1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3 * Hibernate support specific for ARM64
4 *
5 * Derived from work on ARM hibernation support by:
6 *
7 * Ubuntu project, hibernation support for mach-dove
8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10 * https://lkml.org/lkml/2010/6/18/4
11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12 * https://patchwork.kernel.org/patch/96442/
13 *
14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15 */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24
25 #include <asm/barrier.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <asm/daifflags.h>
29 #include <asm/irqflags.h>
30 #include <asm/kexec.h>
31 #include <asm/memory.h>
32 #include <asm/mmu_context.h>
33 #include <asm/mte.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable-hwdef.h>
36 #include <asm/sections.h>
37 #include <asm/smp.h>
38 #include <asm/smp_plat.h>
39 #include <asm/suspend.h>
40 #include <asm/sysreg.h>
41 #include <asm/virt.h>
42
43 /*
44 * Hibernate core relies on this value being 0 on resume, and marks it
45 * __nosavedata assuming it will keep the resume kernel's '0' value. This
46 * doesn't happen with either KASLR.
47 *
48 * defined as "__visible int in_suspend __nosavedata" in
49 * kernel/power/hibernate.c
50 */
51 extern int in_suspend;
52
53 /* Do we need to reset el2? */
54 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
55
56 /* temporary el2 vectors in the __hibernate_exit_text section. */
57 extern char hibernate_el2_vectors[];
58
59 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
60 extern char __hyp_stub_vectors[];
61
62 /*
63 * The logical cpu number we should resume on, initialised to a non-cpu
64 * number.
65 */
66 static int sleep_cpu = -EINVAL;
67
68 /*
69 * Values that may not change over hibernate/resume. We put the build number
70 * and date in here so that we guarantee not to resume with a different
71 * kernel.
72 */
73 struct arch_hibernate_hdr_invariants {
74 char uts_version[__NEW_UTS_LEN + 1];
75 };
76
77 /* These values need to be know across a hibernate/restore. */
78 static struct arch_hibernate_hdr {
79 struct arch_hibernate_hdr_invariants invariants;
80
81 /* These are needed to find the relocated kernel if built with kaslr */
82 phys_addr_t ttbr1_el1;
83 void (*reenter_kernel)(void);
84
85 /*
86 * We need to know where the __hyp_stub_vectors are after restore to
87 * re-configure el2.
88 */
89 phys_addr_t __hyp_stub_vectors;
90
91 u64 sleep_cpu_mpidr;
92 } resume_hdr;
93
arch_hdr_invariants(struct arch_hibernate_hdr_invariants * i)94 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
95 {
96 memset(i, 0, sizeof(*i));
97 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
98 }
99
pfn_is_nosave(unsigned long pfn)100 int pfn_is_nosave(unsigned long pfn)
101 {
102 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
103 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
104
105 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
106 crash_is_nosave(pfn);
107 }
108
save_processor_state(void)109 void notrace save_processor_state(void)
110 {
111 WARN_ON(num_online_cpus() != 1);
112 }
113
restore_processor_state(void)114 void notrace restore_processor_state(void)
115 {
116 }
117
arch_hibernation_header_save(void * addr,unsigned int max_size)118 int arch_hibernation_header_save(void *addr, unsigned int max_size)
119 {
120 struct arch_hibernate_hdr *hdr = addr;
121
122 if (max_size < sizeof(*hdr))
123 return -EOVERFLOW;
124
125 arch_hdr_invariants(&hdr->invariants);
126 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
127 hdr->reenter_kernel = _cpu_resume;
128
129 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
130 if (el2_reset_needed())
131 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
132 else
133 hdr->__hyp_stub_vectors = 0;
134
135 /* Save the mpidr of the cpu we called cpu_suspend() on... */
136 if (sleep_cpu < 0) {
137 pr_err("Failing to hibernate on an unknown CPU.\n");
138 return -ENODEV;
139 }
140 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
141 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
142 hdr->sleep_cpu_mpidr);
143
144 return 0;
145 }
146 EXPORT_SYMBOL(arch_hibernation_header_save);
147
arch_hibernation_header_restore(void * addr)148 int arch_hibernation_header_restore(void *addr)
149 {
150 int ret;
151 struct arch_hibernate_hdr_invariants invariants;
152 struct arch_hibernate_hdr *hdr = addr;
153
154 arch_hdr_invariants(&invariants);
155 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
156 pr_crit("Hibernate image not generated by this kernel!\n");
157 return -EINVAL;
158 }
159
160 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
161 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
162 hdr->sleep_cpu_mpidr);
163 if (sleep_cpu < 0) {
164 pr_crit("Hibernated on a CPU not known to this kernel!\n");
165 sleep_cpu = -EINVAL;
166 return -EINVAL;
167 }
168
169 ret = bringup_hibernate_cpu(sleep_cpu);
170 if (ret) {
171 sleep_cpu = -EINVAL;
172 return ret;
173 }
174
175 resume_hdr = *hdr;
176
177 return 0;
178 }
179 EXPORT_SYMBOL(arch_hibernation_header_restore);
180
trans_pgd_map_page(pgd_t * trans_pgd,void * page,unsigned long dst_addr,pgprot_t pgprot)181 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
182 unsigned long dst_addr,
183 pgprot_t pgprot)
184 {
185 pgd_t *pgdp;
186 p4d_t *p4dp;
187 pud_t *pudp;
188 pmd_t *pmdp;
189 pte_t *ptep;
190
191 pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
192 if (pgd_none(READ_ONCE(*pgdp))) {
193 pudp = (void *)get_safe_page(GFP_ATOMIC);
194 if (!pudp)
195 return -ENOMEM;
196 pgd_populate(&init_mm, pgdp, pudp);
197 }
198
199 p4dp = p4d_offset(pgdp, dst_addr);
200 if (p4d_none(READ_ONCE(*p4dp))) {
201 pudp = (void *)get_safe_page(GFP_ATOMIC);
202 if (!pudp)
203 return -ENOMEM;
204 p4d_populate(&init_mm, p4dp, pudp);
205 }
206
207 pudp = pud_offset(p4dp, dst_addr);
208 if (pud_none(READ_ONCE(*pudp))) {
209 pmdp = (void *)get_safe_page(GFP_ATOMIC);
210 if (!pmdp)
211 return -ENOMEM;
212 pud_populate(&init_mm, pudp, pmdp);
213 }
214
215 pmdp = pmd_offset(pudp, dst_addr);
216 if (pmd_none(READ_ONCE(*pmdp))) {
217 ptep = (void *)get_safe_page(GFP_ATOMIC);
218 if (!ptep)
219 return -ENOMEM;
220 pmd_populate_kernel(&init_mm, pmdp, ptep);
221 }
222
223 ptep = pte_offset_kernel(pmdp, dst_addr);
224 set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
225
226 return 0;
227 }
228
229 /*
230 * Copies length bytes, starting at src_start into an new page,
231 * perform cache maintenance, then maps it at the specified address low
232 * address as executable.
233 *
234 * This is used by hibernate to copy the code it needs to execute when
235 * overwriting the kernel text. This function generates a new set of page
236 * tables, which it loads into ttbr0.
237 *
238 * Length is provided as we probably only want 4K of data, even on a 64K
239 * page system.
240 */
create_safe_exec_page(void * src_start,size_t length,unsigned long dst_addr,phys_addr_t * phys_dst_addr)241 static int create_safe_exec_page(void *src_start, size_t length,
242 unsigned long dst_addr,
243 phys_addr_t *phys_dst_addr)
244 {
245 void *page = (void *)get_safe_page(GFP_ATOMIC);
246 pgd_t *trans_pgd;
247 int rc;
248
249 if (!page)
250 return -ENOMEM;
251
252 memcpy(page, src_start, length);
253 caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
254
255 trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
256 if (!trans_pgd)
257 return -ENOMEM;
258
259 rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
260 PAGE_KERNEL_EXEC);
261 if (rc)
262 return rc;
263
264 /*
265 * Load our new page tables. A strict BBM approach requires that we
266 * ensure that TLBs are free of any entries that may overlap with the
267 * global mappings we are about to install.
268 *
269 * For a real hibernate/resume cycle TTBR0 currently points to a zero
270 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
271 * runtime services), while for a userspace-driven test_resume cycle it
272 * points to userspace page tables (and we must point it at a zero page
273 * ourselves). Elsewhere we only (un)install the idmap with preemption
274 * disabled, so T0SZ should be as required regardless.
275 */
276 cpu_set_reserved_ttbr0();
277 local_flush_tlb_all();
278 write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
279 isb();
280
281 *phys_dst_addr = virt_to_phys(page);
282
283 return 0;
284 }
285
286 #ifdef CONFIG_ARM64_MTE
287
288 static DEFINE_XARRAY(mte_pages);
289
save_tags(struct page * page,unsigned long pfn)290 static int save_tags(struct page *page, unsigned long pfn)
291 {
292 void *tag_storage, *ret;
293
294 tag_storage = mte_allocate_tag_storage();
295 if (!tag_storage)
296 return -ENOMEM;
297
298 mte_save_page_tags(page_address(page), tag_storage);
299
300 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
301 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
302 mte_free_tag_storage(tag_storage);
303 return xa_err(ret);
304 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
305 mte_free_tag_storage(ret);
306 }
307
308 return 0;
309 }
310
swsusp_mte_free_storage(void)311 static void swsusp_mte_free_storage(void)
312 {
313 XA_STATE(xa_state, &mte_pages, 0);
314 void *tags;
315
316 xa_lock(&mte_pages);
317 xas_for_each(&xa_state, tags, ULONG_MAX) {
318 mte_free_tag_storage(tags);
319 }
320 xa_unlock(&mte_pages);
321
322 xa_destroy(&mte_pages);
323 }
324
swsusp_mte_save_tags(void)325 static int swsusp_mte_save_tags(void)
326 {
327 struct zone *zone;
328 unsigned long pfn, max_zone_pfn;
329 int ret = 0;
330 int n = 0;
331
332 if (!system_supports_mte())
333 return 0;
334
335 for_each_populated_zone(zone) {
336 max_zone_pfn = zone_end_pfn(zone);
337 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
338 struct page *page = pfn_to_online_page(pfn);
339
340 if (!page)
341 continue;
342
343 if (!test_bit(PG_mte_tagged, &page->flags))
344 continue;
345
346 ret = save_tags(page, pfn);
347 if (ret) {
348 swsusp_mte_free_storage();
349 goto out;
350 }
351
352 n++;
353 }
354 }
355 pr_info("Saved %d MTE pages\n", n);
356
357 out:
358 return ret;
359 }
360
swsusp_mte_restore_tags(void)361 static void swsusp_mte_restore_tags(void)
362 {
363 XA_STATE(xa_state, &mte_pages, 0);
364 int n = 0;
365 void *tags;
366
367 xa_lock(&mte_pages);
368 xas_for_each(&xa_state, tags, ULONG_MAX) {
369 unsigned long pfn = xa_state.xa_index;
370 struct page *page = pfn_to_online_page(pfn);
371
372 /*
373 * It is not required to invoke page_kasan_tag_reset(page)
374 * at this point since the tags stored in page->flags are
375 * already restored.
376 */
377 mte_restore_page_tags(page_address(page), tags);
378
379 mte_free_tag_storage(tags);
380 n++;
381 }
382 xa_unlock(&mte_pages);
383
384 pr_info("Restored %d MTE pages\n", n);
385
386 xa_destroy(&mte_pages);
387 }
388
389 #else /* CONFIG_ARM64_MTE */
390
swsusp_mte_save_tags(void)391 static int swsusp_mte_save_tags(void)
392 {
393 return 0;
394 }
395
swsusp_mte_restore_tags(void)396 static void swsusp_mte_restore_tags(void)
397 {
398 }
399
400 #endif /* CONFIG_ARM64_MTE */
401
swsusp_arch_suspend(void)402 int swsusp_arch_suspend(void)
403 {
404 int ret = 0;
405 unsigned long flags;
406 struct sleep_stack_data state;
407
408 if (cpus_are_stuck_in_kernel()) {
409 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
410 return -EBUSY;
411 }
412
413 flags = local_daif_save();
414
415 if (__cpu_suspend_enter(&state)) {
416 /* make the crash dump kernel image visible/saveable */
417 crash_prepare_suspend();
418
419 ret = swsusp_mte_save_tags();
420 if (ret)
421 return ret;
422
423 sleep_cpu = smp_processor_id();
424 ret = swsusp_save();
425 } else {
426 /* Clean kernel core startup/idle code to PoC*/
427 dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
428 (unsigned long)__mmuoff_data_end);
429 dcache_clean_inval_poc((unsigned long)__idmap_text_start,
430 (unsigned long)__idmap_text_end);
431
432 /* Clean kvm setup code to PoC? */
433 if (el2_reset_needed()) {
434 dcache_clean_inval_poc(
435 (unsigned long)__hyp_idmap_text_start,
436 (unsigned long)__hyp_idmap_text_end);
437 dcache_clean_inval_poc((unsigned long)__hyp_text_start,
438 (unsigned long)__hyp_text_end);
439 }
440
441 swsusp_mte_restore_tags();
442
443 /* make the crash dump kernel image protected again */
444 crash_post_resume();
445
446 /*
447 * Tell the hibernation core that we've just restored
448 * the memory
449 */
450 in_suspend = 0;
451
452 sleep_cpu = -EINVAL;
453 __cpu_suspend_exit();
454
455 /*
456 * Just in case the boot kernel did turn the SSBD
457 * mitigation off behind our back, let's set the state
458 * to what we expect it to be.
459 */
460 spectre_v4_enable_mitigation(NULL);
461 }
462
463 local_daif_restore(flags);
464
465 return ret;
466 }
467
_copy_pte(pte_t * dst_ptep,pte_t * src_ptep,unsigned long addr)468 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
469 {
470 pte_t pte = READ_ONCE(*src_ptep);
471
472 if (pte_valid(pte)) {
473 /*
474 * Resume will overwrite areas that may be marked
475 * read only (code, rodata). Clear the RDONLY bit from
476 * the temporary mappings we use during restore.
477 */
478 set_pte(dst_ptep, pte_mkwrite(pte));
479 } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
480 /*
481 * debug_pagealloc will removed the PTE_VALID bit if
482 * the page isn't in use by the resume kernel. It may have
483 * been in use by the original kernel, in which case we need
484 * to put it back in our copy to do the restore.
485 *
486 * Before marking this entry valid, check the pfn should
487 * be mapped.
488 */
489 BUG_ON(!pfn_valid(pte_pfn(pte)));
490
491 set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
492 }
493 }
494
copy_pte(pmd_t * dst_pmdp,pmd_t * src_pmdp,unsigned long start,unsigned long end)495 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
496 unsigned long end)
497 {
498 pte_t *src_ptep;
499 pte_t *dst_ptep;
500 unsigned long addr = start;
501
502 dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
503 if (!dst_ptep)
504 return -ENOMEM;
505 pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
506 dst_ptep = pte_offset_kernel(dst_pmdp, start);
507
508 src_ptep = pte_offset_kernel(src_pmdp, start);
509 do {
510 _copy_pte(dst_ptep, src_ptep, addr);
511 } while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
512
513 return 0;
514 }
515
copy_pmd(pud_t * dst_pudp,pud_t * src_pudp,unsigned long start,unsigned long end)516 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
517 unsigned long end)
518 {
519 pmd_t *src_pmdp;
520 pmd_t *dst_pmdp;
521 unsigned long next;
522 unsigned long addr = start;
523
524 if (pud_none(READ_ONCE(*dst_pudp))) {
525 dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
526 if (!dst_pmdp)
527 return -ENOMEM;
528 pud_populate(&init_mm, dst_pudp, dst_pmdp);
529 }
530 dst_pmdp = pmd_offset(dst_pudp, start);
531
532 src_pmdp = pmd_offset(src_pudp, start);
533 do {
534 pmd_t pmd = READ_ONCE(*src_pmdp);
535
536 next = pmd_addr_end(addr, end);
537 if (pmd_none(pmd))
538 continue;
539 if (pmd_table(pmd)) {
540 if (copy_pte(dst_pmdp, src_pmdp, addr, next))
541 return -ENOMEM;
542 } else {
543 set_pmd(dst_pmdp,
544 __pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
545 }
546 } while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
547
548 return 0;
549 }
550
copy_pud(p4d_t * dst_p4dp,p4d_t * src_p4dp,unsigned long start,unsigned long end)551 static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
552 unsigned long end)
553 {
554 pud_t *dst_pudp;
555 pud_t *src_pudp;
556 unsigned long next;
557 unsigned long addr = start;
558
559 if (p4d_none(READ_ONCE(*dst_p4dp))) {
560 dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
561 if (!dst_pudp)
562 return -ENOMEM;
563 p4d_populate(&init_mm, dst_p4dp, dst_pudp);
564 }
565 dst_pudp = pud_offset(dst_p4dp, start);
566
567 src_pudp = pud_offset(src_p4dp, start);
568 do {
569 pud_t pud = READ_ONCE(*src_pudp);
570
571 next = pud_addr_end(addr, end);
572 if (pud_none(pud))
573 continue;
574 if (pud_table(pud)) {
575 if (copy_pmd(dst_pudp, src_pudp, addr, next))
576 return -ENOMEM;
577 } else {
578 set_pud(dst_pudp,
579 __pud(pud_val(pud) & ~PUD_SECT_RDONLY));
580 }
581 } while (dst_pudp++, src_pudp++, addr = next, addr != end);
582
583 return 0;
584 }
585
copy_p4d(pgd_t * dst_pgdp,pgd_t * src_pgdp,unsigned long start,unsigned long end)586 static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
587 unsigned long end)
588 {
589 p4d_t *dst_p4dp;
590 p4d_t *src_p4dp;
591 unsigned long next;
592 unsigned long addr = start;
593
594 dst_p4dp = p4d_offset(dst_pgdp, start);
595 src_p4dp = p4d_offset(src_pgdp, start);
596 do {
597 next = p4d_addr_end(addr, end);
598 if (p4d_none(READ_ONCE(*src_p4dp)))
599 continue;
600 if (copy_pud(dst_p4dp, src_p4dp, addr, next))
601 return -ENOMEM;
602 } while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
603
604 return 0;
605 }
606
copy_page_tables(pgd_t * dst_pgdp,unsigned long start,unsigned long end)607 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
608 unsigned long end)
609 {
610 unsigned long next;
611 unsigned long addr = start;
612 pgd_t *src_pgdp = pgd_offset_k(start);
613
614 dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
615 do {
616 next = pgd_addr_end(addr, end);
617 if (pgd_none(READ_ONCE(*src_pgdp)))
618 continue;
619 if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
620 return -ENOMEM;
621 } while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
622
623 return 0;
624 }
625
trans_pgd_create_copy(pgd_t ** dst_pgdp,unsigned long start,unsigned long end)626 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
627 unsigned long end)
628 {
629 int rc;
630 pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
631
632 if (!trans_pgd) {
633 pr_err("Failed to allocate memory for temporary page tables.\n");
634 return -ENOMEM;
635 }
636
637 rc = copy_page_tables(trans_pgd, start, end);
638 if (!rc)
639 *dst_pgdp = trans_pgd;
640
641 return rc;
642 }
643
644 /*
645 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
646 *
647 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
648 * we don't need to free it here.
649 */
swsusp_arch_resume(void)650 int swsusp_arch_resume(void)
651 {
652 int rc;
653 void *zero_page;
654 size_t exit_size;
655 pgd_t *tmp_pg_dir;
656 phys_addr_t phys_hibernate_exit;
657 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
658 void *, phys_addr_t, phys_addr_t);
659
660 /*
661 * Restoring the memory image will overwrite the ttbr1 page tables.
662 * Create a second copy of just the linear map, and use this when
663 * restoring.
664 */
665 rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
666 if (rc)
667 return rc;
668
669 /*
670 * We need a zero page that is zero before & after resume in order to
671 * to break before make on the ttbr1 page tables.
672 */
673 zero_page = (void *)get_safe_page(GFP_ATOMIC);
674 if (!zero_page) {
675 pr_err("Failed to allocate zero page.\n");
676 return -ENOMEM;
677 }
678
679 /*
680 * Locate the exit code in the bottom-but-one page, so that *NULL
681 * still has disastrous affects.
682 */
683 hibernate_exit = (void *)PAGE_SIZE;
684 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
685 /*
686 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
687 * a new set of ttbr0 page tables and load them.
688 */
689 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
690 (unsigned long)hibernate_exit,
691 &phys_hibernate_exit);
692 if (rc) {
693 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
694 return rc;
695 }
696
697 /*
698 * The hibernate exit text contains a set of el2 vectors, that will
699 * be executed at el2 with the mmu off in order to reload hyp-stub.
700 */
701 dcache_clean_inval_poc((unsigned long)hibernate_exit,
702 (unsigned long)hibernate_exit + exit_size);
703
704 /*
705 * KASLR will cause the el2 vectors to be in a different location in
706 * the resumed kernel. Load hibernate's temporary copy into el2.
707 *
708 * We can skip this step if we booted at EL1, or are running with VHE.
709 */
710 if (el2_reset_needed()) {
711 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
712 el2_vectors += hibernate_el2_vectors -
713 __hibernate_exit_text_start; /* offset */
714
715 __hyp_set_vectors(el2_vectors);
716 }
717
718 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
719 resume_hdr.reenter_kernel, restore_pblist,
720 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
721
722 return 0;
723 }
724
hibernate_resume_nonboot_cpu_disable(void)725 int hibernate_resume_nonboot_cpu_disable(void)
726 {
727 if (sleep_cpu < 0) {
728 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
729 return -ENODEV;
730 }
731
732 return freeze_secondary_cpus(sleep_cpu);
733 }
734