1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to mapping data to requests
4 */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15 bool is_our_pages : 1;
16 bool is_null_mapped : 1;
17 struct iov_iter iter;
18 struct iovec iov[];
19 };
20
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 gfp_t gfp_mask)
23 {
24 struct bio_map_data *bmd;
25
26 if (data->nr_segs > UIO_MAXIOV)
27 return NULL;
28
29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 if (!bmd)
31 return NULL;
32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 bmd->iter = *data;
34 bmd->iter.iov = bmd->iov;
35 return bmd;
36 }
37
38 /**
39 * bio_copy_from_iter - copy all pages from iov_iter to bio
40 * @bio: The &struct bio which describes the I/O as destination
41 * @iter: iov_iter as source
42 *
43 * Copy all pages from iov_iter to bio.
44 * Returns 0 on success, or error on failure.
45 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 struct bio_vec *bvec;
49 struct bvec_iter_all iter_all;
50
51 bio_for_each_segment_all(bvec, bio, iter_all) {
52 ssize_t ret;
53
54 ret = copy_page_from_iter(bvec->bv_page,
55 bvec->bv_offset,
56 bvec->bv_len,
57 iter);
58
59 if (!iov_iter_count(iter))
60 break;
61
62 if (ret < bvec->bv_len)
63 return -EFAULT;
64 }
65
66 return 0;
67 }
68
69 /**
70 * bio_copy_to_iter - copy all pages from bio to iov_iter
71 * @bio: The &struct bio which describes the I/O as source
72 * @iter: iov_iter as destination
73 *
74 * Copy all pages from bio to iov_iter.
75 * Returns 0 on success, or error on failure.
76 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 struct bio_vec *bvec;
80 struct bvec_iter_all iter_all;
81
82 bio_for_each_segment_all(bvec, bio, iter_all) {
83 ssize_t ret;
84
85 ret = copy_page_to_iter(bvec->bv_page,
86 bvec->bv_offset,
87 bvec->bv_len,
88 &iter);
89
90 if (!iov_iter_count(&iter))
91 break;
92
93 if (ret < bvec->bv_len)
94 return -EFAULT;
95 }
96
97 return 0;
98 }
99
100 /**
101 * bio_uncopy_user - finish previously mapped bio
102 * @bio: bio being terminated
103 *
104 * Free pages allocated from bio_copy_user_iov() and write back data
105 * to user space in case of a read.
106 */
bio_uncopy_user(struct bio * bio)107 static int bio_uncopy_user(struct bio *bio)
108 {
109 struct bio_map_data *bmd = bio->bi_private;
110 int ret = 0;
111
112 if (!bmd->is_null_mapped) {
113 /*
114 * if we're in a workqueue, the request is orphaned, so
115 * don't copy into a random user address space, just free
116 * and return -EINTR so user space doesn't expect any data.
117 */
118 if (!current->mm)
119 ret = -EINTR;
120 else if (bio_data_dir(bio) == READ)
121 ret = bio_copy_to_iter(bio, bmd->iter);
122 if (bmd->is_our_pages)
123 bio_free_pages(bio);
124 }
125 kfree(bmd);
126 bio_put(bio);
127 return ret;
128 }
129
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)130 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
131 struct iov_iter *iter, gfp_t gfp_mask)
132 {
133 struct bio_map_data *bmd;
134 struct page *page;
135 struct bio *bio, *bounce_bio;
136 int i = 0, ret;
137 int nr_pages;
138 unsigned int len = iter->count;
139 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
140
141 bmd = bio_alloc_map_data(iter, gfp_mask);
142 if (!bmd)
143 return -ENOMEM;
144
145 /*
146 * We need to do a deep copy of the iov_iter including the iovecs.
147 * The caller provided iov might point to an on-stack or otherwise
148 * shortlived one.
149 */
150 bmd->is_our_pages = !map_data;
151 bmd->is_null_mapped = (map_data && map_data->null_mapped);
152
153 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
154
155 ret = -ENOMEM;
156 bio = bio_kmalloc(gfp_mask, nr_pages);
157 if (!bio)
158 goto out_bmd;
159 bio->bi_opf |= req_op(rq);
160
161 if (map_data) {
162 nr_pages = 1 << map_data->page_order;
163 i = map_data->offset / PAGE_SIZE;
164 }
165 while (len) {
166 unsigned int bytes = PAGE_SIZE;
167
168 bytes -= offset;
169
170 if (bytes > len)
171 bytes = len;
172
173 if (map_data) {
174 if (i == map_data->nr_entries * nr_pages) {
175 ret = -ENOMEM;
176 goto cleanup;
177 }
178
179 page = map_data->pages[i / nr_pages];
180 page += (i % nr_pages);
181
182 i++;
183 } else {
184 page = alloc_page(rq->q->bounce_gfp | gfp_mask);
185 if (!page) {
186 ret = -ENOMEM;
187 goto cleanup;
188 }
189 }
190
191 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
192 if (!map_data)
193 __free_page(page);
194 break;
195 }
196
197 len -= bytes;
198 offset = 0;
199 }
200
201 if (map_data)
202 map_data->offset += bio->bi_iter.bi_size;
203
204 /*
205 * success
206 */
207 if ((iov_iter_rw(iter) == WRITE &&
208 (!map_data || !map_data->null_mapped)) ||
209 (map_data && map_data->from_user)) {
210 ret = bio_copy_from_iter(bio, iter);
211 if (ret)
212 goto cleanup;
213 } else {
214 if (bmd->is_our_pages)
215 zero_fill_bio(bio);
216 iov_iter_advance(iter, bio->bi_iter.bi_size);
217 }
218
219 bio->bi_private = bmd;
220
221 bounce_bio = bio;
222 ret = blk_rq_append_bio(rq, &bounce_bio);
223 if (ret)
224 goto cleanup;
225
226 /*
227 * We link the bounce buffer in and could have to traverse it later, so
228 * we have to get a ref to prevent it from being freed
229 */
230 bio_get(bounce_bio);
231 return 0;
232 cleanup:
233 if (!map_data)
234 bio_free_pages(bio);
235 bio_put(bio);
236 out_bmd:
237 kfree(bmd);
238 return ret;
239 }
240
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)241 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
242 gfp_t gfp_mask)
243 {
244 unsigned int max_sectors = queue_max_hw_sectors(rq->q);
245 struct bio *bio, *bounce_bio;
246 int ret;
247 int j;
248
249 if (!iov_iter_count(iter))
250 return -EINVAL;
251
252 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
253 if (!bio)
254 return -ENOMEM;
255 bio->bi_opf |= req_op(rq);
256
257 while (iov_iter_count(iter)) {
258 struct page **pages;
259 ssize_t bytes;
260 size_t offs, added = 0;
261 int npages;
262
263 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
264 if (unlikely(bytes <= 0)) {
265 ret = bytes ? bytes : -EFAULT;
266 goto out_unmap;
267 }
268
269 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
270
271 if (unlikely(offs & queue_dma_alignment(rq->q))) {
272 ret = -EINVAL;
273 j = 0;
274 } else {
275 for (j = 0; j < npages; j++) {
276 struct page *page = pages[j];
277 unsigned int n = PAGE_SIZE - offs;
278 bool same_page = false;
279
280 if (n > bytes)
281 n = bytes;
282
283 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
284 max_sectors, &same_page)) {
285 if (same_page)
286 put_page(page);
287 break;
288 }
289
290 added += n;
291 bytes -= n;
292 offs = 0;
293 }
294 iov_iter_advance(iter, added);
295 }
296 /*
297 * release the pages we didn't map into the bio, if any
298 */
299 while (j < npages)
300 put_page(pages[j++]);
301 kvfree(pages);
302 /* couldn't stuff something into bio? */
303 if (bytes)
304 break;
305 }
306
307 /*
308 * Subtle: if we end up needing to bounce a bio, it would normally
309 * disappear when its bi_end_io is run. However, we need the original
310 * bio for the unmap, so grab an extra reference to it
311 */
312 bio_get(bio);
313
314 bounce_bio = bio;
315 ret = blk_rq_append_bio(rq, &bounce_bio);
316 if (ret)
317 goto out_put_orig;
318
319 /*
320 * We link the bounce buffer in and could have to traverse it
321 * later, so we have to get a ref to prevent it from being freed
322 */
323 bio_get(bounce_bio);
324 return 0;
325
326 out_put_orig:
327 bio_put(bio);
328 out_unmap:
329 bio_release_pages(bio, false);
330 bio_put(bio);
331 return ret;
332 }
333
334 /**
335 * bio_unmap_user - unmap a bio
336 * @bio: the bio being unmapped
337 *
338 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
339 * process context.
340 *
341 * bio_unmap_user() may sleep.
342 */
bio_unmap_user(struct bio * bio)343 static void bio_unmap_user(struct bio *bio)
344 {
345 bio_release_pages(bio, bio_data_dir(bio) == READ);
346 bio_put(bio);
347 bio_put(bio);
348 }
349
bio_invalidate_vmalloc_pages(struct bio * bio)350 static void bio_invalidate_vmalloc_pages(struct bio *bio)
351 {
352 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
353 if (bio->bi_private && !op_is_write(bio_op(bio))) {
354 unsigned long i, len = 0;
355
356 for (i = 0; i < bio->bi_vcnt; i++)
357 len += bio->bi_io_vec[i].bv_len;
358 invalidate_kernel_vmap_range(bio->bi_private, len);
359 }
360 #endif
361 }
362
bio_map_kern_endio(struct bio * bio)363 static void bio_map_kern_endio(struct bio *bio)
364 {
365 bio_invalidate_vmalloc_pages(bio);
366 bio_put(bio);
367 }
368
369 /**
370 * bio_map_kern - map kernel address into bio
371 * @q: the struct request_queue for the bio
372 * @data: pointer to buffer to map
373 * @len: length in bytes
374 * @gfp_mask: allocation flags for bio allocation
375 *
376 * Map the kernel address into a bio suitable for io to a block
377 * device. Returns an error pointer in case of error.
378 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)379 static struct bio *bio_map_kern(struct request_queue *q, void *data,
380 unsigned int len, gfp_t gfp_mask)
381 {
382 unsigned long kaddr = (unsigned long)data;
383 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
384 unsigned long start = kaddr >> PAGE_SHIFT;
385 const int nr_pages = end - start;
386 bool is_vmalloc = is_vmalloc_addr(data);
387 struct page *page;
388 int offset, i;
389 struct bio *bio;
390
391 bio = bio_kmalloc(gfp_mask, nr_pages);
392 if (!bio)
393 return ERR_PTR(-ENOMEM);
394
395 if (is_vmalloc) {
396 flush_kernel_vmap_range(data, len);
397 bio->bi_private = data;
398 }
399
400 offset = offset_in_page(kaddr);
401 for (i = 0; i < nr_pages; i++) {
402 unsigned int bytes = PAGE_SIZE - offset;
403
404 if (len <= 0)
405 break;
406
407 if (bytes > len)
408 bytes = len;
409
410 if (!is_vmalloc)
411 page = virt_to_page(data);
412 else
413 page = vmalloc_to_page(data);
414 if (bio_add_pc_page(q, bio, page, bytes,
415 offset) < bytes) {
416 /* we don't support partial mappings */
417 bio_put(bio);
418 return ERR_PTR(-EINVAL);
419 }
420
421 data += bytes;
422 len -= bytes;
423 offset = 0;
424 }
425
426 bio->bi_end_io = bio_map_kern_endio;
427 return bio;
428 }
429
bio_copy_kern_endio(struct bio * bio)430 static void bio_copy_kern_endio(struct bio *bio)
431 {
432 bio_free_pages(bio);
433 bio_put(bio);
434 }
435
bio_copy_kern_endio_read(struct bio * bio)436 static void bio_copy_kern_endio_read(struct bio *bio)
437 {
438 char *p = bio->bi_private;
439 struct bio_vec *bvec;
440 struct bvec_iter_all iter_all;
441
442 bio_for_each_segment_all(bvec, bio, iter_all) {
443 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
444 p += bvec->bv_len;
445 }
446
447 bio_copy_kern_endio(bio);
448 }
449
450 /**
451 * bio_copy_kern - copy kernel address into bio
452 * @q: the struct request_queue for the bio
453 * @data: pointer to buffer to copy
454 * @len: length in bytes
455 * @gfp_mask: allocation flags for bio and page allocation
456 * @reading: data direction is READ
457 *
458 * copy the kernel address into a bio suitable for io to a block
459 * device. Returns an error pointer in case of error.
460 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)461 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
462 unsigned int len, gfp_t gfp_mask, int reading)
463 {
464 unsigned long kaddr = (unsigned long)data;
465 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
466 unsigned long start = kaddr >> PAGE_SHIFT;
467 struct bio *bio;
468 void *p = data;
469 int nr_pages = 0;
470
471 /*
472 * Overflow, abort
473 */
474 if (end < start)
475 return ERR_PTR(-EINVAL);
476
477 nr_pages = end - start;
478 bio = bio_kmalloc(gfp_mask, nr_pages);
479 if (!bio)
480 return ERR_PTR(-ENOMEM);
481
482 while (len) {
483 struct page *page;
484 unsigned int bytes = PAGE_SIZE;
485
486 if (bytes > len)
487 bytes = len;
488
489 page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
490 if (!page)
491 goto cleanup;
492
493 if (!reading)
494 memcpy(page_address(page), p, bytes);
495
496 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
497 break;
498
499 len -= bytes;
500 p += bytes;
501 }
502
503 if (reading) {
504 bio->bi_end_io = bio_copy_kern_endio_read;
505 bio->bi_private = data;
506 } else {
507 bio->bi_end_io = bio_copy_kern_endio;
508 }
509
510 return bio;
511
512 cleanup:
513 bio_free_pages(bio);
514 bio_put(bio);
515 return ERR_PTR(-ENOMEM);
516 }
517
518 /*
519 * Append a bio to a passthrough request. Only works if the bio can be merged
520 * into the request based on the driver constraints.
521 */
blk_rq_append_bio(struct request * rq,struct bio ** bio)522 int blk_rq_append_bio(struct request *rq, struct bio **bio)
523 {
524 struct bio *orig_bio = *bio;
525 struct bvec_iter iter;
526 struct bio_vec bv;
527 unsigned int nr_segs = 0;
528
529 blk_queue_bounce(rq->q, bio);
530
531 bio_for_each_bvec(bv, *bio, iter)
532 nr_segs++;
533
534 if (!rq->bio) {
535 blk_rq_bio_prep(rq, *bio, nr_segs);
536 } else {
537 if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
538 if (orig_bio != *bio) {
539 bio_put(*bio);
540 *bio = orig_bio;
541 }
542 return -EINVAL;
543 }
544
545 rq->biotail->bi_next = *bio;
546 rq->biotail = *bio;
547 rq->__data_len += (*bio)->bi_iter.bi_size;
548 bio_crypt_free_ctx(*bio);
549 }
550
551 return 0;
552 }
553 EXPORT_SYMBOL(blk_rq_append_bio);
554
555 /**
556 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
557 * @q: request queue where request should be inserted
558 * @rq: request to map data to
559 * @map_data: pointer to the rq_map_data holding pages (if necessary)
560 * @iter: iovec iterator
561 * @gfp_mask: memory allocation flags
562 *
563 * Description:
564 * Data will be mapped directly for zero copy I/O, if possible. Otherwise
565 * a kernel bounce buffer is used.
566 *
567 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while
568 * still in process context.
569 *
570 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
571 * before being submitted to the device, as pages mapped may be out of
572 * reach. It's the callers responsibility to make sure this happens. The
573 * original bio must be passed back in to blk_rq_unmap_user() for proper
574 * unmapping.
575 */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)576 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
577 struct rq_map_data *map_data,
578 const struct iov_iter *iter, gfp_t gfp_mask)
579 {
580 bool copy = false;
581 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
582 struct bio *bio = NULL;
583 struct iov_iter i;
584 int ret = -EINVAL;
585
586 if (!iter_is_iovec(iter))
587 goto fail;
588
589 if (map_data)
590 copy = true;
591 else if (iov_iter_alignment(iter) & align)
592 copy = true;
593 else if (queue_virt_boundary(q))
594 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
595
596 i = *iter;
597 do {
598 if (copy)
599 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
600 else
601 ret = bio_map_user_iov(rq, &i, gfp_mask);
602 if (ret)
603 goto unmap_rq;
604 if (!bio)
605 bio = rq->bio;
606 } while (iov_iter_count(&i));
607
608 return 0;
609
610 unmap_rq:
611 blk_rq_unmap_user(bio);
612 fail:
613 rq->bio = NULL;
614 return ret;
615 }
616 EXPORT_SYMBOL(blk_rq_map_user_iov);
617
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)618 int blk_rq_map_user(struct request_queue *q, struct request *rq,
619 struct rq_map_data *map_data, void __user *ubuf,
620 unsigned long len, gfp_t gfp_mask)
621 {
622 struct iovec iov;
623 struct iov_iter i;
624 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
625
626 if (unlikely(ret < 0))
627 return ret;
628
629 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
630 }
631 EXPORT_SYMBOL(blk_rq_map_user);
632
633 /**
634 * blk_rq_unmap_user - unmap a request with user data
635 * @bio: start of bio list
636 *
637 * Description:
638 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
639 * supply the original rq->bio from the blk_rq_map_user() return, since
640 * the I/O completion may have changed rq->bio.
641 */
blk_rq_unmap_user(struct bio * bio)642 int blk_rq_unmap_user(struct bio *bio)
643 {
644 struct bio *mapped_bio;
645 int ret = 0, ret2;
646
647 while (bio) {
648 mapped_bio = bio;
649 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
650 mapped_bio = bio->bi_private;
651
652 if (bio->bi_private) {
653 ret2 = bio_uncopy_user(mapped_bio);
654 if (ret2 && !ret)
655 ret = ret2;
656 } else {
657 bio_unmap_user(mapped_bio);
658 }
659
660 mapped_bio = bio;
661 bio = bio->bi_next;
662 bio_put(mapped_bio);
663 }
664
665 return ret;
666 }
667 EXPORT_SYMBOL(blk_rq_unmap_user);
668
669 /**
670 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
671 * @q: request queue where request should be inserted
672 * @rq: request to fill
673 * @kbuf: the kernel buffer
674 * @len: length of user data
675 * @gfp_mask: memory allocation flags
676 *
677 * Description:
678 * Data will be mapped directly if possible. Otherwise a bounce
679 * buffer is used. Can be called multiple times to append multiple
680 * buffers.
681 */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)682 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
683 unsigned int len, gfp_t gfp_mask)
684 {
685 int reading = rq_data_dir(rq) == READ;
686 unsigned long addr = (unsigned long) kbuf;
687 struct bio *bio, *orig_bio;
688 int ret;
689
690 if (len > (queue_max_hw_sectors(q) << 9))
691 return -EINVAL;
692 if (!len || !kbuf)
693 return -EINVAL;
694
695 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
696 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
697 else
698 bio = bio_map_kern(q, kbuf, len, gfp_mask);
699
700 if (IS_ERR(bio))
701 return PTR_ERR(bio);
702
703 bio->bi_opf &= ~REQ_OP_MASK;
704 bio->bi_opf |= req_op(rq);
705
706 orig_bio = bio;
707 ret = blk_rq_append_bio(rq, &bio);
708 if (unlikely(ret)) {
709 /* request is too big */
710 bio_put(orig_bio);
711 return ret;
712 }
713
714 return 0;
715 }
716 EXPORT_SYMBOL(blk_rq_map_kern);
717