• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
28 
29 #include "trace.h"
30 
31 struct kvm_stats_debugfs_item debugfs_entries[] = {
32 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
33 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
34 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
35 	VCPU_STAT("halt_wakeup", halt_wakeup),
36 	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
37 	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
38 	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
39 	VCPU_STAT("mmio_exit_user", mmio_exit_user),
40 	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
41 	VCPU_STAT("signal_exits", signal_exits),
42 	VCPU_STAT("exits", exits),
43 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
44 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45 	{ NULL }
46 };
47 
core_reg_offset_is_vreg(u64 off)48 static bool core_reg_offset_is_vreg(u64 off)
49 {
50 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
51 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
52 }
53 
core_reg_offset_from_id(u64 id)54 static u64 core_reg_offset_from_id(u64 id)
55 {
56 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
57 }
58 
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)59 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60 {
61 	int size;
62 
63 	switch (off) {
64 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
65 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
66 	case KVM_REG_ARM_CORE_REG(regs.sp):
67 	case KVM_REG_ARM_CORE_REG(regs.pc):
68 	case KVM_REG_ARM_CORE_REG(regs.pstate):
69 	case KVM_REG_ARM_CORE_REG(sp_el1):
70 	case KVM_REG_ARM_CORE_REG(elr_el1):
71 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
72 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
73 		size = sizeof(__u64);
74 		break;
75 
76 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
77 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
78 		size = sizeof(__uint128_t);
79 		break;
80 
81 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
82 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
83 		size = sizeof(__u32);
84 		break;
85 
86 	default:
87 		return -EINVAL;
88 	}
89 
90 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
91 		return -EINVAL;
92 
93 	/*
94 	 * The KVM_REG_ARM64_SVE regs must be used instead of
95 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
96 	 * SVE-enabled vcpus:
97 	 */
98 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
99 		return -EINVAL;
100 
101 	return size;
102 }
103 
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)104 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
105 {
106 	u64 off = core_reg_offset_from_id(reg->id);
107 	int size = core_reg_size_from_offset(vcpu, off);
108 
109 	if (size < 0)
110 		return NULL;
111 
112 	if (KVM_REG_SIZE(reg->id) != size)
113 		return NULL;
114 
115 	switch (off) {
116 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
117 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
118 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
119 		off /= 2;
120 		return &vcpu->arch.ctxt.regs.regs[off];
121 
122 	case KVM_REG_ARM_CORE_REG(regs.sp):
123 		return &vcpu->arch.ctxt.regs.sp;
124 
125 	case KVM_REG_ARM_CORE_REG(regs.pc):
126 		return &vcpu->arch.ctxt.regs.pc;
127 
128 	case KVM_REG_ARM_CORE_REG(regs.pstate):
129 		return &vcpu->arch.ctxt.regs.pstate;
130 
131 	case KVM_REG_ARM_CORE_REG(sp_el1):
132 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
133 
134 	case KVM_REG_ARM_CORE_REG(elr_el1):
135 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
136 
137 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
138 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
139 
140 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
141 		return &vcpu->arch.ctxt.spsr_abt;
142 
143 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
144 		return &vcpu->arch.ctxt.spsr_und;
145 
146 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
147 		return &vcpu->arch.ctxt.spsr_irq;
148 
149 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
150 		return &vcpu->arch.ctxt.spsr_fiq;
151 
152 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
153 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
154 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
155 		off /= 4;
156 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
157 
158 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
159 		return &vcpu->arch.ctxt.fp_regs.fpsr;
160 
161 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
162 		return &vcpu->arch.ctxt.fp_regs.fpcr;
163 
164 	default:
165 		return NULL;
166 	}
167 }
168 
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)169 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
170 {
171 	/*
172 	 * Because the kvm_regs structure is a mix of 32, 64 and
173 	 * 128bit fields, we index it as if it was a 32bit
174 	 * array. Hence below, nr_regs is the number of entries, and
175 	 * off the index in the "array".
176 	 */
177 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
178 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
179 	void *addr;
180 	u32 off;
181 
182 	/* Our ID is an index into the kvm_regs struct. */
183 	off = core_reg_offset_from_id(reg->id);
184 	if (off >= nr_regs ||
185 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
186 		return -ENOENT;
187 
188 	addr = core_reg_addr(vcpu, reg);
189 	if (!addr)
190 		return -EINVAL;
191 
192 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
193 		return -EFAULT;
194 
195 	return 0;
196 }
197 
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)198 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
199 {
200 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
201 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
202 	__uint128_t tmp;
203 	void *valp = &tmp, *addr;
204 	u64 off;
205 	int err = 0;
206 
207 	/* Our ID is an index into the kvm_regs struct. */
208 	off = core_reg_offset_from_id(reg->id);
209 	if (off >= nr_regs ||
210 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
211 		return -ENOENT;
212 
213 	addr = core_reg_addr(vcpu, reg);
214 	if (!addr)
215 		return -EINVAL;
216 
217 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
218 		return -EINVAL;
219 
220 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
221 		err = -EFAULT;
222 		goto out;
223 	}
224 
225 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
226 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
227 		switch (mode) {
228 		case PSR_AA32_MODE_USR:
229 			if (!kvm_supports_32bit_el0())
230 				return -EINVAL;
231 			break;
232 		case PSR_AA32_MODE_FIQ:
233 		case PSR_AA32_MODE_IRQ:
234 		case PSR_AA32_MODE_SVC:
235 		case PSR_AA32_MODE_ABT:
236 		case PSR_AA32_MODE_UND:
237 			if (!vcpu_el1_is_32bit(vcpu))
238 				return -EINVAL;
239 			break;
240 		case PSR_MODE_EL0t:
241 		case PSR_MODE_EL1t:
242 		case PSR_MODE_EL1h:
243 			if (vcpu_el1_is_32bit(vcpu))
244 				return -EINVAL;
245 			break;
246 		default:
247 			err = -EINVAL;
248 			goto out;
249 		}
250 	}
251 
252 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
253 
254 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
255 		int i, nr_reg;
256 
257 		switch (*vcpu_cpsr(vcpu)) {
258 		/*
259 		 * Either we are dealing with user mode, and only the
260 		 * first 15 registers (+ PC) must be narrowed to 32bit.
261 		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
262 		 */
263 		case PSR_AA32_MODE_USR:
264 		case PSR_AA32_MODE_SYS:
265 			nr_reg = 15;
266 			break;
267 
268 		/*
269 		 * Otherwide, this is a priviledged mode, and *all* the
270 		 * registers must be narrowed to 32bit.
271 		 */
272 		default:
273 			nr_reg = 31;
274 			break;
275 		}
276 
277 		for (i = 0; i < nr_reg; i++)
278 			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
279 
280 		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
281 	}
282 out:
283 	return err;
284 }
285 
286 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
287 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
288 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
289 
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)290 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
291 {
292 	unsigned int max_vq, vq;
293 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
294 
295 	if (!vcpu_has_sve(vcpu))
296 		return -ENOENT;
297 
298 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
299 		return -EINVAL;
300 
301 	memset(vqs, 0, sizeof(vqs));
302 
303 	max_vq = vcpu_sve_max_vq(vcpu);
304 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
305 		if (sve_vq_available(vq))
306 			vqs[vq_word(vq)] |= vq_mask(vq);
307 
308 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
309 		return -EFAULT;
310 
311 	return 0;
312 }
313 
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)314 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
315 {
316 	unsigned int max_vq, vq;
317 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
318 
319 	if (!vcpu_has_sve(vcpu))
320 		return -ENOENT;
321 
322 	if (kvm_arm_vcpu_sve_finalized(vcpu))
323 		return -EPERM; /* too late! */
324 
325 	if (WARN_ON(vcpu->arch.sve_state))
326 		return -EINVAL;
327 
328 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
329 		return -EFAULT;
330 
331 	max_vq = 0;
332 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
333 		if (vq_present(vqs, vq))
334 			max_vq = vq;
335 
336 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
337 		return -EINVAL;
338 
339 	/*
340 	 * Vector lengths supported by the host can't currently be
341 	 * hidden from the guest individually: instead we can only set a
342 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
343 	 * lengths match the set requested exactly up to the requested
344 	 * maximum:
345 	 */
346 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
347 		if (vq_present(vqs, vq) != sve_vq_available(vq))
348 			return -EINVAL;
349 
350 	/* Can't run with no vector lengths at all: */
351 	if (max_vq < SVE_VQ_MIN)
352 		return -EINVAL;
353 
354 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
355 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
356 
357 	return 0;
358 }
359 
360 #define SVE_REG_SLICE_SHIFT	0
361 #define SVE_REG_SLICE_BITS	5
362 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
363 #define SVE_REG_ID_BITS		5
364 
365 #define SVE_REG_SLICE_MASK					\
366 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
367 		SVE_REG_SLICE_SHIFT)
368 #define SVE_REG_ID_MASK							\
369 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
370 
371 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
372 
373 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
374 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
375 
376 /*
377  * Number of register slices required to cover each whole SVE register.
378  * NOTE: Only the first slice every exists, for now.
379  * If you are tempted to modify this, you must also rework sve_reg_to_region()
380  * to match:
381  */
382 #define vcpu_sve_slices(vcpu) 1
383 
384 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
385 struct sve_state_reg_region {
386 	unsigned int koffset;	/* offset into sve_state in kernel memory */
387 	unsigned int klen;	/* length in kernel memory */
388 	unsigned int upad;	/* extra trailing padding in user memory */
389 };
390 
391 /*
392  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
393  * register copy
394  */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)395 static int sve_reg_to_region(struct sve_state_reg_region *region,
396 			     struct kvm_vcpu *vcpu,
397 			     const struct kvm_one_reg *reg)
398 {
399 	/* reg ID ranges for Z- registers */
400 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
401 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
402 						       SVE_NUM_SLICES - 1);
403 
404 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
405 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
406 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
407 
408 	unsigned int vq;
409 	unsigned int reg_num;
410 
411 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
412 	unsigned int maxlen; /* Maximum permitted length */
413 
414 	size_t sve_state_size;
415 
416 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
417 							SVE_NUM_SLICES - 1);
418 
419 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
420 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
421 
422 	/* Verify that we match the UAPI header: */
423 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
424 
425 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
426 
427 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
428 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
429 			return -ENOENT;
430 
431 		vq = vcpu_sve_max_vq(vcpu);
432 
433 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
434 				SVE_SIG_REGS_OFFSET;
435 		reqlen = KVM_SVE_ZREG_SIZE;
436 		maxlen = SVE_SIG_ZREG_SIZE(vq);
437 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
438 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
439 			return -ENOENT;
440 
441 		vq = vcpu_sve_max_vq(vcpu);
442 
443 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
444 				SVE_SIG_REGS_OFFSET;
445 		reqlen = KVM_SVE_PREG_SIZE;
446 		maxlen = SVE_SIG_PREG_SIZE(vq);
447 	} else {
448 		return -EINVAL;
449 	}
450 
451 	sve_state_size = vcpu_sve_state_size(vcpu);
452 	if (WARN_ON(!sve_state_size))
453 		return -EINVAL;
454 
455 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
456 	region->klen = min(maxlen, reqlen);
457 	region->upad = reqlen - region->klen;
458 
459 	return 0;
460 }
461 
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)462 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
463 {
464 	int ret;
465 	struct sve_state_reg_region region;
466 	char __user *uptr = (char __user *)reg->addr;
467 
468 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
469 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
470 		return get_sve_vls(vcpu, reg);
471 
472 	/* Try to interpret reg ID as an architectural SVE register... */
473 	ret = sve_reg_to_region(&region, vcpu, reg);
474 	if (ret)
475 		return ret;
476 
477 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
478 		return -EPERM;
479 
480 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
481 			 region.klen) ||
482 	    clear_user(uptr + region.klen, region.upad))
483 		return -EFAULT;
484 
485 	return 0;
486 }
487 
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)488 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
489 {
490 	int ret;
491 	struct sve_state_reg_region region;
492 	const char __user *uptr = (const char __user *)reg->addr;
493 
494 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
495 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
496 		return set_sve_vls(vcpu, reg);
497 
498 	/* Try to interpret reg ID as an architectural SVE register... */
499 	ret = sve_reg_to_region(&region, vcpu, reg);
500 	if (ret)
501 		return ret;
502 
503 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
504 		return -EPERM;
505 
506 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
507 			   region.klen))
508 		return -EFAULT;
509 
510 	return 0;
511 }
512 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)513 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
514 {
515 	return -EINVAL;
516 }
517 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)518 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
519 {
520 	return -EINVAL;
521 }
522 
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)523 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
524 				 u64 __user *uindices)
525 {
526 	unsigned int i;
527 	int n = 0;
528 
529 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
530 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
531 		int size = core_reg_size_from_offset(vcpu, i);
532 
533 		if (size < 0)
534 			continue;
535 
536 		switch (size) {
537 		case sizeof(__u32):
538 			reg |= KVM_REG_SIZE_U32;
539 			break;
540 
541 		case sizeof(__u64):
542 			reg |= KVM_REG_SIZE_U64;
543 			break;
544 
545 		case sizeof(__uint128_t):
546 			reg |= KVM_REG_SIZE_U128;
547 			break;
548 
549 		default:
550 			WARN_ON(1);
551 			continue;
552 		}
553 
554 		if (uindices) {
555 			if (put_user(reg, uindices))
556 				return -EFAULT;
557 			uindices++;
558 		}
559 
560 		n++;
561 	}
562 
563 	return n;
564 }
565 
num_core_regs(const struct kvm_vcpu * vcpu)566 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
567 {
568 	return copy_core_reg_indices(vcpu, NULL);
569 }
570 
571 /**
572  * ARM64 versions of the TIMER registers, always available on arm64
573  */
574 
575 #define NUM_TIMER_REGS 3
576 
is_timer_reg(u64 index)577 static bool is_timer_reg(u64 index)
578 {
579 	switch (index) {
580 	case KVM_REG_ARM_TIMER_CTL:
581 	case KVM_REG_ARM_TIMER_CNT:
582 	case KVM_REG_ARM_TIMER_CVAL:
583 		return true;
584 	}
585 	return false;
586 }
587 
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)588 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
589 {
590 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
591 		return -EFAULT;
592 	uindices++;
593 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
594 		return -EFAULT;
595 	uindices++;
596 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
597 		return -EFAULT;
598 
599 	return 0;
600 }
601 
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)602 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
603 {
604 	void __user *uaddr = (void __user *)(long)reg->addr;
605 	u64 val;
606 	int ret;
607 
608 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
609 	if (ret != 0)
610 		return -EFAULT;
611 
612 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
613 }
614 
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)615 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
616 {
617 	void __user *uaddr = (void __user *)(long)reg->addr;
618 	u64 val;
619 
620 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
621 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
622 }
623 
num_sve_regs(const struct kvm_vcpu * vcpu)624 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
625 {
626 	const unsigned int slices = vcpu_sve_slices(vcpu);
627 
628 	if (!vcpu_has_sve(vcpu))
629 		return 0;
630 
631 	/* Policed by KVM_GET_REG_LIST: */
632 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
633 
634 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
635 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
636 }
637 
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)638 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
639 				u64 __user *uindices)
640 {
641 	const unsigned int slices = vcpu_sve_slices(vcpu);
642 	u64 reg;
643 	unsigned int i, n;
644 	int num_regs = 0;
645 
646 	if (!vcpu_has_sve(vcpu))
647 		return 0;
648 
649 	/* Policed by KVM_GET_REG_LIST: */
650 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
651 
652 	/*
653 	 * Enumerate this first, so that userspace can save/restore in
654 	 * the order reported by KVM_GET_REG_LIST:
655 	 */
656 	reg = KVM_REG_ARM64_SVE_VLS;
657 	if (put_user(reg, uindices++))
658 		return -EFAULT;
659 	++num_regs;
660 
661 	for (i = 0; i < slices; i++) {
662 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
663 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
664 			if (put_user(reg, uindices++))
665 				return -EFAULT;
666 			num_regs++;
667 		}
668 
669 		for (n = 0; n < SVE_NUM_PREGS; n++) {
670 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
671 			if (put_user(reg, uindices++))
672 				return -EFAULT;
673 			num_regs++;
674 		}
675 
676 		reg = KVM_REG_ARM64_SVE_FFR(i);
677 		if (put_user(reg, uindices++))
678 			return -EFAULT;
679 		num_regs++;
680 	}
681 
682 	return num_regs;
683 }
684 
685 /**
686  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
687  *
688  * This is for all registers.
689  */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)690 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
691 {
692 	unsigned long res = 0;
693 
694 	res += num_core_regs(vcpu);
695 	res += num_sve_regs(vcpu);
696 	res += kvm_arm_num_sys_reg_descs(vcpu);
697 	res += kvm_arm_get_fw_num_regs(vcpu);
698 	res += NUM_TIMER_REGS;
699 
700 	return res;
701 }
702 
703 /**
704  * kvm_arm_copy_reg_indices - get indices of all registers.
705  *
706  * We do core registers right here, then we append system regs.
707  */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)708 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
709 {
710 	int ret;
711 
712 	ret = copy_core_reg_indices(vcpu, uindices);
713 	if (ret < 0)
714 		return ret;
715 	uindices += ret;
716 
717 	ret = copy_sve_reg_indices(vcpu, uindices);
718 	if (ret < 0)
719 		return ret;
720 	uindices += ret;
721 
722 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
723 	if (ret < 0)
724 		return ret;
725 	uindices += kvm_arm_get_fw_num_regs(vcpu);
726 
727 	ret = copy_timer_indices(vcpu, uindices);
728 	if (ret < 0)
729 		return ret;
730 	uindices += NUM_TIMER_REGS;
731 
732 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
733 }
734 
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)735 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
736 {
737 	/* We currently use nothing arch-specific in upper 32 bits */
738 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
739 		return -EINVAL;
740 
741 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
742 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
743 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
744 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
745 	}
746 
747 	if (is_timer_reg(reg->id))
748 		return get_timer_reg(vcpu, reg);
749 
750 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
751 }
752 
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)753 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
754 {
755 	/* We currently use nothing arch-specific in upper 32 bits */
756 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
757 		return -EINVAL;
758 
759 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
760 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
761 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
762 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
763 	}
764 
765 	if (is_timer_reg(reg->id))
766 		return set_timer_reg(vcpu, reg);
767 
768 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
769 }
770 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)771 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
772 				  struct kvm_sregs *sregs)
773 {
774 	return -EINVAL;
775 }
776 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)777 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
778 				  struct kvm_sregs *sregs)
779 {
780 	return -EINVAL;
781 }
782 
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)783 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
784 			      struct kvm_vcpu_events *events)
785 {
786 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
787 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
788 
789 	if (events->exception.serror_pending && events->exception.serror_has_esr)
790 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
791 
792 	/*
793 	 * We never return a pending ext_dabt here because we deliver it to
794 	 * the virtual CPU directly when setting the event and it's no longer
795 	 * 'pending' at this point.
796 	 */
797 
798 	return 0;
799 }
800 
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)801 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
802 			      struct kvm_vcpu_events *events)
803 {
804 	bool serror_pending = events->exception.serror_pending;
805 	bool has_esr = events->exception.serror_has_esr;
806 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
807 
808 	if (serror_pending && has_esr) {
809 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
810 			return -EINVAL;
811 
812 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
813 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
814 		else
815 			return -EINVAL;
816 	} else if (serror_pending) {
817 		kvm_inject_vabt(vcpu);
818 	}
819 
820 	if (ext_dabt_pending)
821 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
822 
823 	return 0;
824 }
825 
kvm_target_cpu(void)826 u32 __attribute_const__ kvm_target_cpu(void)
827 {
828 	unsigned long implementor = read_cpuid_implementor();
829 	unsigned long part_number = read_cpuid_part_number();
830 
831 	switch (implementor) {
832 	case ARM_CPU_IMP_ARM:
833 		switch (part_number) {
834 		case ARM_CPU_PART_AEM_V8:
835 			return KVM_ARM_TARGET_AEM_V8;
836 		case ARM_CPU_PART_FOUNDATION:
837 			return KVM_ARM_TARGET_FOUNDATION_V8;
838 		case ARM_CPU_PART_CORTEX_A53:
839 			return KVM_ARM_TARGET_CORTEX_A53;
840 		case ARM_CPU_PART_CORTEX_A57:
841 			return KVM_ARM_TARGET_CORTEX_A57;
842 		}
843 		break;
844 	case ARM_CPU_IMP_APM:
845 		switch (part_number) {
846 		case APM_CPU_PART_POTENZA:
847 			return KVM_ARM_TARGET_XGENE_POTENZA;
848 		}
849 		break;
850 	}
851 
852 	/* Return a default generic target */
853 	return KVM_ARM_TARGET_GENERIC_V8;
854 }
855 
kvm_vcpu_preferred_target(struct kvm_vcpu_init * init)856 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
857 {
858 	u32 target = kvm_target_cpu();
859 
860 	memset(init, 0, sizeof(*init));
861 
862 	/*
863 	 * For now, we don't return any features.
864 	 * In future, we might use features to return target
865 	 * specific features available for the preferred
866 	 * target type.
867 	 */
868 	init->target = (__u32)target;
869 }
870 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)871 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
872 {
873 	return -EINVAL;
874 }
875 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)876 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
877 {
878 	return -EINVAL;
879 }
880 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)881 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
882 				  struct kvm_translation *tr)
883 {
884 	return -EINVAL;
885 }
886 
887 /**
888  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
889  * @kvm:	pointer to the KVM struct
890  * @kvm_guest_debug: the ioctl data buffer
891  *
892  * This sets up and enables the VM for guest debugging. Userspace
893  * passes in a control flag to enable different debug types and
894  * potentially other architecture specific information in the rest of
895  * the structure.
896  */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)897 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
898 					struct kvm_guest_debug *dbg)
899 {
900 	int ret = 0;
901 
902 	trace_kvm_set_guest_debug(vcpu, dbg->control);
903 
904 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
905 		ret = -EINVAL;
906 		goto out;
907 	}
908 
909 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
910 		vcpu->guest_debug = dbg->control;
911 
912 		/* Hardware assisted Break and Watch points */
913 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
914 			vcpu->arch.external_debug_state = dbg->arch;
915 		}
916 
917 	} else {
918 		/* If not enabled clear all flags */
919 		vcpu->guest_debug = 0;
920 	}
921 
922 out:
923 	return ret;
924 }
925 
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)926 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
927 			       struct kvm_device_attr *attr)
928 {
929 	int ret;
930 
931 	switch (attr->group) {
932 	case KVM_ARM_VCPU_PMU_V3_CTRL:
933 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
934 		break;
935 	case KVM_ARM_VCPU_TIMER_CTRL:
936 		ret = kvm_arm_timer_set_attr(vcpu, attr);
937 		break;
938 	case KVM_ARM_VCPU_PVTIME_CTRL:
939 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
940 		break;
941 	default:
942 		ret = -ENXIO;
943 		break;
944 	}
945 
946 	return ret;
947 }
948 
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)949 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
950 			       struct kvm_device_attr *attr)
951 {
952 	int ret;
953 
954 	switch (attr->group) {
955 	case KVM_ARM_VCPU_PMU_V3_CTRL:
956 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
957 		break;
958 	case KVM_ARM_VCPU_TIMER_CTRL:
959 		ret = kvm_arm_timer_get_attr(vcpu, attr);
960 		break;
961 	case KVM_ARM_VCPU_PVTIME_CTRL:
962 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
963 		break;
964 	default:
965 		ret = -ENXIO;
966 		break;
967 	}
968 
969 	return ret;
970 }
971 
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)972 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
973 			       struct kvm_device_attr *attr)
974 {
975 	int ret;
976 
977 	switch (attr->group) {
978 	case KVM_ARM_VCPU_PMU_V3_CTRL:
979 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
980 		break;
981 	case KVM_ARM_VCPU_TIMER_CTRL:
982 		ret = kvm_arm_timer_has_attr(vcpu, attr);
983 		break;
984 	case KVM_ARM_VCPU_PVTIME_CTRL:
985 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
986 		break;
987 	default:
988 		ret = -ENXIO;
989 		break;
990 	}
991 
992 	return ret;
993 }
994 
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)995 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
996 			       struct kvm_arm_copy_mte_tags *copy_tags)
997 {
998 	gpa_t guest_ipa = copy_tags->guest_ipa;
999 	size_t length = copy_tags->length;
1000 	void __user *tags = copy_tags->addr;
1001 	gpa_t gfn;
1002 	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1003 	int ret = 0;
1004 
1005 	if (!kvm_has_mte(kvm))
1006 		return -EINVAL;
1007 
1008 	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1009 		return -EINVAL;
1010 
1011 	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1012 		return -EINVAL;
1013 
1014 	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1015 		return -EINVAL;
1016 
1017 	/* Lengths above INT_MAX cannot be represented in the return value */
1018 	if (length > INT_MAX)
1019 		return -EINVAL;
1020 
1021 	gfn = gpa_to_gfn(guest_ipa);
1022 
1023 	mutex_lock(&kvm->slots_lock);
1024 
1025 	while (length > 0) {
1026 		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1027 		void *maddr;
1028 		unsigned long num_tags;
1029 		struct page *page;
1030 
1031 		if (is_error_noslot_pfn(pfn)) {
1032 			ret = -EFAULT;
1033 			goto out;
1034 		}
1035 
1036 		page = pfn_to_online_page(pfn);
1037 		if (!page) {
1038 			/* Reject ZONE_DEVICE memory */
1039 			ret = -EFAULT;
1040 			goto out;
1041 		}
1042 		maddr = page_address(page);
1043 
1044 		if (!write) {
1045 			if (test_bit(PG_mte_tagged, &page->flags))
1046 				num_tags = mte_copy_tags_to_user(tags, maddr,
1047 							MTE_GRANULES_PER_PAGE);
1048 			else
1049 				/* No tags in memory, so write zeros */
1050 				num_tags = MTE_GRANULES_PER_PAGE -
1051 					clear_user(tags, MTE_GRANULES_PER_PAGE);
1052 			kvm_release_pfn_clean(pfn);
1053 		} else {
1054 			num_tags = mte_copy_tags_from_user(maddr, tags,
1055 							MTE_GRANULES_PER_PAGE);
1056 
1057 			/*
1058 			 * Set the flag after checking the write
1059 			 * completed fully
1060 			 */
1061 			if (num_tags == MTE_GRANULES_PER_PAGE)
1062 				set_bit(PG_mte_tagged, &page->flags);
1063 
1064 			kvm_release_pfn_dirty(pfn);
1065 		}
1066 
1067 		if (num_tags != MTE_GRANULES_PER_PAGE) {
1068 			ret = -EFAULT;
1069 			goto out;
1070 		}
1071 
1072 		gfn++;
1073 		tags += num_tags;
1074 		length -= PAGE_SIZE;
1075 	}
1076 
1077 out:
1078 	mutex_unlock(&kvm->slots_lock);
1079 	/* If some data has been copied report the number of bytes copied */
1080 	if (length != copy_tags->length)
1081 		return copy_tags->length - length;
1082 	return ret;
1083 }
1084