = omap2_mcbsp_set_clks_src(mcbsp,
1244 					       MCBSP_CLKS_PAD_SRC);
1245 		break;
1246 
1247 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1248 		regs->srgr2	|= CLKSM;
1249 		regs->pcr0	|= SCLKME;
1250 		/*
1251 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1252 		 * disable output on those pins. This enables to inject the
1253 		 * reference clock through CLKX/CLKR. For this to work
1254 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1255 		 */
1256 		regs->pcr0	&= ~CLKXM;
1257 		break;
1258 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1259 		regs->pcr0	|= SCLKME;
1260 		/* Disable ouput on CLKR pin in master mode */
1261 		regs->pcr0	&= ~CLKRM;
1262 		break;
1263 	default:
1264 		err = -ENODEV;
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1271 	.startup	= omap_mcbsp_dai_startup,
1272 	.shutdown	= omap_mcbsp_dai_shutdown,
1273 	.prepare	= omap_mcbsp_dai_prepare,
1274 	.trigger	= omap_mcbsp_dai_trigger,
1275 	.delay		= omap_mcbsp_dai_delay,
1276 	.hw_params	= omap_mcbsp_dai_hw_params,
1277 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1278 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1279 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1280 };
1281 
omap_mcbsp_probe(struct snd_soc_dai * dai)1282 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1283 {
1284 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285 
1286 	pm_runtime_enable(mcbsp->dev);
1287 
1288 	snd_soc_dai_init_dma_data(dai,
1289 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1290 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1291 
1292 	return 0;
1293 }
1294 
omap_mcbsp_remove(struct snd_soc_dai * dai)1295 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1296 {
1297 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1298 
1299 	pm_runtime_disable(mcbsp->dev);
1300 
1301 	return 0;
1302 }
1303 
1304 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1305 	.probe = omap_mcbsp_probe,
1306 	.remove = omap_mcbsp_remove,
1307 	.playback = {
1308 		.channels_min = 1,
1309 		.channels_max = 16,
1310 		.rates = OMAP_MCBSP_RATES,
1311 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1312 	},
1313 	.capture = {
1314 		.channels_min = 1,
1315 		.channels_max = 16,
1316 		.rates = OMAP_MCBSP_RATES,
1317 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1318 	},
1319 	.ops = &mcbsp_dai_ops,
1320 };
1321 
1322 static const struct snd_soc_component_driver omap_mcbsp_component = {
1323 	.name		= "omap-mcbsp",
1324 };
1325 
1326 static struct omap_mcbsp_platform_data omap2420_pdata = {
1327 	.reg_step = 4,
1328 	.reg_size = 2,
1329 };
1330 
1331 static struct omap_mcbsp_platform_data omap2430_pdata = {
1332 	.reg_step = 4,
1333 	.reg_size = 4,
1334 	.has_ccr = true,
1335 };
1336 
1337 static struct omap_mcbsp_platform_data omap3_pdata = {
1338 	.reg_step = 4,
1339 	.reg_size = 4,
1340 	.has_ccr = true,
1341 	.has_wakeup = true,
1342 };
1343 
1344 static struct omap_mcbsp_platform_data omap4_pdata = {
1345 	.reg_step = 4,
1346 	.reg_size = 4,
1347 	.has_ccr = true,
1348 	.has_wakeup = true,
1349 };
1350 
1351 static const struct of_device_id omap_mcbsp_of_match[] = {
1352 	{
1353 		.compatible = "ti,omap2420-mcbsp",
1354 		.data = &omap2420_pdata,
1355 	},
1356 	{
1357 		.compatible = "ti,omap2430-mcbsp",
1358 		.data = &omap2430_pdata,
1359 	},
1360 	{
1361 		.compatible = "ti,omap3-mcbsp",
1362 		.data = &omap3_pdata,
1363 	},
1364 	{
1365 		.compatible = "ti,omap4-mcbsp",
1366 		.data = &omap4_pdata,
1367 	},
1368 	{ },
1369 };
1370 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1371 
asoc_mcbsp_probe(struct platform_device * pdev)1372 static int asoc_mcbsp_probe(struct platform_device *pdev)
1373 {
1374 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1375 	struct omap_mcbsp *mcbsp;
1376 	const struct of_device_id *match;
1377 	int ret;
1378 
1379 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1380 	if (match) {
1381 		struct device_node *node = pdev->dev.of_node;
1382 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1383 		int buffer_size;
1384 
1385 		pdata = devm_kzalloc(&pdev->dev,
1386 				     sizeof(struct omap_mcbsp_platform_data),
1387 				     GFP_KERNEL);
1388 		if (!pdata)
1389 			return -ENOMEM;
1390 
1391 		memcpy(pdata, match->data, sizeof(*pdata));
1392 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1393 			pdata->buffer_size = buffer_size;
1394 		if (pdata_quirk)
1395 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1396 	} else if (!pdata) {
1397 		dev_err(&pdev->dev, "missing platform data.\n");
1398 		return -EINVAL;
1399 	}
1400 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1401 	if (!mcbsp)
1402 		return -ENOMEM;
1403 
1404 	mcbsp->id = pdev->id;
1405 	mcbsp->pdata = pdata;
1406 	mcbsp->dev = &pdev->dev;
1407 	platform_set_drvdata(pdev, mcbsp);
1408 
1409 	ret = omap_mcbsp_init(pdev);
1410 	if (ret)
1411 		return ret;
1412 
1413 	if (mcbsp->pdata->reg_size == 2) {
1414 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1415 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1416 	}
1417 
1418 	ret = devm_snd_soc_register_component(&pdev->dev,
1419 					      &omap_mcbsp_component,
1420 					      &omap_mcbsp_dai, 1);
1421 	if (ret)
1422 		return ret;
1423 
1424 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1425 }
1426 
asoc_mcbsp_remove(struct platform_device * pdev)1427 static int asoc_mcbsp_remove(struct platform_device *pdev)
1428 {
1429 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1430 
1431 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1432 		mcbsp->pdata->ops->free(mcbsp->id);
1433 
1434 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1435 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1436 
1437 	if (mcbsp->pdata->buffer_size)
1438 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1439 
1440 	omap_mcbsp_st_cleanup(pdev);
1441 
1442 	return 0;
1443 }
1444 
1445 static struct platform_driver asoc_mcbsp_driver = {
1446 	.driver = {
1447 			.name = "omap-mcbsp",
1448 			.of_match_table = omap_mcbsp_of_match,
1449 	},
1450 
1451 	.probe = asoc_mcbsp_probe,
1452 	.remove = asoc_mcbsp_remove,
1453 };
1454 
1455 module_platform_driver(asoc_mcbsp_driver);
1456 
1457 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1458 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1459 MODULE_LICENSE("GPL");
1460 MODULE_ALIAS("platform:omap-mcbsp");
1461