1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cryptographic API.
4 *
5 * s390 implementation of the AES Cipher Algorithm.
6 *
7 * s390 Version:
8 * Copyright IBM Corp. 2005, 2017
9 * Author(s): Jan Glauber (jang@de.ibm.com)
10 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11 * Patrick Steuer <patrick.steuer@de.ibm.com>
12 * Harald Freudenberger <freude@de.ibm.com>
13 *
14 * Derived from "crypto/aes_generic.c"
15 */
16
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/cipher.h>
25 #include <crypto/internal/skcipher.h>
26 #include <crypto/scatterwalk.h>
27 #include <linux/err.h>
28 #include <linux/module.h>
29 #include <linux/cpufeature.h>
30 #include <linux/init.h>
31 #include <linux/mutex.h>
32 #include <linux/fips.h>
33 #include <linux/string.h>
34 #include <crypto/xts.h>
35 #include <asm/cpacf.h>
36
37 static u8 *ctrblk;
38 static DEFINE_MUTEX(ctrblk_lock);
39
40 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
41 kma_functions;
42
43 struct s390_aes_ctx {
44 u8 key[AES_MAX_KEY_SIZE];
45 int key_len;
46 unsigned long fc;
47 union {
48 struct crypto_skcipher *skcipher;
49 struct crypto_cipher *cip;
50 } fallback;
51 };
52
53 struct s390_xts_ctx {
54 u8 key[32];
55 u8 pcc_key[32];
56 int key_len;
57 unsigned long fc;
58 struct crypto_skcipher *fallback;
59 };
60
61 struct gcm_sg_walk {
62 struct scatter_walk walk;
63 unsigned int walk_bytes;
64 u8 *walk_ptr;
65 unsigned int walk_bytes_remain;
66 u8 buf[AES_BLOCK_SIZE];
67 unsigned int buf_bytes;
68 u8 *ptr;
69 unsigned int nbytes;
70 };
71
setkey_fallback_cip(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)72 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
73 unsigned int key_len)
74 {
75 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
76
77 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
78 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
79 CRYPTO_TFM_REQ_MASK);
80
81 return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
82 }
83
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)84 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
85 unsigned int key_len)
86 {
87 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
88 unsigned long fc;
89
90 /* Pick the correct function code based on the key length */
91 fc = (key_len == 16) ? CPACF_KM_AES_128 :
92 (key_len == 24) ? CPACF_KM_AES_192 :
93 (key_len == 32) ? CPACF_KM_AES_256 : 0;
94
95 /* Check if the function code is available */
96 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
97 if (!sctx->fc)
98 return setkey_fallback_cip(tfm, in_key, key_len);
99
100 sctx->key_len = key_len;
101 memcpy(sctx->key, in_key, key_len);
102 return 0;
103 }
104
crypto_aes_encrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)105 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
106 {
107 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
108
109 if (unlikely(!sctx->fc)) {
110 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
111 return;
112 }
113 cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
114 }
115
crypto_aes_decrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)116 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
117 {
118 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
119
120 if (unlikely(!sctx->fc)) {
121 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
122 return;
123 }
124 cpacf_km(sctx->fc | CPACF_DECRYPT,
125 &sctx->key, out, in, AES_BLOCK_SIZE);
126 }
127
fallback_init_cip(struct crypto_tfm * tfm)128 static int fallback_init_cip(struct crypto_tfm *tfm)
129 {
130 const char *name = tfm->__crt_alg->cra_name;
131 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
132
133 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
134 CRYPTO_ALG_NEED_FALLBACK);
135
136 if (IS_ERR(sctx->fallback.cip)) {
137 pr_err("Allocating AES fallback algorithm %s failed\n",
138 name);
139 return PTR_ERR(sctx->fallback.cip);
140 }
141
142 return 0;
143 }
144
fallback_exit_cip(struct crypto_tfm * tfm)145 static void fallback_exit_cip(struct crypto_tfm *tfm)
146 {
147 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
148
149 crypto_free_cipher(sctx->fallback.cip);
150 sctx->fallback.cip = NULL;
151 }
152
153 static struct crypto_alg aes_alg = {
154 .cra_name = "aes",
155 .cra_driver_name = "aes-s390",
156 .cra_priority = 300,
157 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
158 CRYPTO_ALG_NEED_FALLBACK,
159 .cra_blocksize = AES_BLOCK_SIZE,
160 .cra_ctxsize = sizeof(struct s390_aes_ctx),
161 .cra_module = THIS_MODULE,
162 .cra_init = fallback_init_cip,
163 .cra_exit = fallback_exit_cip,
164 .cra_u = {
165 .cipher = {
166 .cia_min_keysize = AES_MIN_KEY_SIZE,
167 .cia_max_keysize = AES_MAX_KEY_SIZE,
168 .cia_setkey = aes_set_key,
169 .cia_encrypt = crypto_aes_encrypt,
170 .cia_decrypt = crypto_aes_decrypt,
171 }
172 }
173 };
174
setkey_fallback_skcipher(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)175 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
176 unsigned int len)
177 {
178 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
179
180 crypto_skcipher_clear_flags(sctx->fallback.skcipher,
181 CRYPTO_TFM_REQ_MASK);
182 crypto_skcipher_set_flags(sctx->fallback.skcipher,
183 crypto_skcipher_get_flags(tfm) &
184 CRYPTO_TFM_REQ_MASK);
185 return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
186 }
187
fallback_skcipher_crypt(struct s390_aes_ctx * sctx,struct skcipher_request * req,unsigned long modifier)188 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
189 struct skcipher_request *req,
190 unsigned long modifier)
191 {
192 struct skcipher_request *subreq = skcipher_request_ctx(req);
193
194 *subreq = *req;
195 skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
196 return (modifier & CPACF_DECRYPT) ?
197 crypto_skcipher_decrypt(subreq) :
198 crypto_skcipher_encrypt(subreq);
199 }
200
ecb_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)201 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
202 unsigned int key_len)
203 {
204 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
205 unsigned long fc;
206
207 /* Pick the correct function code based on the key length */
208 fc = (key_len == 16) ? CPACF_KM_AES_128 :
209 (key_len == 24) ? CPACF_KM_AES_192 :
210 (key_len == 32) ? CPACF_KM_AES_256 : 0;
211
212 /* Check if the function code is available */
213 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
214 if (!sctx->fc)
215 return setkey_fallback_skcipher(tfm, in_key, key_len);
216
217 sctx->key_len = key_len;
218 memcpy(sctx->key, in_key, key_len);
219 return 0;
220 }
221
ecb_aes_crypt(struct skcipher_request * req,unsigned long modifier)222 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
223 {
224 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
225 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
226 struct skcipher_walk walk;
227 unsigned int nbytes, n;
228 int ret;
229
230 if (unlikely(!sctx->fc))
231 return fallback_skcipher_crypt(sctx, req, modifier);
232
233 ret = skcipher_walk_virt(&walk, req, false);
234 while ((nbytes = walk.nbytes) != 0) {
235 /* only use complete blocks */
236 n = nbytes & ~(AES_BLOCK_SIZE - 1);
237 cpacf_km(sctx->fc | modifier, sctx->key,
238 walk.dst.virt.addr, walk.src.virt.addr, n);
239 ret = skcipher_walk_done(&walk, nbytes - n);
240 }
241 return ret;
242 }
243
ecb_aes_encrypt(struct skcipher_request * req)244 static int ecb_aes_encrypt(struct skcipher_request *req)
245 {
246 return ecb_aes_crypt(req, 0);
247 }
248
ecb_aes_decrypt(struct skcipher_request * req)249 static int ecb_aes_decrypt(struct skcipher_request *req)
250 {
251 return ecb_aes_crypt(req, CPACF_DECRYPT);
252 }
253
fallback_init_skcipher(struct crypto_skcipher * tfm)254 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
255 {
256 const char *name = crypto_tfm_alg_name(&tfm->base);
257 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
258
259 sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
260 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
261
262 if (IS_ERR(sctx->fallback.skcipher)) {
263 pr_err("Allocating AES fallback algorithm %s failed\n",
264 name);
265 return PTR_ERR(sctx->fallback.skcipher);
266 }
267
268 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
269 crypto_skcipher_reqsize(sctx->fallback.skcipher));
270 return 0;
271 }
272
fallback_exit_skcipher(struct crypto_skcipher * tfm)273 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
274 {
275 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
276
277 crypto_free_skcipher(sctx->fallback.skcipher);
278 }
279
280 static struct skcipher_alg ecb_aes_alg = {
281 .base.cra_name = "ecb(aes)",
282 .base.cra_driver_name = "ecb-aes-s390",
283 .base.cra_priority = 401, /* combo: aes + ecb + 1 */
284 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
285 .base.cra_blocksize = AES_BLOCK_SIZE,
286 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
287 .base.cra_module = THIS_MODULE,
288 .init = fallback_init_skcipher,
289 .exit = fallback_exit_skcipher,
290 .min_keysize = AES_MIN_KEY_SIZE,
291 .max_keysize = AES_MAX_KEY_SIZE,
292 .setkey = ecb_aes_set_key,
293 .encrypt = ecb_aes_encrypt,
294 .decrypt = ecb_aes_decrypt,
295 };
296
cbc_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)297 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
298 unsigned int key_len)
299 {
300 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
301 unsigned long fc;
302
303 /* Pick the correct function code based on the key length */
304 fc = (key_len == 16) ? CPACF_KMC_AES_128 :
305 (key_len == 24) ? CPACF_KMC_AES_192 :
306 (key_len == 32) ? CPACF_KMC_AES_256 : 0;
307
308 /* Check if the function code is available */
309 sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
310 if (!sctx->fc)
311 return setkey_fallback_skcipher(tfm, in_key, key_len);
312
313 sctx->key_len = key_len;
314 memcpy(sctx->key, in_key, key_len);
315 return 0;
316 }
317
cbc_aes_crypt(struct skcipher_request * req,unsigned long modifier)318 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
319 {
320 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
321 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
322 struct skcipher_walk walk;
323 unsigned int nbytes, n;
324 int ret;
325 struct {
326 u8 iv[AES_BLOCK_SIZE];
327 u8 key[AES_MAX_KEY_SIZE];
328 } param;
329
330 if (unlikely(!sctx->fc))
331 return fallback_skcipher_crypt(sctx, req, modifier);
332
333 ret = skcipher_walk_virt(&walk, req, false);
334 if (ret)
335 return ret;
336 memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
337 memcpy(param.key, sctx->key, sctx->key_len);
338 while ((nbytes = walk.nbytes) != 0) {
339 /* only use complete blocks */
340 n = nbytes & ~(AES_BLOCK_SIZE - 1);
341 cpacf_kmc(sctx->fc | modifier, ¶m,
342 walk.dst.virt.addr, walk.src.virt.addr, n);
343 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
344 ret = skcipher_walk_done(&walk, nbytes - n);
345 }
346 memzero_explicit(¶m, sizeof(param));
347 return ret;
348 }
349
cbc_aes_encrypt(struct skcipher_request * req)350 static int cbc_aes_encrypt(struct skcipher_request *req)
351 {
352 return cbc_aes_crypt(req, 0);
353 }
354
cbc_aes_decrypt(struct skcipher_request * req)355 static int cbc_aes_decrypt(struct skcipher_request *req)
356 {
357 return cbc_aes_crypt(req, CPACF_DECRYPT);
358 }
359
360 static struct skcipher_alg cbc_aes_alg = {
361 .base.cra_name = "cbc(aes)",
362 .base.cra_driver_name = "cbc-aes-s390",
363 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
364 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
365 .base.cra_blocksize = AES_BLOCK_SIZE,
366 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
367 .base.cra_module = THIS_MODULE,
368 .init = fallback_init_skcipher,
369 .exit = fallback_exit_skcipher,
370 .min_keysize = AES_MIN_KEY_SIZE,
371 .max_keysize = AES_MAX_KEY_SIZE,
372 .ivsize = AES_BLOCK_SIZE,
373 .setkey = cbc_aes_set_key,
374 .encrypt = cbc_aes_encrypt,
375 .decrypt = cbc_aes_decrypt,
376 };
377
xts_fallback_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)378 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
379 unsigned int len)
380 {
381 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
382
383 crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
384 crypto_skcipher_set_flags(xts_ctx->fallback,
385 crypto_skcipher_get_flags(tfm) &
386 CRYPTO_TFM_REQ_MASK);
387 return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
388 }
389
xts_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)390 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
391 unsigned int key_len)
392 {
393 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
394 unsigned long fc;
395 int err;
396
397 err = xts_fallback_setkey(tfm, in_key, key_len);
398 if (err)
399 return err;
400
401 /* In fips mode only 128 bit or 256 bit keys are valid */
402 if (fips_enabled && key_len != 32 && key_len != 64)
403 return -EINVAL;
404
405 /* Pick the correct function code based on the key length */
406 fc = (key_len == 32) ? CPACF_KM_XTS_128 :
407 (key_len == 64) ? CPACF_KM_XTS_256 : 0;
408
409 /* Check if the function code is available */
410 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
411 if (!xts_ctx->fc)
412 return 0;
413
414 /* Split the XTS key into the two subkeys */
415 key_len = key_len / 2;
416 xts_ctx->key_len = key_len;
417 memcpy(xts_ctx->key, in_key, key_len);
418 memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
419 return 0;
420 }
421
xts_aes_crypt(struct skcipher_request * req,unsigned long modifier)422 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
423 {
424 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
425 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
426 struct skcipher_walk walk;
427 unsigned int offset, nbytes, n;
428 int ret;
429 struct {
430 u8 key[32];
431 u8 tweak[16];
432 u8 block[16];
433 u8 bit[16];
434 u8 xts[16];
435 } pcc_param;
436 struct {
437 u8 key[32];
438 u8 init[16];
439 } xts_param;
440
441 if (req->cryptlen < AES_BLOCK_SIZE)
442 return -EINVAL;
443
444 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
445 struct skcipher_request *subreq = skcipher_request_ctx(req);
446
447 *subreq = *req;
448 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
449 return (modifier & CPACF_DECRYPT) ?
450 crypto_skcipher_decrypt(subreq) :
451 crypto_skcipher_encrypt(subreq);
452 }
453
454 ret = skcipher_walk_virt(&walk, req, false);
455 if (ret)
456 return ret;
457 offset = xts_ctx->key_len & 0x10;
458 memset(pcc_param.block, 0, sizeof(pcc_param.block));
459 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
460 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
461 memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
462 memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
463 cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
464
465 memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
466 memcpy(xts_param.init, pcc_param.xts, 16);
467
468 while ((nbytes = walk.nbytes) != 0) {
469 /* only use complete blocks */
470 n = nbytes & ~(AES_BLOCK_SIZE - 1);
471 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
472 walk.dst.virt.addr, walk.src.virt.addr, n);
473 ret = skcipher_walk_done(&walk, nbytes - n);
474 }
475 memzero_explicit(&pcc_param, sizeof(pcc_param));
476 memzero_explicit(&xts_param, sizeof(xts_param));
477 return ret;
478 }
479
xts_aes_encrypt(struct skcipher_request * req)480 static int xts_aes_encrypt(struct skcipher_request *req)
481 {
482 return xts_aes_crypt(req, 0);
483 }
484
xts_aes_decrypt(struct skcipher_request * req)485 static int xts_aes_decrypt(struct skcipher_request *req)
486 {
487 return xts_aes_crypt(req, CPACF_DECRYPT);
488 }
489
xts_fallback_init(struct crypto_skcipher * tfm)490 static int xts_fallback_init(struct crypto_skcipher *tfm)
491 {
492 const char *name = crypto_tfm_alg_name(&tfm->base);
493 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
494
495 xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
496 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
497
498 if (IS_ERR(xts_ctx->fallback)) {
499 pr_err("Allocating XTS fallback algorithm %s failed\n",
500 name);
501 return PTR_ERR(xts_ctx->fallback);
502 }
503 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
504 crypto_skcipher_reqsize(xts_ctx->fallback));
505 return 0;
506 }
507
xts_fallback_exit(struct crypto_skcipher * tfm)508 static void xts_fallback_exit(struct crypto_skcipher *tfm)
509 {
510 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
511
512 crypto_free_skcipher(xts_ctx->fallback);
513 }
514
515 static struct skcipher_alg xts_aes_alg = {
516 .base.cra_name = "xts(aes)",
517 .base.cra_driver_name = "xts-aes-s390",
518 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
519 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
520 .base.cra_blocksize = AES_BLOCK_SIZE,
521 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
522 .base.cra_module = THIS_MODULE,
523 .init = xts_fallback_init,
524 .exit = xts_fallback_exit,
525 .min_keysize = 2 * AES_MIN_KEY_SIZE,
526 .max_keysize = 2 * AES_MAX_KEY_SIZE,
527 .ivsize = AES_BLOCK_SIZE,
528 .setkey = xts_aes_set_key,
529 .encrypt = xts_aes_encrypt,
530 .decrypt = xts_aes_decrypt,
531 };
532
ctr_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)533 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
534 unsigned int key_len)
535 {
536 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
537 unsigned long fc;
538
539 /* Pick the correct function code based on the key length */
540 fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
541 (key_len == 24) ? CPACF_KMCTR_AES_192 :
542 (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
543
544 /* Check if the function code is available */
545 sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
546 if (!sctx->fc)
547 return setkey_fallback_skcipher(tfm, in_key, key_len);
548
549 sctx->key_len = key_len;
550 memcpy(sctx->key, in_key, key_len);
551 return 0;
552 }
553
__ctrblk_init(u8 * ctrptr,u8 * iv,unsigned int nbytes)554 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
555 {
556 unsigned int i, n;
557
558 /* only use complete blocks, max. PAGE_SIZE */
559 memcpy(ctrptr, iv, AES_BLOCK_SIZE);
560 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
561 for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
562 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
563 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
564 ctrptr += AES_BLOCK_SIZE;
565 }
566 return n;
567 }
568
ctr_aes_crypt(struct skcipher_request * req)569 static int ctr_aes_crypt(struct skcipher_request *req)
570 {
571 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
572 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
573 u8 buf[AES_BLOCK_SIZE], *ctrptr;
574 struct skcipher_walk walk;
575 unsigned int n, nbytes;
576 int ret, locked;
577
578 if (unlikely(!sctx->fc))
579 return fallback_skcipher_crypt(sctx, req, 0);
580
581 locked = mutex_trylock(&ctrblk_lock);
582
583 ret = skcipher_walk_virt(&walk, req, false);
584 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
585 n = AES_BLOCK_SIZE;
586
587 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
588 n = __ctrblk_init(ctrblk, walk.iv, nbytes);
589 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
590 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
591 walk.src.virt.addr, n, ctrptr);
592 if (ctrptr == ctrblk)
593 memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
594 AES_BLOCK_SIZE);
595 crypto_inc(walk.iv, AES_BLOCK_SIZE);
596 ret = skcipher_walk_done(&walk, nbytes - n);
597 }
598 if (locked)
599 mutex_unlock(&ctrblk_lock);
600 /*
601 * final block may be < AES_BLOCK_SIZE, copy only nbytes
602 */
603 if (nbytes) {
604 memset(buf, 0, AES_BLOCK_SIZE);
605 memcpy(buf, walk.src.virt.addr, nbytes);
606 cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
607 AES_BLOCK_SIZE, walk.iv);
608 memcpy(walk.dst.virt.addr, buf, nbytes);
609 crypto_inc(walk.iv, AES_BLOCK_SIZE);
610 ret = skcipher_walk_done(&walk, 0);
611 }
612
613 return ret;
614 }
615
616 static struct skcipher_alg ctr_aes_alg = {
617 .base.cra_name = "ctr(aes)",
618 .base.cra_driver_name = "ctr-aes-s390",
619 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
620 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
621 .base.cra_blocksize = 1,
622 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
623 .base.cra_module = THIS_MODULE,
624 .init = fallback_init_skcipher,
625 .exit = fallback_exit_skcipher,
626 .min_keysize = AES_MIN_KEY_SIZE,
627 .max_keysize = AES_MAX_KEY_SIZE,
628 .ivsize = AES_BLOCK_SIZE,
629 .setkey = ctr_aes_set_key,
630 .encrypt = ctr_aes_crypt,
631 .decrypt = ctr_aes_crypt,
632 .chunksize = AES_BLOCK_SIZE,
633 };
634
gcm_aes_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)635 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
636 unsigned int keylen)
637 {
638 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
639
640 switch (keylen) {
641 case AES_KEYSIZE_128:
642 ctx->fc = CPACF_KMA_GCM_AES_128;
643 break;
644 case AES_KEYSIZE_192:
645 ctx->fc = CPACF_KMA_GCM_AES_192;
646 break;
647 case AES_KEYSIZE_256:
648 ctx->fc = CPACF_KMA_GCM_AES_256;
649 break;
650 default:
651 return -EINVAL;
652 }
653
654 memcpy(ctx->key, key, keylen);
655 ctx->key_len = keylen;
656 return 0;
657 }
658
gcm_aes_setauthsize(struct crypto_aead * tfm,unsigned int authsize)659 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
660 {
661 switch (authsize) {
662 case 4:
663 case 8:
664 case 12:
665 case 13:
666 case 14:
667 case 15:
668 case 16:
669 break;
670 default:
671 return -EINVAL;
672 }
673
674 return 0;
675 }
676
gcm_walk_start(struct gcm_sg_walk * gw,struct scatterlist * sg,unsigned int len)677 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
678 unsigned int len)
679 {
680 memset(gw, 0, sizeof(*gw));
681 gw->walk_bytes_remain = len;
682 scatterwalk_start(&gw->walk, sg);
683 }
684
_gcm_sg_clamp_and_map(struct gcm_sg_walk * gw)685 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
686 {
687 struct scatterlist *nextsg;
688
689 gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
690 while (!gw->walk_bytes) {
691 nextsg = sg_next(gw->walk.sg);
692 if (!nextsg)
693 return 0;
694 scatterwalk_start(&gw->walk, nextsg);
695 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
696 gw->walk_bytes_remain);
697 }
698 gw->walk_ptr = scatterwalk_map(&gw->walk);
699 return gw->walk_bytes;
700 }
701
_gcm_sg_unmap_and_advance(struct gcm_sg_walk * gw,unsigned int nbytes)702 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
703 unsigned int nbytes)
704 {
705 gw->walk_bytes_remain -= nbytes;
706 scatterwalk_unmap(gw->walk_ptr);
707 scatterwalk_advance(&gw->walk, nbytes);
708 scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
709 gw->walk_ptr = NULL;
710 }
711
gcm_in_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)712 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
713 {
714 int n;
715
716 if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
717 gw->ptr = gw->buf;
718 gw->nbytes = gw->buf_bytes;
719 goto out;
720 }
721
722 if (gw->walk_bytes_remain == 0) {
723 gw->ptr = NULL;
724 gw->nbytes = 0;
725 goto out;
726 }
727
728 if (!_gcm_sg_clamp_and_map(gw)) {
729 gw->ptr = NULL;
730 gw->nbytes = 0;
731 goto out;
732 }
733
734 if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
735 gw->ptr = gw->walk_ptr;
736 gw->nbytes = gw->walk_bytes;
737 goto out;
738 }
739
740 while (1) {
741 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
742 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
743 gw->buf_bytes += n;
744 _gcm_sg_unmap_and_advance(gw, n);
745 if (gw->buf_bytes >= minbytesneeded) {
746 gw->ptr = gw->buf;
747 gw->nbytes = gw->buf_bytes;
748 goto out;
749 }
750 if (!_gcm_sg_clamp_and_map(gw)) {
751 gw->ptr = NULL;
752 gw->nbytes = 0;
753 goto out;
754 }
755 }
756
757 out:
758 return gw->nbytes;
759 }
760
gcm_out_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)761 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
762 {
763 if (gw->walk_bytes_remain == 0) {
764 gw->ptr = NULL;
765 gw->nbytes = 0;
766 goto out;
767 }
768
769 if (!_gcm_sg_clamp_and_map(gw)) {
770 gw->ptr = NULL;
771 gw->nbytes = 0;
772 goto out;
773 }
774
775 if (gw->walk_bytes >= minbytesneeded) {
776 gw->ptr = gw->walk_ptr;
777 gw->nbytes = gw->walk_bytes;
778 goto out;
779 }
780
781 scatterwalk_unmap(gw->walk_ptr);
782 gw->walk_ptr = NULL;
783
784 gw->ptr = gw->buf;
785 gw->nbytes = sizeof(gw->buf);
786
787 out:
788 return gw->nbytes;
789 }
790
gcm_in_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)791 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
792 {
793 if (gw->ptr == NULL)
794 return 0;
795
796 if (gw->ptr == gw->buf) {
797 int n = gw->buf_bytes - bytesdone;
798 if (n > 0) {
799 memmove(gw->buf, gw->buf + bytesdone, n);
800 gw->buf_bytes = n;
801 } else
802 gw->buf_bytes = 0;
803 } else
804 _gcm_sg_unmap_and_advance(gw, bytesdone);
805
806 return bytesdone;
807 }
808
gcm_out_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)809 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
810 {
811 int i, n;
812
813 if (gw->ptr == NULL)
814 return 0;
815
816 if (gw->ptr == gw->buf) {
817 for (i = 0; i < bytesdone; i += n) {
818 if (!_gcm_sg_clamp_and_map(gw))
819 return i;
820 n = min(gw->walk_bytes, bytesdone - i);
821 memcpy(gw->walk_ptr, gw->buf + i, n);
822 _gcm_sg_unmap_and_advance(gw, n);
823 }
824 } else
825 _gcm_sg_unmap_and_advance(gw, bytesdone);
826
827 return bytesdone;
828 }
829
gcm_aes_crypt(struct aead_request * req,unsigned int flags)830 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
831 {
832 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
833 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
834 unsigned int ivsize = crypto_aead_ivsize(tfm);
835 unsigned int taglen = crypto_aead_authsize(tfm);
836 unsigned int aadlen = req->assoclen;
837 unsigned int pclen = req->cryptlen;
838 int ret = 0;
839
840 unsigned int n, len, in_bytes, out_bytes,
841 min_bytes, bytes, aad_bytes, pc_bytes;
842 struct gcm_sg_walk gw_in, gw_out;
843 u8 tag[GHASH_DIGEST_SIZE];
844
845 struct {
846 u32 _[3]; /* reserved */
847 u32 cv; /* Counter Value */
848 u8 t[GHASH_DIGEST_SIZE];/* Tag */
849 u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
850 u64 taadl; /* Total AAD Length */
851 u64 tpcl; /* Total Plain-/Cipher-text Length */
852 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
853 u8 k[AES_MAX_KEY_SIZE]; /* Key */
854 } param;
855
856 /*
857 * encrypt
858 * req->src: aad||plaintext
859 * req->dst: aad||ciphertext||tag
860 * decrypt
861 * req->src: aad||ciphertext||tag
862 * req->dst: aad||plaintext, return 0 or -EBADMSG
863 * aad, plaintext and ciphertext may be empty.
864 */
865 if (flags & CPACF_DECRYPT)
866 pclen -= taglen;
867 len = aadlen + pclen;
868
869 memset(¶m, 0, sizeof(param));
870 param.cv = 1;
871 param.taadl = aadlen * 8;
872 param.tpcl = pclen * 8;
873 memcpy(param.j0, req->iv, ivsize);
874 *(u32 *)(param.j0 + ivsize) = 1;
875 memcpy(param.k, ctx->key, ctx->key_len);
876
877 gcm_walk_start(&gw_in, req->src, len);
878 gcm_walk_start(&gw_out, req->dst, len);
879
880 do {
881 min_bytes = min_t(unsigned int,
882 aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
883 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
884 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
885 bytes = min(in_bytes, out_bytes);
886
887 if (aadlen + pclen <= bytes) {
888 aad_bytes = aadlen;
889 pc_bytes = pclen;
890 flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
891 } else {
892 if (aadlen <= bytes) {
893 aad_bytes = aadlen;
894 pc_bytes = (bytes - aadlen) &
895 ~(AES_BLOCK_SIZE - 1);
896 flags |= CPACF_KMA_LAAD;
897 } else {
898 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
899 pc_bytes = 0;
900 }
901 }
902
903 if (aad_bytes > 0)
904 memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
905
906 cpacf_kma(ctx->fc | flags, ¶m,
907 gw_out.ptr + aad_bytes,
908 gw_in.ptr + aad_bytes, pc_bytes,
909 gw_in.ptr, aad_bytes);
910
911 n = aad_bytes + pc_bytes;
912 if (gcm_in_walk_done(&gw_in, n) != n)
913 return -ENOMEM;
914 if (gcm_out_walk_done(&gw_out, n) != n)
915 return -ENOMEM;
916 aadlen -= aad_bytes;
917 pclen -= pc_bytes;
918 } while (aadlen + pclen > 0);
919
920 if (flags & CPACF_DECRYPT) {
921 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
922 if (crypto_memneq(tag, param.t, taglen))
923 ret = -EBADMSG;
924 } else
925 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
926
927 memzero_explicit(¶m, sizeof(param));
928 return ret;
929 }
930
gcm_aes_encrypt(struct aead_request * req)931 static int gcm_aes_encrypt(struct aead_request *req)
932 {
933 return gcm_aes_crypt(req, CPACF_ENCRYPT);
934 }
935
gcm_aes_decrypt(struct aead_request * req)936 static int gcm_aes_decrypt(struct aead_request *req)
937 {
938 return gcm_aes_crypt(req, CPACF_DECRYPT);
939 }
940
941 static struct aead_alg gcm_aes_aead = {
942 .setkey = gcm_aes_setkey,
943 .setauthsize = gcm_aes_setauthsize,
944 .encrypt = gcm_aes_encrypt,
945 .decrypt = gcm_aes_decrypt,
946
947 .ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
948 .maxauthsize = GHASH_DIGEST_SIZE,
949 .chunksize = AES_BLOCK_SIZE,
950
951 .base = {
952 .cra_blocksize = 1,
953 .cra_ctxsize = sizeof(struct s390_aes_ctx),
954 .cra_priority = 900,
955 .cra_name = "gcm(aes)",
956 .cra_driver_name = "gcm-aes-s390",
957 .cra_module = THIS_MODULE,
958 },
959 };
960
961 static struct crypto_alg *aes_s390_alg;
962 static struct skcipher_alg *aes_s390_skcipher_algs[4];
963 static int aes_s390_skciphers_num;
964 static struct aead_alg *aes_s390_aead_alg;
965
aes_s390_register_skcipher(struct skcipher_alg * alg)966 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
967 {
968 int ret;
969
970 ret = crypto_register_skcipher(alg);
971 if (!ret)
972 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
973 return ret;
974 }
975
aes_s390_fini(void)976 static void aes_s390_fini(void)
977 {
978 if (aes_s390_alg)
979 crypto_unregister_alg(aes_s390_alg);
980 while (aes_s390_skciphers_num--)
981 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
982 if (ctrblk)
983 free_page((unsigned long) ctrblk);
984
985 if (aes_s390_aead_alg)
986 crypto_unregister_aead(aes_s390_aead_alg);
987 }
988
aes_s390_init(void)989 static int __init aes_s390_init(void)
990 {
991 int ret;
992
993 /* Query available functions for KM, KMC, KMCTR and KMA */
994 cpacf_query(CPACF_KM, &km_functions);
995 cpacf_query(CPACF_KMC, &kmc_functions);
996 cpacf_query(CPACF_KMCTR, &kmctr_functions);
997 cpacf_query(CPACF_KMA, &kma_functions);
998
999 if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1000 cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1001 cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1002 ret = crypto_register_alg(&aes_alg);
1003 if (ret)
1004 goto out_err;
1005 aes_s390_alg = &aes_alg;
1006 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1007 if (ret)
1008 goto out_err;
1009 }
1010
1011 if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1012 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1013 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1014 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1015 if (ret)
1016 goto out_err;
1017 }
1018
1019 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1020 cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1021 ret = aes_s390_register_skcipher(&xts_aes_alg);
1022 if (ret)
1023 goto out_err;
1024 }
1025
1026 if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1027 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1028 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1029 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1030 if (!ctrblk) {
1031 ret = -ENOMEM;
1032 goto out_err;
1033 }
1034 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1035 if (ret)
1036 goto out_err;
1037 }
1038
1039 if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1040 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1041 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1042 ret = crypto_register_aead(&gcm_aes_aead);
1043 if (ret)
1044 goto out_err;
1045 aes_s390_aead_alg = &gcm_aes_aead;
1046 }
1047
1048 return 0;
1049 out_err:
1050 aes_s390_fini();
1051 return ret;
1052 }
1053
1054 module_cpu_feature_match(MSA, aes_s390_init);
1055 module_exit(aes_s390_fini);
1056
1057 MODULE_ALIAS_CRYPTO("aes-all");
1058
1059 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1060 MODULE_LICENSE("GPL");
1061 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
1062