• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "bpf-event.h"
9 #include "cgroup.h"
10 #include <errno.h>
11 #include <sys/utsname.h>
12 #include <bpf/libbpf.h>
13 #include <stdlib.h>
14 #include <string.h>
15 
16 struct perf_env perf_env;
17 
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)18 void perf_env__insert_bpf_prog_info(struct perf_env *env,
19 				    struct bpf_prog_info_node *info_node)
20 {
21 	down_write(&env->bpf_progs.lock);
22 	__perf_env__insert_bpf_prog_info(env, info_node);
23 	up_write(&env->bpf_progs.lock);
24 }
25 
__perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)26 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
27 {
28 	__u32 prog_id = info_node->info_linear->info.id;
29 	struct bpf_prog_info_node *node;
30 	struct rb_node *parent = NULL;
31 	struct rb_node **p;
32 
33 	p = &env->bpf_progs.infos.rb_node;
34 
35 	while (*p != NULL) {
36 		parent = *p;
37 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
38 		if (prog_id < node->info_linear->info.id) {
39 			p = &(*p)->rb_left;
40 		} else if (prog_id > node->info_linear->info.id) {
41 			p = &(*p)->rb_right;
42 		} else {
43 			pr_debug("duplicated bpf prog info %u\n", prog_id);
44 			return;
45 		}
46 	}
47 
48 	rb_link_node(&info_node->rb_node, parent, p);
49 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
50 	env->bpf_progs.infos_cnt++;
51 }
52 
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)53 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
54 							__u32 prog_id)
55 {
56 	struct bpf_prog_info_node *node = NULL;
57 	struct rb_node *n;
58 
59 	down_read(&env->bpf_progs.lock);
60 	n = env->bpf_progs.infos.rb_node;
61 
62 	while (n) {
63 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
64 		if (prog_id < node->info_linear->info.id)
65 			n = n->rb_left;
66 		else if (prog_id > node->info_linear->info.id)
67 			n = n->rb_right;
68 		else
69 			goto out;
70 	}
71 	node = NULL;
72 
73 out:
74 	up_read(&env->bpf_progs.lock);
75 	return node;
76 }
77 
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)78 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
79 {
80 	bool ret;
81 
82 	down_write(&env->bpf_progs.lock);
83 	ret = __perf_env__insert_btf(env, btf_node);
84 	up_write(&env->bpf_progs.lock);
85 	return ret;
86 }
87 
__perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)88 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
89 {
90 	struct rb_node *parent = NULL;
91 	__u32 btf_id = btf_node->id;
92 	struct btf_node *node;
93 	struct rb_node **p;
94 
95 	p = &env->bpf_progs.btfs.rb_node;
96 
97 	while (*p != NULL) {
98 		parent = *p;
99 		node = rb_entry(parent, struct btf_node, rb_node);
100 		if (btf_id < node->id) {
101 			p = &(*p)->rb_left;
102 		} else if (btf_id > node->id) {
103 			p = &(*p)->rb_right;
104 		} else {
105 			pr_debug("duplicated btf %u\n", btf_id);
106 			return false;
107 		}
108 	}
109 
110 	rb_link_node(&btf_node->rb_node, parent, p);
111 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
112 	env->bpf_progs.btfs_cnt++;
113 	return true;
114 }
115 
perf_env__find_btf(struct perf_env * env,__u32 btf_id)116 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
117 {
118 	struct btf_node *res;
119 
120 	down_read(&env->bpf_progs.lock);
121 	res = __perf_env__find_btf(env, btf_id);
122 	up_read(&env->bpf_progs.lock);
123 	return res;
124 }
125 
__perf_env__find_btf(struct perf_env * env,__u32 btf_id)126 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
127 {
128 	struct btf_node *node = NULL;
129 	struct rb_node *n;
130 
131 	n = env->bpf_progs.btfs.rb_node;
132 
133 	while (n) {
134 		node = rb_entry(n, struct btf_node, rb_node);
135 		if (btf_id < node->id)
136 			n = n->rb_left;
137 		else if (btf_id > node->id)
138 			n = n->rb_right;
139 		else
140 			return node;
141 	}
142 	return NULL;
143 }
144 
145 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)146 static void perf_env__purge_bpf(struct perf_env *env)
147 {
148 	struct rb_root *root;
149 	struct rb_node *next;
150 
151 	down_write(&env->bpf_progs.lock);
152 
153 	root = &env->bpf_progs.infos;
154 	next = rb_first(root);
155 
156 	while (next) {
157 		struct bpf_prog_info_node *node;
158 
159 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
160 		next = rb_next(&node->rb_node);
161 		rb_erase(&node->rb_node, root);
162 		free(node->info_linear);
163 		free(node);
164 	}
165 
166 	env->bpf_progs.infos_cnt = 0;
167 
168 	root = &env->bpf_progs.btfs;
169 	next = rb_first(root);
170 
171 	while (next) {
172 		struct btf_node *node;
173 
174 		node = rb_entry(next, struct btf_node, rb_node);
175 		next = rb_next(&node->rb_node);
176 		rb_erase(&node->rb_node, root);
177 		free(node);
178 	}
179 
180 	env->bpf_progs.btfs_cnt = 0;
181 
182 	up_write(&env->bpf_progs.lock);
183 }
184 
perf_env__exit(struct perf_env * env)185 void perf_env__exit(struct perf_env *env)
186 {
187 	int i;
188 
189 	perf_env__purge_bpf(env);
190 	perf_env__purge_cgroups(env);
191 	zfree(&env->hostname);
192 	zfree(&env->os_release);
193 	zfree(&env->version);
194 	zfree(&env->arch);
195 	zfree(&env->cpu_desc);
196 	zfree(&env->cpuid);
197 	zfree(&env->cmdline);
198 	zfree(&env->cmdline_argv);
199 	zfree(&env->sibling_dies);
200 	zfree(&env->sibling_cores);
201 	zfree(&env->sibling_threads);
202 	zfree(&env->pmu_mappings);
203 	zfree(&env->cpu);
204 	zfree(&env->cpu_pmu_caps);
205 	zfree(&env->numa_map);
206 
207 	for (i = 0; i < env->nr_numa_nodes; i++)
208 		perf_cpu_map__put(env->numa_nodes[i].map);
209 	zfree(&env->numa_nodes);
210 
211 	for (i = 0; i < env->caches_cnt; i++)
212 		cpu_cache_level__free(&env->caches[i]);
213 	zfree(&env->caches);
214 
215 	for (i = 0; i < env->nr_memory_nodes; i++)
216 		zfree(&env->memory_nodes[i].set);
217 	zfree(&env->memory_nodes);
218 }
219 
perf_env__init(struct perf_env * env)220 void perf_env__init(struct perf_env *env)
221 {
222 	env->bpf_progs.infos = RB_ROOT;
223 	env->bpf_progs.btfs = RB_ROOT;
224 	init_rwsem(&env->bpf_progs.lock);
225 }
226 
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])227 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
228 {
229 	int i;
230 
231 	/* do not include NULL termination */
232 	env->cmdline_argv = calloc(argc, sizeof(char *));
233 	if (env->cmdline_argv == NULL)
234 		goto out_enomem;
235 
236 	/*
237 	 * Must copy argv contents because it gets moved around during option
238 	 * parsing:
239 	 */
240 	for (i = 0; i < argc ; i++) {
241 		env->cmdline_argv[i] = argv[i];
242 		if (env->cmdline_argv[i] == NULL)
243 			goto out_free;
244 	}
245 
246 	env->nr_cmdline = argc;
247 
248 	return 0;
249 out_free:
250 	zfree(&env->cmdline_argv);
251 out_enomem:
252 	return -ENOMEM;
253 }
254 
perf_env__read_cpu_topology_map(struct perf_env * env)255 int perf_env__read_cpu_topology_map(struct perf_env *env)
256 {
257 	int cpu, nr_cpus;
258 
259 	if (env->cpu != NULL)
260 		return 0;
261 
262 	if (env->nr_cpus_avail == 0)
263 		env->nr_cpus_avail = cpu__max_present_cpu();
264 
265 	nr_cpus = env->nr_cpus_avail;
266 	if (nr_cpus == -1)
267 		return -EINVAL;
268 
269 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
270 	if (env->cpu == NULL)
271 		return -ENOMEM;
272 
273 	for (cpu = 0; cpu < nr_cpus; ++cpu) {
274 		env->cpu[cpu].core_id	= cpu_map__get_core_id(cpu);
275 		env->cpu[cpu].socket_id	= cpu_map__get_socket_id(cpu);
276 		env->cpu[cpu].die_id	= cpu_map__get_die_id(cpu);
277 	}
278 
279 	env->nr_cpus_avail = nr_cpus;
280 	return 0;
281 }
282 
perf_env__read_cpuid(struct perf_env * env)283 int perf_env__read_cpuid(struct perf_env *env)
284 {
285 	char cpuid[128];
286 	int err = get_cpuid(cpuid, sizeof(cpuid));
287 
288 	if (err)
289 		return err;
290 
291 	free(env->cpuid);
292 	env->cpuid = strdup(cpuid);
293 	if (env->cpuid == NULL)
294 		return ENOMEM;
295 	return 0;
296 }
297 
perf_env__read_arch(struct perf_env * env)298 static int perf_env__read_arch(struct perf_env *env)
299 {
300 	struct utsname uts;
301 
302 	if (env->arch)
303 		return 0;
304 
305 	if (!uname(&uts))
306 		env->arch = strdup(uts.machine);
307 
308 	return env->arch ? 0 : -ENOMEM;
309 }
310 
perf_env__read_nr_cpus_avail(struct perf_env * env)311 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
312 {
313 	if (env->nr_cpus_avail == 0)
314 		env->nr_cpus_avail = cpu__max_present_cpu();
315 
316 	return env->nr_cpus_avail ? 0 : -ENOENT;
317 }
318 
perf_env__raw_arch(struct perf_env * env)319 const char *perf_env__raw_arch(struct perf_env *env)
320 {
321 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
322 }
323 
perf_env__nr_cpus_avail(struct perf_env * env)324 int perf_env__nr_cpus_avail(struct perf_env *env)
325 {
326 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
327 }
328 
cpu_cache_level__free(struct cpu_cache_level * cache)329 void cpu_cache_level__free(struct cpu_cache_level *cache)
330 {
331 	zfree(&cache->type);
332 	zfree(&cache->map);
333 	zfree(&cache->size);
334 }
335 
336 /*
337  * Return architecture name in a normalized form.
338  * The conversion logic comes from the Makefile.
339  */
normalize_arch(char * arch)340 static const char *normalize_arch(char *arch)
341 {
342 	if (!strcmp(arch, "x86_64"))
343 		return "x86";
344 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
345 		return "x86";
346 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
347 		return "sparc";
348 	if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
349 		return "arm64";
350 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
351 		return "arm";
352 	if (!strncmp(arch, "s390", 4))
353 		return "s390";
354 	if (!strncmp(arch, "parisc", 6))
355 		return "parisc";
356 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
357 		return "powerpc";
358 	if (!strncmp(arch, "mips", 4))
359 		return "mips";
360 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
361 		return "sh";
362 
363 	return arch;
364 }
365 
perf_env__arch(struct perf_env * env)366 const char *perf_env__arch(struct perf_env *env)
367 {
368 	char *arch_name;
369 
370 	if (!env || !env->arch) { /* Assume local operation */
371 		static struct utsname uts = { .machine[0] = '\0', };
372 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
373 			return NULL;
374 		arch_name = uts.machine;
375 	} else
376 		arch_name = env->arch;
377 
378 	return normalize_arch(arch_name);
379 }
380 
381 
perf_env__numa_node(struct perf_env * env,int cpu)382 int perf_env__numa_node(struct perf_env *env, int cpu)
383 {
384 	if (!env->nr_numa_map) {
385 		struct numa_node *nn;
386 		int i, nr = 0;
387 
388 		for (i = 0; i < env->nr_numa_nodes; i++) {
389 			nn = &env->numa_nodes[i];
390 			nr = max(nr, perf_cpu_map__max(nn->map));
391 		}
392 
393 		nr++;
394 
395 		/*
396 		 * We initialize the numa_map array to prepare
397 		 * it for missing cpus, which return node -1
398 		 */
399 		env->numa_map = malloc(nr * sizeof(int));
400 		if (!env->numa_map)
401 			return -1;
402 
403 		for (i = 0; i < nr; i++)
404 			env->numa_map[i] = -1;
405 
406 		env->nr_numa_map = nr;
407 
408 		for (i = 0; i < env->nr_numa_nodes; i++) {
409 			int tmp, j;
410 
411 			nn = &env->numa_nodes[i];
412 			perf_cpu_map__for_each_cpu(j, tmp, nn->map)
413 				env->numa_map[j] = i;
414 		}
415 	}
416 
417 	return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
418 }
419