1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62
63 DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85
86 /**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96
97 /**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
blk_rq_init(struct request_queue * q,struct request * rq)111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 rq->q = q;
117 rq->__sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
122 rq->start_time_ns = ktime_get_ns();
123 rq->part = NULL;
124 blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
136 REQ_OP_NAME(ZONE_RESET_ALL),
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
140 REQ_OP_NAME(ZONE_APPEND),
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
143 REQ_OP_NAME(SCSI_IN),
144 REQ_OP_NAME(SCSI_OUT),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149
150 /**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
blk_op_str(unsigned int op)158 inline const char *blk_op_str(unsigned int op)
159 {
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168
169 static const struct {
170 int errno;
171 const char *name;
172 } blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
189 /* zone device specific errors */
190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
192
193 /* everything else not covered above: */
194 [BLK_STS_IOERR] = { -EIO, "I/O" },
195 };
196
errno_to_blk_status(int errno)197 blk_status_t errno_to_blk_status(int errno)
198 {
199 int i;
200
201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 if (blk_errors[i].errno == errno)
203 return (__force blk_status_t)i;
204 }
205
206 return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209
blk_status_to_errno(blk_status_t status)210 int blk_status_to_errno(blk_status_t status)
211 {
212 int idx = (__force int)status;
213
214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 return -EIO;
216 return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219
print_req_error(struct request * req,blk_status_t status,const char * caller)220 static void print_req_error(struct request *req, blk_status_t status,
221 const char *caller)
222 {
223 int idx = (__force int)status;
224
225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 return;
227
228 printk_ratelimited(KERN_ERR
229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 "phys_seg %u prio class %u\n",
231 caller, blk_errors[idx].name,
232 req->rq_disk ? req->rq_disk->disk_name : "?",
233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 req->cmd_flags & ~REQ_OP_MASK,
235 req->nr_phys_segments,
236 IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 unsigned int nbytes, blk_status_t error)
241 {
242 if (error)
243 bio->bi_status = error;
244
245 if (unlikely(rq->rq_flags & RQF_QUIET))
246 bio_set_flag(bio, BIO_QUIET);
247
248 bio_advance(bio, nbytes);
249
250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 /*
252 * Partial zone append completions cannot be supported as the
253 * BIO fragments may end up not being written sequentially.
254 */
255 if (bio->bi_iter.bi_size)
256 bio->bi_status = BLK_STS_IOERR;
257 else
258 bio->bi_iter.bi_sector = rq->__sector;
259 }
260
261 /* don't actually finish bio if it's part of flush sequence */
262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 bio_endio(bio);
264 }
265
blk_dump_rq_flags(struct request * rq,char * msg)266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 (unsigned long long) rq->cmd_flags);
271
272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
273 (unsigned long long)blk_rq_pos(rq),
274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
276 rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279
280 /**
281 * blk_sync_queue - cancel any pending callbacks on a queue
282 * @q: the queue
283 *
284 * Description:
285 * The block layer may perform asynchronous callback activity
286 * on a queue, such as calling the unplug function after a timeout.
287 * A block device may call blk_sync_queue to ensure that any
288 * such activity is cancelled, thus allowing it to release resources
289 * that the callbacks might use. The caller must already have made sure
290 * that its ->submit_bio will not re-add plugging prior to calling
291 * this function.
292 *
293 * This function does not cancel any asynchronous activity arising
294 * out of elevator or throttling code. That would require elevator_exit()
295 * and blkcg_exit_queue() to be called with queue lock initialized.
296 *
297 */
blk_sync_queue(struct request_queue * q)298 void blk_sync_queue(struct request_queue *q)
299 {
300 del_timer_sync(&q->timeout);
301 cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304
305 /**
306 * blk_set_pm_only - increment pm_only counter
307 * @q: request queue pointer
308 */
blk_set_pm_only(struct request_queue * q)309 void blk_set_pm_only(struct request_queue *q)
310 {
311 atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314
blk_clear_pm_only(struct request_queue * q)315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 int pm_only;
318
319 pm_only = atomic_dec_return(&q->pm_only);
320 WARN_ON_ONCE(pm_only < 0);
321 if (pm_only == 0)
322 wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325
326 /**
327 * blk_put_queue - decrement the request_queue refcount
328 * @q: the request_queue structure to decrement the refcount for
329 *
330 * Decrements the refcount of the request_queue kobject. When this reaches 0
331 * we'll have blk_release_queue() called.
332 *
333 * Context: Any context, but the last reference must not be dropped from
334 * atomic context.
335 */
blk_put_queue(struct request_queue * q)336 void blk_put_queue(struct request_queue *q)
337 {
338 kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341
blk_set_queue_dying(struct request_queue * q)342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345
346 /*
347 * When queue DYING flag is set, we need to block new req
348 * entering queue, so we call blk_freeze_queue_start() to
349 * prevent I/O from crossing blk_queue_enter().
350 */
351 blk_freeze_queue_start(q);
352
353 if (queue_is_mq(q))
354 blk_mq_wake_waiters(q);
355
356 /* Make blk_queue_enter() reexamine the DYING flag. */
357 wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360
361 /**
362 * blk_cleanup_queue - shutdown a request queue
363 * @q: request queue to shutdown
364 *
365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366 * put it. All future requests will be failed immediately with -ENODEV.
367 *
368 * Context: can sleep
369 */
blk_cleanup_queue(struct request_queue * q)370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 /* cannot be called from atomic context */
373 might_sleep();
374
375 WARN_ON_ONCE(blk_queue_registered(q));
376
377 /* mark @q DYING, no new request or merges will be allowed afterwards */
378 blk_set_queue_dying(q);
379
380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382
383 /*
384 * Drain all requests queued before DYING marking. Set DEAD flag to
385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 * after draining finished.
387 */
388 blk_freeze_queue(q);
389
390 rq_qos_exit(q);
391
392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393
394 /* for synchronous bio-based driver finish in-flight integrity i/o */
395 blk_flush_integrity();
396
397 /* @q won't process any more request, flush async actions */
398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 blk_sync_queue(q);
400
401 if (queue_is_mq(q))
402 blk_mq_exit_queue(q);
403
404 /*
405 * In theory, request pool of sched_tags belongs to request queue.
406 * However, the current implementation requires tag_set for freeing
407 * requests, so free the pool now.
408 *
409 * Queue has become frozen, there can't be any in-queue requests, so
410 * it is safe to free requests now.
411 */
412 mutex_lock(&q->sysfs_lock);
413 if (q->elevator)
414 blk_mq_sched_free_requests(q);
415 mutex_unlock(&q->sysfs_lock);
416
417 /* @q is and will stay empty, shutdown and put */
418 blk_put_queue(q);
419 }
420 EXPORT_SYMBOL(blk_cleanup_queue);
421
422 /**
423 * blk_queue_enter() - try to increase q->q_usage_counter
424 * @q: request queue pointer
425 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
426 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)427 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
428 {
429 const bool pm = flags & BLK_MQ_REQ_PM;
430
431 while (true) {
432 bool success = false;
433
434 rcu_read_lock();
435 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
436 /*
437 * The code that increments the pm_only counter is
438 * responsible for ensuring that that counter is
439 * globally visible before the queue is unfrozen.
440 */
441 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
442 !blk_queue_pm_only(q)) {
443 success = true;
444 } else {
445 percpu_ref_put(&q->q_usage_counter);
446 }
447 }
448 rcu_read_unlock();
449
450 if (success)
451 return 0;
452
453 if (flags & BLK_MQ_REQ_NOWAIT)
454 return -EBUSY;
455
456 /*
457 * read pair of barrier in blk_freeze_queue_start(),
458 * we need to order reading __PERCPU_REF_DEAD flag of
459 * .q_usage_counter and reading .mq_freeze_depth or
460 * queue dying flag, otherwise the following wait may
461 * never return if the two reads are reordered.
462 */
463 smp_rmb();
464
465 wait_event(q->mq_freeze_wq,
466 (!q->mq_freeze_depth &&
467 blk_pm_resume_queue(pm, q)) ||
468 blk_queue_dying(q));
469 if (blk_queue_dying(q))
470 return -ENODEV;
471 }
472 }
473
bio_queue_enter(struct bio * bio)474 static inline int bio_queue_enter(struct bio *bio)
475 {
476 struct request_queue *q = bio->bi_disk->queue;
477 bool nowait = bio->bi_opf & REQ_NOWAIT;
478 int ret;
479
480 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
481 if (unlikely(ret)) {
482 if (nowait && !blk_queue_dying(q))
483 bio_wouldblock_error(bio);
484 else
485 bio_io_error(bio);
486 }
487
488 return ret;
489 }
490
blk_queue_exit(struct request_queue * q)491 void blk_queue_exit(struct request_queue *q)
492 {
493 percpu_ref_put(&q->q_usage_counter);
494 }
495
blk_queue_usage_counter_release(struct percpu_ref * ref)496 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
497 {
498 struct request_queue *q =
499 container_of(ref, struct request_queue, q_usage_counter);
500
501 wake_up_all(&q->mq_freeze_wq);
502 }
503
blk_rq_timed_out_timer(struct timer_list * t)504 static void blk_rq_timed_out_timer(struct timer_list *t)
505 {
506 struct request_queue *q = from_timer(q, t, timeout);
507
508 kblockd_schedule_work(&q->timeout_work);
509 }
510
blk_timeout_work(struct work_struct * work)511 static void blk_timeout_work(struct work_struct *work)
512 {
513 }
514
blk_alloc_queue(int node_id)515 struct request_queue *blk_alloc_queue(int node_id)
516 {
517 struct request_queue *q;
518 int ret;
519
520 q = kmem_cache_alloc_node(blk_requestq_cachep,
521 GFP_KERNEL | __GFP_ZERO, node_id);
522 if (!q)
523 return NULL;
524
525 q->last_merge = NULL;
526
527 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
528 if (q->id < 0)
529 goto fail_q;
530
531 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
532 if (ret)
533 goto fail_id;
534
535 q->backing_dev_info = bdi_alloc(node_id);
536 if (!q->backing_dev_info)
537 goto fail_split;
538
539 q->stats = blk_alloc_queue_stats();
540 if (!q->stats)
541 goto fail_stats;
542
543 q->node = node_id;
544
545 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
546
547 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
548 laptop_mode_timer_fn, 0);
549 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
550 INIT_WORK(&q->timeout_work, blk_timeout_work);
551 INIT_LIST_HEAD(&q->icq_list);
552 #ifdef CONFIG_BLK_CGROUP
553 INIT_LIST_HEAD(&q->blkg_list);
554 #endif
555
556 kobject_init(&q->kobj, &blk_queue_ktype);
557
558 mutex_init(&q->debugfs_mutex);
559 mutex_init(&q->sysfs_lock);
560 mutex_init(&q->sysfs_dir_lock);
561 spin_lock_init(&q->queue_lock);
562
563 init_waitqueue_head(&q->mq_freeze_wq);
564 mutex_init(&q->mq_freeze_lock);
565
566 /*
567 * Init percpu_ref in atomic mode so that it's faster to shutdown.
568 * See blk_register_queue() for details.
569 */
570 if (percpu_ref_init(&q->q_usage_counter,
571 blk_queue_usage_counter_release,
572 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
573 goto fail_bdi;
574
575 if (blkcg_init_queue(q))
576 goto fail_ref;
577
578 blk_queue_dma_alignment(q, 511);
579 blk_set_default_limits(&q->limits);
580 q->nr_requests = BLKDEV_MAX_RQ;
581
582 return q;
583
584 fail_ref:
585 percpu_ref_exit(&q->q_usage_counter);
586 fail_bdi:
587 blk_free_queue_stats(q->stats);
588 fail_stats:
589 bdi_put(q->backing_dev_info);
590 fail_split:
591 bioset_exit(&q->bio_split);
592 fail_id:
593 ida_simple_remove(&blk_queue_ida, q->id);
594 fail_q:
595 kmem_cache_free(blk_requestq_cachep, q);
596 return NULL;
597 }
598 EXPORT_SYMBOL(blk_alloc_queue);
599
600 /**
601 * blk_get_queue - increment the request_queue refcount
602 * @q: the request_queue structure to increment the refcount for
603 *
604 * Increment the refcount of the request_queue kobject.
605 *
606 * Context: Any context.
607 */
blk_get_queue(struct request_queue * q)608 bool blk_get_queue(struct request_queue *q)
609 {
610 if (likely(!blk_queue_dying(q))) {
611 __blk_get_queue(q);
612 return true;
613 }
614
615 return false;
616 }
617 EXPORT_SYMBOL(blk_get_queue);
618
619 /**
620 * blk_get_request - allocate a request
621 * @q: request queue to allocate a request for
622 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
623 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
624 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)625 struct request *blk_get_request(struct request_queue *q, unsigned int op,
626 blk_mq_req_flags_t flags)
627 {
628 struct request *req;
629
630 WARN_ON_ONCE(op & REQ_NOWAIT);
631 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
632
633 req = blk_mq_alloc_request(q, op, flags);
634 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
635 q->mq_ops->initialize_rq_fn(req);
636
637 return req;
638 }
639 EXPORT_SYMBOL(blk_get_request);
640
blk_put_request(struct request * req)641 void blk_put_request(struct request *req)
642 {
643 blk_mq_free_request(req);
644 }
645 EXPORT_SYMBOL(blk_put_request);
646
handle_bad_sector(struct bio * bio,sector_t maxsector)647 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
648 {
649 char b[BDEVNAME_SIZE];
650
651 pr_info_ratelimited("attempt to access beyond end of device\n"
652 "%s: rw=%d, want=%llu, limit=%llu\n",
653 bio_devname(bio, b), bio->bi_opf,
654 bio_end_sector(bio), maxsector);
655 }
656
657 #ifdef CONFIG_FAIL_MAKE_REQUEST
658
659 static DECLARE_FAULT_ATTR(fail_make_request);
660
setup_fail_make_request(char * str)661 static int __init setup_fail_make_request(char *str)
662 {
663 return setup_fault_attr(&fail_make_request, str);
664 }
665 __setup("fail_make_request=", setup_fail_make_request);
666
should_fail_request(struct hd_struct * part,unsigned int bytes)667 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
668 {
669 return part->make_it_fail && should_fail(&fail_make_request, bytes);
670 }
671
fail_make_request_debugfs(void)672 static int __init fail_make_request_debugfs(void)
673 {
674 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
675 NULL, &fail_make_request);
676
677 return PTR_ERR_OR_ZERO(dir);
678 }
679
680 late_initcall(fail_make_request_debugfs);
681
682 #else /* CONFIG_FAIL_MAKE_REQUEST */
683
should_fail_request(struct hd_struct * part,unsigned int bytes)684 static inline bool should_fail_request(struct hd_struct *part,
685 unsigned int bytes)
686 {
687 return false;
688 }
689
690 #endif /* CONFIG_FAIL_MAKE_REQUEST */
691
bio_check_ro(struct bio * bio,struct hd_struct * part)692 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
693 {
694 const int op = bio_op(bio);
695
696 if (part->policy && op_is_write(op)) {
697 char b[BDEVNAME_SIZE];
698
699 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
700 return false;
701 pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
702 bio_devname(bio, b), part->partno);
703 /* Older lvm-tools actually trigger this */
704 return false;
705 }
706
707 return false;
708 }
709
should_fail_bio(struct bio * bio)710 static noinline int should_fail_bio(struct bio *bio)
711 {
712 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
713 return -EIO;
714 return 0;
715 }
716 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
717
718 /*
719 * Check whether this bio extends beyond the end of the device or partition.
720 * This may well happen - the kernel calls bread() without checking the size of
721 * the device, e.g., when mounting a file system.
722 */
bio_check_eod(struct bio * bio,sector_t maxsector)723 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
724 {
725 unsigned int nr_sectors = bio_sectors(bio);
726
727 if (nr_sectors && maxsector &&
728 (nr_sectors > maxsector ||
729 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
730 handle_bad_sector(bio, maxsector);
731 return -EIO;
732 }
733 return 0;
734 }
735
736 /*
737 * Remap block n of partition p to block n+start(p) of the disk.
738 */
blk_partition_remap(struct bio * bio)739 static inline int blk_partition_remap(struct bio *bio)
740 {
741 struct hd_struct *p;
742 int ret = -EIO;
743
744 rcu_read_lock();
745 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
746 if (unlikely(!p))
747 goto out;
748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 goto out;
750 if (unlikely(bio_check_ro(bio, p)))
751 goto out;
752
753 if (bio_sectors(bio)) {
754 if (bio_check_eod(bio, part_nr_sects_read(p)))
755 goto out;
756 bio->bi_iter.bi_sector += p->start_sect;
757 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
758 bio->bi_iter.bi_sector - p->start_sect);
759 }
760 bio->bi_partno = 0;
761 ret = 0;
762 out:
763 rcu_read_unlock();
764 return ret;
765 }
766
767 /*
768 * Check write append to a zoned block device.
769 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)770 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
771 struct bio *bio)
772 {
773 sector_t pos = bio->bi_iter.bi_sector;
774 int nr_sectors = bio_sectors(bio);
775
776 /* Only applicable to zoned block devices */
777 if (!blk_queue_is_zoned(q))
778 return BLK_STS_NOTSUPP;
779
780 /* The bio sector must point to the start of a sequential zone */
781 if (pos & (blk_queue_zone_sectors(q) - 1) ||
782 !blk_queue_zone_is_seq(q, pos))
783 return BLK_STS_IOERR;
784
785 /*
786 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
787 * split and could result in non-contiguous sectors being written in
788 * different zones.
789 */
790 if (nr_sectors > q->limits.chunk_sectors)
791 return BLK_STS_IOERR;
792
793 /* Make sure the BIO is small enough and will not get split */
794 if (nr_sectors > q->limits.max_zone_append_sectors)
795 return BLK_STS_IOERR;
796
797 bio->bi_opf |= REQ_NOMERGE;
798
799 return BLK_STS_OK;
800 }
801
submit_bio_checks(struct bio * bio)802 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
803 {
804 struct request_queue *q = bio->bi_disk->queue;
805 blk_status_t status = BLK_STS_IOERR;
806 struct blk_plug *plug;
807
808 might_sleep();
809
810 plug = blk_mq_plug(q, bio);
811 if (plug && plug->nowait)
812 bio->bi_opf |= REQ_NOWAIT;
813
814 /*
815 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
816 * if queue does not support NOWAIT.
817 */
818 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
819 goto not_supported;
820
821 if (should_fail_bio(bio))
822 goto end_io;
823
824 if (bio->bi_partno) {
825 if (unlikely(blk_partition_remap(bio)))
826 goto end_io;
827 } else {
828 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
829 goto end_io;
830 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
831 goto end_io;
832 }
833
834 /*
835 * Filter flush bio's early so that bio based drivers without flush
836 * support don't have to worry about them.
837 */
838 if (op_is_flush(bio->bi_opf) &&
839 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
840 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
841 if (!bio_sectors(bio)) {
842 status = BLK_STS_OK;
843 goto end_io;
844 }
845 }
846
847 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
848 bio->bi_opf &= ~REQ_HIPRI;
849
850 switch (bio_op(bio)) {
851 case REQ_OP_DISCARD:
852 if (!blk_queue_discard(q))
853 goto not_supported;
854 break;
855 case REQ_OP_SECURE_ERASE:
856 if (!blk_queue_secure_erase(q))
857 goto not_supported;
858 break;
859 case REQ_OP_WRITE_SAME:
860 if (!q->limits.max_write_same_sectors)
861 goto not_supported;
862 break;
863 case REQ_OP_ZONE_APPEND:
864 status = blk_check_zone_append(q, bio);
865 if (status != BLK_STS_OK)
866 goto end_io;
867 break;
868 case REQ_OP_ZONE_RESET:
869 case REQ_OP_ZONE_OPEN:
870 case REQ_OP_ZONE_CLOSE:
871 case REQ_OP_ZONE_FINISH:
872 if (!blk_queue_is_zoned(q))
873 goto not_supported;
874 break;
875 case REQ_OP_ZONE_RESET_ALL:
876 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
877 goto not_supported;
878 break;
879 case REQ_OP_WRITE_ZEROES:
880 if (!q->limits.max_write_zeroes_sectors)
881 goto not_supported;
882 break;
883 default:
884 break;
885 }
886
887 /*
888 * Various block parts want %current->io_context, so allocate it up
889 * front rather than dealing with lots of pain to allocate it only
890 * where needed. This may fail and the block layer knows how to live
891 * with it.
892 */
893 if (unlikely(!current->io_context))
894 create_task_io_context(current, GFP_ATOMIC, q->node);
895
896 if (blk_throtl_bio(bio))
897 return false;
898
899 blk_cgroup_bio_start(bio);
900 blkcg_bio_issue_init(bio);
901
902 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
903 trace_block_bio_queue(q, bio);
904 /* Now that enqueuing has been traced, we need to trace
905 * completion as well.
906 */
907 bio_set_flag(bio, BIO_TRACE_COMPLETION);
908 }
909 return true;
910
911 not_supported:
912 status = BLK_STS_NOTSUPP;
913 end_io:
914 bio->bi_status = status;
915 bio_endio(bio);
916 return false;
917 }
918
__submit_bio(struct bio * bio)919 static blk_qc_t __submit_bio(struct bio *bio)
920 {
921 struct gendisk *disk = bio->bi_disk;
922 blk_qc_t ret = BLK_QC_T_NONE;
923
924 if (blk_crypto_bio_prep(&bio)) {
925 if (!disk->fops->submit_bio)
926 return blk_mq_submit_bio(bio);
927 ret = disk->fops->submit_bio(bio);
928 }
929 blk_queue_exit(disk->queue);
930 return ret;
931 }
932
933 /*
934 * The loop in this function may be a bit non-obvious, and so deserves some
935 * explanation:
936 *
937 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
938 * that), so we have a list with a single bio.
939 * - We pretend that we have just taken it off a longer list, so we assign
940 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
941 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
942 * bios through a recursive call to submit_bio_noacct. If it did, we find a
943 * non-NULL value in bio_list and re-enter the loop from the top.
944 * - In this case we really did just take the bio of the top of the list (no
945 * pretending) and so remove it from bio_list, and call into ->submit_bio()
946 * again.
947 *
948 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
949 * bio_list_on_stack[1] contains bios that were submitted before the current
950 * ->submit_bio_bio, but that haven't been processed yet.
951 */
__submit_bio_noacct(struct bio * bio)952 static blk_qc_t __submit_bio_noacct(struct bio *bio)
953 {
954 struct bio_list bio_list_on_stack[2];
955 blk_qc_t ret = BLK_QC_T_NONE;
956
957 BUG_ON(bio->bi_next);
958
959 bio_list_init(&bio_list_on_stack[0]);
960 current->bio_list = bio_list_on_stack;
961
962 do {
963 struct request_queue *q = bio->bi_disk->queue;
964 struct bio_list lower, same;
965
966 if (unlikely(bio_queue_enter(bio) != 0))
967 continue;
968
969 /*
970 * Create a fresh bio_list for all subordinate requests.
971 */
972 bio_list_on_stack[1] = bio_list_on_stack[0];
973 bio_list_init(&bio_list_on_stack[0]);
974
975 ret = __submit_bio(bio);
976
977 /*
978 * Sort new bios into those for a lower level and those for the
979 * same level.
980 */
981 bio_list_init(&lower);
982 bio_list_init(&same);
983 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
984 if (q == bio->bi_disk->queue)
985 bio_list_add(&same, bio);
986 else
987 bio_list_add(&lower, bio);
988
989 /*
990 * Now assemble so we handle the lowest level first.
991 */
992 bio_list_merge(&bio_list_on_stack[0], &lower);
993 bio_list_merge(&bio_list_on_stack[0], &same);
994 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
995 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
996
997 current->bio_list = NULL;
998 return ret;
999 }
1000
__submit_bio_noacct_mq(struct bio * bio)1001 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1002 {
1003 struct bio_list bio_list[2] = { };
1004 blk_qc_t ret = BLK_QC_T_NONE;
1005
1006 current->bio_list = bio_list;
1007
1008 do {
1009 struct gendisk *disk = bio->bi_disk;
1010
1011 if (unlikely(bio_queue_enter(bio) != 0))
1012 continue;
1013
1014 if (!blk_crypto_bio_prep(&bio)) {
1015 blk_queue_exit(disk->queue);
1016 ret = BLK_QC_T_NONE;
1017 continue;
1018 }
1019
1020 ret = blk_mq_submit_bio(bio);
1021 } while ((bio = bio_list_pop(&bio_list[0])));
1022
1023 current->bio_list = NULL;
1024 return ret;
1025 }
1026
1027 /**
1028 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1029 * @bio: The bio describing the location in memory and on the device.
1030 *
1031 * This is a version of submit_bio() that shall only be used for I/O that is
1032 * resubmitted to lower level drivers by stacking block drivers. All file
1033 * systems and other upper level users of the block layer should use
1034 * submit_bio() instead.
1035 */
submit_bio_noacct(struct bio * bio)1036 blk_qc_t submit_bio_noacct(struct bio *bio)
1037 {
1038 if (!submit_bio_checks(bio))
1039 return BLK_QC_T_NONE;
1040
1041 /*
1042 * We only want one ->submit_bio to be active at a time, else stack
1043 * usage with stacked devices could be a problem. Use current->bio_list
1044 * to collect a list of requests submited by a ->submit_bio method while
1045 * it is active, and then process them after it returned.
1046 */
1047 if (current->bio_list) {
1048 bio_list_add(¤t->bio_list[0], bio);
1049 return BLK_QC_T_NONE;
1050 }
1051
1052 if (!bio->bi_disk->fops->submit_bio)
1053 return __submit_bio_noacct_mq(bio);
1054 return __submit_bio_noacct(bio);
1055 }
1056 EXPORT_SYMBOL(submit_bio_noacct);
1057
1058 /**
1059 * submit_bio - submit a bio to the block device layer for I/O
1060 * @bio: The &struct bio which describes the I/O
1061 *
1062 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1063 * fully set up &struct bio that describes the I/O that needs to be done. The
1064 * bio will be send to the device described by the bi_disk and bi_partno fields.
1065 *
1066 * The success/failure status of the request, along with notification of
1067 * completion, is delivered asynchronously through the ->bi_end_io() callback
1068 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1069 * been called.
1070 */
submit_bio(struct bio * bio)1071 blk_qc_t submit_bio(struct bio *bio)
1072 {
1073 if (blkcg_punt_bio_submit(bio))
1074 return BLK_QC_T_NONE;
1075
1076 /*
1077 * If it's a regular read/write or a barrier with data attached,
1078 * go through the normal accounting stuff before submission.
1079 */
1080 if (bio_has_data(bio)) {
1081 unsigned int count;
1082
1083 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1084 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1085 else
1086 count = bio_sectors(bio);
1087
1088 if (op_is_write(bio_op(bio))) {
1089 count_vm_events(PGPGOUT, count);
1090 } else {
1091 task_io_account_read(bio->bi_iter.bi_size);
1092 count_vm_events(PGPGIN, count);
1093 }
1094
1095 if (unlikely(block_dump)) {
1096 char b[BDEVNAME_SIZE];
1097 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1098 current->comm, task_pid_nr(current),
1099 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1100 (unsigned long long)bio->bi_iter.bi_sector,
1101 bio_devname(bio, b), count);
1102 }
1103 }
1104
1105 /*
1106 * If we're reading data that is part of the userspace workingset, count
1107 * submission time as memory stall. When the device is congested, or
1108 * the submitting cgroup IO-throttled, submission can be a significant
1109 * part of overall IO time.
1110 */
1111 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1112 bio_flagged(bio, BIO_WORKINGSET))) {
1113 unsigned long pflags;
1114 blk_qc_t ret;
1115
1116 psi_memstall_enter(&pflags);
1117 ret = submit_bio_noacct(bio);
1118 psi_memstall_leave(&pflags);
1119
1120 return ret;
1121 }
1122
1123 return submit_bio_noacct(bio);
1124 }
1125 EXPORT_SYMBOL(submit_bio);
1126
1127 /**
1128 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1129 * for the new queue limits
1130 * @q: the queue
1131 * @rq: the request being checked
1132 *
1133 * Description:
1134 * @rq may have been made based on weaker limitations of upper-level queues
1135 * in request stacking drivers, and it may violate the limitation of @q.
1136 * Since the block layer and the underlying device driver trust @rq
1137 * after it is inserted to @q, it should be checked against @q before
1138 * the insertion using this generic function.
1139 *
1140 * Request stacking drivers like request-based dm may change the queue
1141 * limits when retrying requests on other queues. Those requests need
1142 * to be checked against the new queue limits again during dispatch.
1143 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1144 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1145 struct request *rq)
1146 {
1147 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1148
1149 if (blk_rq_sectors(rq) > max_sectors) {
1150 /*
1151 * SCSI device does not have a good way to return if
1152 * Write Same/Zero is actually supported. If a device rejects
1153 * a non-read/write command (discard, write same,etc.) the
1154 * low-level device driver will set the relevant queue limit to
1155 * 0 to prevent blk-lib from issuing more of the offending
1156 * operations. Commands queued prior to the queue limit being
1157 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1158 * errors being propagated to upper layers.
1159 */
1160 if (max_sectors == 0)
1161 return BLK_STS_NOTSUPP;
1162
1163 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1164 __func__, blk_rq_sectors(rq), max_sectors);
1165 return BLK_STS_IOERR;
1166 }
1167
1168 /*
1169 * queue's settings related to segment counting like q->bounce_pfn
1170 * may differ from that of other stacking queues.
1171 * Recalculate it to check the request correctly on this queue's
1172 * limitation.
1173 */
1174 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1175 if (rq->nr_phys_segments > queue_max_segments(q)) {
1176 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1177 __func__, rq->nr_phys_segments, queue_max_segments(q));
1178 return BLK_STS_IOERR;
1179 }
1180
1181 return BLK_STS_OK;
1182 }
1183
1184 /**
1185 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1186 * @q: the queue to submit the request
1187 * @rq: the request being queued
1188 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1189 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1190 {
1191 blk_status_t ret;
1192
1193 ret = blk_cloned_rq_check_limits(q, rq);
1194 if (ret != BLK_STS_OK)
1195 return ret;
1196
1197 if (rq->rq_disk &&
1198 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1199 return BLK_STS_IOERR;
1200
1201 if (blk_crypto_insert_cloned_request(rq))
1202 return BLK_STS_IOERR;
1203
1204 if (blk_queue_io_stat(q))
1205 blk_account_io_start(rq);
1206
1207 /*
1208 * Since we have a scheduler attached on the top device,
1209 * bypass a potential scheduler on the bottom device for
1210 * insert.
1211 */
1212 return blk_mq_request_issue_directly(rq, true);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1215
1216 /**
1217 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1218 * @rq: request to examine
1219 *
1220 * Description:
1221 * A request could be merge of IOs which require different failure
1222 * handling. This function determines the number of bytes which
1223 * can be failed from the beginning of the request without
1224 * crossing into area which need to be retried further.
1225 *
1226 * Return:
1227 * The number of bytes to fail.
1228 */
blk_rq_err_bytes(const struct request * rq)1229 unsigned int blk_rq_err_bytes(const struct request *rq)
1230 {
1231 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1232 unsigned int bytes = 0;
1233 struct bio *bio;
1234
1235 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1236 return blk_rq_bytes(rq);
1237
1238 /*
1239 * Currently the only 'mixing' which can happen is between
1240 * different fastfail types. We can safely fail portions
1241 * which have all the failfast bits that the first one has -
1242 * the ones which are at least as eager to fail as the first
1243 * one.
1244 */
1245 for (bio = rq->bio; bio; bio = bio->bi_next) {
1246 if ((bio->bi_opf & ff) != ff)
1247 break;
1248 bytes += bio->bi_iter.bi_size;
1249 }
1250
1251 /* this could lead to infinite loop */
1252 BUG_ON(blk_rq_bytes(rq) && !bytes);
1253 return bytes;
1254 }
1255 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1256
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1257 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1258 {
1259 unsigned long stamp;
1260 again:
1261 stamp = READ_ONCE(part->stamp);
1262 if (unlikely(stamp != now)) {
1263 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1264 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1265 }
1266 if (part->partno) {
1267 part = &part_to_disk(part)->part0;
1268 goto again;
1269 }
1270 }
1271
blk_account_io_completion(struct request * req,unsigned int bytes)1272 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1273 {
1274 if (req->part && blk_do_io_stat(req)) {
1275 const int sgrp = op_stat_group(req_op(req));
1276 struct hd_struct *part;
1277
1278 part_stat_lock();
1279 part = req->part;
1280 part_stat_add(part, sectors[sgrp], bytes >> 9);
1281 part_stat_unlock();
1282 }
1283 }
1284
blk_account_io_done(struct request * req,u64 now)1285 void blk_account_io_done(struct request *req, u64 now)
1286 {
1287 /*
1288 * Account IO completion. flush_rq isn't accounted as a
1289 * normal IO on queueing nor completion. Accounting the
1290 * containing request is enough.
1291 */
1292 if (req->part && blk_do_io_stat(req) &&
1293 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1294 const int sgrp = op_stat_group(req_op(req));
1295 struct hd_struct *part;
1296
1297 part_stat_lock();
1298 part = req->part;
1299
1300 update_io_ticks(part, jiffies, true);
1301 part_stat_inc(part, ios[sgrp]);
1302 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1303 part_stat_unlock();
1304
1305 hd_struct_put(part);
1306 }
1307 }
1308
blk_account_io_start(struct request * rq)1309 void blk_account_io_start(struct request *rq)
1310 {
1311 if (!blk_do_io_stat(rq))
1312 return;
1313
1314 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1315
1316 part_stat_lock();
1317 update_io_ticks(rq->part, jiffies, false);
1318 part_stat_unlock();
1319 }
1320
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1321 static unsigned long __part_start_io_acct(struct hd_struct *part,
1322 unsigned int sectors, unsigned int op)
1323 {
1324 const int sgrp = op_stat_group(op);
1325 unsigned long now = READ_ONCE(jiffies);
1326
1327 part_stat_lock();
1328 update_io_ticks(part, now, false);
1329 part_stat_inc(part, ios[sgrp]);
1330 part_stat_add(part, sectors[sgrp], sectors);
1331 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1332 part_stat_unlock();
1333
1334 return now;
1335 }
1336
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1337 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1338 struct bio *bio)
1339 {
1340 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1341
1342 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1343 }
1344 EXPORT_SYMBOL_GPL(part_start_io_acct);
1345
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1346 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1347 unsigned int op)
1348 {
1349 return __part_start_io_acct(&disk->part0, sectors, op);
1350 }
1351 EXPORT_SYMBOL(disk_start_io_acct);
1352
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1353 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1354 unsigned long start_time)
1355 {
1356 const int sgrp = op_stat_group(op);
1357 unsigned long now = READ_ONCE(jiffies);
1358 unsigned long duration = now - start_time;
1359
1360 part_stat_lock();
1361 update_io_ticks(part, now, true);
1362 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1363 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1364 part_stat_unlock();
1365 }
1366
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1367 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1368 unsigned long start_time)
1369 {
1370 __part_end_io_acct(part, bio_op(bio), start_time);
1371 hd_struct_put(part);
1372 }
1373 EXPORT_SYMBOL_GPL(part_end_io_acct);
1374
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1375 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1376 unsigned long start_time)
1377 {
1378 __part_end_io_acct(&disk->part0, op, start_time);
1379 }
1380 EXPORT_SYMBOL(disk_end_io_acct);
1381
1382 /*
1383 * Steal bios from a request and add them to a bio list.
1384 * The request must not have been partially completed before.
1385 */
blk_steal_bios(struct bio_list * list,struct request * rq)1386 void blk_steal_bios(struct bio_list *list, struct request *rq)
1387 {
1388 if (rq->bio) {
1389 if (list->tail)
1390 list->tail->bi_next = rq->bio;
1391 else
1392 list->head = rq->bio;
1393 list->tail = rq->biotail;
1394
1395 rq->bio = NULL;
1396 rq->biotail = NULL;
1397 }
1398
1399 rq->__data_len = 0;
1400 }
1401 EXPORT_SYMBOL_GPL(blk_steal_bios);
1402
1403 /**
1404 * blk_update_request - Special helper function for request stacking drivers
1405 * @req: the request being processed
1406 * @error: block status code
1407 * @nr_bytes: number of bytes to complete @req
1408 *
1409 * Description:
1410 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1411 * the request structure even if @req doesn't have leftover.
1412 * If @req has leftover, sets it up for the next range of segments.
1413 *
1414 * This special helper function is only for request stacking drivers
1415 * (e.g. request-based dm) so that they can handle partial completion.
1416 * Actual device drivers should use blk_mq_end_request instead.
1417 *
1418 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419 * %false return from this function.
1420 *
1421 * Note:
1422 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423 * blk_rq_bytes() and in blk_update_request().
1424 *
1425 * Return:
1426 * %false - this request doesn't have any more data
1427 * %true - this request has more data
1428 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1429 bool blk_update_request(struct request *req, blk_status_t error,
1430 unsigned int nr_bytes)
1431 {
1432 int total_bytes;
1433
1434 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1435
1436 if (!req->bio)
1437 return false;
1438
1439 #ifdef CONFIG_BLK_DEV_INTEGRITY
1440 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1441 error == BLK_STS_OK)
1442 req->q->integrity.profile->complete_fn(req, nr_bytes);
1443 #endif
1444
1445 /*
1446 * Upper layers may call blk_crypto_evict_key() anytime after the last
1447 * bio_endio(). Therefore, the keyslot must be released before that.
1448 */
1449 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1450 __blk_crypto_rq_put_keyslot(req);
1451
1452 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1453 !(req->rq_flags & RQF_QUIET)))
1454 print_req_error(req, error, __func__);
1455
1456 blk_account_io_completion(req, nr_bytes);
1457
1458 total_bytes = 0;
1459 while (req->bio) {
1460 struct bio *bio = req->bio;
1461 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1462
1463 if (bio_bytes == bio->bi_iter.bi_size)
1464 req->bio = bio->bi_next;
1465
1466 /* Completion has already been traced */
1467 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1468 req_bio_endio(req, bio, bio_bytes, error);
1469
1470 total_bytes += bio_bytes;
1471 nr_bytes -= bio_bytes;
1472
1473 if (!nr_bytes)
1474 break;
1475 }
1476
1477 /*
1478 * completely done
1479 */
1480 if (!req->bio) {
1481 /*
1482 * Reset counters so that the request stacking driver
1483 * can find how many bytes remain in the request
1484 * later.
1485 */
1486 req->__data_len = 0;
1487 return false;
1488 }
1489
1490 req->__data_len -= total_bytes;
1491
1492 /* update sector only for requests with clear definition of sector */
1493 if (!blk_rq_is_passthrough(req))
1494 req->__sector += total_bytes >> 9;
1495
1496 /* mixed attributes always follow the first bio */
1497 if (req->rq_flags & RQF_MIXED_MERGE) {
1498 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1499 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1500 }
1501
1502 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1503 /*
1504 * If total number of sectors is less than the first segment
1505 * size, something has gone terribly wrong.
1506 */
1507 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1508 blk_dump_rq_flags(req, "request botched");
1509 req->__data_len = blk_rq_cur_bytes(req);
1510 }
1511
1512 /* recalculate the number of segments */
1513 req->nr_phys_segments = blk_recalc_rq_segments(req);
1514 }
1515
1516 return true;
1517 }
1518 EXPORT_SYMBOL_GPL(blk_update_request);
1519
1520 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1521 /**
1522 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1523 * @rq: the request to be flushed
1524 *
1525 * Description:
1526 * Flush all pages in @rq.
1527 */
rq_flush_dcache_pages(struct request * rq)1528 void rq_flush_dcache_pages(struct request *rq)
1529 {
1530 struct req_iterator iter;
1531 struct bio_vec bvec;
1532
1533 rq_for_each_segment(bvec, rq, iter)
1534 flush_dcache_page(bvec.bv_page);
1535 }
1536 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1537 #endif
1538
1539 /**
1540 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1541 * @q : the queue of the device being checked
1542 *
1543 * Description:
1544 * Check if underlying low-level drivers of a device are busy.
1545 * If the drivers want to export their busy state, they must set own
1546 * exporting function using blk_queue_lld_busy() first.
1547 *
1548 * Basically, this function is used only by request stacking drivers
1549 * to stop dispatching requests to underlying devices when underlying
1550 * devices are busy. This behavior helps more I/O merging on the queue
1551 * of the request stacking driver and prevents I/O throughput regression
1552 * on burst I/O load.
1553 *
1554 * Return:
1555 * 0 - Not busy (The request stacking driver should dispatch request)
1556 * 1 - Busy (The request stacking driver should stop dispatching request)
1557 */
blk_lld_busy(struct request_queue * q)1558 int blk_lld_busy(struct request_queue *q)
1559 {
1560 if (queue_is_mq(q) && q->mq_ops->busy)
1561 return q->mq_ops->busy(q);
1562
1563 return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(blk_lld_busy);
1566
1567 /**
1568 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1569 * @rq: the clone request to be cleaned up
1570 *
1571 * Description:
1572 * Free all bios in @rq for a cloned request.
1573 */
blk_rq_unprep_clone(struct request * rq)1574 void blk_rq_unprep_clone(struct request *rq)
1575 {
1576 struct bio *bio;
1577
1578 while ((bio = rq->bio) != NULL) {
1579 rq->bio = bio->bi_next;
1580
1581 bio_put(bio);
1582 }
1583 }
1584 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1585
1586 /**
1587 * blk_rq_prep_clone - Helper function to setup clone request
1588 * @rq: the request to be setup
1589 * @rq_src: original request to be cloned
1590 * @bs: bio_set that bios for clone are allocated from
1591 * @gfp_mask: memory allocation mask for bio
1592 * @bio_ctr: setup function to be called for each clone bio.
1593 * Returns %0 for success, non %0 for failure.
1594 * @data: private data to be passed to @bio_ctr
1595 *
1596 * Description:
1597 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1598 * Also, pages which the original bios are pointing to are not copied
1599 * and the cloned bios just point same pages.
1600 * So cloned bios must be completed before original bios, which means
1601 * the caller must complete @rq before @rq_src.
1602 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1603 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1604 struct bio_set *bs, gfp_t gfp_mask,
1605 int (*bio_ctr)(struct bio *, struct bio *, void *),
1606 void *data)
1607 {
1608 struct bio *bio, *bio_src;
1609
1610 if (!bs)
1611 bs = &fs_bio_set;
1612
1613 __rq_for_each_bio(bio_src, rq_src) {
1614 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1615 if (!bio)
1616 goto free_and_out;
1617
1618 if (bio_ctr && bio_ctr(bio, bio_src, data))
1619 goto free_and_out;
1620
1621 if (rq->bio) {
1622 rq->biotail->bi_next = bio;
1623 rq->biotail = bio;
1624 } else {
1625 rq->bio = rq->biotail = bio;
1626 }
1627 bio = NULL;
1628 }
1629
1630 /* Copy attributes of the original request to the clone request. */
1631 rq->__sector = blk_rq_pos(rq_src);
1632 rq->__data_len = blk_rq_bytes(rq_src);
1633 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1634 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1635 rq->special_vec = rq_src->special_vec;
1636 }
1637 rq->nr_phys_segments = rq_src->nr_phys_segments;
1638 rq->ioprio = rq_src->ioprio;
1639
1640 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1641 goto free_and_out;
1642
1643 return 0;
1644
1645 free_and_out:
1646 if (bio)
1647 bio_put(bio);
1648 blk_rq_unprep_clone(rq);
1649
1650 return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1653
kblockd_schedule_work(struct work_struct * work)1654 int kblockd_schedule_work(struct work_struct *work)
1655 {
1656 return queue_work(kblockd_workqueue, work);
1657 }
1658 EXPORT_SYMBOL(kblockd_schedule_work);
1659
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1660 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1661 unsigned long delay)
1662 {
1663 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1664 }
1665 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1666
1667 /**
1668 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1669 * @plug: The &struct blk_plug that needs to be initialized
1670 *
1671 * Description:
1672 * blk_start_plug() indicates to the block layer an intent by the caller
1673 * to submit multiple I/O requests in a batch. The block layer may use
1674 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1675 * is called. However, the block layer may choose to submit requests
1676 * before a call to blk_finish_plug() if the number of queued I/Os
1677 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1678 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1679 * the task schedules (see below).
1680 *
1681 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1682 * pending I/O should the task end up blocking between blk_start_plug() and
1683 * blk_finish_plug(). This is important from a performance perspective, but
1684 * also ensures that we don't deadlock. For instance, if the task is blocking
1685 * for a memory allocation, memory reclaim could end up wanting to free a
1686 * page belonging to that request that is currently residing in our private
1687 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1688 * this kind of deadlock.
1689 */
blk_start_plug(struct blk_plug * plug)1690 void blk_start_plug(struct blk_plug *plug)
1691 {
1692 struct task_struct *tsk = current;
1693
1694 /*
1695 * If this is a nested plug, don't actually assign it.
1696 */
1697 if (tsk->plug)
1698 return;
1699
1700 INIT_LIST_HEAD(&plug->mq_list);
1701 INIT_LIST_HEAD(&plug->cb_list);
1702 plug->rq_count = 0;
1703 plug->multiple_queues = false;
1704 plug->nowait = false;
1705
1706 /*
1707 * Store ordering should not be needed here, since a potential
1708 * preempt will imply a full memory barrier
1709 */
1710 tsk->plug = plug;
1711 }
1712 EXPORT_SYMBOL(blk_start_plug);
1713
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1714 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1715 {
1716 LIST_HEAD(callbacks);
1717
1718 while (!list_empty(&plug->cb_list)) {
1719 list_splice_init(&plug->cb_list, &callbacks);
1720
1721 while (!list_empty(&callbacks)) {
1722 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1723 struct blk_plug_cb,
1724 list);
1725 list_del(&cb->list);
1726 cb->callback(cb, from_schedule);
1727 }
1728 }
1729 }
1730
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1731 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1732 int size)
1733 {
1734 struct blk_plug *plug = current->plug;
1735 struct blk_plug_cb *cb;
1736
1737 if (!plug)
1738 return NULL;
1739
1740 list_for_each_entry(cb, &plug->cb_list, list)
1741 if (cb->callback == unplug && cb->data == data)
1742 return cb;
1743
1744 /* Not currently on the callback list */
1745 BUG_ON(size < sizeof(*cb));
1746 cb = kzalloc(size, GFP_ATOMIC);
1747 if (cb) {
1748 cb->data = data;
1749 cb->callback = unplug;
1750 list_add(&cb->list, &plug->cb_list);
1751 }
1752 return cb;
1753 }
1754 EXPORT_SYMBOL(blk_check_plugged);
1755
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1756 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1757 {
1758 flush_plug_callbacks(plug, from_schedule);
1759
1760 if (!list_empty(&plug->mq_list))
1761 blk_mq_flush_plug_list(plug, from_schedule);
1762 }
1763
1764 /**
1765 * blk_finish_plug - mark the end of a batch of submitted I/O
1766 * @plug: The &struct blk_plug passed to blk_start_plug()
1767 *
1768 * Description:
1769 * Indicate that a batch of I/O submissions is complete. This function
1770 * must be paired with an initial call to blk_start_plug(). The intent
1771 * is to allow the block layer to optimize I/O submission. See the
1772 * documentation for blk_start_plug() for more information.
1773 */
blk_finish_plug(struct blk_plug * plug)1774 void blk_finish_plug(struct blk_plug *plug)
1775 {
1776 if (plug != current->plug)
1777 return;
1778 blk_flush_plug_list(plug, false);
1779
1780 current->plug = NULL;
1781 }
1782 EXPORT_SYMBOL(blk_finish_plug);
1783
blk_io_schedule(void)1784 void blk_io_schedule(void)
1785 {
1786 /* Prevent hang_check timer from firing at us during very long I/O */
1787 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1788
1789 if (timeout)
1790 io_schedule_timeout(timeout);
1791 else
1792 io_schedule();
1793 }
1794 EXPORT_SYMBOL_GPL(blk_io_schedule);
1795
blk_dev_init(void)1796 int __init blk_dev_init(void)
1797 {
1798 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1799 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1800 sizeof_field(struct request, cmd_flags));
1801 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1802 sizeof_field(struct bio, bi_opf));
1803
1804 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1805 kblockd_workqueue = alloc_workqueue("kblockd",
1806 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1807 if (!kblockd_workqueue)
1808 panic("Failed to create kblockd\n");
1809
1810 blk_requestq_cachep = kmem_cache_create("request_queue",
1811 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1812
1813 blk_debugfs_root = debugfs_create_dir("block", NULL);
1814
1815 return 0;
1816 }
1817