• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
blk_rq_init(struct request_queue * q,struct request * rq)111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	rq->q = q;
117 	rq->__sector = (sector_t) -1;
118 	INIT_HLIST_NODE(&rq->hash);
119 	RB_CLEAR_NODE(&rq->rb_node);
120 	rq->tag = BLK_MQ_NO_TAG;
121 	rq->internal_tag = BLK_MQ_NO_TAG;
122 	rq->start_time_ns = ktime_get_ns();
123 	rq->part = NULL;
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(SCSI_IN),
144 	REQ_OP_NAME(SCSI_OUT),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
blk_op_str(unsigned int op)158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* zone device specific errors */
190 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
191 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
192 
193 	/* everything else not covered above: */
194 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
195 };
196 
errno_to_blk_status(int errno)197 blk_status_t errno_to_blk_status(int errno)
198 {
199 	int i;
200 
201 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 		if (blk_errors[i].errno == errno)
203 			return (__force blk_status_t)i;
204 	}
205 
206 	return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209 
blk_status_to_errno(blk_status_t status)210 int blk_status_to_errno(blk_status_t status)
211 {
212 	int idx = (__force int)status;
213 
214 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 		return -EIO;
216 	return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219 
print_req_error(struct request * req,blk_status_t status,const char * caller)220 static void print_req_error(struct request *req, blk_status_t status,
221 		const char *caller)
222 {
223 	int idx = (__force int)status;
224 
225 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 		return;
227 
228 	printk_ratelimited(KERN_ERR
229 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 		"phys_seg %u prio class %u\n",
231 		caller, blk_errors[idx].name,
232 		req->rq_disk ? req->rq_disk->disk_name : "?",
233 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 		req->cmd_flags & ~REQ_OP_MASK,
235 		req->nr_phys_segments,
236 		IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 			  unsigned int nbytes, blk_status_t error)
241 {
242 	if (error)
243 		bio->bi_status = error;
244 
245 	if (unlikely(rq->rq_flags & RQF_QUIET))
246 		bio_set_flag(bio, BIO_QUIET);
247 
248 	bio_advance(bio, nbytes);
249 
250 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 		/*
252 		 * Partial zone append completions cannot be supported as the
253 		 * BIO fragments may end up not being written sequentially.
254 		 */
255 		if (bio->bi_iter.bi_size)
256 			bio->bi_status = BLK_STS_IOERR;
257 		else
258 			bio->bi_iter.bi_sector = rq->__sector;
259 	}
260 
261 	/* don't actually finish bio if it's part of flush sequence */
262 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 		bio_endio(bio);
264 }
265 
blk_dump_rq_flags(struct request * rq,char * msg)266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 		(unsigned long long) rq->cmd_flags);
271 
272 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
273 	       (unsigned long long)blk_rq_pos(rq),
274 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
276 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279 
280 /**
281  * blk_sync_queue - cancel any pending callbacks on a queue
282  * @q: the queue
283  *
284  * Description:
285  *     The block layer may perform asynchronous callback activity
286  *     on a queue, such as calling the unplug function after a timeout.
287  *     A block device may call blk_sync_queue to ensure that any
288  *     such activity is cancelled, thus allowing it to release resources
289  *     that the callbacks might use. The caller must already have made sure
290  *     that its ->submit_bio will not re-add plugging prior to calling
291  *     this function.
292  *
293  *     This function does not cancel any asynchronous activity arising
294  *     out of elevator or throttling code. That would require elevator_exit()
295  *     and blkcg_exit_queue() to be called with queue lock initialized.
296  *
297  */
blk_sync_queue(struct request_queue * q)298 void blk_sync_queue(struct request_queue *q)
299 {
300 	del_timer_sync(&q->timeout);
301 	cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304 
305 /**
306  * blk_set_pm_only - increment pm_only counter
307  * @q: request queue pointer
308  */
blk_set_pm_only(struct request_queue * q)309 void blk_set_pm_only(struct request_queue *q)
310 {
311 	atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314 
blk_clear_pm_only(struct request_queue * q)315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 	int pm_only;
318 
319 	pm_only = atomic_dec_return(&q->pm_only);
320 	WARN_ON_ONCE(pm_only < 0);
321 	if (pm_only == 0)
322 		wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325 
326 /**
327  * blk_put_queue - decrement the request_queue refcount
328  * @q: the request_queue structure to decrement the refcount for
329  *
330  * Decrements the refcount of the request_queue kobject. When this reaches 0
331  * we'll have blk_release_queue() called.
332  *
333  * Context: Any context, but the last reference must not be dropped from
334  *          atomic context.
335  */
blk_put_queue(struct request_queue * q)336 void blk_put_queue(struct request_queue *q)
337 {
338 	kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341 
blk_set_queue_dying(struct request_queue * q)342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 
346 	/*
347 	 * When queue DYING flag is set, we need to block new req
348 	 * entering queue, so we call blk_freeze_queue_start() to
349 	 * prevent I/O from crossing blk_queue_enter().
350 	 */
351 	blk_freeze_queue_start(q);
352 
353 	if (queue_is_mq(q))
354 		blk_mq_wake_waiters(q);
355 
356 	/* Make blk_queue_enter() reexamine the DYING flag. */
357 	wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360 
361 /**
362  * blk_cleanup_queue - shutdown a request queue
363  * @q: request queue to shutdown
364  *
365  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366  * put it.  All future requests will be failed immediately with -ENODEV.
367  *
368  * Context: can sleep
369  */
blk_cleanup_queue(struct request_queue * q)370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 	/* cannot be called from atomic context */
373 	might_sleep();
374 
375 	WARN_ON_ONCE(blk_queue_registered(q));
376 
377 	/* mark @q DYING, no new request or merges will be allowed afterwards */
378 	blk_set_queue_dying(q);
379 
380 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382 
383 	/*
384 	 * Drain all requests queued before DYING marking. Set DEAD flag to
385 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 	 * after draining finished.
387 	 */
388 	blk_freeze_queue(q);
389 
390 	rq_qos_exit(q);
391 
392 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393 
394 	/* for synchronous bio-based driver finish in-flight integrity i/o */
395 	blk_flush_integrity();
396 
397 	/* @q won't process any more request, flush async actions */
398 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 	blk_sync_queue(q);
400 
401 	if (queue_is_mq(q))
402 		blk_mq_exit_queue(q);
403 
404 	/*
405 	 * In theory, request pool of sched_tags belongs to request queue.
406 	 * However, the current implementation requires tag_set for freeing
407 	 * requests, so free the pool now.
408 	 *
409 	 * Queue has become frozen, there can't be any in-queue requests, so
410 	 * it is safe to free requests now.
411 	 */
412 	mutex_lock(&q->sysfs_lock);
413 	if (q->elevator)
414 		blk_mq_sched_free_requests(q);
415 	mutex_unlock(&q->sysfs_lock);
416 
417 	/* @q is and will stay empty, shutdown and put */
418 	blk_put_queue(q);
419 }
420 EXPORT_SYMBOL(blk_cleanup_queue);
421 
422 /**
423  * blk_queue_enter() - try to increase q->q_usage_counter
424  * @q: request queue pointer
425  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
426  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)427 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
428 {
429 	const bool pm = flags & BLK_MQ_REQ_PM;
430 
431 	while (true) {
432 		bool success = false;
433 
434 		rcu_read_lock();
435 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
436 			/*
437 			 * The code that increments the pm_only counter is
438 			 * responsible for ensuring that that counter is
439 			 * globally visible before the queue is unfrozen.
440 			 */
441 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
442 			    !blk_queue_pm_only(q)) {
443 				success = true;
444 			} else {
445 				percpu_ref_put(&q->q_usage_counter);
446 			}
447 		}
448 		rcu_read_unlock();
449 
450 		if (success)
451 			return 0;
452 
453 		if (flags & BLK_MQ_REQ_NOWAIT)
454 			return -EBUSY;
455 
456 		/*
457 		 * read pair of barrier in blk_freeze_queue_start(),
458 		 * we need to order reading __PERCPU_REF_DEAD flag of
459 		 * .q_usage_counter and reading .mq_freeze_depth or
460 		 * queue dying flag, otherwise the following wait may
461 		 * never return if the two reads are reordered.
462 		 */
463 		smp_rmb();
464 
465 		wait_event(q->mq_freeze_wq,
466 			   (!q->mq_freeze_depth &&
467 			    blk_pm_resume_queue(pm, q)) ||
468 			   blk_queue_dying(q));
469 		if (blk_queue_dying(q))
470 			return -ENODEV;
471 	}
472 }
473 
bio_queue_enter(struct bio * bio)474 static inline int bio_queue_enter(struct bio *bio)
475 {
476 	struct request_queue *q = bio->bi_disk->queue;
477 	bool nowait = bio->bi_opf & REQ_NOWAIT;
478 	int ret;
479 
480 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
481 	if (unlikely(ret)) {
482 		if (nowait && !blk_queue_dying(q))
483 			bio_wouldblock_error(bio);
484 		else
485 			bio_io_error(bio);
486 	}
487 
488 	return ret;
489 }
490 
blk_queue_exit(struct request_queue * q)491 void blk_queue_exit(struct request_queue *q)
492 {
493 	percpu_ref_put(&q->q_usage_counter);
494 }
495 
blk_queue_usage_counter_release(struct percpu_ref * ref)496 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
497 {
498 	struct request_queue *q =
499 		container_of(ref, struct request_queue, q_usage_counter);
500 
501 	wake_up_all(&q->mq_freeze_wq);
502 }
503 
blk_rq_timed_out_timer(struct timer_list * t)504 static void blk_rq_timed_out_timer(struct timer_list *t)
505 {
506 	struct request_queue *q = from_timer(q, t, timeout);
507 
508 	kblockd_schedule_work(&q->timeout_work);
509 }
510 
blk_timeout_work(struct work_struct * work)511 static void blk_timeout_work(struct work_struct *work)
512 {
513 }
514 
blk_alloc_queue(int node_id)515 struct request_queue *blk_alloc_queue(int node_id)
516 {
517 	struct request_queue *q;
518 	int ret;
519 
520 	q = kmem_cache_alloc_node(blk_requestq_cachep,
521 				GFP_KERNEL | __GFP_ZERO, node_id);
522 	if (!q)
523 		return NULL;
524 
525 	q->last_merge = NULL;
526 
527 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
528 	if (q->id < 0)
529 		goto fail_q;
530 
531 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
532 	if (ret)
533 		goto fail_id;
534 
535 	q->backing_dev_info = bdi_alloc(node_id);
536 	if (!q->backing_dev_info)
537 		goto fail_split;
538 
539 	q->stats = blk_alloc_queue_stats();
540 	if (!q->stats)
541 		goto fail_stats;
542 
543 	q->node = node_id;
544 
545 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
546 
547 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
548 		    laptop_mode_timer_fn, 0);
549 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
550 	INIT_WORK(&q->timeout_work, blk_timeout_work);
551 	INIT_LIST_HEAD(&q->icq_list);
552 #ifdef CONFIG_BLK_CGROUP
553 	INIT_LIST_HEAD(&q->blkg_list);
554 #endif
555 
556 	kobject_init(&q->kobj, &blk_queue_ktype);
557 
558 	mutex_init(&q->debugfs_mutex);
559 	mutex_init(&q->sysfs_lock);
560 	mutex_init(&q->sysfs_dir_lock);
561 	spin_lock_init(&q->queue_lock);
562 
563 	init_waitqueue_head(&q->mq_freeze_wq);
564 	mutex_init(&q->mq_freeze_lock);
565 
566 	/*
567 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
568 	 * See blk_register_queue() for details.
569 	 */
570 	if (percpu_ref_init(&q->q_usage_counter,
571 				blk_queue_usage_counter_release,
572 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
573 		goto fail_bdi;
574 
575 	if (blkcg_init_queue(q))
576 		goto fail_ref;
577 
578 	blk_queue_dma_alignment(q, 511);
579 	blk_set_default_limits(&q->limits);
580 	q->nr_requests = BLKDEV_MAX_RQ;
581 
582 	return q;
583 
584 fail_ref:
585 	percpu_ref_exit(&q->q_usage_counter);
586 fail_bdi:
587 	blk_free_queue_stats(q->stats);
588 fail_stats:
589 	bdi_put(q->backing_dev_info);
590 fail_split:
591 	bioset_exit(&q->bio_split);
592 fail_id:
593 	ida_simple_remove(&blk_queue_ida, q->id);
594 fail_q:
595 	kmem_cache_free(blk_requestq_cachep, q);
596 	return NULL;
597 }
598 EXPORT_SYMBOL(blk_alloc_queue);
599 
600 /**
601  * blk_get_queue - increment the request_queue refcount
602  * @q: the request_queue structure to increment the refcount for
603  *
604  * Increment the refcount of the request_queue kobject.
605  *
606  * Context: Any context.
607  */
blk_get_queue(struct request_queue * q)608 bool blk_get_queue(struct request_queue *q)
609 {
610 	if (likely(!blk_queue_dying(q))) {
611 		__blk_get_queue(q);
612 		return true;
613 	}
614 
615 	return false;
616 }
617 EXPORT_SYMBOL(blk_get_queue);
618 
619 /**
620  * blk_get_request - allocate a request
621  * @q: request queue to allocate a request for
622  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
623  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
624  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)625 struct request *blk_get_request(struct request_queue *q, unsigned int op,
626 				blk_mq_req_flags_t flags)
627 {
628 	struct request *req;
629 
630 	WARN_ON_ONCE(op & REQ_NOWAIT);
631 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
632 
633 	req = blk_mq_alloc_request(q, op, flags);
634 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
635 		q->mq_ops->initialize_rq_fn(req);
636 
637 	return req;
638 }
639 EXPORT_SYMBOL(blk_get_request);
640 
blk_put_request(struct request * req)641 void blk_put_request(struct request *req)
642 {
643 	blk_mq_free_request(req);
644 }
645 EXPORT_SYMBOL(blk_put_request);
646 
handle_bad_sector(struct bio * bio,sector_t maxsector)647 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
648 {
649 	char b[BDEVNAME_SIZE];
650 
651 	pr_info_ratelimited("attempt to access beyond end of device\n"
652 			    "%s: rw=%d, want=%llu, limit=%llu\n",
653 			    bio_devname(bio, b), bio->bi_opf,
654 			    bio_end_sector(bio), maxsector);
655 }
656 
657 #ifdef CONFIG_FAIL_MAKE_REQUEST
658 
659 static DECLARE_FAULT_ATTR(fail_make_request);
660 
setup_fail_make_request(char * str)661 static int __init setup_fail_make_request(char *str)
662 {
663 	return setup_fault_attr(&fail_make_request, str);
664 }
665 __setup("fail_make_request=", setup_fail_make_request);
666 
should_fail_request(struct hd_struct * part,unsigned int bytes)667 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
668 {
669 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
670 }
671 
fail_make_request_debugfs(void)672 static int __init fail_make_request_debugfs(void)
673 {
674 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
675 						NULL, &fail_make_request);
676 
677 	return PTR_ERR_OR_ZERO(dir);
678 }
679 
680 late_initcall(fail_make_request_debugfs);
681 
682 #else /* CONFIG_FAIL_MAKE_REQUEST */
683 
should_fail_request(struct hd_struct * part,unsigned int bytes)684 static inline bool should_fail_request(struct hd_struct *part,
685 					unsigned int bytes)
686 {
687 	return false;
688 }
689 
690 #endif /* CONFIG_FAIL_MAKE_REQUEST */
691 
bio_check_ro(struct bio * bio,struct hd_struct * part)692 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
693 {
694 	const int op = bio_op(bio);
695 
696 	if (part->policy && op_is_write(op)) {
697 		char b[BDEVNAME_SIZE];
698 
699 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
700 			return false;
701 		pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
702 			bio_devname(bio, b), part->partno);
703 		/* Older lvm-tools actually trigger this */
704 		return false;
705 	}
706 
707 	return false;
708 }
709 
should_fail_bio(struct bio * bio)710 static noinline int should_fail_bio(struct bio *bio)
711 {
712 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
713 		return -EIO;
714 	return 0;
715 }
716 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
717 
718 /*
719  * Check whether this bio extends beyond the end of the device or partition.
720  * This may well happen - the kernel calls bread() without checking the size of
721  * the device, e.g., when mounting a file system.
722  */
bio_check_eod(struct bio * bio,sector_t maxsector)723 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
724 {
725 	unsigned int nr_sectors = bio_sectors(bio);
726 
727 	if (nr_sectors && maxsector &&
728 	    (nr_sectors > maxsector ||
729 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
730 		handle_bad_sector(bio, maxsector);
731 		return -EIO;
732 	}
733 	return 0;
734 }
735 
736 /*
737  * Remap block n of partition p to block n+start(p) of the disk.
738  */
blk_partition_remap(struct bio * bio)739 static inline int blk_partition_remap(struct bio *bio)
740 {
741 	struct hd_struct *p;
742 	int ret = -EIO;
743 
744 	rcu_read_lock();
745 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
746 	if (unlikely(!p))
747 		goto out;
748 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 		goto out;
750 	if (unlikely(bio_check_ro(bio, p)))
751 		goto out;
752 
753 	if (bio_sectors(bio)) {
754 		if (bio_check_eod(bio, part_nr_sects_read(p)))
755 			goto out;
756 		bio->bi_iter.bi_sector += p->start_sect;
757 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
758 				      bio->bi_iter.bi_sector - p->start_sect);
759 	}
760 	bio->bi_partno = 0;
761 	ret = 0;
762 out:
763 	rcu_read_unlock();
764 	return ret;
765 }
766 
767 /*
768  * Check write append to a zoned block device.
769  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)770 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
771 						 struct bio *bio)
772 {
773 	sector_t pos = bio->bi_iter.bi_sector;
774 	int nr_sectors = bio_sectors(bio);
775 
776 	/* Only applicable to zoned block devices */
777 	if (!blk_queue_is_zoned(q))
778 		return BLK_STS_NOTSUPP;
779 
780 	/* The bio sector must point to the start of a sequential zone */
781 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
782 	    !blk_queue_zone_is_seq(q, pos))
783 		return BLK_STS_IOERR;
784 
785 	/*
786 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
787 	 * split and could result in non-contiguous sectors being written in
788 	 * different zones.
789 	 */
790 	if (nr_sectors > q->limits.chunk_sectors)
791 		return BLK_STS_IOERR;
792 
793 	/* Make sure the BIO is small enough and will not get split */
794 	if (nr_sectors > q->limits.max_zone_append_sectors)
795 		return BLK_STS_IOERR;
796 
797 	bio->bi_opf |= REQ_NOMERGE;
798 
799 	return BLK_STS_OK;
800 }
801 
submit_bio_checks(struct bio * bio)802 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
803 {
804 	struct request_queue *q = bio->bi_disk->queue;
805 	blk_status_t status = BLK_STS_IOERR;
806 	struct blk_plug *plug;
807 
808 	might_sleep();
809 
810 	plug = blk_mq_plug(q, bio);
811 	if (plug && plug->nowait)
812 		bio->bi_opf |= REQ_NOWAIT;
813 
814 	/*
815 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
816 	 * if queue does not support NOWAIT.
817 	 */
818 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
819 		goto not_supported;
820 
821 	if (should_fail_bio(bio))
822 		goto end_io;
823 
824 	if (bio->bi_partno) {
825 		if (unlikely(blk_partition_remap(bio)))
826 			goto end_io;
827 	} else {
828 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
829 			goto end_io;
830 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
831 			goto end_io;
832 	}
833 
834 	/*
835 	 * Filter flush bio's early so that bio based drivers without flush
836 	 * support don't have to worry about them.
837 	 */
838 	if (op_is_flush(bio->bi_opf) &&
839 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
840 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
841 		if (!bio_sectors(bio)) {
842 			status = BLK_STS_OK;
843 			goto end_io;
844 		}
845 	}
846 
847 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
848 		bio->bi_opf &= ~REQ_HIPRI;
849 
850 	switch (bio_op(bio)) {
851 	case REQ_OP_DISCARD:
852 		if (!blk_queue_discard(q))
853 			goto not_supported;
854 		break;
855 	case REQ_OP_SECURE_ERASE:
856 		if (!blk_queue_secure_erase(q))
857 			goto not_supported;
858 		break;
859 	case REQ_OP_WRITE_SAME:
860 		if (!q->limits.max_write_same_sectors)
861 			goto not_supported;
862 		break;
863 	case REQ_OP_ZONE_APPEND:
864 		status = blk_check_zone_append(q, bio);
865 		if (status != BLK_STS_OK)
866 			goto end_io;
867 		break;
868 	case REQ_OP_ZONE_RESET:
869 	case REQ_OP_ZONE_OPEN:
870 	case REQ_OP_ZONE_CLOSE:
871 	case REQ_OP_ZONE_FINISH:
872 		if (!blk_queue_is_zoned(q))
873 			goto not_supported;
874 		break;
875 	case REQ_OP_ZONE_RESET_ALL:
876 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
877 			goto not_supported;
878 		break;
879 	case REQ_OP_WRITE_ZEROES:
880 		if (!q->limits.max_write_zeroes_sectors)
881 			goto not_supported;
882 		break;
883 	default:
884 		break;
885 	}
886 
887 	/*
888 	 * Various block parts want %current->io_context, so allocate it up
889 	 * front rather than dealing with lots of pain to allocate it only
890 	 * where needed. This may fail and the block layer knows how to live
891 	 * with it.
892 	 */
893 	if (unlikely(!current->io_context))
894 		create_task_io_context(current, GFP_ATOMIC, q->node);
895 
896 	if (blk_throtl_bio(bio))
897 		return false;
898 
899 	blk_cgroup_bio_start(bio);
900 	blkcg_bio_issue_init(bio);
901 
902 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
903 		trace_block_bio_queue(q, bio);
904 		/* Now that enqueuing has been traced, we need to trace
905 		 * completion as well.
906 		 */
907 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
908 	}
909 	return true;
910 
911 not_supported:
912 	status = BLK_STS_NOTSUPP;
913 end_io:
914 	bio->bi_status = status;
915 	bio_endio(bio);
916 	return false;
917 }
918 
__submit_bio(struct bio * bio)919 static blk_qc_t __submit_bio(struct bio *bio)
920 {
921 	struct gendisk *disk = bio->bi_disk;
922 	blk_qc_t ret = BLK_QC_T_NONE;
923 
924 	if (blk_crypto_bio_prep(&bio)) {
925 		if (!disk->fops->submit_bio)
926 			return blk_mq_submit_bio(bio);
927 		ret = disk->fops->submit_bio(bio);
928 	}
929 	blk_queue_exit(disk->queue);
930 	return ret;
931 }
932 
933 /*
934  * The loop in this function may be a bit non-obvious, and so deserves some
935  * explanation:
936  *
937  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
938  *    that), so we have a list with a single bio.
939  *  - We pretend that we have just taken it off a longer list, so we assign
940  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
941  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
942  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
943  *    non-NULL value in bio_list and re-enter the loop from the top.
944  *  - In this case we really did just take the bio of the top of the list (no
945  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
946  *    again.
947  *
948  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
949  * bio_list_on_stack[1] contains bios that were submitted before the current
950  *	->submit_bio_bio, but that haven't been processed yet.
951  */
__submit_bio_noacct(struct bio * bio)952 static blk_qc_t __submit_bio_noacct(struct bio *bio)
953 {
954 	struct bio_list bio_list_on_stack[2];
955 	blk_qc_t ret = BLK_QC_T_NONE;
956 
957 	BUG_ON(bio->bi_next);
958 
959 	bio_list_init(&bio_list_on_stack[0]);
960 	current->bio_list = bio_list_on_stack;
961 
962 	do {
963 		struct request_queue *q = bio->bi_disk->queue;
964 		struct bio_list lower, same;
965 
966 		if (unlikely(bio_queue_enter(bio) != 0))
967 			continue;
968 
969 		/*
970 		 * Create a fresh bio_list for all subordinate requests.
971 		 */
972 		bio_list_on_stack[1] = bio_list_on_stack[0];
973 		bio_list_init(&bio_list_on_stack[0]);
974 
975 		ret = __submit_bio(bio);
976 
977 		/*
978 		 * Sort new bios into those for a lower level and those for the
979 		 * same level.
980 		 */
981 		bio_list_init(&lower);
982 		bio_list_init(&same);
983 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
984 			if (q == bio->bi_disk->queue)
985 				bio_list_add(&same, bio);
986 			else
987 				bio_list_add(&lower, bio);
988 
989 		/*
990 		 * Now assemble so we handle the lowest level first.
991 		 */
992 		bio_list_merge(&bio_list_on_stack[0], &lower);
993 		bio_list_merge(&bio_list_on_stack[0], &same);
994 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
995 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
996 
997 	current->bio_list = NULL;
998 	return ret;
999 }
1000 
__submit_bio_noacct_mq(struct bio * bio)1001 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1002 {
1003 	struct bio_list bio_list[2] = { };
1004 	blk_qc_t ret = BLK_QC_T_NONE;
1005 
1006 	current->bio_list = bio_list;
1007 
1008 	do {
1009 		struct gendisk *disk = bio->bi_disk;
1010 
1011 		if (unlikely(bio_queue_enter(bio) != 0))
1012 			continue;
1013 
1014 		if (!blk_crypto_bio_prep(&bio)) {
1015 			blk_queue_exit(disk->queue);
1016 			ret = BLK_QC_T_NONE;
1017 			continue;
1018 		}
1019 
1020 		ret = blk_mq_submit_bio(bio);
1021 	} while ((bio = bio_list_pop(&bio_list[0])));
1022 
1023 	current->bio_list = NULL;
1024 	return ret;
1025 }
1026 
1027 /**
1028  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1029  * @bio:  The bio describing the location in memory and on the device.
1030  *
1031  * This is a version of submit_bio() that shall only be used for I/O that is
1032  * resubmitted to lower level drivers by stacking block drivers.  All file
1033  * systems and other upper level users of the block layer should use
1034  * submit_bio() instead.
1035  */
submit_bio_noacct(struct bio * bio)1036 blk_qc_t submit_bio_noacct(struct bio *bio)
1037 {
1038 	if (!submit_bio_checks(bio))
1039 		return BLK_QC_T_NONE;
1040 
1041 	/*
1042 	 * We only want one ->submit_bio to be active at a time, else stack
1043 	 * usage with stacked devices could be a problem.  Use current->bio_list
1044 	 * to collect a list of requests submited by a ->submit_bio method while
1045 	 * it is active, and then process them after it returned.
1046 	 */
1047 	if (current->bio_list) {
1048 		bio_list_add(&current->bio_list[0], bio);
1049 		return BLK_QC_T_NONE;
1050 	}
1051 
1052 	if (!bio->bi_disk->fops->submit_bio)
1053 		return __submit_bio_noacct_mq(bio);
1054 	return __submit_bio_noacct(bio);
1055 }
1056 EXPORT_SYMBOL(submit_bio_noacct);
1057 
1058 /**
1059  * submit_bio - submit a bio to the block device layer for I/O
1060  * @bio: The &struct bio which describes the I/O
1061  *
1062  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1063  * fully set up &struct bio that describes the I/O that needs to be done.  The
1064  * bio will be send to the device described by the bi_disk and bi_partno fields.
1065  *
1066  * The success/failure status of the request, along with notification of
1067  * completion, is delivered asynchronously through the ->bi_end_io() callback
1068  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1069  * been called.
1070  */
submit_bio(struct bio * bio)1071 blk_qc_t submit_bio(struct bio *bio)
1072 {
1073 	if (blkcg_punt_bio_submit(bio))
1074 		return BLK_QC_T_NONE;
1075 
1076 	/*
1077 	 * If it's a regular read/write or a barrier with data attached,
1078 	 * go through the normal accounting stuff before submission.
1079 	 */
1080 	if (bio_has_data(bio)) {
1081 		unsigned int count;
1082 
1083 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1084 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1085 		else
1086 			count = bio_sectors(bio);
1087 
1088 		if (op_is_write(bio_op(bio))) {
1089 			count_vm_events(PGPGOUT, count);
1090 		} else {
1091 			task_io_account_read(bio->bi_iter.bi_size);
1092 			count_vm_events(PGPGIN, count);
1093 		}
1094 
1095 		if (unlikely(block_dump)) {
1096 			char b[BDEVNAME_SIZE];
1097 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1098 			current->comm, task_pid_nr(current),
1099 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1100 				(unsigned long long)bio->bi_iter.bi_sector,
1101 				bio_devname(bio, b), count);
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * If we're reading data that is part of the userspace workingset, count
1107 	 * submission time as memory stall.  When the device is congested, or
1108 	 * the submitting cgroup IO-throttled, submission can be a significant
1109 	 * part of overall IO time.
1110 	 */
1111 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1112 	    bio_flagged(bio, BIO_WORKINGSET))) {
1113 		unsigned long pflags;
1114 		blk_qc_t ret;
1115 
1116 		psi_memstall_enter(&pflags);
1117 		ret = submit_bio_noacct(bio);
1118 		psi_memstall_leave(&pflags);
1119 
1120 		return ret;
1121 	}
1122 
1123 	return submit_bio_noacct(bio);
1124 }
1125 EXPORT_SYMBOL(submit_bio);
1126 
1127 /**
1128  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1129  *                              for the new queue limits
1130  * @q:  the queue
1131  * @rq: the request being checked
1132  *
1133  * Description:
1134  *    @rq may have been made based on weaker limitations of upper-level queues
1135  *    in request stacking drivers, and it may violate the limitation of @q.
1136  *    Since the block layer and the underlying device driver trust @rq
1137  *    after it is inserted to @q, it should be checked against @q before
1138  *    the insertion using this generic function.
1139  *
1140  *    Request stacking drivers like request-based dm may change the queue
1141  *    limits when retrying requests on other queues. Those requests need
1142  *    to be checked against the new queue limits again during dispatch.
1143  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1144 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1145 				      struct request *rq)
1146 {
1147 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1148 
1149 	if (blk_rq_sectors(rq) > max_sectors) {
1150 		/*
1151 		 * SCSI device does not have a good way to return if
1152 		 * Write Same/Zero is actually supported. If a device rejects
1153 		 * a non-read/write command (discard, write same,etc.) the
1154 		 * low-level device driver will set the relevant queue limit to
1155 		 * 0 to prevent blk-lib from issuing more of the offending
1156 		 * operations. Commands queued prior to the queue limit being
1157 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1158 		 * errors being propagated to upper layers.
1159 		 */
1160 		if (max_sectors == 0)
1161 			return BLK_STS_NOTSUPP;
1162 
1163 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1164 			__func__, blk_rq_sectors(rq), max_sectors);
1165 		return BLK_STS_IOERR;
1166 	}
1167 
1168 	/*
1169 	 * queue's settings related to segment counting like q->bounce_pfn
1170 	 * may differ from that of other stacking queues.
1171 	 * Recalculate it to check the request correctly on this queue's
1172 	 * limitation.
1173 	 */
1174 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1175 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1176 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1177 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1178 		return BLK_STS_IOERR;
1179 	}
1180 
1181 	return BLK_STS_OK;
1182 }
1183 
1184 /**
1185  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1186  * @q:  the queue to submit the request
1187  * @rq: the request being queued
1188  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1189 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1190 {
1191 	blk_status_t ret;
1192 
1193 	ret = blk_cloned_rq_check_limits(q, rq);
1194 	if (ret != BLK_STS_OK)
1195 		return ret;
1196 
1197 	if (rq->rq_disk &&
1198 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1199 		return BLK_STS_IOERR;
1200 
1201 	if (blk_crypto_insert_cloned_request(rq))
1202 		return BLK_STS_IOERR;
1203 
1204 	if (blk_queue_io_stat(q))
1205 		blk_account_io_start(rq);
1206 
1207 	/*
1208 	 * Since we have a scheduler attached on the top device,
1209 	 * bypass a potential scheduler on the bottom device for
1210 	 * insert.
1211 	 */
1212 	return blk_mq_request_issue_directly(rq, true);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1215 
1216 /**
1217  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1218  * @rq: request to examine
1219  *
1220  * Description:
1221  *     A request could be merge of IOs which require different failure
1222  *     handling.  This function determines the number of bytes which
1223  *     can be failed from the beginning of the request without
1224  *     crossing into area which need to be retried further.
1225  *
1226  * Return:
1227  *     The number of bytes to fail.
1228  */
blk_rq_err_bytes(const struct request * rq)1229 unsigned int blk_rq_err_bytes(const struct request *rq)
1230 {
1231 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1232 	unsigned int bytes = 0;
1233 	struct bio *bio;
1234 
1235 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1236 		return blk_rq_bytes(rq);
1237 
1238 	/*
1239 	 * Currently the only 'mixing' which can happen is between
1240 	 * different fastfail types.  We can safely fail portions
1241 	 * which have all the failfast bits that the first one has -
1242 	 * the ones which are at least as eager to fail as the first
1243 	 * one.
1244 	 */
1245 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1246 		if ((bio->bi_opf & ff) != ff)
1247 			break;
1248 		bytes += bio->bi_iter.bi_size;
1249 	}
1250 
1251 	/* this could lead to infinite loop */
1252 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1253 	return bytes;
1254 }
1255 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1256 
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1257 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1258 {
1259 	unsigned long stamp;
1260 again:
1261 	stamp = READ_ONCE(part->stamp);
1262 	if (unlikely(stamp != now)) {
1263 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1264 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1265 	}
1266 	if (part->partno) {
1267 		part = &part_to_disk(part)->part0;
1268 		goto again;
1269 	}
1270 }
1271 
blk_account_io_completion(struct request * req,unsigned int bytes)1272 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1273 {
1274 	if (req->part && blk_do_io_stat(req)) {
1275 		const int sgrp = op_stat_group(req_op(req));
1276 		struct hd_struct *part;
1277 
1278 		part_stat_lock();
1279 		part = req->part;
1280 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1281 		part_stat_unlock();
1282 	}
1283 }
1284 
blk_account_io_done(struct request * req,u64 now)1285 void blk_account_io_done(struct request *req, u64 now)
1286 {
1287 	/*
1288 	 * Account IO completion.  flush_rq isn't accounted as a
1289 	 * normal IO on queueing nor completion.  Accounting the
1290 	 * containing request is enough.
1291 	 */
1292 	if (req->part && blk_do_io_stat(req) &&
1293 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1294 		const int sgrp = op_stat_group(req_op(req));
1295 		struct hd_struct *part;
1296 
1297 		part_stat_lock();
1298 		part = req->part;
1299 
1300 		update_io_ticks(part, jiffies, true);
1301 		part_stat_inc(part, ios[sgrp]);
1302 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1303 		part_stat_unlock();
1304 
1305 		hd_struct_put(part);
1306 	}
1307 }
1308 
blk_account_io_start(struct request * rq)1309 void blk_account_io_start(struct request *rq)
1310 {
1311 	if (!blk_do_io_stat(rq))
1312 		return;
1313 
1314 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1315 
1316 	part_stat_lock();
1317 	update_io_ticks(rq->part, jiffies, false);
1318 	part_stat_unlock();
1319 }
1320 
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1321 static unsigned long __part_start_io_acct(struct hd_struct *part,
1322 					  unsigned int sectors, unsigned int op)
1323 {
1324 	const int sgrp = op_stat_group(op);
1325 	unsigned long now = READ_ONCE(jiffies);
1326 
1327 	part_stat_lock();
1328 	update_io_ticks(part, now, false);
1329 	part_stat_inc(part, ios[sgrp]);
1330 	part_stat_add(part, sectors[sgrp], sectors);
1331 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1332 	part_stat_unlock();
1333 
1334 	return now;
1335 }
1336 
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1337 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1338 				 struct bio *bio)
1339 {
1340 	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1341 
1342 	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1343 }
1344 EXPORT_SYMBOL_GPL(part_start_io_acct);
1345 
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1346 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1347 				 unsigned int op)
1348 {
1349 	return __part_start_io_acct(&disk->part0, sectors, op);
1350 }
1351 EXPORT_SYMBOL(disk_start_io_acct);
1352 
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1353 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1354 			       unsigned long start_time)
1355 {
1356 	const int sgrp = op_stat_group(op);
1357 	unsigned long now = READ_ONCE(jiffies);
1358 	unsigned long duration = now - start_time;
1359 
1360 	part_stat_lock();
1361 	update_io_ticks(part, now, true);
1362 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1363 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1364 	part_stat_unlock();
1365 }
1366 
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1367 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1368 		      unsigned long start_time)
1369 {
1370 	__part_end_io_acct(part, bio_op(bio), start_time);
1371 	hd_struct_put(part);
1372 }
1373 EXPORT_SYMBOL_GPL(part_end_io_acct);
1374 
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1375 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1376 		      unsigned long start_time)
1377 {
1378 	__part_end_io_acct(&disk->part0, op, start_time);
1379 }
1380 EXPORT_SYMBOL(disk_end_io_acct);
1381 
1382 /*
1383  * Steal bios from a request and add them to a bio list.
1384  * The request must not have been partially completed before.
1385  */
blk_steal_bios(struct bio_list * list,struct request * rq)1386 void blk_steal_bios(struct bio_list *list, struct request *rq)
1387 {
1388 	if (rq->bio) {
1389 		if (list->tail)
1390 			list->tail->bi_next = rq->bio;
1391 		else
1392 			list->head = rq->bio;
1393 		list->tail = rq->biotail;
1394 
1395 		rq->bio = NULL;
1396 		rq->biotail = NULL;
1397 	}
1398 
1399 	rq->__data_len = 0;
1400 }
1401 EXPORT_SYMBOL_GPL(blk_steal_bios);
1402 
1403 /**
1404  * blk_update_request - Special helper function for request stacking drivers
1405  * @req:      the request being processed
1406  * @error:    block status code
1407  * @nr_bytes: number of bytes to complete @req
1408  *
1409  * Description:
1410  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1411  *     the request structure even if @req doesn't have leftover.
1412  *     If @req has leftover, sets it up for the next range of segments.
1413  *
1414  *     This special helper function is only for request stacking drivers
1415  *     (e.g. request-based dm) so that they can handle partial completion.
1416  *     Actual device drivers should use blk_mq_end_request instead.
1417  *
1418  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419  *     %false return from this function.
1420  *
1421  * Note:
1422  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423  *	blk_rq_bytes() and in blk_update_request().
1424  *
1425  * Return:
1426  *     %false - this request doesn't have any more data
1427  *     %true  - this request has more data
1428  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1429 bool blk_update_request(struct request *req, blk_status_t error,
1430 		unsigned int nr_bytes)
1431 {
1432 	int total_bytes;
1433 
1434 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1435 
1436 	if (!req->bio)
1437 		return false;
1438 
1439 #ifdef CONFIG_BLK_DEV_INTEGRITY
1440 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1441 	    error == BLK_STS_OK)
1442 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1443 #endif
1444 
1445 	/*
1446 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
1447 	 * bio_endio().  Therefore, the keyslot must be released before that.
1448 	 */
1449 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1450 		__blk_crypto_rq_put_keyslot(req);
1451 
1452 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1453 		     !(req->rq_flags & RQF_QUIET)))
1454 		print_req_error(req, error, __func__);
1455 
1456 	blk_account_io_completion(req, nr_bytes);
1457 
1458 	total_bytes = 0;
1459 	while (req->bio) {
1460 		struct bio *bio = req->bio;
1461 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1462 
1463 		if (bio_bytes == bio->bi_iter.bi_size)
1464 			req->bio = bio->bi_next;
1465 
1466 		/* Completion has already been traced */
1467 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1468 		req_bio_endio(req, bio, bio_bytes, error);
1469 
1470 		total_bytes += bio_bytes;
1471 		nr_bytes -= bio_bytes;
1472 
1473 		if (!nr_bytes)
1474 			break;
1475 	}
1476 
1477 	/*
1478 	 * completely done
1479 	 */
1480 	if (!req->bio) {
1481 		/*
1482 		 * Reset counters so that the request stacking driver
1483 		 * can find how many bytes remain in the request
1484 		 * later.
1485 		 */
1486 		req->__data_len = 0;
1487 		return false;
1488 	}
1489 
1490 	req->__data_len -= total_bytes;
1491 
1492 	/* update sector only for requests with clear definition of sector */
1493 	if (!blk_rq_is_passthrough(req))
1494 		req->__sector += total_bytes >> 9;
1495 
1496 	/* mixed attributes always follow the first bio */
1497 	if (req->rq_flags & RQF_MIXED_MERGE) {
1498 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1499 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1500 	}
1501 
1502 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1503 		/*
1504 		 * If total number of sectors is less than the first segment
1505 		 * size, something has gone terribly wrong.
1506 		 */
1507 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1508 			blk_dump_rq_flags(req, "request botched");
1509 			req->__data_len = blk_rq_cur_bytes(req);
1510 		}
1511 
1512 		/* recalculate the number of segments */
1513 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1514 	}
1515 
1516 	return true;
1517 }
1518 EXPORT_SYMBOL_GPL(blk_update_request);
1519 
1520 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1521 /**
1522  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1523  * @rq: the request to be flushed
1524  *
1525  * Description:
1526  *     Flush all pages in @rq.
1527  */
rq_flush_dcache_pages(struct request * rq)1528 void rq_flush_dcache_pages(struct request *rq)
1529 {
1530 	struct req_iterator iter;
1531 	struct bio_vec bvec;
1532 
1533 	rq_for_each_segment(bvec, rq, iter)
1534 		flush_dcache_page(bvec.bv_page);
1535 }
1536 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1537 #endif
1538 
1539 /**
1540  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1541  * @q : the queue of the device being checked
1542  *
1543  * Description:
1544  *    Check if underlying low-level drivers of a device are busy.
1545  *    If the drivers want to export their busy state, they must set own
1546  *    exporting function using blk_queue_lld_busy() first.
1547  *
1548  *    Basically, this function is used only by request stacking drivers
1549  *    to stop dispatching requests to underlying devices when underlying
1550  *    devices are busy.  This behavior helps more I/O merging on the queue
1551  *    of the request stacking driver and prevents I/O throughput regression
1552  *    on burst I/O load.
1553  *
1554  * Return:
1555  *    0 - Not busy (The request stacking driver should dispatch request)
1556  *    1 - Busy (The request stacking driver should stop dispatching request)
1557  */
blk_lld_busy(struct request_queue * q)1558 int blk_lld_busy(struct request_queue *q)
1559 {
1560 	if (queue_is_mq(q) && q->mq_ops->busy)
1561 		return q->mq_ops->busy(q);
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(blk_lld_busy);
1566 
1567 /**
1568  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1569  * @rq: the clone request to be cleaned up
1570  *
1571  * Description:
1572  *     Free all bios in @rq for a cloned request.
1573  */
blk_rq_unprep_clone(struct request * rq)1574 void blk_rq_unprep_clone(struct request *rq)
1575 {
1576 	struct bio *bio;
1577 
1578 	while ((bio = rq->bio) != NULL) {
1579 		rq->bio = bio->bi_next;
1580 
1581 		bio_put(bio);
1582 	}
1583 }
1584 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1585 
1586 /**
1587  * blk_rq_prep_clone - Helper function to setup clone request
1588  * @rq: the request to be setup
1589  * @rq_src: original request to be cloned
1590  * @bs: bio_set that bios for clone are allocated from
1591  * @gfp_mask: memory allocation mask for bio
1592  * @bio_ctr: setup function to be called for each clone bio.
1593  *           Returns %0 for success, non %0 for failure.
1594  * @data: private data to be passed to @bio_ctr
1595  *
1596  * Description:
1597  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1598  *     Also, pages which the original bios are pointing to are not copied
1599  *     and the cloned bios just point same pages.
1600  *     So cloned bios must be completed before original bios, which means
1601  *     the caller must complete @rq before @rq_src.
1602  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1603 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1604 		      struct bio_set *bs, gfp_t gfp_mask,
1605 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1606 		      void *data)
1607 {
1608 	struct bio *bio, *bio_src;
1609 
1610 	if (!bs)
1611 		bs = &fs_bio_set;
1612 
1613 	__rq_for_each_bio(bio_src, rq_src) {
1614 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1615 		if (!bio)
1616 			goto free_and_out;
1617 
1618 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1619 			goto free_and_out;
1620 
1621 		if (rq->bio) {
1622 			rq->biotail->bi_next = bio;
1623 			rq->biotail = bio;
1624 		} else {
1625 			rq->bio = rq->biotail = bio;
1626 		}
1627 		bio = NULL;
1628 	}
1629 
1630 	/* Copy attributes of the original request to the clone request. */
1631 	rq->__sector = blk_rq_pos(rq_src);
1632 	rq->__data_len = blk_rq_bytes(rq_src);
1633 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1634 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1635 		rq->special_vec = rq_src->special_vec;
1636 	}
1637 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1638 	rq->ioprio = rq_src->ioprio;
1639 
1640 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1641 		goto free_and_out;
1642 
1643 	return 0;
1644 
1645 free_and_out:
1646 	if (bio)
1647 		bio_put(bio);
1648 	blk_rq_unprep_clone(rq);
1649 
1650 	return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1653 
kblockd_schedule_work(struct work_struct * work)1654 int kblockd_schedule_work(struct work_struct *work)
1655 {
1656 	return queue_work(kblockd_workqueue, work);
1657 }
1658 EXPORT_SYMBOL(kblockd_schedule_work);
1659 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1660 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1661 				unsigned long delay)
1662 {
1663 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1664 }
1665 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1666 
1667 /**
1668  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1669  * @plug:	The &struct blk_plug that needs to be initialized
1670  *
1671  * Description:
1672  *   blk_start_plug() indicates to the block layer an intent by the caller
1673  *   to submit multiple I/O requests in a batch.  The block layer may use
1674  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1675  *   is called.  However, the block layer may choose to submit requests
1676  *   before a call to blk_finish_plug() if the number of queued I/Os
1677  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1678  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1679  *   the task schedules (see below).
1680  *
1681  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1682  *   pending I/O should the task end up blocking between blk_start_plug() and
1683  *   blk_finish_plug(). This is important from a performance perspective, but
1684  *   also ensures that we don't deadlock. For instance, if the task is blocking
1685  *   for a memory allocation, memory reclaim could end up wanting to free a
1686  *   page belonging to that request that is currently residing in our private
1687  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1688  *   this kind of deadlock.
1689  */
blk_start_plug(struct blk_plug * plug)1690 void blk_start_plug(struct blk_plug *plug)
1691 {
1692 	struct task_struct *tsk = current;
1693 
1694 	/*
1695 	 * If this is a nested plug, don't actually assign it.
1696 	 */
1697 	if (tsk->plug)
1698 		return;
1699 
1700 	INIT_LIST_HEAD(&plug->mq_list);
1701 	INIT_LIST_HEAD(&plug->cb_list);
1702 	plug->rq_count = 0;
1703 	plug->multiple_queues = false;
1704 	plug->nowait = false;
1705 
1706 	/*
1707 	 * Store ordering should not be needed here, since a potential
1708 	 * preempt will imply a full memory barrier
1709 	 */
1710 	tsk->plug = plug;
1711 }
1712 EXPORT_SYMBOL(blk_start_plug);
1713 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1714 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1715 {
1716 	LIST_HEAD(callbacks);
1717 
1718 	while (!list_empty(&plug->cb_list)) {
1719 		list_splice_init(&plug->cb_list, &callbacks);
1720 
1721 		while (!list_empty(&callbacks)) {
1722 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1723 							  struct blk_plug_cb,
1724 							  list);
1725 			list_del(&cb->list);
1726 			cb->callback(cb, from_schedule);
1727 		}
1728 	}
1729 }
1730 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1731 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1732 				      int size)
1733 {
1734 	struct blk_plug *plug = current->plug;
1735 	struct blk_plug_cb *cb;
1736 
1737 	if (!plug)
1738 		return NULL;
1739 
1740 	list_for_each_entry(cb, &plug->cb_list, list)
1741 		if (cb->callback == unplug && cb->data == data)
1742 			return cb;
1743 
1744 	/* Not currently on the callback list */
1745 	BUG_ON(size < sizeof(*cb));
1746 	cb = kzalloc(size, GFP_ATOMIC);
1747 	if (cb) {
1748 		cb->data = data;
1749 		cb->callback = unplug;
1750 		list_add(&cb->list, &plug->cb_list);
1751 	}
1752 	return cb;
1753 }
1754 EXPORT_SYMBOL(blk_check_plugged);
1755 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1756 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1757 {
1758 	flush_plug_callbacks(plug, from_schedule);
1759 
1760 	if (!list_empty(&plug->mq_list))
1761 		blk_mq_flush_plug_list(plug, from_schedule);
1762 }
1763 
1764 /**
1765  * blk_finish_plug - mark the end of a batch of submitted I/O
1766  * @plug:	The &struct blk_plug passed to blk_start_plug()
1767  *
1768  * Description:
1769  * Indicate that a batch of I/O submissions is complete.  This function
1770  * must be paired with an initial call to blk_start_plug().  The intent
1771  * is to allow the block layer to optimize I/O submission.  See the
1772  * documentation for blk_start_plug() for more information.
1773  */
blk_finish_plug(struct blk_plug * plug)1774 void blk_finish_plug(struct blk_plug *plug)
1775 {
1776 	if (plug != current->plug)
1777 		return;
1778 	blk_flush_plug_list(plug, false);
1779 
1780 	current->plug = NULL;
1781 }
1782 EXPORT_SYMBOL(blk_finish_plug);
1783 
blk_io_schedule(void)1784 void blk_io_schedule(void)
1785 {
1786 	/* Prevent hang_check timer from firing at us during very long I/O */
1787 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1788 
1789 	if (timeout)
1790 		io_schedule_timeout(timeout);
1791 	else
1792 		io_schedule();
1793 }
1794 EXPORT_SYMBOL_GPL(blk_io_schedule);
1795 
blk_dev_init(void)1796 int __init blk_dev_init(void)
1797 {
1798 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1799 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1800 			sizeof_field(struct request, cmd_flags));
1801 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 			sizeof_field(struct bio, bi_opf));
1803 
1804 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1805 	kblockd_workqueue = alloc_workqueue("kblockd",
1806 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1807 	if (!kblockd_workqueue)
1808 		panic("Failed to create kblockd\n");
1809 
1810 	blk_requestq_cachep = kmem_cache_create("request_queue",
1811 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1812 
1813 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1814 
1815 	return 0;
1816 }
1817