• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41 
42 #include <linux/hash.h>
43 
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49 
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56 
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60 
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
perf_evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)65 static int perf_evlist__regroup(struct evlist *evlist,
66 				struct evsel *leader,
67 				struct evsel *last)
68 {
69 	struct evsel *evsel;
70 	bool grp;
71 
72 	if (!evsel__is_group_leader(leader))
73 		return -EINVAL;
74 
75 	grp = false;
76 	evlist__for_each_entry(evlist, evsel) {
77 		if (grp) {
78 			if (!(evsel->leader == leader ||
79 			     (evsel->leader == evsel &&
80 			      evsel->core.nr_members <= 1)))
81 				return -EINVAL;
82 		} else if (evsel == leader) {
83 			grp = true;
84 		}
85 		if (evsel == last)
86 			break;
87 	}
88 
89 	grp = false;
90 	evlist__for_each_entry(evlist, evsel) {
91 		if (grp) {
92 			if (evsel->leader != leader) {
93 				evsel->leader = leader;
94 				if (leader->core.nr_members < 1)
95 					leader->core.nr_members = 1;
96 				leader->core.nr_members += 1;
97 			}
98 		} else if (evsel == leader) {
99 			grp = true;
100 		}
101 		if (evsel == last)
102 			break;
103 	}
104 
105 	return 0;
106 }
107 
auxtrace__dont_decode(struct perf_session * session)108 static bool auxtrace__dont_decode(struct perf_session *session)
109 {
110 	return !session->itrace_synth_opts ||
111 	       session->itrace_synth_opts->dont_decode;
112 }
113 
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115 			struct auxtrace_mmap_params *mp,
116 			void *userpg, int fd)
117 {
118 	struct perf_event_mmap_page *pc = userpg;
119 
120 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121 
122 	mm->userpg = userpg;
123 	mm->mask = mp->mask;
124 	mm->len = mp->len;
125 	mm->prev = 0;
126 	mm->idx = mp->idx;
127 	mm->tid = mp->tid;
128 	mm->cpu = mp->cpu;
129 
130 	if (!mp->len) {
131 		mm->base = NULL;
132 		return 0;
133 	}
134 
135 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
136 	pr_err("Cannot use AUX area tracing mmaps\n");
137 	return -1;
138 #endif
139 
140 	pc->aux_offset = mp->offset;
141 	pc->aux_size = mp->len;
142 
143 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
144 	if (mm->base == MAP_FAILED) {
145 		pr_debug2("failed to mmap AUX area\n");
146 		mm->base = NULL;
147 		return -1;
148 	}
149 
150 	return 0;
151 }
152 
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)153 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
154 {
155 	if (mm->base) {
156 		munmap(mm->base, mm->len);
157 		mm->base = NULL;
158 	}
159 }
160 
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)161 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
162 				off_t auxtrace_offset,
163 				unsigned int auxtrace_pages,
164 				bool auxtrace_overwrite)
165 {
166 	if (auxtrace_pages) {
167 		mp->offset = auxtrace_offset;
168 		mp->len = auxtrace_pages * (size_t)page_size;
169 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
170 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
171 		pr_debug2("AUX area mmap length %zu\n", mp->len);
172 	} else {
173 		mp->len = 0;
174 	}
175 }
176 
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,int idx,bool per_cpu)177 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
178 				   struct evlist *evlist, int idx,
179 				   bool per_cpu)
180 {
181 	mp->idx = idx;
182 
183 	if (per_cpu) {
184 		mp->cpu = evlist->core.cpus->map[idx];
185 		if (evlist->core.threads)
186 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187 		else
188 			mp->tid = -1;
189 	} else {
190 		mp->cpu = -1;
191 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192 	}
193 }
194 
195 #define AUXTRACE_INIT_NR_QUEUES	32
196 
auxtrace_alloc_queue_array(unsigned int nr_queues)197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198 {
199 	struct auxtrace_queue *queue_array;
200 	unsigned int max_nr_queues, i;
201 
202 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203 	if (nr_queues > max_nr_queues)
204 		return NULL;
205 
206 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207 	if (!queue_array)
208 		return NULL;
209 
210 	for (i = 0; i < nr_queues; i++) {
211 		INIT_LIST_HEAD(&queue_array[i].head);
212 		queue_array[i].priv = NULL;
213 	}
214 
215 	return queue_array;
216 }
217 
auxtrace_queues__init(struct auxtrace_queues * queues)218 int auxtrace_queues__init(struct auxtrace_queues *queues)
219 {
220 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222 	if (!queues->queue_array)
223 		return -ENOMEM;
224 	return 0;
225 }
226 
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)227 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228 				 unsigned int new_nr_queues)
229 {
230 	unsigned int nr_queues = queues->nr_queues;
231 	struct auxtrace_queue *queue_array;
232 	unsigned int i;
233 
234 	if (!nr_queues)
235 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
236 
237 	while (nr_queues && nr_queues < new_nr_queues)
238 		nr_queues <<= 1;
239 
240 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241 		return -EINVAL;
242 
243 	queue_array = auxtrace_alloc_queue_array(nr_queues);
244 	if (!queue_array)
245 		return -ENOMEM;
246 
247 	for (i = 0; i < queues->nr_queues; i++) {
248 		list_splice_tail(&queues->queue_array[i].head,
249 				 &queue_array[i].head);
250 		queue_array[i].tid = queues->queue_array[i].tid;
251 		queue_array[i].cpu = queues->queue_array[i].cpu;
252 		queue_array[i].set = queues->queue_array[i].set;
253 		queue_array[i].priv = queues->queue_array[i].priv;
254 	}
255 
256 	queues->nr_queues = nr_queues;
257 	queues->queue_array = queue_array;
258 
259 	return 0;
260 }
261 
auxtrace_copy_data(u64 size,struct perf_session * session)262 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263 {
264 	int fd = perf_data__fd(session->data);
265 	void *p;
266 	ssize_t ret;
267 
268 	if (size > SSIZE_MAX)
269 		return NULL;
270 
271 	p = malloc(size);
272 	if (!p)
273 		return NULL;
274 
275 	ret = readn(fd, p, size);
276 	if (ret != (ssize_t)size) {
277 		free(p);
278 		return NULL;
279 	}
280 
281 	return p;
282 }
283 
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285 					 unsigned int idx,
286 					 struct auxtrace_buffer *buffer)
287 {
288 	struct auxtrace_queue *queue;
289 	int err;
290 
291 	if (idx >= queues->nr_queues) {
292 		err = auxtrace_queues__grow(queues, idx + 1);
293 		if (err)
294 			return err;
295 	}
296 
297 	queue = &queues->queue_array[idx];
298 
299 	if (!queue->set) {
300 		queue->set = true;
301 		queue->tid = buffer->tid;
302 		queue->cpu = buffer->cpu;
303 	}
304 
305 	buffer->buffer_nr = queues->next_buffer_nr++;
306 
307 	list_add_tail(&buffer->list, &queue->head);
308 
309 	queues->new_data = true;
310 	queues->populated = true;
311 
312 	return 0;
313 }
314 
315 /* Limit buffers to 32MiB on 32-bit */
316 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
317 
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)318 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
319 					 unsigned int idx,
320 					 struct auxtrace_buffer *buffer)
321 {
322 	u64 sz = buffer->size;
323 	bool consecutive = false;
324 	struct auxtrace_buffer *b;
325 	int err;
326 
327 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
328 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
329 		if (!b)
330 			return -ENOMEM;
331 		b->size = BUFFER_LIMIT_FOR_32_BIT;
332 		b->consecutive = consecutive;
333 		err = auxtrace_queues__queue_buffer(queues, idx, b);
334 		if (err) {
335 			auxtrace_buffer__free(b);
336 			return err;
337 		}
338 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
339 		sz -= BUFFER_LIMIT_FOR_32_BIT;
340 		consecutive = true;
341 	}
342 
343 	buffer->size = sz;
344 	buffer->consecutive = consecutive;
345 
346 	return 0;
347 }
348 
filter_cpu(struct perf_session * session,int cpu)349 static bool filter_cpu(struct perf_session *session, int cpu)
350 {
351 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
352 
353 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
354 }
355 
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)356 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
357 				       struct perf_session *session,
358 				       unsigned int idx,
359 				       struct auxtrace_buffer *buffer,
360 				       struct auxtrace_buffer **buffer_ptr)
361 {
362 	int err = -ENOMEM;
363 
364 	if (filter_cpu(session, buffer->cpu))
365 		return 0;
366 
367 	buffer = memdup(buffer, sizeof(*buffer));
368 	if (!buffer)
369 		return -ENOMEM;
370 
371 	if (session->one_mmap) {
372 		buffer->data = buffer->data_offset - session->one_mmap_offset +
373 			       session->one_mmap_addr;
374 	} else if (perf_data__is_pipe(session->data)) {
375 		buffer->data = auxtrace_copy_data(buffer->size, session);
376 		if (!buffer->data)
377 			goto out_free;
378 		buffer->data_needs_freeing = true;
379 	} else if (BITS_PER_LONG == 32 &&
380 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
381 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
382 		if (err)
383 			goto out_free;
384 	}
385 
386 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
387 	if (err)
388 		goto out_free;
389 
390 	/* FIXME: Doesn't work for split buffer */
391 	if (buffer_ptr)
392 		*buffer_ptr = buffer;
393 
394 	return 0;
395 
396 out_free:
397 	auxtrace_buffer__free(buffer);
398 	return err;
399 }
400 
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)401 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
402 			       struct perf_session *session,
403 			       union perf_event *event, off_t data_offset,
404 			       struct auxtrace_buffer **buffer_ptr)
405 {
406 	struct auxtrace_buffer buffer = {
407 		.pid = -1,
408 		.tid = event->auxtrace.tid,
409 		.cpu = event->auxtrace.cpu,
410 		.data_offset = data_offset,
411 		.offset = event->auxtrace.offset,
412 		.reference = event->auxtrace.reference,
413 		.size = event->auxtrace.size,
414 	};
415 	unsigned int idx = event->auxtrace.idx;
416 
417 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
418 					   buffer_ptr);
419 }
420 
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)421 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
422 					      struct perf_session *session,
423 					      off_t file_offset, size_t sz)
424 {
425 	union perf_event *event;
426 	int err;
427 	char buf[PERF_SAMPLE_MAX_SIZE];
428 
429 	err = perf_session__peek_event(session, file_offset, buf,
430 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
431 	if (err)
432 		return err;
433 
434 	if (event->header.type == PERF_RECORD_AUXTRACE) {
435 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
436 		    event->header.size != sz) {
437 			err = -EINVAL;
438 			goto out;
439 		}
440 		file_offset += event->header.size;
441 		err = auxtrace_queues__add_event(queues, session, event,
442 						 file_offset, NULL);
443 	}
444 out:
445 	return err;
446 }
447 
auxtrace_queues__free(struct auxtrace_queues * queues)448 void auxtrace_queues__free(struct auxtrace_queues *queues)
449 {
450 	unsigned int i;
451 
452 	for (i = 0; i < queues->nr_queues; i++) {
453 		while (!list_empty(&queues->queue_array[i].head)) {
454 			struct auxtrace_buffer *buffer;
455 
456 			buffer = list_entry(queues->queue_array[i].head.next,
457 					    struct auxtrace_buffer, list);
458 			list_del_init(&buffer->list);
459 			auxtrace_buffer__free(buffer);
460 		}
461 	}
462 
463 	zfree(&queues->queue_array);
464 	queues->nr_queues = 0;
465 }
466 
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)467 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
468 			     unsigned int pos, unsigned int queue_nr,
469 			     u64 ordinal)
470 {
471 	unsigned int parent;
472 
473 	while (pos) {
474 		parent = (pos - 1) >> 1;
475 		if (heap_array[parent].ordinal <= ordinal)
476 			break;
477 		heap_array[pos] = heap_array[parent];
478 		pos = parent;
479 	}
480 	heap_array[pos].queue_nr = queue_nr;
481 	heap_array[pos].ordinal = ordinal;
482 }
483 
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)484 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
485 		       u64 ordinal)
486 {
487 	struct auxtrace_heap_item *heap_array;
488 
489 	if (queue_nr >= heap->heap_sz) {
490 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
491 
492 		while (heap_sz <= queue_nr)
493 			heap_sz <<= 1;
494 		heap_array = realloc(heap->heap_array,
495 				     heap_sz * sizeof(struct auxtrace_heap_item));
496 		if (!heap_array)
497 			return -ENOMEM;
498 		heap->heap_array = heap_array;
499 		heap->heap_sz = heap_sz;
500 	}
501 
502 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
503 
504 	return 0;
505 }
506 
auxtrace_heap__free(struct auxtrace_heap * heap)507 void auxtrace_heap__free(struct auxtrace_heap *heap)
508 {
509 	zfree(&heap->heap_array);
510 	heap->heap_cnt = 0;
511 	heap->heap_sz = 0;
512 }
513 
auxtrace_heap__pop(struct auxtrace_heap * heap)514 void auxtrace_heap__pop(struct auxtrace_heap *heap)
515 {
516 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
517 	struct auxtrace_heap_item *heap_array;
518 
519 	if (!heap_cnt)
520 		return;
521 
522 	heap->heap_cnt -= 1;
523 
524 	heap_array = heap->heap_array;
525 
526 	pos = 0;
527 	while (1) {
528 		unsigned int left, right;
529 
530 		left = (pos << 1) + 1;
531 		if (left >= heap_cnt)
532 			break;
533 		right = left + 1;
534 		if (right >= heap_cnt) {
535 			heap_array[pos] = heap_array[left];
536 			return;
537 		}
538 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
539 			heap_array[pos] = heap_array[left];
540 			pos = left;
541 		} else {
542 			heap_array[pos] = heap_array[right];
543 			pos = right;
544 		}
545 	}
546 
547 	last = heap_cnt - 1;
548 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
549 			 heap_array[last].ordinal);
550 }
551 
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)552 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
553 				       struct evlist *evlist)
554 {
555 	if (itr)
556 		return itr->info_priv_size(itr, evlist);
557 	return 0;
558 }
559 
auxtrace_not_supported(void)560 static int auxtrace_not_supported(void)
561 {
562 	pr_err("AUX area tracing is not supported on this architecture\n");
563 	return -EINVAL;
564 }
565 
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)566 int auxtrace_record__info_fill(struct auxtrace_record *itr,
567 			       struct perf_session *session,
568 			       struct perf_record_auxtrace_info *auxtrace_info,
569 			       size_t priv_size)
570 {
571 	if (itr)
572 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
573 	return auxtrace_not_supported();
574 }
575 
auxtrace_record__free(struct auxtrace_record * itr)576 void auxtrace_record__free(struct auxtrace_record *itr)
577 {
578 	if (itr)
579 		itr->free(itr);
580 }
581 
auxtrace_record__snapshot_start(struct auxtrace_record * itr)582 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
583 {
584 	if (itr && itr->snapshot_start)
585 		return itr->snapshot_start(itr);
586 	return 0;
587 }
588 
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)589 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
590 {
591 	if (!on_exit && itr && itr->snapshot_finish)
592 		return itr->snapshot_finish(itr);
593 	return 0;
594 }
595 
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)596 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
597 				   struct auxtrace_mmap *mm,
598 				   unsigned char *data, u64 *head, u64 *old)
599 {
600 	if (itr && itr->find_snapshot)
601 		return itr->find_snapshot(itr, idx, mm, data, head, old);
602 	return 0;
603 }
604 
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)605 int auxtrace_record__options(struct auxtrace_record *itr,
606 			     struct evlist *evlist,
607 			     struct record_opts *opts)
608 {
609 	if (itr) {
610 		itr->evlist = evlist;
611 		return itr->recording_options(itr, evlist, opts);
612 	}
613 	return 0;
614 }
615 
auxtrace_record__reference(struct auxtrace_record * itr)616 u64 auxtrace_record__reference(struct auxtrace_record *itr)
617 {
618 	if (itr)
619 		return itr->reference(itr);
620 	return 0;
621 }
622 
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)623 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
624 				    struct record_opts *opts, const char *str)
625 {
626 	if (!str)
627 		return 0;
628 
629 	/* PMU-agnostic options */
630 	switch (*str) {
631 	case 'e':
632 		opts->auxtrace_snapshot_on_exit = true;
633 		str++;
634 		break;
635 	default:
636 		break;
637 	}
638 
639 	if (itr && itr->parse_snapshot_options)
640 		return itr->parse_snapshot_options(itr, opts, str);
641 
642 	pr_err("No AUX area tracing to snapshot\n");
643 	return -EINVAL;
644 }
645 
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)646 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
647 {
648 	struct evsel *evsel;
649 
650 	if (!itr->evlist || !itr->pmu)
651 		return -EINVAL;
652 
653 	evlist__for_each_entry(itr->evlist, evsel) {
654 		if (evsel->core.attr.type == itr->pmu->type) {
655 			if (evsel->disabled)
656 				return 0;
657 			return perf_evlist__enable_event_idx(itr->evlist, evsel,
658 							     idx);
659 		}
660 	}
661 	return -EINVAL;
662 }
663 
664 /*
665  * Event record size is 16-bit which results in a maximum size of about 64KiB.
666  * Allow about 4KiB for the rest of the sample record, to give a maximum
667  * AUX area sample size of 60KiB.
668  */
669 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
670 
671 /* Arbitrary default size if no other default provided */
672 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
673 
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)674 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
675 					     struct record_opts *opts)
676 {
677 	struct evsel *evsel;
678 	bool has_aux_leader = false;
679 	u32 sz;
680 
681 	evlist__for_each_entry(evlist, evsel) {
682 		sz = evsel->core.attr.aux_sample_size;
683 		if (evsel__is_group_leader(evsel)) {
684 			has_aux_leader = evsel__is_aux_event(evsel);
685 			if (sz) {
686 				if (has_aux_leader)
687 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
688 				else
689 					pr_err("Cannot add AUX area sampling to a group leader\n");
690 				return -EINVAL;
691 			}
692 		}
693 		if (sz > MAX_AUX_SAMPLE_SIZE) {
694 			pr_err("AUX area sample size %u too big, max. %d\n",
695 			       sz, MAX_AUX_SAMPLE_SIZE);
696 			return -EINVAL;
697 		}
698 		if (sz) {
699 			if (!has_aux_leader) {
700 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
701 				return -EINVAL;
702 			}
703 			evsel__set_sample_bit(evsel, AUX);
704 			opts->auxtrace_sample_mode = true;
705 		} else {
706 			evsel__reset_sample_bit(evsel, AUX);
707 		}
708 	}
709 
710 	if (!opts->auxtrace_sample_mode) {
711 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
712 		return -EINVAL;
713 	}
714 
715 	if (!perf_can_aux_sample()) {
716 		pr_err("AUX area sampling is not supported by kernel\n");
717 		return -EINVAL;
718 	}
719 
720 	return 0;
721 }
722 
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)723 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
724 				  struct evlist *evlist,
725 				  struct record_opts *opts, const char *str)
726 {
727 	struct evsel_config_term *term;
728 	struct evsel *aux_evsel;
729 	bool has_aux_sample_size = false;
730 	bool has_aux_leader = false;
731 	struct evsel *evsel;
732 	char *endptr;
733 	unsigned long sz;
734 
735 	if (!str)
736 		goto no_opt;
737 
738 	if (!itr) {
739 		pr_err("No AUX area event to sample\n");
740 		return -EINVAL;
741 	}
742 
743 	sz = strtoul(str, &endptr, 0);
744 	if (*endptr || sz > UINT_MAX) {
745 		pr_err("Bad AUX area sampling option: '%s'\n", str);
746 		return -EINVAL;
747 	}
748 
749 	if (!sz)
750 		sz = itr->default_aux_sample_size;
751 
752 	if (!sz)
753 		sz = DEFAULT_AUX_SAMPLE_SIZE;
754 
755 	/* Set aux_sample_size based on --aux-sample option */
756 	evlist__for_each_entry(evlist, evsel) {
757 		if (evsel__is_group_leader(evsel)) {
758 			has_aux_leader = evsel__is_aux_event(evsel);
759 		} else if (has_aux_leader) {
760 			evsel->core.attr.aux_sample_size = sz;
761 		}
762 	}
763 no_opt:
764 	aux_evsel = NULL;
765 	/* Override with aux_sample_size from config term */
766 	evlist__for_each_entry(evlist, evsel) {
767 		if (evsel__is_aux_event(evsel))
768 			aux_evsel = evsel;
769 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
770 		if (term) {
771 			has_aux_sample_size = true;
772 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
773 			/* If possible, group with the AUX event */
774 			if (aux_evsel && evsel->core.attr.aux_sample_size)
775 				perf_evlist__regroup(evlist, aux_evsel, evsel);
776 		}
777 	}
778 
779 	if (!str && !has_aux_sample_size)
780 		return 0;
781 
782 	if (!itr) {
783 		pr_err("No AUX area event to sample\n");
784 		return -EINVAL;
785 	}
786 
787 	return auxtrace_validate_aux_sample_size(evlist, opts);
788 }
789 
790 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)791 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
792 {
793 	*err = 0;
794 	return NULL;
795 }
796 
auxtrace_index__alloc(struct list_head * head)797 static int auxtrace_index__alloc(struct list_head *head)
798 {
799 	struct auxtrace_index *auxtrace_index;
800 
801 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
802 	if (!auxtrace_index)
803 		return -ENOMEM;
804 
805 	auxtrace_index->nr = 0;
806 	INIT_LIST_HEAD(&auxtrace_index->list);
807 
808 	list_add_tail(&auxtrace_index->list, head);
809 
810 	return 0;
811 }
812 
auxtrace_index__free(struct list_head * head)813 void auxtrace_index__free(struct list_head *head)
814 {
815 	struct auxtrace_index *auxtrace_index, *n;
816 
817 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
818 		list_del_init(&auxtrace_index->list);
819 		free(auxtrace_index);
820 	}
821 }
822 
auxtrace_index__last(struct list_head * head)823 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
824 {
825 	struct auxtrace_index *auxtrace_index;
826 	int err;
827 
828 	if (list_empty(head)) {
829 		err = auxtrace_index__alloc(head);
830 		if (err)
831 			return NULL;
832 	}
833 
834 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
835 
836 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
837 		err = auxtrace_index__alloc(head);
838 		if (err)
839 			return NULL;
840 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
841 					    list);
842 	}
843 
844 	return auxtrace_index;
845 }
846 
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)847 int auxtrace_index__auxtrace_event(struct list_head *head,
848 				   union perf_event *event, off_t file_offset)
849 {
850 	struct auxtrace_index *auxtrace_index;
851 	size_t nr;
852 
853 	auxtrace_index = auxtrace_index__last(head);
854 	if (!auxtrace_index)
855 		return -ENOMEM;
856 
857 	nr = auxtrace_index->nr;
858 	auxtrace_index->entries[nr].file_offset = file_offset;
859 	auxtrace_index->entries[nr].sz = event->header.size;
860 	auxtrace_index->nr += 1;
861 
862 	return 0;
863 }
864 
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)865 static int auxtrace_index__do_write(int fd,
866 				    struct auxtrace_index *auxtrace_index)
867 {
868 	struct auxtrace_index_entry ent;
869 	size_t i;
870 
871 	for (i = 0; i < auxtrace_index->nr; i++) {
872 		ent.file_offset = auxtrace_index->entries[i].file_offset;
873 		ent.sz = auxtrace_index->entries[i].sz;
874 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
875 			return -errno;
876 	}
877 	return 0;
878 }
879 
auxtrace_index__write(int fd,struct list_head * head)880 int auxtrace_index__write(int fd, struct list_head *head)
881 {
882 	struct auxtrace_index *auxtrace_index;
883 	u64 total = 0;
884 	int err;
885 
886 	list_for_each_entry(auxtrace_index, head, list)
887 		total += auxtrace_index->nr;
888 
889 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
890 		return -errno;
891 
892 	list_for_each_entry(auxtrace_index, head, list) {
893 		err = auxtrace_index__do_write(fd, auxtrace_index);
894 		if (err)
895 			return err;
896 	}
897 
898 	return 0;
899 }
900 
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)901 static int auxtrace_index__process_entry(int fd, struct list_head *head,
902 					 bool needs_swap)
903 {
904 	struct auxtrace_index *auxtrace_index;
905 	struct auxtrace_index_entry ent;
906 	size_t nr;
907 
908 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
909 		return -1;
910 
911 	auxtrace_index = auxtrace_index__last(head);
912 	if (!auxtrace_index)
913 		return -1;
914 
915 	nr = auxtrace_index->nr;
916 	if (needs_swap) {
917 		auxtrace_index->entries[nr].file_offset =
918 						bswap_64(ent.file_offset);
919 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
920 	} else {
921 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
922 		auxtrace_index->entries[nr].sz = ent.sz;
923 	}
924 
925 	auxtrace_index->nr = nr + 1;
926 
927 	return 0;
928 }
929 
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)930 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
931 			    bool needs_swap)
932 {
933 	struct list_head *head = &session->auxtrace_index;
934 	u64 nr;
935 
936 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
937 		return -1;
938 
939 	if (needs_swap)
940 		nr = bswap_64(nr);
941 
942 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
943 		return -1;
944 
945 	while (nr--) {
946 		int err;
947 
948 		err = auxtrace_index__process_entry(fd, head, needs_swap);
949 		if (err)
950 			return -1;
951 	}
952 
953 	return 0;
954 }
955 
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)956 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
957 						struct perf_session *session,
958 						struct auxtrace_index_entry *ent)
959 {
960 	return auxtrace_queues__add_indexed_event(queues, session,
961 						  ent->file_offset, ent->sz);
962 }
963 
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)964 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
965 				   struct perf_session *session)
966 {
967 	struct auxtrace_index *auxtrace_index;
968 	struct auxtrace_index_entry *ent;
969 	size_t i;
970 	int err;
971 
972 	if (auxtrace__dont_decode(session))
973 		return 0;
974 
975 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
976 		for (i = 0; i < auxtrace_index->nr; i++) {
977 			ent = &auxtrace_index->entries[i];
978 			err = auxtrace_queues__process_index_entry(queues,
979 								   session,
980 								   ent);
981 			if (err)
982 				return err;
983 		}
984 	}
985 	return 0;
986 }
987 
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)988 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
989 					      struct auxtrace_buffer *buffer)
990 {
991 	if (buffer) {
992 		if (list_is_last(&buffer->list, &queue->head))
993 			return NULL;
994 		return list_entry(buffer->list.next, struct auxtrace_buffer,
995 				  list);
996 	} else {
997 		if (list_empty(&queue->head))
998 			return NULL;
999 		return list_entry(queue->head.next, struct auxtrace_buffer,
1000 				  list);
1001 	}
1002 }
1003 
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1004 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1005 						     struct perf_sample *sample,
1006 						     struct perf_session *session)
1007 {
1008 	struct perf_sample_id *sid;
1009 	unsigned int idx;
1010 	u64 id;
1011 
1012 	id = sample->id;
1013 	if (!id)
1014 		return NULL;
1015 
1016 	sid = perf_evlist__id2sid(session->evlist, id);
1017 	if (!sid)
1018 		return NULL;
1019 
1020 	idx = sid->idx;
1021 
1022 	if (idx >= queues->nr_queues)
1023 		return NULL;
1024 
1025 	return &queues->queue_array[idx];
1026 }
1027 
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1028 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1029 				struct perf_session *session,
1030 				struct perf_sample *sample, u64 data_offset,
1031 				u64 reference)
1032 {
1033 	struct auxtrace_buffer buffer = {
1034 		.pid = -1,
1035 		.data_offset = data_offset,
1036 		.reference = reference,
1037 		.size = sample->aux_sample.size,
1038 	};
1039 	struct perf_sample_id *sid;
1040 	u64 id = sample->id;
1041 	unsigned int idx;
1042 
1043 	if (!id)
1044 		return -EINVAL;
1045 
1046 	sid = perf_evlist__id2sid(session->evlist, id);
1047 	if (!sid)
1048 		return -ENOENT;
1049 
1050 	idx = sid->idx;
1051 	buffer.tid = sid->tid;
1052 	buffer.cpu = sid->cpu;
1053 
1054 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1055 }
1056 
1057 struct queue_data {
1058 	bool samples;
1059 	bool events;
1060 };
1061 
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1062 static int auxtrace_queue_data_cb(struct perf_session *session,
1063 				  union perf_event *event, u64 offset,
1064 				  void *data)
1065 {
1066 	struct queue_data *qd = data;
1067 	struct perf_sample sample;
1068 	int err;
1069 
1070 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1071 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1072 			return -EINVAL;
1073 		offset += event->header.size;
1074 		return session->auxtrace->queue_data(session, NULL, event,
1075 						     offset);
1076 	}
1077 
1078 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1079 		return 0;
1080 
1081 	err = perf_evlist__parse_sample(session->evlist, event, &sample);
1082 	if (err)
1083 		return err;
1084 
1085 	if (!sample.aux_sample.size)
1086 		return 0;
1087 
1088 	offset += sample.aux_sample.data - (void *)event;
1089 
1090 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1091 }
1092 
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1093 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1094 {
1095 	struct queue_data qd = {
1096 		.samples = samples,
1097 		.events = events,
1098 	};
1099 
1100 	if (auxtrace__dont_decode(session))
1101 		return 0;
1102 
1103 	if (!session->auxtrace || !session->auxtrace->queue_data)
1104 		return -EINVAL;
1105 
1106 	return perf_session__peek_events(session, session->header.data_offset,
1107 					 session->header.data_size,
1108 					 auxtrace_queue_data_cb, &qd);
1109 }
1110 
auxtrace_buffer__get_data(struct auxtrace_buffer * buffer,int fd)1111 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1112 {
1113 	size_t adj = buffer->data_offset & (page_size - 1);
1114 	size_t size = buffer->size + adj;
1115 	off_t file_offset = buffer->data_offset - adj;
1116 	void *addr;
1117 
1118 	if (buffer->data)
1119 		return buffer->data;
1120 
1121 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1122 	if (addr == MAP_FAILED)
1123 		return NULL;
1124 
1125 	buffer->mmap_addr = addr;
1126 	buffer->mmap_size = size;
1127 
1128 	buffer->data = addr + adj;
1129 
1130 	return buffer->data;
1131 }
1132 
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1133 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1134 {
1135 	if (!buffer->data || !buffer->mmap_addr)
1136 		return;
1137 	munmap(buffer->mmap_addr, buffer->mmap_size);
1138 	buffer->mmap_addr = NULL;
1139 	buffer->mmap_size = 0;
1140 	buffer->data = NULL;
1141 	buffer->use_data = NULL;
1142 }
1143 
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1144 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1145 {
1146 	auxtrace_buffer__put_data(buffer);
1147 	if (buffer->data_needs_freeing) {
1148 		buffer->data_needs_freeing = false;
1149 		zfree(&buffer->data);
1150 		buffer->use_data = NULL;
1151 		buffer->size = 0;
1152 	}
1153 }
1154 
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1155 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1156 {
1157 	auxtrace_buffer__drop_data(buffer);
1158 	free(buffer);
1159 }
1160 
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1161 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1162 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1163 			  const char *msg, u64 timestamp)
1164 {
1165 	size_t size;
1166 
1167 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1168 
1169 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1170 	auxtrace_error->type = type;
1171 	auxtrace_error->code = code;
1172 	auxtrace_error->cpu = cpu;
1173 	auxtrace_error->pid = pid;
1174 	auxtrace_error->tid = tid;
1175 	auxtrace_error->fmt = 1;
1176 	auxtrace_error->ip = ip;
1177 	auxtrace_error->time = timestamp;
1178 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1179 
1180 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1181 	       strlen(auxtrace_error->msg) + 1;
1182 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1183 }
1184 
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1185 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1186 					 struct perf_tool *tool,
1187 					 struct perf_session *session,
1188 					 perf_event__handler_t process)
1189 {
1190 	union perf_event *ev;
1191 	size_t priv_size;
1192 	int err;
1193 
1194 	pr_debug2("Synthesizing auxtrace information\n");
1195 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1196 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1197 	if (!ev)
1198 		return -ENOMEM;
1199 
1200 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1201 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1202 					priv_size;
1203 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1204 					 priv_size);
1205 	if (err)
1206 		goto out_free;
1207 
1208 	err = process(tool, ev, NULL, NULL);
1209 out_free:
1210 	free(ev);
1211 	return err;
1212 }
1213 
unleader_evsel(struct evlist * evlist,struct evsel * leader)1214 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1215 {
1216 	struct evsel *new_leader = NULL;
1217 	struct evsel *evsel;
1218 
1219 	/* Find new leader for the group */
1220 	evlist__for_each_entry(evlist, evsel) {
1221 		if (evsel->leader != leader || evsel == leader)
1222 			continue;
1223 		if (!new_leader)
1224 			new_leader = evsel;
1225 		evsel->leader = new_leader;
1226 	}
1227 
1228 	/* Update group information */
1229 	if (new_leader) {
1230 		zfree(&new_leader->group_name);
1231 		new_leader->group_name = leader->group_name;
1232 		leader->group_name = NULL;
1233 
1234 		new_leader->core.nr_members = leader->core.nr_members - 1;
1235 		leader->core.nr_members = 1;
1236 	}
1237 }
1238 
unleader_auxtrace(struct perf_session * session)1239 static void unleader_auxtrace(struct perf_session *session)
1240 {
1241 	struct evsel *evsel;
1242 
1243 	evlist__for_each_entry(session->evlist, evsel) {
1244 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1245 		    evsel__is_group_leader(evsel)) {
1246 			unleader_evsel(session->evlist, evsel);
1247 		}
1248 	}
1249 }
1250 
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1251 int perf_event__process_auxtrace_info(struct perf_session *session,
1252 				      union perf_event *event)
1253 {
1254 	enum auxtrace_type type = event->auxtrace_info.type;
1255 	int err;
1256 
1257 	if (dump_trace)
1258 		fprintf(stdout, " type: %u\n", type);
1259 
1260 	switch (type) {
1261 	case PERF_AUXTRACE_INTEL_PT:
1262 		err = intel_pt_process_auxtrace_info(event, session);
1263 		break;
1264 	case PERF_AUXTRACE_INTEL_BTS:
1265 		err = intel_bts_process_auxtrace_info(event, session);
1266 		break;
1267 	case PERF_AUXTRACE_ARM_SPE:
1268 		err = arm_spe_process_auxtrace_info(event, session);
1269 		break;
1270 	case PERF_AUXTRACE_CS_ETM:
1271 		err = cs_etm__process_auxtrace_info(event, session);
1272 		break;
1273 	case PERF_AUXTRACE_S390_CPUMSF:
1274 		err = s390_cpumsf_process_auxtrace_info(event, session);
1275 		break;
1276 	case PERF_AUXTRACE_UNKNOWN:
1277 	default:
1278 		return -EINVAL;
1279 	}
1280 
1281 	if (err)
1282 		return err;
1283 
1284 	unleader_auxtrace(session);
1285 
1286 	return 0;
1287 }
1288 
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1289 s64 perf_event__process_auxtrace(struct perf_session *session,
1290 				 union perf_event *event)
1291 {
1292 	s64 err;
1293 
1294 	if (dump_trace)
1295 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1296 			event->auxtrace.size, event->auxtrace.offset,
1297 			event->auxtrace.reference, event->auxtrace.idx,
1298 			event->auxtrace.tid, event->auxtrace.cpu);
1299 
1300 	if (auxtrace__dont_decode(session))
1301 		return event->auxtrace.size;
1302 
1303 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1304 		return -EINVAL;
1305 
1306 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1307 	if (err < 0)
1308 		return err;
1309 
1310 	return event->auxtrace.size;
1311 }
1312 
1313 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1314 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1315 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1316 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1317 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1318 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1319 
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1320 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1321 				    bool no_sample)
1322 {
1323 	synth_opts->branches = true;
1324 	synth_opts->transactions = true;
1325 	synth_opts->ptwrites = true;
1326 	synth_opts->pwr_events = true;
1327 	synth_opts->other_events = true;
1328 	synth_opts->errors = true;
1329 	synth_opts->flc = true;
1330 	synth_opts->llc = true;
1331 	synth_opts->tlb = true;
1332 	synth_opts->remote_access = true;
1333 
1334 	if (no_sample) {
1335 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1336 		synth_opts->period = 1;
1337 		synth_opts->calls = true;
1338 	} else {
1339 		synth_opts->instructions = true;
1340 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1341 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1342 	}
1343 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1344 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1345 	synth_opts->initial_skip = 0;
1346 }
1347 
get_flag(const char ** ptr,unsigned int * flags)1348 static int get_flag(const char **ptr, unsigned int *flags)
1349 {
1350 	while (1) {
1351 		char c = **ptr;
1352 
1353 		if (c >= 'a' && c <= 'z') {
1354 			*flags |= 1 << (c - 'a');
1355 			++*ptr;
1356 			return 0;
1357 		} else if (c == ' ') {
1358 			++*ptr;
1359 			continue;
1360 		} else {
1361 			return -1;
1362 		}
1363 	}
1364 }
1365 
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1366 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1367 {
1368 	while (1) {
1369 		switch (**ptr) {
1370 		case '+':
1371 			++*ptr;
1372 			if (get_flag(ptr, plus_flags))
1373 				return -1;
1374 			break;
1375 		case '-':
1376 			++*ptr;
1377 			if (get_flag(ptr, minus_flags))
1378 				return -1;
1379 			break;
1380 		case ' ':
1381 			++*ptr;
1382 			break;
1383 		default:
1384 			return 0;
1385 		}
1386 	}
1387 }
1388 
1389 /*
1390  * Please check tools/perf/Documentation/perf-script.txt for information
1391  * about the options parsed here, which is introduced after this cset,
1392  * when support in 'perf script' for these options is introduced.
1393  */
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1394 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1395 			    int unset)
1396 {
1397 	struct itrace_synth_opts *synth_opts = opt->value;
1398 	const char *p;
1399 	char *endptr;
1400 	bool period_type_set = false;
1401 	bool period_set = false;
1402 
1403 	synth_opts->set = true;
1404 
1405 	if (unset) {
1406 		synth_opts->dont_decode = true;
1407 		return 0;
1408 	}
1409 
1410 	if (!str) {
1411 		itrace_synth_opts__set_default(synth_opts,
1412 					       synth_opts->default_no_sample);
1413 		return 0;
1414 	}
1415 
1416 	for (p = str; *p;) {
1417 		switch (*p++) {
1418 		case 'i':
1419 			synth_opts->instructions = true;
1420 			while (*p == ' ' || *p == ',')
1421 				p += 1;
1422 			if (isdigit(*p)) {
1423 				synth_opts->period = strtoull(p, &endptr, 10);
1424 				period_set = true;
1425 				p = endptr;
1426 				while (*p == ' ' || *p == ',')
1427 					p += 1;
1428 				switch (*p++) {
1429 				case 'i':
1430 					synth_opts->period_type =
1431 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1432 					period_type_set = true;
1433 					break;
1434 				case 't':
1435 					synth_opts->period_type =
1436 						PERF_ITRACE_PERIOD_TICKS;
1437 					period_type_set = true;
1438 					break;
1439 				case 'm':
1440 					synth_opts->period *= 1000;
1441 					/* Fall through */
1442 				case 'u':
1443 					synth_opts->period *= 1000;
1444 					/* Fall through */
1445 				case 'n':
1446 					if (*p++ != 's')
1447 						goto out_err;
1448 					synth_opts->period_type =
1449 						PERF_ITRACE_PERIOD_NANOSECS;
1450 					period_type_set = true;
1451 					break;
1452 				case '\0':
1453 					goto out;
1454 				default:
1455 					goto out_err;
1456 				}
1457 			}
1458 			break;
1459 		case 'b':
1460 			synth_opts->branches = true;
1461 			break;
1462 		case 'x':
1463 			synth_opts->transactions = true;
1464 			break;
1465 		case 'w':
1466 			synth_opts->ptwrites = true;
1467 			break;
1468 		case 'p':
1469 			synth_opts->pwr_events = true;
1470 			break;
1471 		case 'o':
1472 			synth_opts->other_events = true;
1473 			break;
1474 		case 'e':
1475 			synth_opts->errors = true;
1476 			if (get_flags(&p, &synth_opts->error_plus_flags,
1477 				      &synth_opts->error_minus_flags))
1478 				goto out_err;
1479 			break;
1480 		case 'd':
1481 			synth_opts->log = true;
1482 			if (get_flags(&p, &synth_opts->log_plus_flags,
1483 				      &synth_opts->log_minus_flags))
1484 				goto out_err;
1485 			break;
1486 		case 'c':
1487 			synth_opts->branches = true;
1488 			synth_opts->calls = true;
1489 			break;
1490 		case 'r':
1491 			synth_opts->branches = true;
1492 			synth_opts->returns = true;
1493 			break;
1494 		case 'G':
1495 		case 'g':
1496 			if (p[-1] == 'G')
1497 				synth_opts->add_callchain = true;
1498 			else
1499 				synth_opts->callchain = true;
1500 			synth_opts->callchain_sz =
1501 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1502 			while (*p == ' ' || *p == ',')
1503 				p += 1;
1504 			if (isdigit(*p)) {
1505 				unsigned int val;
1506 
1507 				val = strtoul(p, &endptr, 10);
1508 				p = endptr;
1509 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1510 					goto out_err;
1511 				synth_opts->callchain_sz = val;
1512 			}
1513 			break;
1514 		case 'L':
1515 		case 'l':
1516 			if (p[-1] == 'L')
1517 				synth_opts->add_last_branch = true;
1518 			else
1519 				synth_opts->last_branch = true;
1520 			synth_opts->last_branch_sz =
1521 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1522 			while (*p == ' ' || *p == ',')
1523 				p += 1;
1524 			if (isdigit(*p)) {
1525 				unsigned int val;
1526 
1527 				val = strtoul(p, &endptr, 10);
1528 				p = endptr;
1529 				if (!val ||
1530 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1531 					goto out_err;
1532 				synth_opts->last_branch_sz = val;
1533 			}
1534 			break;
1535 		case 's':
1536 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1537 			if (p == endptr)
1538 				goto out_err;
1539 			p = endptr;
1540 			break;
1541 		case 'f':
1542 			synth_opts->flc = true;
1543 			break;
1544 		case 'm':
1545 			synth_opts->llc = true;
1546 			break;
1547 		case 't':
1548 			synth_opts->tlb = true;
1549 			break;
1550 		case 'a':
1551 			synth_opts->remote_access = true;
1552 			break;
1553 		case 'q':
1554 			synth_opts->quick += 1;
1555 			break;
1556 		case ' ':
1557 		case ',':
1558 			break;
1559 		default:
1560 			goto out_err;
1561 		}
1562 	}
1563 out:
1564 	if (synth_opts->instructions) {
1565 		if (!period_type_set)
1566 			synth_opts->period_type =
1567 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1568 		if (!period_set)
1569 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1570 	}
1571 
1572 	return 0;
1573 
1574 out_err:
1575 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1576 	return -EINVAL;
1577 }
1578 
1579 static const char * const auxtrace_error_type_name[] = {
1580 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1581 };
1582 
auxtrace_error_name(int type)1583 static const char *auxtrace_error_name(int type)
1584 {
1585 	const char *error_type_name = NULL;
1586 
1587 	if (type < PERF_AUXTRACE_ERROR_MAX)
1588 		error_type_name = auxtrace_error_type_name[type];
1589 	if (!error_type_name)
1590 		error_type_name = "unknown AUX";
1591 	return error_type_name;
1592 }
1593 
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1594 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1595 {
1596 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1597 	unsigned long long nsecs = e->time;
1598 	const char *msg = e->msg;
1599 	int ret;
1600 
1601 	ret = fprintf(fp, " %s error type %u",
1602 		      auxtrace_error_name(e->type), e->type);
1603 
1604 	if (e->fmt && nsecs) {
1605 		unsigned long secs = nsecs / NSEC_PER_SEC;
1606 
1607 		nsecs -= secs * NSEC_PER_SEC;
1608 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1609 	} else {
1610 		ret += fprintf(fp, " time 0");
1611 	}
1612 
1613 	if (!e->fmt)
1614 		msg = (const char *)&e->time;
1615 
1616 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1617 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1618 	return ret;
1619 }
1620 
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1621 void perf_session__auxtrace_error_inc(struct perf_session *session,
1622 				      union perf_event *event)
1623 {
1624 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1625 
1626 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1627 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1628 }
1629 
events_stats__auxtrace_error_warn(const struct events_stats * stats)1630 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1635 		if (!stats->nr_auxtrace_errors[i])
1636 			continue;
1637 		ui__warning("%u %s errors\n",
1638 			    stats->nr_auxtrace_errors[i],
1639 			    auxtrace_error_name(i));
1640 	}
1641 }
1642 
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1643 int perf_event__process_auxtrace_error(struct perf_session *session,
1644 				       union perf_event *event)
1645 {
1646 	if (auxtrace__dont_decode(session))
1647 		return 0;
1648 
1649 	perf_event__fprintf_auxtrace_error(event, stdout);
1650 	return 0;
1651 }
1652 
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1653 static int __auxtrace_mmap__read(struct mmap *map,
1654 				 struct auxtrace_record *itr,
1655 				 struct perf_tool *tool, process_auxtrace_t fn,
1656 				 bool snapshot, size_t snapshot_size)
1657 {
1658 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1659 	u64 head, old = mm->prev, offset, ref;
1660 	unsigned char *data = mm->base;
1661 	size_t size, head_off, old_off, len1, len2, padding;
1662 	union perf_event ev;
1663 	void *data1, *data2;
1664 
1665 	if (snapshot) {
1666 		head = auxtrace_mmap__read_snapshot_head(mm);
1667 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1668 						   &head, &old))
1669 			return -1;
1670 	} else {
1671 		head = auxtrace_mmap__read_head(mm);
1672 	}
1673 
1674 	if (old == head)
1675 		return 0;
1676 
1677 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1678 		  mm->idx, old, head, head - old);
1679 
1680 	if (mm->mask) {
1681 		head_off = head & mm->mask;
1682 		old_off = old & mm->mask;
1683 	} else {
1684 		head_off = head % mm->len;
1685 		old_off = old % mm->len;
1686 	}
1687 
1688 	if (head_off > old_off)
1689 		size = head_off - old_off;
1690 	else
1691 		size = mm->len - (old_off - head_off);
1692 
1693 	if (snapshot && size > snapshot_size)
1694 		size = snapshot_size;
1695 
1696 	ref = auxtrace_record__reference(itr);
1697 
1698 	if (head > old || size <= head || mm->mask) {
1699 		offset = head - size;
1700 	} else {
1701 		/*
1702 		 * When the buffer size is not a power of 2, 'head' wraps at the
1703 		 * highest multiple of the buffer size, so we have to subtract
1704 		 * the remainder here.
1705 		 */
1706 		u64 rem = (0ULL - mm->len) % mm->len;
1707 
1708 		offset = head - size - rem;
1709 	}
1710 
1711 	if (size > head_off) {
1712 		len1 = size - head_off;
1713 		data1 = &data[mm->len - len1];
1714 		len2 = head_off;
1715 		data2 = &data[0];
1716 	} else {
1717 		len1 = size;
1718 		data1 = &data[head_off - len1];
1719 		len2 = 0;
1720 		data2 = NULL;
1721 	}
1722 
1723 	if (itr->alignment) {
1724 		unsigned int unwanted = len1 % itr->alignment;
1725 
1726 		len1 -= unwanted;
1727 		size -= unwanted;
1728 	}
1729 
1730 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1731 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1732 	if (padding)
1733 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1734 
1735 	memset(&ev, 0, sizeof(ev));
1736 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1737 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1738 	ev.auxtrace.size = size + padding;
1739 	ev.auxtrace.offset = offset;
1740 	ev.auxtrace.reference = ref;
1741 	ev.auxtrace.idx = mm->idx;
1742 	ev.auxtrace.tid = mm->tid;
1743 	ev.auxtrace.cpu = mm->cpu;
1744 
1745 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1746 		return -1;
1747 
1748 	mm->prev = head;
1749 
1750 	if (!snapshot) {
1751 		auxtrace_mmap__write_tail(mm, head);
1752 		if (itr->read_finish) {
1753 			int err;
1754 
1755 			err = itr->read_finish(itr, mm->idx);
1756 			if (err < 0)
1757 				return err;
1758 		}
1759 	}
1760 
1761 	return 1;
1762 }
1763 
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1764 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1765 			struct perf_tool *tool, process_auxtrace_t fn)
1766 {
1767 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1768 }
1769 
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1770 int auxtrace_mmap__read_snapshot(struct mmap *map,
1771 				 struct auxtrace_record *itr,
1772 				 struct perf_tool *tool, process_auxtrace_t fn,
1773 				 size_t snapshot_size)
1774 {
1775 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1776 }
1777 
1778 /**
1779  * struct auxtrace_cache - hash table to implement a cache
1780  * @hashtable: the hashtable
1781  * @sz: hashtable size (number of hlists)
1782  * @entry_size: size of an entry
1783  * @limit: limit the number of entries to this maximum, when reached the cache
1784  *         is dropped and caching begins again with an empty cache
1785  * @cnt: current number of entries
1786  * @bits: hashtable size (@sz = 2^@bits)
1787  */
1788 struct auxtrace_cache {
1789 	struct hlist_head *hashtable;
1790 	size_t sz;
1791 	size_t entry_size;
1792 	size_t limit;
1793 	size_t cnt;
1794 	unsigned int bits;
1795 };
1796 
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1797 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1798 					   unsigned int limit_percent)
1799 {
1800 	struct auxtrace_cache *c;
1801 	struct hlist_head *ht;
1802 	size_t sz, i;
1803 
1804 	c = zalloc(sizeof(struct auxtrace_cache));
1805 	if (!c)
1806 		return NULL;
1807 
1808 	sz = 1UL << bits;
1809 
1810 	ht = calloc(sz, sizeof(struct hlist_head));
1811 	if (!ht)
1812 		goto out_free;
1813 
1814 	for (i = 0; i < sz; i++)
1815 		INIT_HLIST_HEAD(&ht[i]);
1816 
1817 	c->hashtable = ht;
1818 	c->sz = sz;
1819 	c->entry_size = entry_size;
1820 	c->limit = (c->sz * limit_percent) / 100;
1821 	c->bits = bits;
1822 
1823 	return c;
1824 
1825 out_free:
1826 	free(c);
1827 	return NULL;
1828 }
1829 
auxtrace_cache__drop(struct auxtrace_cache * c)1830 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1831 {
1832 	struct auxtrace_cache_entry *entry;
1833 	struct hlist_node *tmp;
1834 	size_t i;
1835 
1836 	if (!c)
1837 		return;
1838 
1839 	for (i = 0; i < c->sz; i++) {
1840 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1841 			hlist_del(&entry->hash);
1842 			auxtrace_cache__free_entry(c, entry);
1843 		}
1844 	}
1845 
1846 	c->cnt = 0;
1847 }
1848 
auxtrace_cache__free(struct auxtrace_cache * c)1849 void auxtrace_cache__free(struct auxtrace_cache *c)
1850 {
1851 	if (!c)
1852 		return;
1853 
1854 	auxtrace_cache__drop(c);
1855 	zfree(&c->hashtable);
1856 	free(c);
1857 }
1858 
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)1859 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1860 {
1861 	return malloc(c->entry_size);
1862 }
1863 
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)1864 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1865 				void *entry)
1866 {
1867 	free(entry);
1868 }
1869 
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)1870 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1871 			struct auxtrace_cache_entry *entry)
1872 {
1873 	if (c->limit && ++c->cnt > c->limit)
1874 		auxtrace_cache__drop(c);
1875 
1876 	entry->key = key;
1877 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1878 
1879 	return 0;
1880 }
1881 
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)1882 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1883 						       u32 key)
1884 {
1885 	struct auxtrace_cache_entry *entry;
1886 	struct hlist_head *hlist;
1887 	struct hlist_node *n;
1888 
1889 	if (!c)
1890 		return NULL;
1891 
1892 	hlist = &c->hashtable[hash_32(key, c->bits)];
1893 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
1894 		if (entry->key == key) {
1895 			hlist_del(&entry->hash);
1896 			return entry;
1897 		}
1898 	}
1899 
1900 	return NULL;
1901 }
1902 
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)1903 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1904 {
1905 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1906 
1907 	auxtrace_cache__free_entry(c, entry);
1908 }
1909 
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)1910 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1911 {
1912 	struct auxtrace_cache_entry *entry;
1913 	struct hlist_head *hlist;
1914 
1915 	if (!c)
1916 		return NULL;
1917 
1918 	hlist = &c->hashtable[hash_32(key, c->bits)];
1919 	hlist_for_each_entry(entry, hlist, hash) {
1920 		if (entry->key == key)
1921 			return entry;
1922 	}
1923 
1924 	return NULL;
1925 }
1926 
addr_filter__free_str(struct addr_filter * filt)1927 static void addr_filter__free_str(struct addr_filter *filt)
1928 {
1929 	zfree(&filt->str);
1930 	filt->action   = NULL;
1931 	filt->sym_from = NULL;
1932 	filt->sym_to   = NULL;
1933 	filt->filename = NULL;
1934 }
1935 
addr_filter__new(void)1936 static struct addr_filter *addr_filter__new(void)
1937 {
1938 	struct addr_filter *filt = zalloc(sizeof(*filt));
1939 
1940 	if (filt)
1941 		INIT_LIST_HEAD(&filt->list);
1942 
1943 	return filt;
1944 }
1945 
addr_filter__free(struct addr_filter * filt)1946 static void addr_filter__free(struct addr_filter *filt)
1947 {
1948 	if (filt)
1949 		addr_filter__free_str(filt);
1950 	free(filt);
1951 }
1952 
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)1953 static void addr_filters__add(struct addr_filters *filts,
1954 			      struct addr_filter *filt)
1955 {
1956 	list_add_tail(&filt->list, &filts->head);
1957 	filts->cnt += 1;
1958 }
1959 
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)1960 static void addr_filters__del(struct addr_filters *filts,
1961 			      struct addr_filter *filt)
1962 {
1963 	list_del_init(&filt->list);
1964 	filts->cnt -= 1;
1965 }
1966 
addr_filters__init(struct addr_filters * filts)1967 void addr_filters__init(struct addr_filters *filts)
1968 {
1969 	INIT_LIST_HEAD(&filts->head);
1970 	filts->cnt = 0;
1971 }
1972 
addr_filters__exit(struct addr_filters * filts)1973 void addr_filters__exit(struct addr_filters *filts)
1974 {
1975 	struct addr_filter *filt, *n;
1976 
1977 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1978 		addr_filters__del(filts, filt);
1979 		addr_filter__free(filt);
1980 	}
1981 }
1982 
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)1983 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1984 			    const char *str_delim)
1985 {
1986 	*inp += strspn(*inp, " ");
1987 
1988 	if (isdigit(**inp)) {
1989 		char *endptr;
1990 
1991 		if (!num)
1992 			return -EINVAL;
1993 		errno = 0;
1994 		*num = strtoull(*inp, &endptr, 0);
1995 		if (errno)
1996 			return -errno;
1997 		if (endptr == *inp)
1998 			return -EINVAL;
1999 		*inp = endptr;
2000 	} else {
2001 		size_t n;
2002 
2003 		if (!str)
2004 			return -EINVAL;
2005 		*inp += strspn(*inp, " ");
2006 		*str = *inp;
2007 		n = strcspn(*inp, str_delim);
2008 		if (!n)
2009 			return -EINVAL;
2010 		*inp += n;
2011 		if (**inp) {
2012 			**inp = '\0';
2013 			*inp += 1;
2014 		}
2015 	}
2016 	return 0;
2017 }
2018 
parse_action(struct addr_filter * filt)2019 static int parse_action(struct addr_filter *filt)
2020 {
2021 	if (!strcmp(filt->action, "filter")) {
2022 		filt->start = true;
2023 		filt->range = true;
2024 	} else if (!strcmp(filt->action, "start")) {
2025 		filt->start = true;
2026 	} else if (!strcmp(filt->action, "stop")) {
2027 		filt->start = false;
2028 	} else if (!strcmp(filt->action, "tracestop")) {
2029 		filt->start = false;
2030 		filt->range = true;
2031 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2032 	} else {
2033 		return -EINVAL;
2034 	}
2035 	return 0;
2036 }
2037 
parse_sym_idx(char ** inp,int * idx)2038 static int parse_sym_idx(char **inp, int *idx)
2039 {
2040 	*idx = -1;
2041 
2042 	*inp += strspn(*inp, " ");
2043 
2044 	if (**inp != '#')
2045 		return 0;
2046 
2047 	*inp += 1;
2048 
2049 	if (**inp == 'g' || **inp == 'G') {
2050 		*inp += 1;
2051 		*idx = 0;
2052 	} else {
2053 		unsigned long num;
2054 		char *endptr;
2055 
2056 		errno = 0;
2057 		num = strtoul(*inp, &endptr, 0);
2058 		if (errno)
2059 			return -errno;
2060 		if (endptr == *inp || num > INT_MAX)
2061 			return -EINVAL;
2062 		*inp = endptr;
2063 		*idx = num;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2069 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2070 {
2071 	int err = parse_num_or_str(inp, num, str, " ");
2072 
2073 	if (!err && *str)
2074 		err = parse_sym_idx(inp, idx);
2075 
2076 	return err;
2077 }
2078 
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2079 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2080 {
2081 	char *fstr;
2082 	int err;
2083 
2084 	filt->str = fstr = strdup(*filter_inp);
2085 	if (!fstr)
2086 		return -ENOMEM;
2087 
2088 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2089 	if (err)
2090 		goto out_err;
2091 
2092 	err = parse_action(filt);
2093 	if (err)
2094 		goto out_err;
2095 
2096 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2097 			      &filt->sym_from_idx);
2098 	if (err)
2099 		goto out_err;
2100 
2101 	fstr += strspn(fstr, " ");
2102 
2103 	if (*fstr == '/') {
2104 		fstr += 1;
2105 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2106 				      &filt->sym_to_idx);
2107 		if (err)
2108 			goto out_err;
2109 		filt->range = true;
2110 	}
2111 
2112 	fstr += strspn(fstr, " ");
2113 
2114 	if (*fstr == '@') {
2115 		fstr += 1;
2116 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2117 		if (err)
2118 			goto out_err;
2119 	}
2120 
2121 	fstr += strspn(fstr, " ,");
2122 
2123 	*filter_inp += fstr - filt->str;
2124 
2125 	return 0;
2126 
2127 out_err:
2128 	addr_filter__free_str(filt);
2129 
2130 	return err;
2131 }
2132 
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2133 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2134 				    const char *filter)
2135 {
2136 	struct addr_filter *filt;
2137 	const char *fstr = filter;
2138 	int err;
2139 
2140 	while (*fstr) {
2141 		filt = addr_filter__new();
2142 		err = parse_one_filter(filt, &fstr);
2143 		if (err) {
2144 			addr_filter__free(filt);
2145 			addr_filters__exit(filts);
2146 			return err;
2147 		}
2148 		addr_filters__add(filts, filt);
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 struct sym_args {
2155 	const char	*name;
2156 	u64		start;
2157 	u64		size;
2158 	int		idx;
2159 	int		cnt;
2160 	bool		started;
2161 	bool		global;
2162 	bool		selected;
2163 	bool		duplicate;
2164 	bool		near;
2165 };
2166 
kern_sym_name_match(const char * kname,const char * name)2167 static bool kern_sym_name_match(const char *kname, const char *name)
2168 {
2169 	size_t n = strlen(name);
2170 
2171 	return !strcmp(kname, name) ||
2172 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2173 }
2174 
kern_sym_match(struct sym_args * args,const char * name,char type)2175 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2176 {
2177 	/* A function with the same name, and global or the n'th found or any */
2178 	return kallsyms__is_function(type) &&
2179 	       kern_sym_name_match(name, args->name) &&
2180 	       ((args->global && isupper(type)) ||
2181 		(args->selected && ++(args->cnt) == args->idx) ||
2182 		(!args->global && !args->selected));
2183 }
2184 
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2185 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2186 {
2187 	struct sym_args *args = arg;
2188 
2189 	if (args->started) {
2190 		if (!args->size)
2191 			args->size = start - args->start;
2192 		if (args->selected) {
2193 			if (args->size)
2194 				return 1;
2195 		} else if (kern_sym_match(args, name, type)) {
2196 			args->duplicate = true;
2197 			return 1;
2198 		}
2199 	} else if (kern_sym_match(args, name, type)) {
2200 		args->started = true;
2201 		args->start = start;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2207 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2208 {
2209 	struct sym_args *args = arg;
2210 
2211 	if (kern_sym_match(args, name, type)) {
2212 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2213 		       ++args->cnt, start, type, name);
2214 		args->near = true;
2215 	} else if (args->near) {
2216 		args->near = false;
2217 		pr_err("\t\twhich is near\t\t%s\n", name);
2218 	}
2219 
2220 	return 0;
2221 }
2222 
sym_not_found_error(const char * sym_name,int idx)2223 static int sym_not_found_error(const char *sym_name, int idx)
2224 {
2225 	if (idx > 0) {
2226 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2227 		       idx, sym_name);
2228 	} else if (!idx) {
2229 		pr_err("Global symbol '%s' not found.\n", sym_name);
2230 	} else {
2231 		pr_err("Symbol '%s' not found.\n", sym_name);
2232 	}
2233 	pr_err("Note that symbols must be functions.\n");
2234 
2235 	return -EINVAL;
2236 }
2237 
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2238 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2239 {
2240 	struct sym_args args = {
2241 		.name = sym_name,
2242 		.idx = idx,
2243 		.global = !idx,
2244 		.selected = idx > 0,
2245 	};
2246 	int err;
2247 
2248 	*start = 0;
2249 	*size = 0;
2250 
2251 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2252 	if (err < 0) {
2253 		pr_err("Failed to parse /proc/kallsyms\n");
2254 		return err;
2255 	}
2256 
2257 	if (args.duplicate) {
2258 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2259 		args.cnt = 0;
2260 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2261 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2262 		       sym_name);
2263 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2264 		return -EINVAL;
2265 	}
2266 
2267 	if (!args.started) {
2268 		pr_err("Kernel symbol lookup: ");
2269 		return sym_not_found_error(sym_name, idx);
2270 	}
2271 
2272 	*start = args.start;
2273 	*size = args.size;
2274 
2275 	return 0;
2276 }
2277 
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2278 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2279 			       char type, u64 start)
2280 {
2281 	struct sym_args *args = arg;
2282 	u64 size;
2283 
2284 	if (!kallsyms__is_function(type))
2285 		return 0;
2286 
2287 	if (!args->started) {
2288 		args->started = true;
2289 		args->start = start;
2290 	}
2291 	/* Don't know exactly where the kernel ends, so we add a page */
2292 	size = round_up(start, page_size) + page_size - args->start;
2293 	if (size > args->size)
2294 		args->size = size;
2295 
2296 	return 0;
2297 }
2298 
addr_filter__entire_kernel(struct addr_filter * filt)2299 static int addr_filter__entire_kernel(struct addr_filter *filt)
2300 {
2301 	struct sym_args args = { .started = false };
2302 	int err;
2303 
2304 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2305 	if (err < 0 || !args.started) {
2306 		pr_err("Failed to parse /proc/kallsyms\n");
2307 		return err;
2308 	}
2309 
2310 	filt->addr = args.start;
2311 	filt->size = args.size;
2312 
2313 	return 0;
2314 }
2315 
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2316 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2317 {
2318 	if (start + size >= filt->addr)
2319 		return 0;
2320 
2321 	if (filt->sym_from) {
2322 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2323 		       filt->sym_to, start, filt->sym_from, filt->addr);
2324 	} else {
2325 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2326 		       filt->sym_to, start, filt->addr);
2327 	}
2328 
2329 	return -EINVAL;
2330 }
2331 
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2332 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2333 {
2334 	bool no_size = false;
2335 	u64 start, size;
2336 	int err;
2337 
2338 	if (symbol_conf.kptr_restrict) {
2339 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2340 		return -EINVAL;
2341 	}
2342 
2343 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2344 		return addr_filter__entire_kernel(filt);
2345 
2346 	if (filt->sym_from) {
2347 		err = find_kern_sym(filt->sym_from, &start, &size,
2348 				    filt->sym_from_idx);
2349 		if (err)
2350 			return err;
2351 		filt->addr = start;
2352 		if (filt->range && !filt->size && !filt->sym_to) {
2353 			filt->size = size;
2354 			no_size = !size;
2355 		}
2356 	}
2357 
2358 	if (filt->sym_to) {
2359 		err = find_kern_sym(filt->sym_to, &start, &size,
2360 				    filt->sym_to_idx);
2361 		if (err)
2362 			return err;
2363 
2364 		err = check_end_after_start(filt, start, size);
2365 		if (err)
2366 			return err;
2367 		filt->size = start + size - filt->addr;
2368 		no_size = !size;
2369 	}
2370 
2371 	/* The very last symbol in kallsyms does not imply a particular size */
2372 	if (no_size) {
2373 		pr_err("Cannot determine size of symbol '%s'\n",
2374 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2375 		return -EINVAL;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
load_dso(const char * name)2381 static struct dso *load_dso(const char *name)
2382 {
2383 	struct map *map;
2384 	struct dso *dso;
2385 
2386 	map = dso__new_map(name);
2387 	if (!map)
2388 		return NULL;
2389 
2390 	if (map__load(map) < 0)
2391 		pr_err("File '%s' not found or has no symbols.\n", name);
2392 
2393 	dso = dso__get(map->dso);
2394 
2395 	map__put(map);
2396 
2397 	return dso;
2398 }
2399 
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2400 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2401 			  int idx)
2402 {
2403 	/* Same name, and global or the n'th found or any */
2404 	return !arch__compare_symbol_names(name, sym->name) &&
2405 	       ((!idx && sym->binding == STB_GLOBAL) ||
2406 		(idx > 0 && ++*cnt == idx) ||
2407 		idx < 0);
2408 }
2409 
print_duplicate_syms(struct dso * dso,const char * sym_name)2410 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2411 {
2412 	struct symbol *sym;
2413 	bool near = false;
2414 	int cnt = 0;
2415 
2416 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2417 
2418 	sym = dso__first_symbol(dso);
2419 	while (sym) {
2420 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2421 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2422 			       ++cnt, sym->start,
2423 			       sym->binding == STB_GLOBAL ? 'g' :
2424 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2425 			       sym->name);
2426 			near = true;
2427 		} else if (near) {
2428 			near = false;
2429 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2430 		}
2431 		sym = dso__next_symbol(sym);
2432 	}
2433 
2434 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435 	       sym_name);
2436 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437 }
2438 
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2439 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2440 			u64 *size, int idx)
2441 {
2442 	struct symbol *sym;
2443 	int cnt = 0;
2444 
2445 	*start = 0;
2446 	*size = 0;
2447 
2448 	sym = dso__first_symbol(dso);
2449 	while (sym) {
2450 		if (*start) {
2451 			if (!*size)
2452 				*size = sym->start - *start;
2453 			if (idx > 0) {
2454 				if (*size)
2455 					return 0;
2456 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2457 				print_duplicate_syms(dso, sym_name);
2458 				return -EINVAL;
2459 			}
2460 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2461 			*start = sym->start;
2462 			*size = sym->end - sym->start;
2463 		}
2464 		sym = dso__next_symbol(sym);
2465 	}
2466 
2467 	if (!*start)
2468 		return sym_not_found_error(sym_name, idx);
2469 
2470 	return 0;
2471 }
2472 
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2473 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2474 {
2475 	if (dso__data_file_size(dso, NULL)) {
2476 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2477 		       filt->filename);
2478 		return -EINVAL;
2479 	}
2480 
2481 	filt->addr = 0;
2482 	filt->size = dso->data.file_size;
2483 
2484 	return 0;
2485 }
2486 
addr_filter__resolve_syms(struct addr_filter * filt)2487 static int addr_filter__resolve_syms(struct addr_filter *filt)
2488 {
2489 	u64 start, size;
2490 	struct dso *dso;
2491 	int err = 0;
2492 
2493 	if (!filt->sym_from && !filt->sym_to)
2494 		return 0;
2495 
2496 	if (!filt->filename)
2497 		return addr_filter__resolve_kernel_syms(filt);
2498 
2499 	dso = load_dso(filt->filename);
2500 	if (!dso) {
2501 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2502 		return -EINVAL;
2503 	}
2504 
2505 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2506 		err = addr_filter__entire_dso(filt, dso);
2507 		goto put_dso;
2508 	}
2509 
2510 	if (filt->sym_from) {
2511 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2512 				   filt->sym_from_idx);
2513 		if (err)
2514 			goto put_dso;
2515 		filt->addr = start;
2516 		if (filt->range && !filt->size && !filt->sym_to)
2517 			filt->size = size;
2518 	}
2519 
2520 	if (filt->sym_to) {
2521 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2522 				   filt->sym_to_idx);
2523 		if (err)
2524 			goto put_dso;
2525 
2526 		err = check_end_after_start(filt, start, size);
2527 		if (err)
2528 			return err;
2529 
2530 		filt->size = start + size - filt->addr;
2531 	}
2532 
2533 put_dso:
2534 	dso__put(dso);
2535 
2536 	return err;
2537 }
2538 
addr_filter__to_str(struct addr_filter * filt)2539 static char *addr_filter__to_str(struct addr_filter *filt)
2540 {
2541 	char filename_buf[PATH_MAX];
2542 	const char *at = "";
2543 	const char *fn = "";
2544 	char *filter;
2545 	int err;
2546 
2547 	if (filt->filename) {
2548 		at = "@";
2549 		fn = realpath(filt->filename, filename_buf);
2550 		if (!fn)
2551 			return NULL;
2552 	}
2553 
2554 	if (filt->range) {
2555 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2556 			       filt->action, filt->addr, filt->size, at, fn);
2557 	} else {
2558 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2559 			       filt->action, filt->addr, at, fn);
2560 	}
2561 
2562 	return err < 0 ? NULL : filter;
2563 }
2564 
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2565 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2566 			     int max_nr)
2567 {
2568 	struct addr_filters filts;
2569 	struct addr_filter *filt;
2570 	int err;
2571 
2572 	addr_filters__init(&filts);
2573 
2574 	err = addr_filters__parse_bare_filter(&filts, filter);
2575 	if (err)
2576 		goto out_exit;
2577 
2578 	if (filts.cnt > max_nr) {
2579 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2580 		       filts.cnt, max_nr);
2581 		err = -EINVAL;
2582 		goto out_exit;
2583 	}
2584 
2585 	list_for_each_entry(filt, &filts.head, list) {
2586 		char *new_filter;
2587 
2588 		err = addr_filter__resolve_syms(filt);
2589 		if (err)
2590 			goto out_exit;
2591 
2592 		new_filter = addr_filter__to_str(filt);
2593 		if (!new_filter) {
2594 			err = -ENOMEM;
2595 			goto out_exit;
2596 		}
2597 
2598 		if (evsel__append_addr_filter(evsel, new_filter)) {
2599 			err = -ENOMEM;
2600 			goto out_exit;
2601 		}
2602 	}
2603 
2604 out_exit:
2605 	addr_filters__exit(&filts);
2606 
2607 	if (err) {
2608 		pr_err("Failed to parse address filter: '%s'\n", filter);
2609 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2610 		pr_err("Where multiple filters are separated by space or comma.\n");
2611 	}
2612 
2613 	return err;
2614 }
2615 
evsel__nr_addr_filter(struct evsel * evsel)2616 static int evsel__nr_addr_filter(struct evsel *evsel)
2617 {
2618 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2619 	int nr_addr_filters = 0;
2620 
2621 	if (!pmu)
2622 		return 0;
2623 
2624 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2625 
2626 	return nr_addr_filters;
2627 }
2628 
auxtrace_parse_filters(struct evlist * evlist)2629 int auxtrace_parse_filters(struct evlist *evlist)
2630 {
2631 	struct evsel *evsel;
2632 	char *filter;
2633 	int err, max_nr;
2634 
2635 	evlist__for_each_entry(evlist, evsel) {
2636 		filter = evsel->filter;
2637 		max_nr = evsel__nr_addr_filter(evsel);
2638 		if (!filter || !max_nr)
2639 			continue;
2640 		evsel->filter = NULL;
2641 		err = parse_addr_filter(evsel, filter, max_nr);
2642 		free(filter);
2643 		if (err)
2644 			return err;
2645 		pr_debug("Address filter: %s\n", evsel->filter);
2646 	}
2647 
2648 	return 0;
2649 }
2650 
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2651 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2652 			    struct perf_sample *sample, struct perf_tool *tool)
2653 {
2654 	if (!session->auxtrace)
2655 		return 0;
2656 
2657 	return session->auxtrace->process_event(session, event, sample, tool);
2658 }
2659 
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2660 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2661 				    struct perf_sample *sample)
2662 {
2663 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2664 	    auxtrace__dont_decode(session))
2665 		return;
2666 
2667 	session->auxtrace->dump_auxtrace_sample(session, sample);
2668 }
2669 
auxtrace__flush_events(struct perf_session * session,struct perf_tool * tool)2670 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2671 {
2672 	if (!session->auxtrace)
2673 		return 0;
2674 
2675 	return session->auxtrace->flush_events(session, tool);
2676 }
2677 
auxtrace__free_events(struct perf_session * session)2678 void auxtrace__free_events(struct perf_session *session)
2679 {
2680 	if (!session->auxtrace)
2681 		return;
2682 
2683 	return session->auxtrace->free_events(session);
2684 }
2685 
auxtrace__free(struct perf_session * session)2686 void auxtrace__free(struct perf_session *session)
2687 {
2688 	if (!session->auxtrace)
2689 		return;
2690 
2691 	return session->auxtrace->free(session);
2692 }
2693 
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2694 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2695 				 struct evsel *evsel)
2696 {
2697 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2698 		return false;
2699 
2700 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2701 }
2702