• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uio.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/mte.h>
23 #include <asm/ptrace.h>
24 #include <asm/sysreg.h>
25 
26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
27 
28 #ifdef CONFIG_KASAN_HW_TAGS
29 /*
30  * The asynchronous and asymmetric MTE modes have the same behavior for
31  * store operations. This flag is set when either of these modes is enabled.
32  */
33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
35 #endif
36 
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)37 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
38 			       bool check_swap, bool pte_is_tagged)
39 {
40 	if (check_swap && is_swap_pte(old_pte)) {
41 		swp_entry_t entry = pte_to_swp_entry(old_pte);
42 
43 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
44 			return;
45 	}
46 
47 	if (!pte_is_tagged)
48 		return;
49 
50 	page_kasan_tag_reset(page);
51 	/*
52 	 * We need smp_wmb() in between setting the flags and clearing the
53 	 * tags because if another thread reads page->flags and builds a
54 	 * tagged address out of it, there is an actual dependency to the
55 	 * memory access, but on the current thread we do not guarantee that
56 	 * the new page->flags are visible before the tags were updated.
57 	 */
58 	smp_wmb();
59 	mte_clear_page_tags(page_address(page));
60 }
61 
mte_sync_tags(pte_t old_pte,pte_t pte)62 void mte_sync_tags(pte_t old_pte, pte_t pte)
63 {
64 	struct page *page = pte_page(pte);
65 	long i, nr_pages = compound_nr(page);
66 	bool check_swap = nr_pages == 1;
67 	bool pte_is_tagged = pte_tagged(pte);
68 
69 	/* Early out if there's nothing to do */
70 	if (!check_swap && !pte_is_tagged)
71 		return;
72 
73 	/* if PG_mte_tagged is set, tags have already been initialised */
74 	for (i = 0; i < nr_pages; i++, page++) {
75 		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
76 			mte_sync_page_tags(page, old_pte, check_swap,
77 					   pte_is_tagged);
78 	}
79 
80 	/* ensure the tags are visible before the PTE is set */
81 	smp_wmb();
82 }
83 
memcmp_pages(struct page * page1,struct page * page2)84 int memcmp_pages(struct page *page1, struct page *page2)
85 {
86 	char *addr1, *addr2;
87 	int ret;
88 
89 	addr1 = page_address(page1);
90 	addr2 = page_address(page2);
91 	ret = memcmp(addr1, addr2, PAGE_SIZE);
92 
93 	if (!system_supports_mte() || ret)
94 		return ret;
95 
96 	/*
97 	 * If the page content is identical but at least one of the pages is
98 	 * tagged, return non-zero to avoid KSM merging. If only one of the
99 	 * pages is tagged, set_pte_at() may zero or change the tags of the
100 	 * other page via mte_sync_tags().
101 	 */
102 	if (test_bit(PG_mte_tagged, &page1->flags) ||
103 	    test_bit(PG_mte_tagged, &page2->flags))
104 		return addr1 != addr2;
105 
106 	return ret;
107 }
108 
__mte_enable_kernel(const char * mode,unsigned long tcf)109 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
110 {
111 	/* Enable MTE Sync Mode for EL1. */
112 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
113 	isb();
114 
115 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
116 }
117 
118 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)119 void mte_enable_kernel_sync(void)
120 {
121 	/*
122 	 * Make sure we enter this function when no PE has set
123 	 * async mode previously.
124 	 */
125 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
126 			"MTE async mode enabled system wide!");
127 
128 	__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
129 }
130 
mte_enable_kernel_async(void)131 void mte_enable_kernel_async(void)
132 {
133 	__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
134 
135 	/*
136 	 * MTE async mode is set system wide by the first PE that
137 	 * executes this function.
138 	 *
139 	 * Note: If in future KASAN acquires a runtime switching
140 	 * mode in between sync and async, this strategy needs
141 	 * to be reviewed.
142 	 */
143 	if (!system_uses_mte_async_or_asymm_mode())
144 		static_branch_enable(&mte_async_or_asymm_mode);
145 }
146 
mte_enable_kernel_asymm(void)147 void mte_enable_kernel_asymm(void)
148 {
149 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
150 		__mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
151 
152 		/*
153 		 * MTE asymm mode behaves as async mode for store
154 		 * operations. The mode is set system wide by the
155 		 * first PE that executes this function.
156 		 *
157 		 * Note: If in future KASAN acquires a runtime switching
158 		 * mode in between sync and async, this strategy needs
159 		 * to be reviewed.
160 		 */
161 		if (!system_uses_mte_async_or_asymm_mode())
162 			static_branch_enable(&mte_async_or_asymm_mode);
163 	} else {
164 		/*
165 		 * If the CPU does not support MTE asymmetric mode the
166 		 * kernel falls back on synchronous mode which is the
167 		 * default for kasan=on.
168 		 */
169 		mte_enable_kernel_sync();
170 	}
171 }
172 #endif
173 
174 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)175 void mte_check_tfsr_el1(void)
176 {
177 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
178 
179 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
180 		/*
181 		 * Note: isb() is not required after this direct write
182 		 * because there is no indirect read subsequent to it
183 		 * (per ARM DDI 0487F.c table D13-1).
184 		 */
185 		write_sysreg_s(0, SYS_TFSR_EL1);
186 
187 		kasan_report_async();
188 	}
189 }
190 #endif
191 
192 /*
193  * This is where we actually resolve the system and process MTE mode
194  * configuration into an actual value in SCTLR_EL1 that affects
195  * userspace.
196  */
mte_update_sctlr_user(struct task_struct * task)197 static void mte_update_sctlr_user(struct task_struct *task)
198 {
199 	/*
200 	 * This must be called with preemption disabled and can only be called
201 	 * on the current or next task since the CPU must match where the thread
202 	 * is going to run. The caller is responsible for calling
203 	 * update_sctlr_el1() later in the same preemption disabled block.
204 	 */
205 	unsigned long sctlr = task->thread.sctlr_user;
206 	unsigned long mte_ctrl = task->thread.mte_ctrl;
207 	unsigned long pref, resolved_mte_tcf;
208 
209 	pref = __this_cpu_read(mte_tcf_preferred);
210 	/*
211 	 * If there is no overlap between the system preferred and
212 	 * program requested values go with what was requested.
213 	 */
214 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
215 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
216 	/*
217 	 * Pick an actual setting. The order in which we check for
218 	 * set bits and map into register values determines our
219 	 * default order.
220 	 */
221 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
222 		sctlr |= SCTLR_EL1_TCF0_ASYMM;
223 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
224 		sctlr |= SCTLR_EL1_TCF0_ASYNC;
225 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
226 		sctlr |= SCTLR_EL1_TCF0_SYNC;
227 	task->thread.sctlr_user = sctlr;
228 }
229 
mte_update_gcr_excl(struct task_struct * task)230 static void mte_update_gcr_excl(struct task_struct *task)
231 {
232 	/*
233 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
234 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
235 	 */
236 	if (kasan_hw_tags_enabled())
237 		return;
238 
239 	write_sysreg_s(
240 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
241 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
242 		SYS_GCR_EL1);
243 }
244 
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
246 				 __le32 *updptr, int nr_inst)
247 {
248 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
249 
250 	if (kasan_hw_tags_enabled())
251 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
252 }
253 
mte_thread_init_user(void)254 void mte_thread_init_user(void)
255 {
256 	if (!system_supports_mte())
257 		return;
258 
259 	/* clear any pending asynchronous tag fault */
260 	dsb(ish);
261 	write_sysreg_s(0, SYS_TFSRE0_EL1);
262 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
263 	/* disable tag checking and reset tag generation mask */
264 	set_mte_ctrl(current, 0);
265 }
266 
mte_thread_switch(struct task_struct * next)267 void mte_thread_switch(struct task_struct *next)
268 {
269 	if (!system_supports_mte())
270 		return;
271 
272 	mte_update_sctlr_user(next);
273 	mte_update_gcr_excl(next);
274 
275 	/*
276 	 * Check if an async tag exception occurred at EL1.
277 	 *
278 	 * Note: On the context switch path we rely on the dsb() present
279 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
280 	 * are synchronized before this point.
281 	 */
282 	isb();
283 	mte_check_tfsr_el1();
284 }
285 
mte_cpu_setup(void)286 void mte_cpu_setup(void)
287 {
288 	u64 rgsr;
289 
290 	/*
291 	 * CnP must be enabled only after the MAIR_EL1 register has been set
292 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
293 	 * lead to the wrong memory type being used for a brief window during
294 	 * CPU power-up.
295 	 *
296 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
297 	 * make sure that is the case.
298 	 */
299 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
300 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
301 
302 	/* Normal Tagged memory type at the corresponding MAIR index */
303 	sysreg_clear_set(mair_el1,
304 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
305 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
306 				      MT_NORMAL_TAGGED));
307 
308 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
309 
310 	/*
311 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
312 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
313 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
314 	 * must initialize it.
315 	 */
316 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
317 	       SYS_RGSR_EL1_SEED_SHIFT;
318 	if (rgsr == 0)
319 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
320 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
321 
322 	/* clear any pending tag check faults in TFSR*_EL1 */
323 	write_sysreg_s(0, SYS_TFSR_EL1);
324 	write_sysreg_s(0, SYS_TFSRE0_EL1);
325 
326 	local_flush_tlb_all();
327 }
328 
mte_suspend_enter(void)329 void mte_suspend_enter(void)
330 {
331 	if (!system_supports_mte())
332 		return;
333 
334 	/*
335 	 * The barriers are required to guarantee that the indirect writes
336 	 * to TFSR_EL1 are synchronized before we report the state.
337 	 */
338 	dsb(nsh);
339 	isb();
340 
341 	/* Report SYS_TFSR_EL1 before suspend entry */
342 	mte_check_tfsr_el1();
343 }
344 
mte_suspend_exit(void)345 void mte_suspend_exit(void)
346 {
347 	if (!system_supports_mte())
348 		return;
349 
350 	mte_cpu_setup();
351 }
352 
set_mte_ctrl(struct task_struct * task,unsigned long arg)353 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
354 {
355 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
356 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
357 
358 	if (!system_supports_mte())
359 		return 0;
360 
361 	if (arg & PR_MTE_TCF_ASYNC)
362 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
363 	if (arg & PR_MTE_TCF_SYNC)
364 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
365 
366 	/*
367 	 * If the system supports it and both sync and async modes are
368 	 * specified then implicitly enable asymmetric mode.
369 	 * Userspace could see a mix of both sync and async anyway due
370 	 * to differing or changing defaults on CPUs.
371 	 */
372 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
373 	    (arg & PR_MTE_TCF_ASYNC) &&
374 	    (arg & PR_MTE_TCF_SYNC))
375 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
376 
377 	task->thread.mte_ctrl = mte_ctrl;
378 	if (task == current) {
379 		preempt_disable();
380 		mte_update_sctlr_user(task);
381 		mte_update_gcr_excl(task);
382 		update_sctlr_el1(task->thread.sctlr_user);
383 		preempt_enable();
384 	}
385 
386 	return 0;
387 }
388 
get_mte_ctrl(struct task_struct * task)389 long get_mte_ctrl(struct task_struct *task)
390 {
391 	unsigned long ret;
392 	u64 mte_ctrl = task->thread.mte_ctrl;
393 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
394 		   SYS_GCR_EL1_EXCL_MASK;
395 
396 	if (!system_supports_mte())
397 		return 0;
398 
399 	ret = incl << PR_MTE_TAG_SHIFT;
400 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
401 		ret |= PR_MTE_TCF_ASYNC;
402 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
403 		ret |= PR_MTE_TCF_SYNC;
404 
405 	return ret;
406 }
407 
408 /*
409  * Access MTE tags in another process' address space as given in mm. Update
410  * the number of tags copied. Return 0 if any tags copied, error otherwise.
411  * Inspired by __access_remote_vm().
412  */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)413 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
414 				struct iovec *kiov, unsigned int gup_flags)
415 {
416 	struct vm_area_struct *vma;
417 	void __user *buf = kiov->iov_base;
418 	size_t len = kiov->iov_len;
419 	int ret;
420 	int write = gup_flags & FOLL_WRITE;
421 
422 	if (!access_ok(buf, len))
423 		return -EFAULT;
424 
425 	if (mmap_read_lock_killable(mm))
426 		return -EIO;
427 
428 	while (len) {
429 		unsigned long tags, offset;
430 		void *maddr;
431 		struct page *page = NULL;
432 
433 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
434 					    &vma, NULL);
435 		if (ret <= 0)
436 			break;
437 
438 		/*
439 		 * Only copy tags if the page has been mapped as PROT_MTE
440 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
441 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
442 		 * would cause the existing tags to be cleared if the page
443 		 * was never mapped with PROT_MTE.
444 		 */
445 		if (!(vma->vm_flags & VM_MTE)) {
446 			ret = -EOPNOTSUPP;
447 			put_page(page);
448 			break;
449 		}
450 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
451 
452 		/* limit access to the end of the page */
453 		offset = offset_in_page(addr);
454 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
455 
456 		maddr = page_address(page);
457 		if (write) {
458 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
459 			set_page_dirty_lock(page);
460 		} else {
461 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
462 		}
463 		put_page(page);
464 
465 		/* error accessing the tracer's buffer */
466 		if (!tags)
467 			break;
468 
469 		len -= tags;
470 		buf += tags;
471 		addr += tags * MTE_GRANULE_SIZE;
472 	}
473 	mmap_read_unlock(mm);
474 
475 	/* return an error if no tags copied */
476 	kiov->iov_len = buf - kiov->iov_base;
477 	if (!kiov->iov_len) {
478 		/* check for error accessing the tracee's address space */
479 		if (ret <= 0)
480 			return -EIO;
481 		else
482 			return -EFAULT;
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
490  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
491  */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)492 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
493 			      struct iovec *kiov, unsigned int gup_flags)
494 {
495 	struct mm_struct *mm;
496 	int ret;
497 
498 	mm = get_task_mm(tsk);
499 	if (!mm)
500 		return -EPERM;
501 
502 	if (!tsk->ptrace || (current != tsk->parent) ||
503 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
504 	     !ptracer_capable(tsk, mm->user_ns))) {
505 		mmput(mm);
506 		return -EPERM;
507 	}
508 
509 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
510 	mmput(mm);
511 
512 	return ret;
513 }
514 
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)515 int mte_ptrace_copy_tags(struct task_struct *child, long request,
516 			 unsigned long addr, unsigned long data)
517 {
518 	int ret;
519 	struct iovec kiov;
520 	struct iovec __user *uiov = (void __user *)data;
521 	unsigned int gup_flags = FOLL_FORCE;
522 
523 	if (!system_supports_mte())
524 		return -EIO;
525 
526 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
527 	    get_user(kiov.iov_len, &uiov->iov_len))
528 		return -EFAULT;
529 
530 	if (request == PTRACE_POKEMTETAGS)
531 		gup_flags |= FOLL_WRITE;
532 
533 	/* align addr to the MTE tag granule */
534 	addr &= MTE_GRANULE_MASK;
535 
536 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
537 	if (!ret)
538 		ret = put_user(kiov.iov_len, &uiov->iov_len);
539 
540 	return ret;
541 }
542 
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)543 static ssize_t mte_tcf_preferred_show(struct device *dev,
544 				      struct device_attribute *attr, char *buf)
545 {
546 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
547 	case MTE_CTRL_TCF_ASYNC:
548 		return sysfs_emit(buf, "async\n");
549 	case MTE_CTRL_TCF_SYNC:
550 		return sysfs_emit(buf, "sync\n");
551 	case MTE_CTRL_TCF_ASYMM:
552 		return sysfs_emit(buf, "asymm\n");
553 	default:
554 		return sysfs_emit(buf, "???\n");
555 	}
556 }
557 
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)558 static ssize_t mte_tcf_preferred_store(struct device *dev,
559 				       struct device_attribute *attr,
560 				       const char *buf, size_t count)
561 {
562 	u64 tcf;
563 
564 	if (sysfs_streq(buf, "async"))
565 		tcf = MTE_CTRL_TCF_ASYNC;
566 	else if (sysfs_streq(buf, "sync"))
567 		tcf = MTE_CTRL_TCF_SYNC;
568 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
569 		tcf = MTE_CTRL_TCF_ASYMM;
570 	else
571 		return -EINVAL;
572 
573 	device_lock(dev);
574 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
575 	device_unlock(dev);
576 
577 	return count;
578 }
579 static DEVICE_ATTR_RW(mte_tcf_preferred);
580 
register_mte_tcf_preferred_sysctl(void)581 static int register_mte_tcf_preferred_sysctl(void)
582 {
583 	unsigned int cpu;
584 
585 	if (!system_supports_mte())
586 		return 0;
587 
588 	for_each_possible_cpu(cpu) {
589 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
590 		device_create_file(get_cpu_device(cpu),
591 				   &dev_attr_mte_tcf_preferred);
592 	}
593 
594 	return 0;
595 }
596 subsys_initcall(register_mte_tcf_preferred_sysctl);
597