• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 	++kvm->stat.remote_tlb_flush;
85 }
86 
kvm_is_device_pfn(unsigned long pfn)87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 	return !pfn_valid(pfn);
90 }
91 
stage2_memcache_zalloc_page(void * arg)92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 	struct kvm_mmu_memory_cache *mc = arg;
95 
96 	/* Allocated with __GFP_ZERO, so no need to zero */
97 	return kvm_mmu_memory_cache_alloc(mc);
98 }
99 
kvm_host_zalloc_pages_exact(size_t size)100 static void *kvm_host_zalloc_pages_exact(size_t size)
101 {
102 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
103 }
104 
kvm_host_get_page(void * addr)105 static void kvm_host_get_page(void *addr)
106 {
107 	get_page(virt_to_page(addr));
108 }
109 
kvm_host_put_page(void * addr)110 static void kvm_host_put_page(void *addr)
111 {
112 	put_page(virt_to_page(addr));
113 }
114 
kvm_host_page_count(void * addr)115 static int kvm_host_page_count(void *addr)
116 {
117 	return page_count(virt_to_page(addr));
118 }
119 
kvm_host_pa(void * addr)120 static phys_addr_t kvm_host_pa(void *addr)
121 {
122 	return __pa(addr);
123 }
124 
kvm_host_va(phys_addr_t phys)125 static void *kvm_host_va(phys_addr_t phys)
126 {
127 	return __va(phys);
128 }
129 
clean_dcache_guest_page(void * va,size_t size)130 static void clean_dcache_guest_page(void *va, size_t size)
131 {
132 	__clean_dcache_guest_page(va, size);
133 }
134 
invalidate_icache_guest_page(void * va,size_t size)135 static void invalidate_icache_guest_page(void *va, size_t size)
136 {
137 	__invalidate_icache_guest_page(va, size);
138 }
139 
140 /*
141  * Unmapping vs dcache management:
142  *
143  * If a guest maps certain memory pages as uncached, all writes will
144  * bypass the data cache and go directly to RAM.  However, the CPUs
145  * can still speculate reads (not writes) and fill cache lines with
146  * data.
147  *
148  * Those cache lines will be *clean* cache lines though, so a
149  * clean+invalidate operation is equivalent to an invalidate
150  * operation, because no cache lines are marked dirty.
151  *
152  * Those clean cache lines could be filled prior to an uncached write
153  * by the guest, and the cache coherent IO subsystem would therefore
154  * end up writing old data to disk.
155  *
156  * This is why right after unmapping a page/section and invalidating
157  * the corresponding TLBs, we flush to make sure the IO subsystem will
158  * never hit in the cache.
159  *
160  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
161  * we then fully enforce cacheability of RAM, no matter what the guest
162  * does.
163  */
164 /**
165  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
166  * @mmu:   The KVM stage-2 MMU pointer
167  * @start: The intermediate physical base address of the range to unmap
168  * @size:  The size of the area to unmap
169  * @may_block: Whether or not we are permitted to block
170  *
171  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
172  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
173  * destroying the VM), otherwise another faulting VCPU may come in and mess
174  * with things behind our backs.
175  */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
177 				 bool may_block)
178 {
179 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
180 	phys_addr_t end = start + size;
181 
182 	assert_spin_locked(&kvm->mmu_lock);
183 	WARN_ON(size & ~PAGE_MASK);
184 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
185 				   may_block));
186 }
187 
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
189 {
190 	__unmap_stage2_range(mmu, start, size, true);
191 }
192 
pkvm_stage2_flush(struct kvm * kvm)193 static void pkvm_stage2_flush(struct kvm *kvm)
194 {
195 	struct kvm_pinned_page *ppage;
196 
197 	/*
198 	 * Contrary to stage2_apply_range(), we don't need to check
199 	 * whether the VM is being torn down, as this is always called
200 	 * from a vcpu thread, and the list is only ever freed on VM
201 	 * destroy (which only occurs when all vcpu are gone).
202 	 */
203 	list_for_each_entry(ppage, &kvm->arch.pkvm.pinned_pages, link) {
204 		__clean_dcache_guest_page(page_address(ppage->page), PAGE_SIZE);
205 		cond_resched_lock(&kvm->mmu_lock);
206 	}
207 }
208 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)209 static void stage2_flush_memslot(struct kvm *kvm,
210 				 struct kvm_memory_slot *memslot)
211 {
212 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
213 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
214 
215 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
216 }
217 
218 /**
219  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
220  * @kvm: The struct kvm pointer
221  *
222  * Go through the stage 2 page tables and invalidate any cache lines
223  * backing memory already mapped to the VM.
224  */
stage2_flush_vm(struct kvm * kvm)225 static void stage2_flush_vm(struct kvm *kvm)
226 {
227 	struct kvm_memslots *slots;
228 	struct kvm_memory_slot *memslot;
229 	int idx;
230 
231 	idx = srcu_read_lock(&kvm->srcu);
232 	spin_lock(&kvm->mmu_lock);
233 
234 	if (!is_protected_kvm_enabled()) {
235 		slots = kvm_memslots(kvm);
236 		kvm_for_each_memslot(memslot, slots)
237 			stage2_flush_memslot(kvm, memslot);
238 	} else if (!kvm_vm_is_protected(kvm)) {
239 		pkvm_stage2_flush(kvm);
240 	}
241 
242 	spin_unlock(&kvm->mmu_lock);
243 	srcu_read_unlock(&kvm->srcu, idx);
244 }
245 
246 /**
247  * free_hyp_pgds - free Hyp-mode page tables
248  */
free_hyp_pgds(void)249 void free_hyp_pgds(void)
250 {
251 	mutex_lock(&kvm_hyp_pgd_mutex);
252 	if (hyp_pgtable) {
253 		kvm_pgtable_hyp_destroy(hyp_pgtable);
254 		kfree(hyp_pgtable);
255 		hyp_pgtable = NULL;
256 	}
257 	mutex_unlock(&kvm_hyp_pgd_mutex);
258 }
259 
kvm_host_owns_hyp_mappings(void)260 static bool kvm_host_owns_hyp_mappings(void)
261 {
262 	if (is_kernel_in_hyp_mode())
263 		return false;
264 
265 	if (static_branch_likely(&kvm_protected_mode_initialized))
266 		return false;
267 
268 	/*
269 	 * This can happen at boot time when __create_hyp_mappings() is called
270 	 * after the hyp protection has been enabled, but the static key has
271 	 * not been flipped yet.
272 	 */
273 	if (!hyp_pgtable && is_protected_kvm_enabled())
274 		return false;
275 
276 	WARN_ON(!hyp_pgtable);
277 
278 	return true;
279 }
280 
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)281 static int __create_hyp_mappings(unsigned long start, unsigned long size,
282 				 unsigned long phys, enum kvm_pgtable_prot prot)
283 {
284 	int err;
285 
286 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
287 		return -EINVAL;
288 
289 	mutex_lock(&kvm_hyp_pgd_mutex);
290 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
291 	mutex_unlock(&kvm_hyp_pgd_mutex);
292 
293 	return err;
294 }
295 
kvm_kaddr_to_phys(void * kaddr)296 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
297 {
298 	if (!is_vmalloc_addr(kaddr)) {
299 		BUG_ON(!virt_addr_valid(kaddr));
300 		return __pa(kaddr);
301 	} else {
302 		return page_to_phys(vmalloc_to_page(kaddr)) +
303 		       offset_in_page(kaddr);
304 	}
305 }
306 
307 struct hyp_shared_pfn {
308 	u64 pfn;
309 	int count;
310 	struct rb_node node;
311 };
312 
313 static DEFINE_MUTEX(hyp_shared_pfns_lock);
314 static struct rb_root hyp_shared_pfns = RB_ROOT;
315 
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)316 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
317 					      struct rb_node **parent)
318 {
319 	struct hyp_shared_pfn *this;
320 
321 	*node = &hyp_shared_pfns.rb_node;
322 	*parent = NULL;
323 	while (**node) {
324 		this = container_of(**node, struct hyp_shared_pfn, node);
325 		*parent = **node;
326 		if (this->pfn < pfn)
327 			*node = &((**node)->rb_left);
328 		else if (this->pfn > pfn)
329 			*node = &((**node)->rb_right);
330 		else
331 			return this;
332 	}
333 
334 	return NULL;
335 }
336 
share_pfn_hyp(u64 pfn)337 static int share_pfn_hyp(u64 pfn)
338 {
339 	struct rb_node **node, *parent;
340 	struct hyp_shared_pfn *this;
341 	int ret = 0;
342 
343 	mutex_lock(&hyp_shared_pfns_lock);
344 	this = find_shared_pfn(pfn, &node, &parent);
345 	if (this) {
346 		this->count++;
347 		goto unlock;
348 	}
349 
350 	this = kzalloc(sizeof(*this), GFP_KERNEL);
351 	if (!this) {
352 		ret = -ENOMEM;
353 		goto unlock;
354 	}
355 
356 	this->pfn = pfn;
357 	this->count = 1;
358 	rb_link_node(&this->node, parent, node);
359 	rb_insert_color(&this->node, &hyp_shared_pfns);
360 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
361 unlock:
362 	mutex_unlock(&hyp_shared_pfns_lock);
363 
364 	return ret;
365 }
366 
unshare_pfn_hyp(u64 pfn)367 static int unshare_pfn_hyp(u64 pfn)
368 {
369 	struct rb_node **node, *parent;
370 	struct hyp_shared_pfn *this;
371 	int ret = 0;
372 
373 	mutex_lock(&hyp_shared_pfns_lock);
374 	this = find_shared_pfn(pfn, &node, &parent);
375 	if (WARN_ON(!this)) {
376 		ret = -ENOENT;
377 		goto unlock;
378 	}
379 
380 	this->count--;
381 	if (this->count)
382 		goto unlock;
383 
384 	rb_erase(&this->node, &hyp_shared_pfns);
385 	kfree(this);
386 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
387 unlock:
388 	mutex_unlock(&hyp_shared_pfns_lock);
389 
390 	return ret;
391 }
392 
kvm_share_hyp(void * from,void * to)393 int kvm_share_hyp(void *from, void *to)
394 {
395 	phys_addr_t start, end, cur;
396 	u64 pfn;
397 	int ret;
398 
399 	if (is_kernel_in_hyp_mode())
400 		return 0;
401 
402 	/*
403 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
404 	 * VA space, so we can only share physically contiguous data-structures
405 	 * for now.
406 	 */
407 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
408 		return -EINVAL;
409 
410 	if (kvm_host_owns_hyp_mappings())
411 		return create_hyp_mappings(from, to, PAGE_HYP);
412 
413 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
414 	end = PAGE_ALIGN(__pa(to));
415 	for (cur = start; cur < end; cur += PAGE_SIZE) {
416 		pfn = __phys_to_pfn(cur);
417 		ret = share_pfn_hyp(pfn);
418 		if (ret)
419 			return ret;
420 	}
421 
422 	return 0;
423 }
424 
kvm_unshare_hyp(void * from,void * to)425 void kvm_unshare_hyp(void *from, void *to)
426 {
427 	phys_addr_t start, end, cur;
428 	u64 pfn;
429 
430 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
431 		return;
432 
433 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
434 	end = PAGE_ALIGN(__pa(to));
435 	for (cur = start; cur < end; cur += PAGE_SIZE) {
436 		pfn = __phys_to_pfn(cur);
437 		WARN_ON(unshare_pfn_hyp(pfn));
438 	}
439 }
440 
441 /**
442  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
443  * @from:	The virtual kernel start address of the range
444  * @to:		The virtual kernel end address of the range (exclusive)
445  * @prot:	The protection to be applied to this range
446  *
447  * The same virtual address as the kernel virtual address is also used
448  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
449  * physical pages.
450  */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)451 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
452 {
453 	phys_addr_t phys_addr;
454 	unsigned long virt_addr;
455 	unsigned long start = kern_hyp_va((unsigned long)from);
456 	unsigned long end = kern_hyp_va((unsigned long)to);
457 
458 	if (is_kernel_in_hyp_mode())
459 		return 0;
460 
461 	if (!kvm_host_owns_hyp_mappings())
462 		return -EPERM;
463 
464 	start = start & PAGE_MASK;
465 	end = PAGE_ALIGN(end);
466 
467 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
468 		int err;
469 
470 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
471 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
472 					    prot);
473 		if (err)
474 			return err;
475 	}
476 
477 	return 0;
478 }
479 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)480 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
481 					unsigned long *haddr,
482 					enum kvm_pgtable_prot prot)
483 {
484 	unsigned long base;
485 	int ret = 0;
486 
487 	if (!kvm_host_owns_hyp_mappings()) {
488 		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
489 					 phys_addr, size, prot);
490 		if (IS_ERR_OR_NULL((void *)base))
491 			return PTR_ERR((void *)base);
492 		*haddr = base;
493 
494 		return 0;
495 	}
496 
497 	mutex_lock(&kvm_hyp_pgd_mutex);
498 
499 	/*
500 	 * This assumes that we have enough space below the idmap
501 	 * page to allocate our VAs. If not, the check below will
502 	 * kick. A potential alternative would be to detect that
503 	 * overflow and switch to an allocation above the idmap.
504 	 *
505 	 * The allocated size is always a multiple of PAGE_SIZE.
506 	 */
507 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
508 	base = io_map_base - size;
509 
510 	/*
511 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
512 	 * allocating the new area, as it would indicate we've
513 	 * overflowed the idmap/IO address range.
514 	 */
515 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
516 		ret = -ENOMEM;
517 	else
518 		io_map_base = base;
519 
520 	mutex_unlock(&kvm_hyp_pgd_mutex);
521 
522 	if (ret)
523 		goto out;
524 
525 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
526 	if (ret)
527 		goto out;
528 
529 	*haddr = base + offset_in_page(phys_addr);
530 out:
531 	return ret;
532 }
533 
534 /**
535  * create_hyp_io_mappings - Map IO into both kernel and HYP
536  * @phys_addr:	The physical start address which gets mapped
537  * @size:	Size of the region being mapped
538  * @kaddr:	Kernel VA for this mapping
539  * @haddr:	HYP VA for this mapping
540  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)541 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
542 			   void __iomem **kaddr,
543 			   void __iomem **haddr)
544 {
545 	unsigned long addr;
546 	int ret;
547 
548 	if (is_protected_kvm_enabled())
549 		return -EPERM;
550 
551 	*kaddr = ioremap(phys_addr, size);
552 	if (!*kaddr)
553 		return -ENOMEM;
554 
555 	if (is_kernel_in_hyp_mode()) {
556 		*haddr = *kaddr;
557 		return 0;
558 	}
559 
560 	ret = __create_hyp_private_mapping(phys_addr, size,
561 					   &addr, PAGE_HYP_DEVICE);
562 	if (ret) {
563 		iounmap(*kaddr);
564 		*kaddr = NULL;
565 		*haddr = NULL;
566 		return ret;
567 	}
568 
569 	*haddr = (void __iomem *)addr;
570 	return 0;
571 }
572 
573 /**
574  * create_hyp_exec_mappings - Map an executable range into HYP
575  * @phys_addr:	The physical start address which gets mapped
576  * @size:	Size of the region being mapped
577  * @haddr:	HYP VA for this mapping
578  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)579 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
580 			     void **haddr)
581 {
582 	unsigned long addr;
583 	int ret;
584 
585 	BUG_ON(is_kernel_in_hyp_mode());
586 
587 	ret = __create_hyp_private_mapping(phys_addr, size,
588 					   &addr, PAGE_HYP_EXEC);
589 	if (ret) {
590 		*haddr = NULL;
591 		return ret;
592 	}
593 
594 	*haddr = (void *)addr;
595 	return 0;
596 }
597 
598 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
599 	/* We shouldn't need any other callback to walk the PT */
600 	.phys_to_virt		= kvm_host_va,
601 };
602 
get_user_mapping_size(struct kvm * kvm,u64 addr)603 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
604 {
605 	struct kvm_pgtable pgt = {
606 		.pgd		= (kvm_pte_t *)kvm->mm->pgd,
607 		.ia_bits	= vabits_actual,
608 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
609 				   CONFIG_PGTABLE_LEVELS),
610 		.mm_ops		= &kvm_user_mm_ops,
611 	};
612 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
613 	u32 level = ~0;
614 	int ret;
615 
616 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
617 	VM_BUG_ON(ret);
618 	VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
619 	VM_BUG_ON(!(pte & PTE_VALID));
620 
621 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
622 }
623 
624 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
625 	.zalloc_page		= stage2_memcache_zalloc_page,
626 	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
627 	.free_pages_exact	= free_pages_exact,
628 	.get_page		= kvm_host_get_page,
629 	.put_page		= kvm_host_put_page,
630 	.page_count		= kvm_host_page_count,
631 	.phys_to_virt		= kvm_host_va,
632 	.virt_to_phys		= kvm_host_pa,
633 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
634 	.icache_inval_pou	= invalidate_icache_guest_page,
635 };
636 
637 /**
638  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
639  * @kvm:	The pointer to the KVM structure
640  * @mmu:	The pointer to the s2 MMU structure
641  * @type:	The machine type of the virtual machine
642  *
643  * Allocates only the stage-2 HW PGD level table(s).
644  * Note we don't need locking here as this is only called when the VM is
645  * created, which can only be done once.
646  */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)647 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
648 {
649 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
650 	int cpu, err;
651 	struct kvm_pgtable *pgt;
652 	u64 mmfr0, mmfr1;
653 	u32 phys_shift;
654 
655 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
656 	if (is_protected_kvm_enabled()) {
657 		phys_shift = kvm_ipa_limit;
658 	} else if (phys_shift) {
659 		if (phys_shift > kvm_ipa_limit ||
660 		    phys_shift < ARM64_MIN_PARANGE_BITS)
661 			return -EINVAL;
662 	} else {
663 		phys_shift = KVM_PHYS_SHIFT;
664 		if (phys_shift > kvm_ipa_limit) {
665 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
666 				     current->comm);
667 			return -EINVAL;
668 		}
669 	}
670 
671 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
672 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
673 	kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
674 	INIT_LIST_HEAD(&kvm->arch.pkvm.pinned_pages);
675 	mmu->arch = &kvm->arch;
676 
677 	if (is_protected_kvm_enabled())
678 		return 0;
679 
680 	if (mmu->pgt != NULL) {
681 		kvm_err("kvm_arch already initialized?\n");
682 		return -EINVAL;
683 	}
684 
685 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
686 	if (!pgt)
687 		return -ENOMEM;
688 
689 	mmu->arch = &kvm->arch;
690 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
691 	if (err)
692 		goto out_free_pgtable;
693 
694 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
695 	if (!mmu->last_vcpu_ran) {
696 		err = -ENOMEM;
697 		goto out_destroy_pgtable;
698 	}
699 
700 	for_each_possible_cpu(cpu)
701 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
702 
703 	mmu->pgt = pgt;
704 	mmu->pgd_phys = __pa(pgt->pgd);
705 	WRITE_ONCE(mmu->vmid.vmid_gen, 0);
706 	return 0;
707 
708 out_destroy_pgtable:
709 	kvm_pgtable_stage2_destroy(pgt);
710 out_free_pgtable:
711 	kfree(pgt);
712 	return err;
713 }
714 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)715 static void stage2_unmap_memslot(struct kvm *kvm,
716 				 struct kvm_memory_slot *memslot)
717 {
718 	hva_t hva = memslot->userspace_addr;
719 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
720 	phys_addr_t size = PAGE_SIZE * memslot->npages;
721 	hva_t reg_end = hva + size;
722 
723 	/*
724 	 * A memory region could potentially cover multiple VMAs, and any holes
725 	 * between them, so iterate over all of them to find out if we should
726 	 * unmap any of them.
727 	 *
728 	 *     +--------------------------------------------+
729 	 * +---------------+----------------+   +----------------+
730 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
731 	 * +---------------+----------------+   +----------------+
732 	 *     |               memory region                |
733 	 *     +--------------------------------------------+
734 	 */
735 	do {
736 		struct vm_area_struct *vma;
737 		hva_t vm_start, vm_end;
738 
739 		vma = find_vma_intersection(current->mm, hva, reg_end);
740 		if (!vma)
741 			break;
742 
743 		/*
744 		 * Take the intersection of this VMA with the memory region
745 		 */
746 		vm_start = max(hva, vma->vm_start);
747 		vm_end = min(reg_end, vma->vm_end);
748 
749 		if (!(vma->vm_flags & VM_PFNMAP)) {
750 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
751 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
752 		}
753 		hva = vm_end;
754 	} while (hva < reg_end);
755 }
756 
757 /**
758  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
759  * @kvm: The struct kvm pointer
760  *
761  * Go through the memregions and unmap any regular RAM
762  * backing memory already mapped to the VM.
763  */
stage2_unmap_vm(struct kvm * kvm)764 void stage2_unmap_vm(struct kvm *kvm)
765 {
766 	struct kvm_memslots *slots;
767 	struct kvm_memory_slot *memslot;
768 	int idx;
769 
770 	idx = srcu_read_lock(&kvm->srcu);
771 	mmap_read_lock(current->mm);
772 	spin_lock(&kvm->mmu_lock);
773 
774 	slots = kvm_memslots(kvm);
775 	kvm_for_each_memslot(memslot, slots)
776 		stage2_unmap_memslot(kvm, memslot);
777 
778 	spin_unlock(&kvm->mmu_lock);
779 	mmap_read_unlock(current->mm);
780 	srcu_read_unlock(&kvm->srcu, idx);
781 }
782 
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)783 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
784 {
785 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
786 	struct kvm_pgtable *pgt = NULL;
787 
788 	if (is_protected_kvm_enabled())
789 		return;
790 
791 	spin_lock(&kvm->mmu_lock);
792 	pgt = mmu->pgt;
793 	if (pgt) {
794 		mmu->pgd_phys = 0;
795 		mmu->pgt = NULL;
796 		free_percpu(mmu->last_vcpu_ran);
797 	}
798 	spin_unlock(&kvm->mmu_lock);
799 
800 	if (pgt) {
801 		kvm_pgtable_stage2_destroy(pgt);
802 		kfree(pgt);
803 	}
804 }
805 
hyp_mc_free_fn(void * addr,void * unused)806 static void hyp_mc_free_fn(void *addr, void *unused)
807 {
808 	free_page((unsigned long)addr);
809 }
810 
hyp_mc_alloc_fn(void * unused)811 static void *hyp_mc_alloc_fn(void *unused)
812 {
813 	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
814 }
815 
free_hyp_memcache(struct kvm_hyp_memcache * mc)816 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
817 {
818 	if (is_protected_kvm_enabled())
819 		__free_hyp_memcache(mc, hyp_mc_free_fn,
820 				    kvm_host_va, NULL);
821 }
822 
topup_hyp_memcache(struct kvm_vcpu * vcpu)823 int topup_hyp_memcache(struct kvm_vcpu *vcpu)
824 {
825 	if (!is_protected_kvm_enabled())
826 		return 0;
827 
828 	return __topup_hyp_memcache(&vcpu->arch.pkvm_memcache,
829 				    kvm_mmu_cache_min_pages(vcpu->kvm),
830 				    hyp_mc_alloc_fn,
831 				    kvm_host_pa, NULL);
832 }
833 
834 /**
835  * kvm_phys_addr_ioremap - map a device range to guest IPA
836  *
837  * @kvm:	The KVM pointer
838  * @guest_ipa:	The IPA at which to insert the mapping
839  * @pa:		The physical address of the device
840  * @size:	The size of the mapping
841  * @writable:   Whether or not to create a writable mapping
842  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)843 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
844 			  phys_addr_t pa, unsigned long size, bool writable)
845 {
846 	phys_addr_t addr;
847 	int ret = 0;
848 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
849 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
850 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
851 				     KVM_PGTABLE_PROT_R |
852 				     (writable ? KVM_PGTABLE_PROT_W : 0);
853 
854 	if (is_protected_kvm_enabled())
855 		return -EPERM;
856 
857 	size += offset_in_page(guest_ipa);
858 	guest_ipa &= PAGE_MASK;
859 
860 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
861 		ret = kvm_mmu_topup_memory_cache(&cache,
862 						 kvm_mmu_cache_min_pages(kvm));
863 		if (ret)
864 			break;
865 
866 		spin_lock(&kvm->mmu_lock);
867 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
868 					     &cache);
869 		spin_unlock(&kvm->mmu_lock);
870 		if (ret)
871 			break;
872 
873 		pa += PAGE_SIZE;
874 	}
875 
876 	kvm_mmu_free_memory_cache(&cache);
877 	return ret;
878 }
879 
880 /**
881  * stage2_wp_range() - write protect stage2 memory region range
882  * @mmu:        The KVM stage-2 MMU pointer
883  * @addr:	Start address of range
884  * @end:	End address of range
885  */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)886 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
887 {
888 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
889 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
890 }
891 
892 /**
893  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
894  * @kvm:	The KVM pointer
895  * @slot:	The memory slot to write protect
896  *
897  * Called to start logging dirty pages after memory region
898  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
899  * all present PUD, PMD and PTEs are write protected in the memory region.
900  * Afterwards read of dirty page log can be called.
901  *
902  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
903  * serializing operations for VM memory regions.
904  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)905 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
906 {
907 	struct kvm_memslots *slots = kvm_memslots(kvm);
908 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
909 	phys_addr_t start, end;
910 
911 	if (WARN_ON_ONCE(!memslot))
912 		return;
913 
914 	start = memslot->base_gfn << PAGE_SHIFT;
915 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
916 
917 	spin_lock(&kvm->mmu_lock);
918 	stage2_wp_range(&kvm->arch.mmu, start, end);
919 	spin_unlock(&kvm->mmu_lock);
920 	kvm_flush_remote_tlbs(kvm);
921 }
922 
923 /**
924  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
925  * @kvm:	The KVM pointer
926  * @slot:	The memory slot associated with mask
927  * @gfn_offset:	The gfn offset in memory slot
928  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
929  *		slot to be write protected
930  *
931  * Walks bits set in mask write protects the associated pte's. Caller must
932  * acquire kvm_mmu_lock.
933  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)934 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
935 		struct kvm_memory_slot *slot,
936 		gfn_t gfn_offset, unsigned long mask)
937 {
938 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
939 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
940 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
941 
942 	stage2_wp_range(&kvm->arch.mmu, start, end);
943 }
944 
945 /*
946  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
947  * dirty pages.
948  *
949  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
950  * enable dirty logging for them.
951  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)952 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
953 		struct kvm_memory_slot *slot,
954 		gfn_t gfn_offset, unsigned long mask)
955 {
956 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
957 }
958 
kvm_send_hwpoison_signal(unsigned long address,short lsb)959 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
960 {
961 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
962 }
963 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)964 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
965 					       unsigned long hva,
966 					       unsigned long map_size)
967 {
968 	gpa_t gpa_start;
969 	hva_t uaddr_start, uaddr_end;
970 	size_t size;
971 
972 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
973 	if (map_size == PAGE_SIZE)
974 		return true;
975 
976 	size = memslot->npages * PAGE_SIZE;
977 
978 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
979 
980 	uaddr_start = memslot->userspace_addr;
981 	uaddr_end = uaddr_start + size;
982 
983 	/*
984 	 * Pages belonging to memslots that don't have the same alignment
985 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
986 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
987 	 *
988 	 * Consider a layout like the following:
989 	 *
990 	 *    memslot->userspace_addr:
991 	 *    +-----+--------------------+--------------------+---+
992 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
993 	 *    +-----+--------------------+--------------------+---+
994 	 *
995 	 *    memslot->base_gfn << PAGE_SHIFT:
996 	 *      +---+--------------------+--------------------+-----+
997 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
998 	 *      +---+--------------------+--------------------+-----+
999 	 *
1000 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1001 	 * mapping:
1002 	 *   d -> f
1003 	 *   e -> g
1004 	 *   f -> h
1005 	 */
1006 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1007 		return false;
1008 
1009 	/*
1010 	 * Next, let's make sure we're not trying to map anything not covered
1011 	 * by the memslot. This means we have to prohibit block size mappings
1012 	 * for the beginning and end of a non-block aligned and non-block sized
1013 	 * memory slot (illustrated by the head and tail parts of the
1014 	 * userspace view above containing pages 'abcde' and 'xyz',
1015 	 * respectively).
1016 	 *
1017 	 * Note that it doesn't matter if we do the check using the
1018 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1019 	 * the check above) and equally sized.
1020 	 */
1021 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1022 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1023 }
1024 
1025 /*
1026  * Check if the given hva is backed by a transparent huge page (THP) and
1027  * whether it can be mapped using block mapping in stage2. If so, adjust
1028  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1029  * supported. This will need to be updated to support other THP sizes.
1030  *
1031  * Returns the size of the mapping.
1032  */
1033 static unsigned long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1034 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1035 			    unsigned long hva, kvm_pfn_t *pfnp,
1036 			    phys_addr_t *ipap)
1037 {
1038 	kvm_pfn_t pfn = *pfnp;
1039 
1040 	/*
1041 	 * Make sure the adjustment is done only for THP pages. Also make
1042 	 * sure that the HVA and IPA are sufficiently aligned and that the
1043 	 * block map is contained within the memslot.
1044 	 */
1045 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1046 	    get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1047 		/*
1048 		 * The address we faulted on is backed by a transparent huge
1049 		 * page.  However, because we map the compound huge page and
1050 		 * not the individual tail page, we need to transfer the
1051 		 * refcount to the head page.  We have to be careful that the
1052 		 * THP doesn't start to split while we are adjusting the
1053 		 * refcounts.
1054 		 *
1055 		 * We are sure this doesn't happen, because mmu_notifier_retry
1056 		 * was successful and we are holding the mmu_lock, so if this
1057 		 * THP is trying to split, it will be blocked in the mmu
1058 		 * notifier before touching any of the pages, specifically
1059 		 * before being able to call __split_huge_page_refcount().
1060 		 *
1061 		 * We can therefore safely transfer the refcount from PG_tail
1062 		 * to PG_head and switch the pfn from a tail page to the head
1063 		 * page accordingly.
1064 		 */
1065 		*ipap &= PMD_MASK;
1066 		kvm_release_pfn_clean(pfn);
1067 		pfn &= ~(PTRS_PER_PMD - 1);
1068 		get_page(pfn_to_page(pfn));
1069 		*pfnp = pfn;
1070 
1071 		return PMD_SIZE;
1072 	}
1073 
1074 	/* Use page mapping if we cannot use block mapping. */
1075 	return PAGE_SIZE;
1076 }
1077 
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1078 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1079 {
1080 	unsigned long pa;
1081 
1082 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1083 		return huge_page_shift(hstate_vma(vma));
1084 
1085 	if (!(vma->vm_flags & VM_PFNMAP))
1086 		return PAGE_SHIFT;
1087 
1088 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1089 
1090 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1091 
1092 #ifndef __PAGETABLE_PMD_FOLDED
1093 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1094 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1095 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1096 		return PUD_SHIFT;
1097 #endif
1098 
1099 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1100 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1101 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1102 		return PMD_SHIFT;
1103 
1104 	return PAGE_SHIFT;
1105 }
1106 
1107 /*
1108  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1109  * able to see the page's tags and therefore they must be initialised first. If
1110  * PG_mte_tagged is set, tags have already been initialised.
1111  *
1112  * The race in the test/set of the PG_mte_tagged flag is handled by:
1113  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1114  *   racing to santise the same page
1115  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1116  *   an mprotect() to add VM_MTE
1117  */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1118 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1119 			     unsigned long size)
1120 {
1121 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1122 	struct page *page;
1123 
1124 	if (!kvm_has_mte(kvm))
1125 		return 0;
1126 
1127 	/*
1128 	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1129 	 * that may not support tags.
1130 	 */
1131 	page = pfn_to_online_page(pfn);
1132 
1133 	if (!page)
1134 		return -EFAULT;
1135 
1136 	for (i = 0; i < nr_pages; i++, page++) {
1137 		if (!test_bit(PG_mte_tagged, &page->flags)) {
1138 			mte_clear_page_tags(page_address(page));
1139 			set_bit(PG_mte_tagged, &page->flags);
1140 		}
1141 	}
1142 
1143 	return 0;
1144 }
1145 
pkvm_host_donate_guest(u64 pfn,u64 gfn)1146 static int pkvm_host_donate_guest(u64 pfn, u64 gfn)
1147 {
1148 	struct arm_smccc_res res;
1149 
1150 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__pkvm_host_donate_guest),
1151 			  pfn, gfn, &res);
1152 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1153 
1154 	/*
1155 	 * Getting -EPERM at this point implies that the pfn has already been
1156 	 * donated. This should only ever happen when two vCPUs faulted on the
1157 	 * same page, and the current one lost the race to do the donation.
1158 	 */
1159 	return (res.a1 == -EPERM) ? -EAGAIN : res.a1;
1160 }
1161 
pkvm_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,unsigned long hva)1162 static int pkvm_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1163 			  unsigned long hva)
1164 {
1165 	struct mm_struct *mm = current->mm;
1166 	unsigned int flags = FOLL_HWPOISON | FOLL_LONGTERM | FOLL_WRITE;
1167 	struct kvm_pinned_page *ppage;
1168 	struct kvm *kvm = vcpu->kvm;
1169 	struct page *page;
1170 	u64 pfn;
1171 	int ret;
1172 
1173 	ret = topup_hyp_memcache(vcpu);
1174 	if (ret)
1175 		return -ENOMEM;
1176 
1177 	ppage = kmalloc(sizeof(*ppage), GFP_KERNEL_ACCOUNT);
1178 	if (!ppage)
1179 		return -ENOMEM;
1180 
1181 	ret = account_locked_vm(mm, 1, true);
1182 	if (ret)
1183 		goto free_ppage;
1184 
1185 	mmap_read_lock(mm);
1186 	ret = pin_user_pages(hva, 1, flags, &page, NULL);
1187 	mmap_read_unlock(mm);
1188 
1189 	if (ret == -EHWPOISON) {
1190 		kvm_send_hwpoison_signal(hva, PAGE_SHIFT);
1191 		ret = 0;
1192 		goto dec_account;
1193 	} else if (ret != 1) {
1194 		ret = -EFAULT;
1195 		goto dec_account;
1196 	} else if (!PageSwapBacked(page)) {
1197 		/*
1198 		 * We really can't deal with page-cache pages returned by GUP
1199 		 * because (a) we may trigger writeback of a page for which we
1200 		 * no longer have access and (b) page_mkclean() won't find the
1201 		 * stage-2 mapping in the rmap so we can get out-of-whack with
1202 		 * the filesystem when marking the page dirty during unpinning.
1203 		 *
1204 		 * Ideally we'd just restrict ourselves to anonymous pages, but
1205 		 * we also want to allow memfd (i.e. shmem) pages, so check for
1206 		 * pages backed by swap in the knowledge that the GUP pin will
1207 		 * prevent try_to_unmap() from succeeding.
1208 		 */
1209 		ret = -EIO;
1210 		goto unpin;
1211 	}
1212 
1213 	spin_lock(&kvm->mmu_lock);
1214 	pfn = page_to_pfn(page);
1215 	ret = pkvm_host_donate_guest(pfn, fault_ipa >> PAGE_SHIFT);
1216 	if (ret) {
1217 		if (ret == -EAGAIN)
1218 			ret = 0;
1219 		goto unlock;
1220 	}
1221 
1222 	ppage->page = page;
1223 	INIT_LIST_HEAD(&ppage->link);
1224 	list_add(&ppage->link, &kvm->arch.pkvm.pinned_pages);
1225 	spin_unlock(&kvm->mmu_lock);
1226 
1227 	return 0;
1228 
1229 unlock:
1230 	spin_unlock(&kvm->mmu_lock);
1231 unpin:
1232 	unpin_user_pages(&page, 1);
1233 dec_account:
1234 	account_locked_vm(mm, 1, false);
1235 free_ppage:
1236 	kfree(ppage);
1237 
1238 	return ret;
1239 }
1240 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1241 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1242 			  struct kvm_memory_slot *memslot, unsigned long hva,
1243 			  unsigned long fault_status)
1244 {
1245 	int ret = 0;
1246 	bool write_fault, writable, force_pte = false;
1247 	bool exec_fault;
1248 	bool device = false;
1249 	bool shared;
1250 	unsigned long mmu_seq;
1251 	struct kvm *kvm = vcpu->kvm;
1252 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1253 	struct vm_area_struct *vma;
1254 	short vma_shift;
1255 	gfn_t gfn;
1256 	kvm_pfn_t pfn;
1257 	bool logging_active = memslot_is_logging(memslot);
1258 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1259 	unsigned long vma_pagesize, fault_granule;
1260 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1261 	struct kvm_pgtable *pgt;
1262 
1263 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1264 	write_fault = kvm_is_write_fault(vcpu);
1265 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1266 	VM_BUG_ON(write_fault && exec_fault);
1267 
1268 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1269 		kvm_err("Unexpected L2 read permission error\n");
1270 		return -EFAULT;
1271 	}
1272 
1273 	/*
1274 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1275 	 * get block mapping for device MMIO region.
1276 	 */
1277 	mmap_read_lock(current->mm);
1278 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1279 	if (unlikely(!vma)) {
1280 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1281 		mmap_read_unlock(current->mm);
1282 		return -EFAULT;
1283 	}
1284 
1285 	/*
1286 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1287 	 * memslots.
1288 	 */
1289 	if (logging_active) {
1290 		force_pte = true;
1291 		vma_shift = PAGE_SHIFT;
1292 	} else {
1293 		vma_shift = get_vma_page_shift(vma, hva);
1294 	}
1295 
1296 	shared = (vma->vm_flags & VM_SHARED);
1297 
1298 	switch (vma_shift) {
1299 #ifndef __PAGETABLE_PMD_FOLDED
1300 	case PUD_SHIFT:
1301 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1302 			break;
1303 		fallthrough;
1304 #endif
1305 	case CONT_PMD_SHIFT:
1306 		vma_shift = PMD_SHIFT;
1307 		fallthrough;
1308 	case PMD_SHIFT:
1309 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1310 			break;
1311 		fallthrough;
1312 	case CONT_PTE_SHIFT:
1313 		vma_shift = PAGE_SHIFT;
1314 		force_pte = true;
1315 		fallthrough;
1316 	case PAGE_SHIFT:
1317 		break;
1318 	default:
1319 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1320 	}
1321 
1322 	vma_pagesize = 1UL << vma_shift;
1323 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1324 		fault_ipa &= ~(vma_pagesize - 1);
1325 
1326 	gfn = fault_ipa >> PAGE_SHIFT;
1327 	mmap_read_unlock(current->mm);
1328 
1329 	/*
1330 	 * Permission faults just need to update the existing leaf entry,
1331 	 * and so normally don't require allocations from the memcache. The
1332 	 * only exception to this is when dirty logging is enabled at runtime
1333 	 * and a write fault needs to collapse a block entry into a table.
1334 	 */
1335 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1336 		ret = kvm_mmu_topup_memory_cache(memcache,
1337 						 kvm_mmu_cache_min_pages(kvm));
1338 		if (ret)
1339 			return ret;
1340 	}
1341 
1342 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1343 	/*
1344 	 * Ensure the read of mmu_notifier_seq happens before we call
1345 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1346 	 * the page we just got a reference to gets unmapped before we have a
1347 	 * chance to grab the mmu_lock, which ensure that if the page gets
1348 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1349 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1350 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1351 	 *
1352 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1353 	 * used to avoid unnecessary overhead introduced to locate the memory
1354 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1355 	 */
1356 	smp_rmb();
1357 
1358 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1359 				   write_fault, &writable);
1360 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1361 		kvm_send_hwpoison_signal(hva, vma_shift);
1362 		return 0;
1363 	}
1364 	if (is_error_noslot_pfn(pfn))
1365 		return -EFAULT;
1366 
1367 	if (kvm_is_device_pfn(pfn)) {
1368 		/*
1369 		 * If the page was identified as device early by looking at
1370 		 * the VMA flags, vma_pagesize is already representing the
1371 		 * largest quantity we can map.  If instead it was mapped
1372 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1373 		 * and must not be upgraded.
1374 		 *
1375 		 * In both cases, we don't let transparent_hugepage_adjust()
1376 		 * change things at the last minute.
1377 		 */
1378 		device = true;
1379 	} else if (logging_active && !write_fault) {
1380 		/*
1381 		 * Only actually map the page as writable if this was a write
1382 		 * fault.
1383 		 */
1384 		writable = false;
1385 	}
1386 
1387 	if (exec_fault && device)
1388 		return -ENOEXEC;
1389 
1390 	spin_lock(&kvm->mmu_lock);
1391 	pgt = vcpu->arch.hw_mmu->pgt;
1392 	if (mmu_notifier_retry(kvm, mmu_seq))
1393 		goto out_unlock;
1394 
1395 	/*
1396 	 * If we are not forced to use page mapping, check if we are
1397 	 * backed by a THP and thus use block mapping if possible.
1398 	 */
1399 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1400 		if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1401 			vma_pagesize = fault_granule;
1402 		else
1403 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1404 								   hva, &pfn,
1405 								   &fault_ipa);
1406 	}
1407 
1408 	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1409 		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1410 		if (!shared)
1411 			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1412 		else
1413 			ret = -EFAULT;
1414 		if (ret)
1415 			goto out_unlock;
1416 	}
1417 
1418 	if (writable)
1419 		prot |= KVM_PGTABLE_PROT_W;
1420 
1421 	if (exec_fault)
1422 		prot |= KVM_PGTABLE_PROT_X;
1423 
1424 	if (device)
1425 		prot |= KVM_PGTABLE_PROT_DEVICE;
1426 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1427 		prot |= KVM_PGTABLE_PROT_X;
1428 
1429 	/*
1430 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1431 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1432 	 * kvm_pgtable_stage2_map() should be called to change block size.
1433 	 */
1434 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1435 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1436 	} else {
1437 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1438 					     __pfn_to_phys(pfn), prot,
1439 					     memcache);
1440 	}
1441 
1442 	/* Mark the page dirty only if the fault is handled successfully */
1443 	if (writable && !ret) {
1444 		kvm_set_pfn_dirty(pfn);
1445 		mark_page_dirty_in_slot(memslot, gfn);
1446 	}
1447 
1448 out_unlock:
1449 	spin_unlock(&kvm->mmu_lock);
1450 	kvm_set_pfn_accessed(pfn);
1451 	kvm_release_pfn_clean(pfn);
1452 	return ret != -EAGAIN ? ret : 0;
1453 }
1454 
1455 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1456 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1457 {
1458 	pte_t pte;
1459 	kvm_pte_t kpte;
1460 	struct kvm_s2_mmu *mmu;
1461 
1462 	trace_kvm_access_fault(fault_ipa);
1463 
1464 	spin_lock(&vcpu->kvm->mmu_lock);
1465 	mmu = vcpu->arch.hw_mmu;
1466 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1467 	spin_unlock(&vcpu->kvm->mmu_lock);
1468 
1469 	pte = __pte(kpte);
1470 	if (pte_valid(pte))
1471 		kvm_set_pfn_accessed(pte_pfn(pte));
1472 }
1473 
1474 /**
1475  * kvm_handle_guest_abort - handles all 2nd stage aborts
1476  * @vcpu:	the VCPU pointer
1477  *
1478  * Any abort that gets to the host is almost guaranteed to be caused by a
1479  * missing second stage translation table entry, which can mean that either the
1480  * guest simply needs more memory and we must allocate an appropriate page or it
1481  * can mean that the guest tried to access I/O memory, which is emulated by user
1482  * space. The distinction is based on the IPA causing the fault and whether this
1483  * memory region has been registered as standard RAM by user space.
1484  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1485 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1486 {
1487 	unsigned long fault_status;
1488 	phys_addr_t fault_ipa;
1489 	struct kvm_memory_slot *memslot;
1490 	unsigned long hva;
1491 	bool is_iabt, write_fault, writable;
1492 	gfn_t gfn;
1493 	int ret, idx;
1494 
1495 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1496 
1497 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1498 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1499 
1500 	/* Synchronous External Abort? */
1501 	if (kvm_vcpu_abt_issea(vcpu)) {
1502 		/*
1503 		 * For RAS the host kernel may handle this abort.
1504 		 * There is no need to pass the error into the guest.
1505 		 */
1506 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1507 			kvm_inject_vabt(vcpu);
1508 
1509 		return 1;
1510 	}
1511 
1512 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1513 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1514 
1515 	/* Check the stage-2 fault is trans. fault or write fault */
1516 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1517 	    fault_status != FSC_ACCESS) {
1518 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1519 			kvm_vcpu_trap_get_class(vcpu),
1520 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1521 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1522 		return -EFAULT;
1523 	}
1524 
1525 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1526 
1527 	gfn = fault_ipa >> PAGE_SHIFT;
1528 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1529 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1530 	write_fault = kvm_is_write_fault(vcpu);
1531 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1532 		/*
1533 		 * The guest has put either its instructions or its page-tables
1534 		 * somewhere it shouldn't have. Userspace won't be able to do
1535 		 * anything about this (there's no syndrome for a start), so
1536 		 * re-inject the abort back into the guest.
1537 		 */
1538 		if (is_iabt) {
1539 			ret = -ENOEXEC;
1540 			goto out;
1541 		}
1542 
1543 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1544 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1545 			ret = 1;
1546 			goto out_unlock;
1547 		}
1548 
1549 		/*
1550 		 * Check for a cache maintenance operation. Since we
1551 		 * ended-up here, we know it is outside of any memory
1552 		 * slot. But we can't find out if that is for a device,
1553 		 * or if the guest is just being stupid. The only thing
1554 		 * we know for sure is that this range cannot be cached.
1555 		 *
1556 		 * So let's assume that the guest is just being
1557 		 * cautious, and skip the instruction.
1558 		 */
1559 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1560 			kvm_incr_pc(vcpu);
1561 			ret = 1;
1562 			goto out_unlock;
1563 		}
1564 
1565 		/*
1566 		 * The IPA is reported as [MAX:12], so we need to
1567 		 * complement it with the bottom 12 bits from the
1568 		 * faulting VA. This is always 12 bits, irrespective
1569 		 * of the page size.
1570 		 */
1571 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & FAR_MASK;
1572 		ret = io_mem_abort(vcpu, fault_ipa);
1573 		goto out_unlock;
1574 	}
1575 
1576 	/* Userspace should not be able to register out-of-bounds IPAs */
1577 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1578 
1579 	if (fault_status == FSC_ACCESS) {
1580 		handle_access_fault(vcpu, fault_ipa);
1581 		ret = 1;
1582 		goto out_unlock;
1583 	}
1584 
1585 
1586 	if (is_protected_kvm_enabled())
1587 		ret = pkvm_mem_abort(vcpu, fault_ipa, hva);
1588 	else
1589 		ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1590 	if (ret == 0)
1591 		ret = 1;
1592 out:
1593 	if (ret == -ENOEXEC) {
1594 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1595 		ret = 1;
1596 	}
1597 out_unlock:
1598 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1599 	return ret;
1600 }
1601 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1602 static int handle_hva_to_gpa(struct kvm *kvm,
1603 			     unsigned long start,
1604 			     unsigned long end,
1605 			     int (*handler)(struct kvm *kvm,
1606 					    gpa_t gpa, u64 size,
1607 					    void *data),
1608 			     void *data)
1609 {
1610 	struct kvm_memslots *slots;
1611 	struct kvm_memory_slot *memslot;
1612 	int ret = 0;
1613 
1614 	slots = kvm_memslots(kvm);
1615 
1616 	/* we only care about the pages that the guest sees */
1617 	kvm_for_each_memslot(memslot, slots) {
1618 		unsigned long hva_start, hva_end;
1619 		gfn_t gpa;
1620 
1621 		hva_start = max(start, memslot->userspace_addr);
1622 		hva_end = min(end, memslot->userspace_addr +
1623 					(memslot->npages << PAGE_SHIFT));
1624 		if (hva_start >= hva_end)
1625 			continue;
1626 
1627 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1628 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1629 	}
1630 
1631 	return ret;
1632 }
1633 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1634 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1635 {
1636 	unsigned flags = *(unsigned *)data;
1637 	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1638 
1639 	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1640 	return 0;
1641 }
1642 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1643 int kvm_unmap_hva_range(struct kvm *kvm,
1644 			unsigned long start, unsigned long end, unsigned flags)
1645 {
1646 	if (!kvm->arch.mmu.pgt)
1647 		return 0;
1648 
1649 	trace_kvm_unmap_hva_range(start, end);
1650 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1651 	return 0;
1652 }
1653 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1654 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1655 {
1656 	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1657 	int ret;
1658 
1659 	WARN_ON(size != PAGE_SIZE);
1660 
1661 	ret = sanitise_mte_tags(kvm, *pfn, PAGE_SIZE);
1662 	if (ret)
1663 		return 0;
1664 
1665 	/*
1666 	 * We've moved a page around, probably through CoW, so let's treat
1667 	 * it just like a translation fault and the map handler will clean
1668 	 * the cache to the PoC.
1669 	 *
1670 	 * The MMU notifiers will have unmapped a huge PMD before calling
1671 	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1672 	 * therefore we never need to clear out a huge PMD through this
1673 	 * calling path and a memcache is not required.
1674 	 */
1675 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
1676 			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1677 	return 0;
1678 }
1679 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1680 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1681 {
1682 	unsigned long end = hva + PAGE_SIZE;
1683 	kvm_pfn_t pfn = pte_pfn(pte);
1684 
1685 	if (!kvm->arch.mmu.pgt)
1686 		return 0;
1687 
1688 	trace_kvm_set_spte_hva(hva);
1689 
1690 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1691 	return 0;
1692 }
1693 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1694 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1695 {
1696 	pte_t pte;
1697 	kvm_pte_t kpte;
1698 
1699 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1700 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
1701 	pte = __pte(kpte);
1702 	return pte_valid(pte) && pte_young(pte);
1703 }
1704 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1705 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1706 {
1707 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1708 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1709 }
1710 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1711 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1712 {
1713 	if (!kvm->arch.mmu.pgt)
1714 		return 0;
1715 	trace_kvm_age_hva(start, end);
1716 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1717 }
1718 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1719 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1720 {
1721 	if (!kvm->arch.mmu.pgt)
1722 		return 0;
1723 	trace_kvm_test_age_hva(hva);
1724 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1725 				 kvm_test_age_hva_handler, NULL);
1726 }
1727 
kvm_mmu_get_httbr(void)1728 phys_addr_t kvm_mmu_get_httbr(void)
1729 {
1730 	return __pa(hyp_pgtable->pgd);
1731 }
1732 
kvm_get_idmap_vector(void)1733 phys_addr_t kvm_get_idmap_vector(void)
1734 {
1735 	return hyp_idmap_vector;
1736 }
1737 
kvm_map_idmap_text(void)1738 static int kvm_map_idmap_text(void)
1739 {
1740 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1741 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1742 					PAGE_HYP_EXEC);
1743 	if (err)
1744 		kvm_err("Failed to idmap %lx-%lx\n",
1745 			hyp_idmap_start, hyp_idmap_end);
1746 
1747 	return err;
1748 }
1749 
kvm_hyp_zalloc_page(void * arg)1750 static void *kvm_hyp_zalloc_page(void *arg)
1751 {
1752 	return (void *)get_zeroed_page(GFP_KERNEL);
1753 }
1754 
1755 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1756 	.zalloc_page		= kvm_hyp_zalloc_page,
1757 	.get_page		= kvm_host_get_page,
1758 	.put_page		= kvm_host_put_page,
1759 	.phys_to_virt		= kvm_host_va,
1760 	.virt_to_phys		= kvm_host_pa,
1761 };
1762 
kvm_mmu_init(u32 * hyp_va_bits)1763 int kvm_mmu_init(u32 *hyp_va_bits)
1764 {
1765 	int err;
1766 
1767 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1768 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1769 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1770 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1771 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1772 
1773 	/*
1774 	 * We rely on the linker script to ensure at build time that the HYP
1775 	 * init code does not cross a page boundary.
1776 	 */
1777 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1778 
1779 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1780 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1781 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1782 	kvm_debug("HYP VA range: %lx:%lx\n",
1783 		  kern_hyp_va(PAGE_OFFSET),
1784 		  kern_hyp_va((unsigned long)high_memory - 1));
1785 
1786 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1787 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1788 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1789 		/*
1790 		 * The idmap page is intersecting with the VA space,
1791 		 * it is not safe to continue further.
1792 		 */
1793 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1794 		err = -EINVAL;
1795 		goto out;
1796 	}
1797 
1798 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1799 	if (!hyp_pgtable) {
1800 		kvm_err("Hyp mode page-table not allocated\n");
1801 		err = -ENOMEM;
1802 		goto out;
1803 	}
1804 
1805 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1806 	if (err)
1807 		goto out_free_pgtable;
1808 
1809 	err = kvm_map_idmap_text();
1810 	if (err)
1811 		goto out_destroy_pgtable;
1812 
1813 	io_map_base = hyp_idmap_start;
1814 	return 0;
1815 
1816 out_destroy_pgtable:
1817 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1818 out_free_pgtable:
1819 	kfree(hyp_pgtable);
1820 	hyp_pgtable = NULL;
1821 out:
1822 	return err;
1823 }
1824 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1825 void kvm_arch_commit_memory_region(struct kvm *kvm,
1826 				   const struct kvm_userspace_memory_region *mem,
1827 				   struct kvm_memory_slot *old,
1828 				   const struct kvm_memory_slot *new,
1829 				   enum kvm_mr_change change)
1830 {
1831 	/*
1832 	 * At this point memslot has been committed and there is an
1833 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1834 	 * memory slot is write protected.
1835 	 */
1836 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1837 		/*
1838 		 * If we're with initial-all-set, we don't need to write
1839 		 * protect any pages because they're all reported as dirty.
1840 		 * Huge pages and normal pages will be write protect gradually.
1841 		 */
1842 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1843 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1844 		}
1845 	}
1846 }
1847 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1848 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1849 				   struct kvm_memory_slot *memslot,
1850 				   const struct kvm_userspace_memory_region *mem,
1851 				   enum kvm_mr_change change)
1852 {
1853 	hva_t hva = mem->userspace_addr;
1854 	hva_t reg_end = hva + mem->memory_size;
1855 	int ret = 0;
1856 
1857 	/* In protected mode, cannot modify memslots once a VM has run. */
1858 	if (is_protected_kvm_enabled() &&
1859 	    (change == KVM_MR_DELETE || change == KVM_MR_MOVE) &&
1860 	    kvm->arch.pkvm.shadow_handle) {
1861 		return -EPERM;
1862 	}
1863 
1864 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1865 			change != KVM_MR_FLAGS_ONLY)
1866 		return 0;
1867 
1868 	/*
1869 	 * Prevent userspace from creating a memory region outside of the IPA
1870 	 * space addressable by the KVM guest IPA space.
1871 	 */
1872 	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1873 		return -EFAULT;
1874 
1875 	mmap_read_lock(current->mm);
1876 	/*
1877 	 * A memory region could potentially cover multiple VMAs, and any holes
1878 	 * between them, so iterate over all of them.
1879 	 *
1880 	 *     +--------------------------------------------+
1881 	 * +---------------+----------------+   +----------------+
1882 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1883 	 * +---------------+----------------+   +----------------+
1884 	 *     |               memory region                |
1885 	 *     +--------------------------------------------+
1886 	 */
1887 	do {
1888 		struct vm_area_struct *vma;
1889 
1890 		vma = find_vma_intersection(current->mm, hva, reg_end);
1891 		if (!vma)
1892 			break;
1893 
1894 		/*
1895 		 * VM_SHARED mappings are not allowed with MTE to avoid races
1896 		 * when updating the PG_mte_tagged page flag, see
1897 		 * sanitise_mte_tags for more details.
1898 		 */
1899 		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1900 			ret = -EINVAL;
1901 			break;
1902 		}
1903 
1904 		if (vma->vm_flags & VM_PFNMAP) {
1905 			/* IO region dirty page logging not allowed */
1906 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1907 				ret = -EINVAL;
1908 				break;
1909 			}
1910 		}
1911 		hva = min(reg_end, vma->vm_end);
1912 	} while (hva < reg_end);
1913 
1914 	mmap_read_unlock(current->mm);
1915 	return ret;
1916 }
1917 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1918 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1919 {
1920 }
1921 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1922 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1923 {
1924 }
1925 
kvm_arch_flush_shadow_all(struct kvm * kvm)1926 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1927 {
1928 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1929 }
1930 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1931 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1932 				   struct kvm_memory_slot *slot)
1933 {
1934 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1935 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1936 
1937 	/* Stage-2 is managed by hyp in protected mode. */
1938 	if (is_protected_kvm_enabled())
1939 		return;
1940 
1941 	spin_lock(&kvm->mmu_lock);
1942 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1943 	spin_unlock(&kvm->mmu_lock);
1944 }
1945 
1946 /*
1947  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1948  *
1949  * Main problems:
1950  * - S/W ops are local to a CPU (not broadcast)
1951  * - We have line migration behind our back (speculation)
1952  * - System caches don't support S/W at all (damn!)
1953  *
1954  * In the face of the above, the best we can do is to try and convert
1955  * S/W ops to VA ops. Because the guest is not allowed to infer the
1956  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1957  * which is a rather good thing for us.
1958  *
1959  * Also, it is only used when turning caches on/off ("The expected
1960  * usage of the cache maintenance instructions that operate by set/way
1961  * is associated with the cache maintenance instructions associated
1962  * with the powerdown and powerup of caches, if this is required by
1963  * the implementation.").
1964  *
1965  * We use the following policy:
1966  *
1967  * - If we trap a S/W operation, we enable VM trapping to detect
1968  *   caches being turned on/off, and do a full clean.
1969  *
1970  * - We flush the caches on both caches being turned on and off.
1971  *
1972  * - Once the caches are enabled, we stop trapping VM ops.
1973  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1974 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1975 {
1976 	unsigned long hcr = *vcpu_hcr(vcpu);
1977 
1978 	/*
1979 	 * If this is the first time we do a S/W operation
1980 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1981 	 * VM trapping.
1982 	 *
1983 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1984 	 * Caches to be turned off. At that point, we'll be able to
1985 	 * clean the caches again.
1986 	 */
1987 	if (!(hcr & HCR_TVM)) {
1988 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1989 					vcpu_has_cache_enabled(vcpu));
1990 		stage2_flush_vm(vcpu->kvm);
1991 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1992 	}
1993 }
1994 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1995 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1996 {
1997 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1998 
1999 	/*
2000 	 * If switching the MMU+caches on, need to invalidate the caches.
2001 	 * If switching it off, need to clean the caches.
2002 	 * Clean + invalidate does the trick always.
2003 	 */
2004 	if (now_enabled != was_enabled)
2005 		stage2_flush_vm(vcpu->kvm);
2006 
2007 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2008 	if (now_enabled)
2009 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2010 
2011 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2012 }
2013