• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
mul_fp(int32_t x,int32_t y)58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
div_fp(s64 x,s64 y)63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
ceiling_fp(int32_t x)68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
percent_fp(int percent)79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
percent_ext_fp(int percent)94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whether or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
181  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
184  *			P-state capacity.
185  */
186 struct global_params {
187 	bool no_turbo;
188 	bool turbo_disabled;
189 	bool turbo_disabled_mf;
190 	int max_perf_pct;
191 	int min_perf_pct;
192 };
193 
194 /**
195  * struct cpudata -	Per CPU instance data storage
196  * @cpu:		CPU number for this instance data
197  * @policy:		CPUFreq policy value
198  * @update_util:	CPUFreq utility callback information
199  * @update_util_set:	CPUFreq utility callback is set
200  * @iowait_boost:	iowait-related boost fraction
201  * @last_update:	Time of the last update.
202  * @pstate:		Stores P state limits for this CPU
203  * @vid:		Stores VID limits for this CPU
204  * @last_sample_time:	Last Sample time
205  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_cached		Cached HWP energy-performance preference value
223  * @hwp_req_cached:	Cached value of the last HWP Request MSR
224  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
225  * @last_io_update:	Last time when IO wake flag was set
226  * @sched_flags:	Store scheduler flags for possible cross CPU update
227  * @hwp_boost_min:	Last HWP boosted min performance
228  * @suspended:		Whether or not the driver has been suspended.
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_cached;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 	bool suspended;
267 };
268 
269 static struct cpudata **all_cpu_data;
270 
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:		Callback to get maximum non turbo effective P state
274  * @get_max_physical:	Callback to get maximum non turbo physical P state
275  * @get_min:		Callback to get minimum P state
276  * @get_turbo:		Callback to get turbo P state
277  * @get_scaling:	Callback to get frequency scaling factor
278  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279  * @get_val:		Callback to convert P state to actual MSR write value
280  * @get_vid:		Callback to get VID data for Atom platforms
281  *
282  * Core and Atom CPU models have different way to get P State limits. This
283  * structure is used to store those callbacks.
284  */
285 struct pstate_funcs {
286 	int (*get_max)(void);
287 	int (*get_max_physical)(void);
288 	int (*get_min)(void);
289 	int (*get_turbo)(void);
290 	int (*get_scaling)(void);
291 	int (*get_aperf_mperf_shift)(void);
292 	u64 (*get_val)(struct cpudata*, int pstate);
293 	void (*get_vid)(struct cpudata *);
294 };
295 
296 static struct pstate_funcs pstate_funcs __read_mostly;
297 
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308 
309 static struct global_params global;
310 
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313 
314 #ifdef CONFIG_ACPI
315 
intel_pstate_acpi_pm_profile_server(void)316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 		return true;
321 
322 	return false;
323 }
324 
intel_pstate_get_ppc_enable_status(void)325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327 	if (intel_pstate_acpi_pm_profile_server())
328 		return true;
329 
330 	return acpi_ppc;
331 }
332 
333 #ifdef CONFIG_ACPI_CPPC_LIB
334 
335 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338 	sched_set_itmt_support();
339 }
340 
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342 
intel_pstate_set_itmt_prio(int cpu)343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 	struct cppc_perf_caps cppc_perf;
346 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 	int ret;
348 
349 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 	if (ret)
351 		return;
352 
353 	/*
354 	 * The priorities can be set regardless of whether or not
355 	 * sched_set_itmt_support(true) has been called and it is valid to
356 	 * update them at any time after it has been called.
357 	 */
358 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359 
360 	if (max_highest_perf <= min_highest_perf) {
361 		if (cppc_perf.highest_perf > max_highest_perf)
362 			max_highest_perf = cppc_perf.highest_perf;
363 
364 		if (cppc_perf.highest_perf < min_highest_perf)
365 			min_highest_perf = cppc_perf.highest_perf;
366 
367 		if (max_highest_perf > min_highest_perf) {
368 			/*
369 			 * This code can be run during CPU online under the
370 			 * CPU hotplug locks, so sched_set_itmt_support()
371 			 * cannot be called from here.  Queue up a work item
372 			 * to invoke it.
373 			 */
374 			schedule_work(&sched_itmt_work);
375 		}
376 	}
377 }
378 
intel_pstate_get_cppc_guranteed(int cpu)379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381 	struct cppc_perf_caps cppc_perf;
382 	int ret;
383 
384 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 	if (ret)
386 		return ret;
387 
388 	if (cppc_perf.guaranteed_perf)
389 		return cppc_perf.guaranteed_perf;
390 
391 	return cppc_perf.nominal_perf;
392 }
393 
394 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399 
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402 	struct cpudata *cpu;
403 	int ret;
404 	int i;
405 
406 	if (hwp_active) {
407 		intel_pstate_set_itmt_prio(policy->cpu);
408 		return;
409 	}
410 
411 	if (!intel_pstate_get_ppc_enable_status())
412 		return;
413 
414 	cpu = all_cpu_data[policy->cpu];
415 
416 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 						  policy->cpu);
418 	if (ret)
419 		return;
420 
421 	/*
422 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 	 * guarantee that the states returned by it map to the states in our
424 	 * list directly.
425 	 */
426 	if (cpu->acpi_perf_data.control_register.space_id !=
427 						ACPI_ADR_SPACE_FIXED_HARDWARE)
428 		goto err;
429 
430 	/*
431 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 	 * usual without taking _PSS into account
433 	 */
434 	if (cpu->acpi_perf_data.state_count < 2)
435 		goto err;
436 
437 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 			 (u32) cpu->acpi_perf_data.states[i].power,
443 			 (u32) cpu->acpi_perf_data.states[i].control);
444 	}
445 
446 	cpu->valid_pss_table = true;
447 	pr_debug("_PPC limits will be enforced\n");
448 
449 	return;
450 
451  err:
452 	cpu->valid_pss_table = false;
453 	acpi_processor_unregister_performance(policy->cpu);
454 }
455 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)456 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
457 {
458 	struct cpudata *cpu;
459 
460 	cpu = all_cpu_data[policy->cpu];
461 	if (!cpu->valid_pss_table)
462 		return;
463 
464 	acpi_processor_unregister_performance(policy->cpu);
465 }
466 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)467 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)471 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
472 {
473 }
474 
intel_pstate_acpi_pm_profile_server(void)475 static inline bool intel_pstate_acpi_pm_profile_server(void)
476 {
477 	return false;
478 }
479 #endif /* CONFIG_ACPI */
480 
481 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guranteed(int cpu)482 static int intel_pstate_get_cppc_guranteed(int cpu)
483 {
484 	return -ENOTSUPP;
485 }
486 #endif /* CONFIG_ACPI_CPPC_LIB */
487 
update_turbo_state(void)488 static inline void update_turbo_state(void)
489 {
490 	u64 misc_en;
491 	struct cpudata *cpu;
492 
493 	cpu = all_cpu_data[0];
494 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
495 	global.turbo_disabled =
496 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
497 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
498 }
499 
min_perf_pct_min(void)500 static int min_perf_pct_min(void)
501 {
502 	struct cpudata *cpu = all_cpu_data[0];
503 	int turbo_pstate = cpu->pstate.turbo_pstate;
504 
505 	return turbo_pstate ?
506 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
507 }
508 
intel_pstate_get_epb(struct cpudata * cpu_data)509 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
510 {
511 	u64 epb;
512 	int ret;
513 
514 	if (!boot_cpu_has(X86_FEATURE_EPB))
515 		return -ENXIO;
516 
517 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
518 	if (ret)
519 		return (s16)ret;
520 
521 	return (s16)(epb & 0x0f);
522 }
523 
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)524 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
525 {
526 	s16 epp;
527 
528 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
529 		/*
530 		 * When hwp_req_data is 0, means that caller didn't read
531 		 * MSR_HWP_REQUEST, so need to read and get EPP.
532 		 */
533 		if (!hwp_req_data) {
534 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
535 					    &hwp_req_data);
536 			if (epp)
537 				return epp;
538 		}
539 		epp = (hwp_req_data >> 24) & 0xff;
540 	} else {
541 		/* When there is no EPP present, HWP uses EPB settings */
542 		epp = intel_pstate_get_epb(cpu_data);
543 	}
544 
545 	return epp;
546 }
547 
intel_pstate_set_epb(int cpu,s16 pref)548 static int intel_pstate_set_epb(int cpu, s16 pref)
549 {
550 	u64 epb;
551 	int ret;
552 
553 	if (!boot_cpu_has(X86_FEATURE_EPB))
554 		return -ENXIO;
555 
556 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
557 	if (ret)
558 		return ret;
559 
560 	epb = (epb & ~0x0f) | pref;
561 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
562 
563 	return 0;
564 }
565 
566 /*
567  * EPP/EPB display strings corresponding to EPP index in the
568  * energy_perf_strings[]
569  *	index		String
570  *-------------------------------------
571  *	0		default
572  *	1		performance
573  *	2		balance_performance
574  *	3		balance_power
575  *	4		power
576  */
577 static const char * const energy_perf_strings[] = {
578 	"default",
579 	"performance",
580 	"balance_performance",
581 	"balance_power",
582 	"power",
583 	NULL
584 };
585 static const unsigned int epp_values[] = {
586 	HWP_EPP_PERFORMANCE,
587 	HWP_EPP_BALANCE_PERFORMANCE,
588 	HWP_EPP_BALANCE_POWERSAVE,
589 	HWP_EPP_POWERSAVE
590 };
591 
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)592 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
593 {
594 	s16 epp;
595 	int index = -EINVAL;
596 
597 	*raw_epp = 0;
598 	epp = intel_pstate_get_epp(cpu_data, 0);
599 	if (epp < 0)
600 		return epp;
601 
602 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
603 		if (epp == HWP_EPP_PERFORMANCE)
604 			return 1;
605 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
606 			return 2;
607 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
608 			return 3;
609 		if (epp == HWP_EPP_POWERSAVE)
610 			return 4;
611 		*raw_epp = epp;
612 		return 0;
613 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
614 		/*
615 		 * Range:
616 		 *	0x00-0x03	:	Performance
617 		 *	0x04-0x07	:	Balance performance
618 		 *	0x08-0x0B	:	Balance power
619 		 *	0x0C-0x0F	:	Power
620 		 * The EPB is a 4 bit value, but our ranges restrict the
621 		 * value which can be set. Here only using top two bits
622 		 * effectively.
623 		 */
624 		index = (epp >> 2) + 1;
625 	}
626 
627 	return index;
628 }
629 
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)630 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
631 {
632 	int ret;
633 
634 	/*
635 	 * Use the cached HWP Request MSR value, because in the active mode the
636 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
637 	 * intel_pstate_hwp_boost_down() at any time.
638 	 */
639 	u64 value = READ_ONCE(cpu->hwp_req_cached);
640 
641 	value &= ~GENMASK_ULL(31, 24);
642 	value |= (u64)epp << 24;
643 	/*
644 	 * The only other updater of hwp_req_cached in the active mode,
645 	 * intel_pstate_hwp_set(), is called under the same lock as this
646 	 * function, so it cannot run in parallel with the update below.
647 	 */
648 	WRITE_ONCE(cpu->hwp_req_cached, value);
649 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
650 	if (!ret)
651 		cpu->epp_cached = epp;
652 
653 	return ret;
654 }
655 
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)656 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
657 					      int pref_index, bool use_raw,
658 					      u32 raw_epp)
659 {
660 	int epp = -EINVAL;
661 	int ret;
662 
663 	if (!pref_index)
664 		epp = cpu_data->epp_default;
665 
666 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
667 		if (use_raw)
668 			epp = raw_epp;
669 		else if (epp == -EINVAL)
670 			epp = epp_values[pref_index - 1];
671 
672 		/*
673 		 * To avoid confusion, refuse to set EPP to any values different
674 		 * from 0 (performance) if the current policy is "performance",
675 		 * because those values would be overridden.
676 		 */
677 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
678 			return -EBUSY;
679 
680 		ret = intel_pstate_set_epp(cpu_data, epp);
681 	} else {
682 		if (epp == -EINVAL)
683 			epp = (pref_index - 1) << 2;
684 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
685 	}
686 
687 	return ret;
688 }
689 
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)690 static ssize_t show_energy_performance_available_preferences(
691 				struct cpufreq_policy *policy, char *buf)
692 {
693 	int i = 0;
694 	int ret = 0;
695 
696 	while (energy_perf_strings[i] != NULL)
697 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
698 
699 	ret += sprintf(&buf[ret], "\n");
700 
701 	return ret;
702 }
703 
704 cpufreq_freq_attr_ro(energy_performance_available_preferences);
705 
706 static struct cpufreq_driver intel_pstate;
707 
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)708 static ssize_t store_energy_performance_preference(
709 		struct cpufreq_policy *policy, const char *buf, size_t count)
710 {
711 	struct cpudata *cpu = all_cpu_data[policy->cpu];
712 	char str_preference[21];
713 	bool raw = false;
714 	ssize_t ret;
715 	u32 epp = 0;
716 
717 	ret = sscanf(buf, "%20s", str_preference);
718 	if (ret != 1)
719 		return -EINVAL;
720 
721 	ret = match_string(energy_perf_strings, -1, str_preference);
722 	if (ret < 0) {
723 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
724 			return ret;
725 
726 		ret = kstrtouint(buf, 10, &epp);
727 		if (ret)
728 			return ret;
729 
730 		if (epp > 255)
731 			return -EINVAL;
732 
733 		raw = true;
734 	}
735 
736 	/*
737 	 * This function runs with the policy R/W semaphore held, which
738 	 * guarantees that the driver pointer will not change while it is
739 	 * running.
740 	 */
741 	if (!intel_pstate_driver)
742 		return -EAGAIN;
743 
744 	mutex_lock(&intel_pstate_limits_lock);
745 
746 	if (intel_pstate_driver == &intel_pstate) {
747 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
748 	} else {
749 		/*
750 		 * In the passive mode the governor needs to be stopped on the
751 		 * target CPU before the EPP update and restarted after it,
752 		 * which is super-heavy-weight, so make sure it is worth doing
753 		 * upfront.
754 		 */
755 		if (!raw)
756 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
757 
758 		if (cpu->epp_cached != epp) {
759 			int err;
760 
761 			cpufreq_stop_governor(policy);
762 			ret = intel_pstate_set_epp(cpu, epp);
763 			err = cpufreq_start_governor(policy);
764 			if (!ret)
765 				ret = err;
766 		} else {
767 			ret = 0;
768 		}
769 	}
770 
771 	mutex_unlock(&intel_pstate_limits_lock);
772 
773 	return ret ?: count;
774 }
775 
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)776 static ssize_t show_energy_performance_preference(
777 				struct cpufreq_policy *policy, char *buf)
778 {
779 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
780 	int preference, raw_epp;
781 
782 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
783 	if (preference < 0)
784 		return preference;
785 
786 	if (raw_epp)
787 		return  sprintf(buf, "%d\n", raw_epp);
788 	else
789 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
790 }
791 
792 cpufreq_freq_attr_rw(energy_performance_preference);
793 
show_base_frequency(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
795 {
796 	struct cpudata *cpu;
797 	u64 cap;
798 	int ratio;
799 
800 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
801 	if (ratio <= 0) {
802 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
803 		ratio = HWP_GUARANTEED_PERF(cap);
804 	}
805 
806 	cpu = all_cpu_data[policy->cpu];
807 
808 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
809 }
810 
811 cpufreq_freq_attr_ro(base_frequency);
812 
813 static struct freq_attr *hwp_cpufreq_attrs[] = {
814 	&energy_performance_preference,
815 	&energy_performance_available_preferences,
816 	&base_frequency,
817 	NULL,
818 };
819 
intel_pstate_get_hwp_max(struct cpudata * cpu,int * phy_max,int * current_max)820 static void intel_pstate_get_hwp_max(struct cpudata *cpu, int *phy_max,
821 				     int *current_max)
822 {
823 	u64 cap;
824 
825 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
826 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
827 	if (global.no_turbo || global.turbo_disabled)
828 		*current_max = HWP_GUARANTEED_PERF(cap);
829 	else
830 		*current_max = HWP_HIGHEST_PERF(cap);
831 
832 	*phy_max = HWP_HIGHEST_PERF(cap);
833 }
834 
intel_pstate_hwp_set(unsigned int cpu)835 static void intel_pstate_hwp_set(unsigned int cpu)
836 {
837 	struct cpudata *cpu_data = all_cpu_data[cpu];
838 	int max, min;
839 	u64 value;
840 	s16 epp;
841 
842 	max = cpu_data->max_perf_ratio;
843 	min = cpu_data->min_perf_ratio;
844 
845 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
846 		min = max;
847 
848 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
849 
850 	value &= ~HWP_MIN_PERF(~0L);
851 	value |= HWP_MIN_PERF(min);
852 
853 	value &= ~HWP_MAX_PERF(~0L);
854 	value |= HWP_MAX_PERF(max);
855 
856 	if (cpu_data->epp_policy == cpu_data->policy)
857 		goto skip_epp;
858 
859 	cpu_data->epp_policy = cpu_data->policy;
860 
861 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
862 		epp = intel_pstate_get_epp(cpu_data, value);
863 		cpu_data->epp_powersave = epp;
864 		/* If EPP read was failed, then don't try to write */
865 		if (epp < 0)
866 			goto skip_epp;
867 
868 		epp = 0;
869 	} else {
870 		/* skip setting EPP, when saved value is invalid */
871 		if (cpu_data->epp_powersave < 0)
872 			goto skip_epp;
873 
874 		/*
875 		 * No need to restore EPP when it is not zero. This
876 		 * means:
877 		 *  - Policy is not changed
878 		 *  - user has manually changed
879 		 *  - Error reading EPB
880 		 */
881 		epp = intel_pstate_get_epp(cpu_data, value);
882 		if (epp)
883 			goto skip_epp;
884 
885 		epp = cpu_data->epp_powersave;
886 	}
887 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
888 		value &= ~GENMASK_ULL(31, 24);
889 		value |= (u64)epp << 24;
890 	} else {
891 		intel_pstate_set_epb(cpu, epp);
892 	}
893 skip_epp:
894 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
895 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
896 }
897 
intel_pstate_hwp_offline(struct cpudata * cpu)898 static void intel_pstate_hwp_offline(struct cpudata *cpu)
899 {
900 	u64 value = READ_ONCE(cpu->hwp_req_cached);
901 	int min_perf;
902 
903 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
904 		/*
905 		 * In case the EPP has been set to "performance" by the
906 		 * active mode "performance" scaling algorithm, replace that
907 		 * temporary value with the cached EPP one.
908 		 */
909 		value &= ~GENMASK_ULL(31, 24);
910 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
911 		WRITE_ONCE(cpu->hwp_req_cached, value);
912 	}
913 
914 	value &= ~GENMASK_ULL(31, 0);
915 	min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
916 
917 	/* Set hwp_max = hwp_min */
918 	value |= HWP_MAX_PERF(min_perf);
919 	value |= HWP_MIN_PERF(min_perf);
920 
921 	/* Set EPP to min */
922 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
923 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
924 
925 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
926 }
927 
928 #define POWER_CTL_EE_ENABLE	1
929 #define POWER_CTL_EE_DISABLE	2
930 
931 static int power_ctl_ee_state;
932 
set_power_ctl_ee_state(bool input)933 static void set_power_ctl_ee_state(bool input)
934 {
935 	u64 power_ctl;
936 
937 	mutex_lock(&intel_pstate_driver_lock);
938 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
939 	if (input) {
940 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
941 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
942 	} else {
943 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
944 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
945 	}
946 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
947 	mutex_unlock(&intel_pstate_driver_lock);
948 }
949 
950 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
951 
intel_pstate_hwp_reenable(struct cpudata * cpu)952 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
953 {
954 	intel_pstate_hwp_enable(cpu);
955 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
956 }
957 
intel_pstate_suspend(struct cpufreq_policy * policy)958 static int intel_pstate_suspend(struct cpufreq_policy *policy)
959 {
960 	struct cpudata *cpu = all_cpu_data[policy->cpu];
961 
962 	pr_debug("CPU %d suspending\n", cpu->cpu);
963 
964 	cpu->suspended = true;
965 
966 	return 0;
967 }
968 
intel_pstate_resume(struct cpufreq_policy * policy)969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971 	struct cpudata *cpu = all_cpu_data[policy->cpu];
972 
973 	pr_debug("CPU %d resuming\n", cpu->cpu);
974 
975 	/* Only restore if the system default is changed */
976 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
977 		set_power_ctl_ee_state(true);
978 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
979 		set_power_ctl_ee_state(false);
980 
981 	if (cpu->suspended && hwp_active) {
982 		mutex_lock(&intel_pstate_limits_lock);
983 
984 		/* Re-enable HWP, because "online" has not done that. */
985 		intel_pstate_hwp_reenable(cpu);
986 
987 		mutex_unlock(&intel_pstate_limits_lock);
988 	}
989 
990 	cpu->suspended = false;
991 
992 	return 0;
993 }
994 
intel_pstate_update_policies(void)995 static void intel_pstate_update_policies(void)
996 {
997 	int cpu;
998 
999 	for_each_possible_cpu(cpu)
1000 		cpufreq_update_policy(cpu);
1001 }
1002 
intel_pstate_update_max_freq(unsigned int cpu)1003 static void intel_pstate_update_max_freq(unsigned int cpu)
1004 {
1005 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1006 	struct cpudata *cpudata;
1007 
1008 	if (!policy)
1009 		return;
1010 
1011 	cpudata = all_cpu_data[cpu];
1012 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1013 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1014 
1015 	refresh_frequency_limits(policy);
1016 
1017 	cpufreq_cpu_release(policy);
1018 }
1019 
intel_pstate_update_limits(unsigned int cpu)1020 static void intel_pstate_update_limits(unsigned int cpu)
1021 {
1022 	mutex_lock(&intel_pstate_driver_lock);
1023 
1024 	update_turbo_state();
1025 	/*
1026 	 * If turbo has been turned on or off globally, policy limits for
1027 	 * all CPUs need to be updated to reflect that.
1028 	 */
1029 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1030 		global.turbo_disabled_mf = global.turbo_disabled;
1031 		arch_set_max_freq_ratio(global.turbo_disabled);
1032 		for_each_possible_cpu(cpu)
1033 			intel_pstate_update_max_freq(cpu);
1034 	} else {
1035 		cpufreq_update_policy(cpu);
1036 	}
1037 
1038 	mutex_unlock(&intel_pstate_driver_lock);
1039 }
1040 
1041 /************************** sysfs begin ************************/
1042 #define show_one(file_name, object)					\
1043 	static ssize_t show_##file_name					\
1044 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1045 	{								\
1046 		return sprintf(buf, "%u\n", global.object);		\
1047 	}
1048 
1049 static ssize_t intel_pstate_show_status(char *buf);
1050 static int intel_pstate_update_status(const char *buf, size_t size);
1051 
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1052 static ssize_t show_status(struct kobject *kobj,
1053 			   struct kobj_attribute *attr, char *buf)
1054 {
1055 	ssize_t ret;
1056 
1057 	mutex_lock(&intel_pstate_driver_lock);
1058 	ret = intel_pstate_show_status(buf);
1059 	mutex_unlock(&intel_pstate_driver_lock);
1060 
1061 	return ret;
1062 }
1063 
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1064 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1065 			    const char *buf, size_t count)
1066 {
1067 	char *p = memchr(buf, '\n', count);
1068 	int ret;
1069 
1070 	mutex_lock(&intel_pstate_driver_lock);
1071 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1072 	mutex_unlock(&intel_pstate_driver_lock);
1073 
1074 	return ret < 0 ? ret : count;
1075 }
1076 
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1077 static ssize_t show_turbo_pct(struct kobject *kobj,
1078 				struct kobj_attribute *attr, char *buf)
1079 {
1080 	struct cpudata *cpu;
1081 	int total, no_turbo, turbo_pct;
1082 	uint32_t turbo_fp;
1083 
1084 	mutex_lock(&intel_pstate_driver_lock);
1085 
1086 	if (!intel_pstate_driver) {
1087 		mutex_unlock(&intel_pstate_driver_lock);
1088 		return -EAGAIN;
1089 	}
1090 
1091 	cpu = all_cpu_data[0];
1092 
1093 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1094 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1095 	turbo_fp = div_fp(no_turbo, total);
1096 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1097 
1098 	mutex_unlock(&intel_pstate_driver_lock);
1099 
1100 	return sprintf(buf, "%u\n", turbo_pct);
1101 }
1102 
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1103 static ssize_t show_num_pstates(struct kobject *kobj,
1104 				struct kobj_attribute *attr, char *buf)
1105 {
1106 	struct cpudata *cpu;
1107 	int total;
1108 
1109 	mutex_lock(&intel_pstate_driver_lock);
1110 
1111 	if (!intel_pstate_driver) {
1112 		mutex_unlock(&intel_pstate_driver_lock);
1113 		return -EAGAIN;
1114 	}
1115 
1116 	cpu = all_cpu_data[0];
1117 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1118 
1119 	mutex_unlock(&intel_pstate_driver_lock);
1120 
1121 	return sprintf(buf, "%u\n", total);
1122 }
1123 
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1124 static ssize_t show_no_turbo(struct kobject *kobj,
1125 			     struct kobj_attribute *attr, char *buf)
1126 {
1127 	ssize_t ret;
1128 
1129 	mutex_lock(&intel_pstate_driver_lock);
1130 
1131 	if (!intel_pstate_driver) {
1132 		mutex_unlock(&intel_pstate_driver_lock);
1133 		return -EAGAIN;
1134 	}
1135 
1136 	update_turbo_state();
1137 	if (global.turbo_disabled)
1138 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1139 	else
1140 		ret = sprintf(buf, "%u\n", global.no_turbo);
1141 
1142 	mutex_unlock(&intel_pstate_driver_lock);
1143 
1144 	return ret;
1145 }
1146 
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1147 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1148 			      const char *buf, size_t count)
1149 {
1150 	unsigned int input;
1151 	int ret;
1152 
1153 	ret = sscanf(buf, "%u", &input);
1154 	if (ret != 1)
1155 		return -EINVAL;
1156 
1157 	mutex_lock(&intel_pstate_driver_lock);
1158 
1159 	if (!intel_pstate_driver) {
1160 		mutex_unlock(&intel_pstate_driver_lock);
1161 		return -EAGAIN;
1162 	}
1163 
1164 	mutex_lock(&intel_pstate_limits_lock);
1165 
1166 	update_turbo_state();
1167 	if (global.turbo_disabled) {
1168 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1169 		mutex_unlock(&intel_pstate_limits_lock);
1170 		mutex_unlock(&intel_pstate_driver_lock);
1171 		return -EPERM;
1172 	}
1173 
1174 	global.no_turbo = clamp_t(int, input, 0, 1);
1175 
1176 	if (global.no_turbo) {
1177 		struct cpudata *cpu = all_cpu_data[0];
1178 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1179 
1180 		/* Squash the global minimum into the permitted range. */
1181 		if (global.min_perf_pct > pct)
1182 			global.min_perf_pct = pct;
1183 	}
1184 
1185 	mutex_unlock(&intel_pstate_limits_lock);
1186 
1187 	intel_pstate_update_policies();
1188 
1189 	mutex_unlock(&intel_pstate_driver_lock);
1190 
1191 	return count;
1192 }
1193 
update_qos_request(enum freq_qos_req_type type)1194 static void update_qos_request(enum freq_qos_req_type type)
1195 {
1196 	int max_state, turbo_max, freq, i, perf_pct;
1197 	struct freq_qos_request *req;
1198 	struct cpufreq_policy *policy;
1199 
1200 	for_each_possible_cpu(i) {
1201 		struct cpudata *cpu = all_cpu_data[i];
1202 
1203 		policy = cpufreq_cpu_get(i);
1204 		if (!policy)
1205 			continue;
1206 
1207 		req = policy->driver_data;
1208 		cpufreq_cpu_put(policy);
1209 
1210 		if (!req)
1211 			continue;
1212 
1213 		if (hwp_active)
1214 			intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
1215 		else
1216 			turbo_max = cpu->pstate.turbo_pstate;
1217 
1218 		if (type == FREQ_QOS_MIN) {
1219 			perf_pct = global.min_perf_pct;
1220 		} else {
1221 			req++;
1222 			perf_pct = global.max_perf_pct;
1223 		}
1224 
1225 		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1226 		freq *= cpu->pstate.scaling;
1227 
1228 		if (freq_qos_update_request(req, freq) < 0)
1229 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1230 	}
1231 }
1232 
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1233 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1234 				  const char *buf, size_t count)
1235 {
1236 	unsigned int input;
1237 	int ret;
1238 
1239 	ret = sscanf(buf, "%u", &input);
1240 	if (ret != 1)
1241 		return -EINVAL;
1242 
1243 	mutex_lock(&intel_pstate_driver_lock);
1244 
1245 	if (!intel_pstate_driver) {
1246 		mutex_unlock(&intel_pstate_driver_lock);
1247 		return -EAGAIN;
1248 	}
1249 
1250 	mutex_lock(&intel_pstate_limits_lock);
1251 
1252 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1253 
1254 	mutex_unlock(&intel_pstate_limits_lock);
1255 
1256 	if (intel_pstate_driver == &intel_pstate)
1257 		intel_pstate_update_policies();
1258 	else
1259 		update_qos_request(FREQ_QOS_MAX);
1260 
1261 	mutex_unlock(&intel_pstate_driver_lock);
1262 
1263 	return count;
1264 }
1265 
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1266 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1267 				  const char *buf, size_t count)
1268 {
1269 	unsigned int input;
1270 	int ret;
1271 
1272 	ret = sscanf(buf, "%u", &input);
1273 	if (ret != 1)
1274 		return -EINVAL;
1275 
1276 	mutex_lock(&intel_pstate_driver_lock);
1277 
1278 	if (!intel_pstate_driver) {
1279 		mutex_unlock(&intel_pstate_driver_lock);
1280 		return -EAGAIN;
1281 	}
1282 
1283 	mutex_lock(&intel_pstate_limits_lock);
1284 
1285 	global.min_perf_pct = clamp_t(int, input,
1286 				      min_perf_pct_min(), global.max_perf_pct);
1287 
1288 	mutex_unlock(&intel_pstate_limits_lock);
1289 
1290 	if (intel_pstate_driver == &intel_pstate)
1291 		intel_pstate_update_policies();
1292 	else
1293 		update_qos_request(FREQ_QOS_MIN);
1294 
1295 	mutex_unlock(&intel_pstate_driver_lock);
1296 
1297 	return count;
1298 }
1299 
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1300 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1301 				struct kobj_attribute *attr, char *buf)
1302 {
1303 	return sprintf(buf, "%u\n", hwp_boost);
1304 }
1305 
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1306 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1307 				       struct kobj_attribute *b,
1308 				       const char *buf, size_t count)
1309 {
1310 	unsigned int input;
1311 	int ret;
1312 
1313 	ret = kstrtouint(buf, 10, &input);
1314 	if (ret)
1315 		return ret;
1316 
1317 	mutex_lock(&intel_pstate_driver_lock);
1318 	hwp_boost = !!input;
1319 	intel_pstate_update_policies();
1320 	mutex_unlock(&intel_pstate_driver_lock);
1321 
1322 	return count;
1323 }
1324 
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1325 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1326 				      char *buf)
1327 {
1328 	u64 power_ctl;
1329 	int enable;
1330 
1331 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1332 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1333 	return sprintf(buf, "%d\n", !enable);
1334 }
1335 
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1336 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1337 				       const char *buf, size_t count)
1338 {
1339 	bool input;
1340 	int ret;
1341 
1342 	ret = kstrtobool(buf, &input);
1343 	if (ret)
1344 		return ret;
1345 
1346 	set_power_ctl_ee_state(input);
1347 
1348 	return count;
1349 }
1350 
1351 show_one(max_perf_pct, max_perf_pct);
1352 show_one(min_perf_pct, min_perf_pct);
1353 
1354 define_one_global_rw(status);
1355 define_one_global_rw(no_turbo);
1356 define_one_global_rw(max_perf_pct);
1357 define_one_global_rw(min_perf_pct);
1358 define_one_global_ro(turbo_pct);
1359 define_one_global_ro(num_pstates);
1360 define_one_global_rw(hwp_dynamic_boost);
1361 define_one_global_rw(energy_efficiency);
1362 
1363 static struct attribute *intel_pstate_attributes[] = {
1364 	&status.attr,
1365 	&no_turbo.attr,
1366 	&turbo_pct.attr,
1367 	&num_pstates.attr,
1368 	NULL
1369 };
1370 
1371 static const struct attribute_group intel_pstate_attr_group = {
1372 	.attrs = intel_pstate_attributes,
1373 };
1374 
1375 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1376 
1377 static struct kobject *intel_pstate_kobject;
1378 
intel_pstate_sysfs_expose_params(void)1379 static void __init intel_pstate_sysfs_expose_params(void)
1380 {
1381 	int rc;
1382 
1383 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1384 						&cpu_subsys.dev_root->kobj);
1385 	if (WARN_ON(!intel_pstate_kobject))
1386 		return;
1387 
1388 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1389 	if (WARN_ON(rc))
1390 		return;
1391 
1392 	/*
1393 	 * If per cpu limits are enforced there are no global limits, so
1394 	 * return without creating max/min_perf_pct attributes
1395 	 */
1396 	if (per_cpu_limits)
1397 		return;
1398 
1399 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1400 	WARN_ON(rc);
1401 
1402 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1403 	WARN_ON(rc);
1404 
1405 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1406 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1407 		WARN_ON(rc);
1408 	}
1409 }
1410 
intel_pstate_sysfs_remove(void)1411 static void __init intel_pstate_sysfs_remove(void)
1412 {
1413 	if (!intel_pstate_kobject)
1414 		return;
1415 
1416 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1417 
1418 	if (!per_cpu_limits) {
1419 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1420 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1421 
1422 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1423 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1424 	}
1425 
1426 	kobject_put(intel_pstate_kobject);
1427 }
1428 
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1429 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1430 {
1431 	int rc;
1432 
1433 	if (!hwp_active)
1434 		return;
1435 
1436 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1437 	WARN_ON_ONCE(rc);
1438 }
1439 
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1440 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1441 {
1442 	if (!hwp_active)
1443 		return;
1444 
1445 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1446 }
1447 
1448 /************************** sysfs end ************************/
1449 
intel_pstate_hwp_enable(struct cpudata * cpudata)1450 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1451 {
1452 	/* First disable HWP notification interrupt as we don't process them */
1453 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1454 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1455 
1456 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1457 	if (cpudata->epp_default == -EINVAL)
1458 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1459 }
1460 
atom_get_min_pstate(void)1461 static int atom_get_min_pstate(void)
1462 {
1463 	u64 value;
1464 
1465 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1466 	return (value >> 8) & 0x7F;
1467 }
1468 
atom_get_max_pstate(void)1469 static int atom_get_max_pstate(void)
1470 {
1471 	u64 value;
1472 
1473 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1474 	return (value >> 16) & 0x7F;
1475 }
1476 
atom_get_turbo_pstate(void)1477 static int atom_get_turbo_pstate(void)
1478 {
1479 	u64 value;
1480 
1481 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1482 	return value & 0x7F;
1483 }
1484 
atom_get_val(struct cpudata * cpudata,int pstate)1485 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1486 {
1487 	u64 val;
1488 	int32_t vid_fp;
1489 	u32 vid;
1490 
1491 	val = (u64)pstate << 8;
1492 	if (global.no_turbo && !global.turbo_disabled)
1493 		val |= (u64)1 << 32;
1494 
1495 	vid_fp = cpudata->vid.min + mul_fp(
1496 		int_tofp(pstate - cpudata->pstate.min_pstate),
1497 		cpudata->vid.ratio);
1498 
1499 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1500 	vid = ceiling_fp(vid_fp);
1501 
1502 	if (pstate > cpudata->pstate.max_pstate)
1503 		vid = cpudata->vid.turbo;
1504 
1505 	return val | vid;
1506 }
1507 
silvermont_get_scaling(void)1508 static int silvermont_get_scaling(void)
1509 {
1510 	u64 value;
1511 	int i;
1512 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1513 	static int silvermont_freq_table[] = {
1514 		83300, 100000, 133300, 116700, 80000};
1515 
1516 	rdmsrl(MSR_FSB_FREQ, value);
1517 	i = value & 0x7;
1518 	WARN_ON(i > 4);
1519 
1520 	return silvermont_freq_table[i];
1521 }
1522 
airmont_get_scaling(void)1523 static int airmont_get_scaling(void)
1524 {
1525 	u64 value;
1526 	int i;
1527 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1528 	static int airmont_freq_table[] = {
1529 		83300, 100000, 133300, 116700, 80000,
1530 		93300, 90000, 88900, 87500};
1531 
1532 	rdmsrl(MSR_FSB_FREQ, value);
1533 	i = value & 0xF;
1534 	WARN_ON(i > 8);
1535 
1536 	return airmont_freq_table[i];
1537 }
1538 
atom_get_vid(struct cpudata * cpudata)1539 static void atom_get_vid(struct cpudata *cpudata)
1540 {
1541 	u64 value;
1542 
1543 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1544 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1545 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1546 	cpudata->vid.ratio = div_fp(
1547 		cpudata->vid.max - cpudata->vid.min,
1548 		int_tofp(cpudata->pstate.max_pstate -
1549 			cpudata->pstate.min_pstate));
1550 
1551 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1552 	cpudata->vid.turbo = value & 0x7f;
1553 }
1554 
core_get_min_pstate(void)1555 static int core_get_min_pstate(void)
1556 {
1557 	u64 value;
1558 
1559 	rdmsrl(MSR_PLATFORM_INFO, value);
1560 	return (value >> 40) & 0xFF;
1561 }
1562 
core_get_max_pstate_physical(void)1563 static int core_get_max_pstate_physical(void)
1564 {
1565 	u64 value;
1566 
1567 	rdmsrl(MSR_PLATFORM_INFO, value);
1568 	return (value >> 8) & 0xFF;
1569 }
1570 
core_get_tdp_ratio(u64 plat_info)1571 static int core_get_tdp_ratio(u64 plat_info)
1572 {
1573 	/* Check how many TDP levels present */
1574 	if (plat_info & 0x600000000) {
1575 		u64 tdp_ctrl;
1576 		u64 tdp_ratio;
1577 		int tdp_msr;
1578 		int err;
1579 
1580 		/* Get the TDP level (0, 1, 2) to get ratios */
1581 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1582 		if (err)
1583 			return err;
1584 
1585 		/* TDP MSR are continuous starting at 0x648 */
1586 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1587 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1588 		if (err)
1589 			return err;
1590 
1591 		/* For level 1 and 2, bits[23:16] contain the ratio */
1592 		if (tdp_ctrl & 0x03)
1593 			tdp_ratio >>= 16;
1594 
1595 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1596 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1597 
1598 		return (int)tdp_ratio;
1599 	}
1600 
1601 	return -ENXIO;
1602 }
1603 
core_get_max_pstate(void)1604 static int core_get_max_pstate(void)
1605 {
1606 	u64 tar;
1607 	u64 plat_info;
1608 	int max_pstate;
1609 	int tdp_ratio;
1610 	int err;
1611 
1612 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1613 	max_pstate = (plat_info >> 8) & 0xFF;
1614 
1615 	tdp_ratio = core_get_tdp_ratio(plat_info);
1616 	if (tdp_ratio <= 0)
1617 		return max_pstate;
1618 
1619 	if (hwp_active) {
1620 		/* Turbo activation ratio is not used on HWP platforms */
1621 		return tdp_ratio;
1622 	}
1623 
1624 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1625 	if (!err) {
1626 		int tar_levels;
1627 
1628 		/* Do some sanity checking for safety */
1629 		tar_levels = tar & 0xff;
1630 		if (tdp_ratio - 1 == tar_levels) {
1631 			max_pstate = tar_levels;
1632 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1633 		}
1634 	}
1635 
1636 	return max_pstate;
1637 }
1638 
core_get_turbo_pstate(void)1639 static int core_get_turbo_pstate(void)
1640 {
1641 	u64 value;
1642 	int nont, ret;
1643 
1644 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1645 	nont = core_get_max_pstate();
1646 	ret = (value) & 255;
1647 	if (ret <= nont)
1648 		ret = nont;
1649 	return ret;
1650 }
1651 
core_get_scaling(void)1652 static inline int core_get_scaling(void)
1653 {
1654 	return 100000;
1655 }
1656 
core_get_val(struct cpudata * cpudata,int pstate)1657 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1658 {
1659 	u64 val;
1660 
1661 	val = (u64)pstate << 8;
1662 	if (global.no_turbo && !global.turbo_disabled)
1663 		val |= (u64)1 << 32;
1664 
1665 	return val;
1666 }
1667 
knl_get_aperf_mperf_shift(void)1668 static int knl_get_aperf_mperf_shift(void)
1669 {
1670 	return 10;
1671 }
1672 
knl_get_turbo_pstate(void)1673 static int knl_get_turbo_pstate(void)
1674 {
1675 	u64 value;
1676 	int nont, ret;
1677 
1678 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1679 	nont = core_get_max_pstate();
1680 	ret = (((value) >> 8) & 0xFF);
1681 	if (ret <= nont)
1682 		ret = nont;
1683 	return ret;
1684 }
1685 
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1686 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1687 {
1688 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1689 	cpu->pstate.current_pstate = pstate;
1690 	/*
1691 	 * Generally, there is no guarantee that this code will always run on
1692 	 * the CPU being updated, so force the register update to run on the
1693 	 * right CPU.
1694 	 */
1695 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1696 		      pstate_funcs.get_val(cpu, pstate));
1697 }
1698 
intel_pstate_set_min_pstate(struct cpudata * cpu)1699 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1700 {
1701 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1702 }
1703 
intel_pstate_max_within_limits(struct cpudata * cpu)1704 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1705 {
1706 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1707 
1708 	update_turbo_state();
1709 	intel_pstate_set_pstate(cpu, pstate);
1710 }
1711 
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1712 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1713 {
1714 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1715 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1716 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1717 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1718 
1719 	if (hwp_active && !hwp_mode_bdw) {
1720 		unsigned int phy_max, current_max;
1721 
1722 		intel_pstate_get_hwp_max(cpu, &phy_max, &current_max);
1723 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1724 		cpu->pstate.turbo_pstate = phy_max;
1725 		cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(READ_ONCE(cpu->hwp_cap_cached));
1726 	} else {
1727 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1728 		cpu->pstate.max_pstate = pstate_funcs.get_max();
1729 	}
1730 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1731 
1732 	if (pstate_funcs.get_aperf_mperf_shift)
1733 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1734 
1735 	if (pstate_funcs.get_vid)
1736 		pstate_funcs.get_vid(cpu);
1737 
1738 	intel_pstate_set_min_pstate(cpu);
1739 }
1740 
1741 /*
1742  * Long hold time will keep high perf limits for long time,
1743  * which negatively impacts perf/watt for some workloads,
1744  * like specpower. 3ms is based on experiements on some
1745  * workoads.
1746  */
1747 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1748 
intel_pstate_hwp_boost_up(struct cpudata * cpu)1749 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1750 {
1751 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1752 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1753 	u32 min_limit = (hwp_req & 0xff);
1754 	u32 boost_level1;
1755 
1756 	/*
1757 	 * Cases to consider (User changes via sysfs or boot time):
1758 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1759 	 *	No boost, return.
1760 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1761 	 *     Should result in one level boost only for P0.
1762 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1763 	 *     Should result in two level boost:
1764 	 *         (min + p1)/2 and P1.
1765 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1766 	 *     Should result in three level boost:
1767 	 *        (min + p1)/2, P1 and P0.
1768 	 */
1769 
1770 	/* If max and min are equal or already at max, nothing to boost */
1771 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1772 		return;
1773 
1774 	if (!cpu->hwp_boost_min)
1775 		cpu->hwp_boost_min = min_limit;
1776 
1777 	/* level at half way mark between min and guranteed */
1778 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1779 
1780 	if (cpu->hwp_boost_min < boost_level1)
1781 		cpu->hwp_boost_min = boost_level1;
1782 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1783 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1784 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1785 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1786 		cpu->hwp_boost_min = max_limit;
1787 	else
1788 		return;
1789 
1790 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1791 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1792 	cpu->last_update = cpu->sample.time;
1793 }
1794 
intel_pstate_hwp_boost_down(struct cpudata * cpu)1795 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1796 {
1797 	if (cpu->hwp_boost_min) {
1798 		bool expired;
1799 
1800 		/* Check if we are idle for hold time to boost down */
1801 		expired = time_after64(cpu->sample.time, cpu->last_update +
1802 				       hwp_boost_hold_time_ns);
1803 		if (expired) {
1804 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1805 			cpu->hwp_boost_min = 0;
1806 		}
1807 	}
1808 	cpu->last_update = cpu->sample.time;
1809 }
1810 
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)1811 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1812 						      u64 time)
1813 {
1814 	cpu->sample.time = time;
1815 
1816 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1817 		bool do_io = false;
1818 
1819 		cpu->sched_flags = 0;
1820 		/*
1821 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1822 		 * is set all the time, we can't just conclude that there is
1823 		 * some IO bound activity is scheduled on this CPU with just
1824 		 * one occurrence. If we receive at least two in two
1825 		 * consecutive ticks, then we treat as boost candidate.
1826 		 */
1827 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1828 			do_io = true;
1829 
1830 		cpu->last_io_update = time;
1831 
1832 		if (do_io)
1833 			intel_pstate_hwp_boost_up(cpu);
1834 
1835 	} else {
1836 		intel_pstate_hwp_boost_down(cpu);
1837 	}
1838 }
1839 
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)1840 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1841 						u64 time, unsigned int flags)
1842 {
1843 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1844 
1845 	cpu->sched_flags |= flags;
1846 
1847 	if (smp_processor_id() == cpu->cpu)
1848 		intel_pstate_update_util_hwp_local(cpu, time);
1849 }
1850 
intel_pstate_calc_avg_perf(struct cpudata * cpu)1851 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1852 {
1853 	struct sample *sample = &cpu->sample;
1854 
1855 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1856 }
1857 
intel_pstate_sample(struct cpudata * cpu,u64 time)1858 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1859 {
1860 	u64 aperf, mperf;
1861 	unsigned long flags;
1862 	u64 tsc;
1863 
1864 	local_irq_save(flags);
1865 	rdmsrl(MSR_IA32_APERF, aperf);
1866 	rdmsrl(MSR_IA32_MPERF, mperf);
1867 	tsc = rdtsc();
1868 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1869 		local_irq_restore(flags);
1870 		return false;
1871 	}
1872 	local_irq_restore(flags);
1873 
1874 	cpu->last_sample_time = cpu->sample.time;
1875 	cpu->sample.time = time;
1876 	cpu->sample.aperf = aperf;
1877 	cpu->sample.mperf = mperf;
1878 	cpu->sample.tsc =  tsc;
1879 	cpu->sample.aperf -= cpu->prev_aperf;
1880 	cpu->sample.mperf -= cpu->prev_mperf;
1881 	cpu->sample.tsc -= cpu->prev_tsc;
1882 
1883 	cpu->prev_aperf = aperf;
1884 	cpu->prev_mperf = mperf;
1885 	cpu->prev_tsc = tsc;
1886 	/*
1887 	 * First time this function is invoked in a given cycle, all of the
1888 	 * previous sample data fields are equal to zero or stale and they must
1889 	 * be populated with meaningful numbers for things to work, so assume
1890 	 * that sample.time will always be reset before setting the utilization
1891 	 * update hook and make the caller skip the sample then.
1892 	 */
1893 	if (cpu->last_sample_time) {
1894 		intel_pstate_calc_avg_perf(cpu);
1895 		return true;
1896 	}
1897 	return false;
1898 }
1899 
get_avg_frequency(struct cpudata * cpu)1900 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1901 {
1902 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1903 }
1904 
get_avg_pstate(struct cpudata * cpu)1905 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1906 {
1907 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1908 			  cpu->sample.core_avg_perf);
1909 }
1910 
get_target_pstate(struct cpudata * cpu)1911 static inline int32_t get_target_pstate(struct cpudata *cpu)
1912 {
1913 	struct sample *sample = &cpu->sample;
1914 	int32_t busy_frac;
1915 	int target, avg_pstate;
1916 
1917 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1918 			   sample->tsc);
1919 
1920 	if (busy_frac < cpu->iowait_boost)
1921 		busy_frac = cpu->iowait_boost;
1922 
1923 	sample->busy_scaled = busy_frac * 100;
1924 
1925 	target = global.no_turbo || global.turbo_disabled ?
1926 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1927 	target += target >> 2;
1928 	target = mul_fp(target, busy_frac);
1929 	if (target < cpu->pstate.min_pstate)
1930 		target = cpu->pstate.min_pstate;
1931 
1932 	/*
1933 	 * If the average P-state during the previous cycle was higher than the
1934 	 * current target, add 50% of the difference to the target to reduce
1935 	 * possible performance oscillations and offset possible performance
1936 	 * loss related to moving the workload from one CPU to another within
1937 	 * a package/module.
1938 	 */
1939 	avg_pstate = get_avg_pstate(cpu);
1940 	if (avg_pstate > target)
1941 		target += (avg_pstate - target) >> 1;
1942 
1943 	return target;
1944 }
1945 
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)1946 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1947 {
1948 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1949 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1950 
1951 	return clamp_t(int, pstate, min_pstate, max_pstate);
1952 }
1953 
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)1954 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1955 {
1956 	if (pstate == cpu->pstate.current_pstate)
1957 		return;
1958 
1959 	cpu->pstate.current_pstate = pstate;
1960 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1961 }
1962 
intel_pstate_adjust_pstate(struct cpudata * cpu)1963 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1964 {
1965 	int from = cpu->pstate.current_pstate;
1966 	struct sample *sample;
1967 	int target_pstate;
1968 
1969 	update_turbo_state();
1970 
1971 	target_pstate = get_target_pstate(cpu);
1972 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1973 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1974 	intel_pstate_update_pstate(cpu, target_pstate);
1975 
1976 	sample = &cpu->sample;
1977 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1978 		fp_toint(sample->busy_scaled),
1979 		from,
1980 		cpu->pstate.current_pstate,
1981 		sample->mperf,
1982 		sample->aperf,
1983 		sample->tsc,
1984 		get_avg_frequency(cpu),
1985 		fp_toint(cpu->iowait_boost * 100));
1986 }
1987 
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)1988 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1989 				     unsigned int flags)
1990 {
1991 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1992 	u64 delta_ns;
1993 
1994 	/* Don't allow remote callbacks */
1995 	if (smp_processor_id() != cpu->cpu)
1996 		return;
1997 
1998 	delta_ns = time - cpu->last_update;
1999 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2000 		/* Start over if the CPU may have been idle. */
2001 		if (delta_ns > TICK_NSEC) {
2002 			cpu->iowait_boost = ONE_EIGHTH_FP;
2003 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2004 			cpu->iowait_boost <<= 1;
2005 			if (cpu->iowait_boost > int_tofp(1))
2006 				cpu->iowait_boost = int_tofp(1);
2007 		} else {
2008 			cpu->iowait_boost = ONE_EIGHTH_FP;
2009 		}
2010 	} else if (cpu->iowait_boost) {
2011 		/* Clear iowait_boost if the CPU may have been idle. */
2012 		if (delta_ns > TICK_NSEC)
2013 			cpu->iowait_boost = 0;
2014 		else
2015 			cpu->iowait_boost >>= 1;
2016 	}
2017 	cpu->last_update = time;
2018 	delta_ns = time - cpu->sample.time;
2019 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2020 		return;
2021 
2022 	if (intel_pstate_sample(cpu, time))
2023 		intel_pstate_adjust_pstate(cpu);
2024 }
2025 
2026 static struct pstate_funcs core_funcs = {
2027 	.get_max = core_get_max_pstate,
2028 	.get_max_physical = core_get_max_pstate_physical,
2029 	.get_min = core_get_min_pstate,
2030 	.get_turbo = core_get_turbo_pstate,
2031 	.get_scaling = core_get_scaling,
2032 	.get_val = core_get_val,
2033 };
2034 
2035 static const struct pstate_funcs silvermont_funcs = {
2036 	.get_max = atom_get_max_pstate,
2037 	.get_max_physical = atom_get_max_pstate,
2038 	.get_min = atom_get_min_pstate,
2039 	.get_turbo = atom_get_turbo_pstate,
2040 	.get_val = atom_get_val,
2041 	.get_scaling = silvermont_get_scaling,
2042 	.get_vid = atom_get_vid,
2043 };
2044 
2045 static const struct pstate_funcs airmont_funcs = {
2046 	.get_max = atom_get_max_pstate,
2047 	.get_max_physical = atom_get_max_pstate,
2048 	.get_min = atom_get_min_pstate,
2049 	.get_turbo = atom_get_turbo_pstate,
2050 	.get_val = atom_get_val,
2051 	.get_scaling = airmont_get_scaling,
2052 	.get_vid = atom_get_vid,
2053 };
2054 
2055 static const struct pstate_funcs knl_funcs = {
2056 	.get_max = core_get_max_pstate,
2057 	.get_max_physical = core_get_max_pstate_physical,
2058 	.get_min = core_get_min_pstate,
2059 	.get_turbo = knl_get_turbo_pstate,
2060 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2061 	.get_scaling = core_get_scaling,
2062 	.get_val = core_get_val,
2063 };
2064 
2065 #define X86_MATCH(model, policy)					 \
2066 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2067 					   X86_FEATURE_APERFMPERF, &policy)
2068 
2069 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2070 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2071 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2072 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2073 	X86_MATCH(IVYBRIDGE,		core_funcs),
2074 	X86_MATCH(HASWELL,		core_funcs),
2075 	X86_MATCH(BROADWELL,		core_funcs),
2076 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2077 	X86_MATCH(HASWELL_X,		core_funcs),
2078 	X86_MATCH(HASWELL_L,		core_funcs),
2079 	X86_MATCH(HASWELL_G,		core_funcs),
2080 	X86_MATCH(BROADWELL_G,		core_funcs),
2081 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2082 	X86_MATCH(SKYLAKE_L,		core_funcs),
2083 	X86_MATCH(BROADWELL_X,		core_funcs),
2084 	X86_MATCH(SKYLAKE,		core_funcs),
2085 	X86_MATCH(BROADWELL_D,		core_funcs),
2086 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2087 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2088 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2089 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2090 	X86_MATCH(SKYLAKE_X,		core_funcs),
2091 	{}
2092 };
2093 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2094 
2095 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2096 	X86_MATCH(BROADWELL_D,		core_funcs),
2097 	X86_MATCH(BROADWELL_X,		core_funcs),
2098 	X86_MATCH(SKYLAKE_X,		core_funcs),
2099 	{}
2100 };
2101 
2102 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2103 	X86_MATCH(KABYLAKE,		core_funcs),
2104 	{}
2105 };
2106 
2107 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2108 	X86_MATCH(SKYLAKE_X,		core_funcs),
2109 	X86_MATCH(SKYLAKE,		core_funcs),
2110 	{}
2111 };
2112 
intel_pstate_init_cpu(unsigned int cpunum)2113 static int intel_pstate_init_cpu(unsigned int cpunum)
2114 {
2115 	struct cpudata *cpu;
2116 
2117 	cpu = all_cpu_data[cpunum];
2118 
2119 	if (!cpu) {
2120 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2121 		if (!cpu)
2122 			return -ENOMEM;
2123 
2124 		all_cpu_data[cpunum] = cpu;
2125 
2126 		cpu->cpu = cpunum;
2127 
2128 		cpu->epp_default = -EINVAL;
2129 
2130 		if (hwp_active) {
2131 			const struct x86_cpu_id *id;
2132 
2133 			intel_pstate_hwp_enable(cpu);
2134 
2135 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2136 			if (id && intel_pstate_acpi_pm_profile_server())
2137 				hwp_boost = true;
2138 		}
2139 	} else if (hwp_active) {
2140 		/*
2141 		 * Re-enable HWP in case this happens after a resume from ACPI
2142 		 * S3 if the CPU was offline during the whole system/resume
2143 		 * cycle.
2144 		 */
2145 		intel_pstate_hwp_reenable(cpu);
2146 	}
2147 
2148 	cpu->epp_powersave = -EINVAL;
2149 	cpu->epp_policy = 0;
2150 
2151 	intel_pstate_get_cpu_pstates(cpu);
2152 
2153 	pr_debug("controlling: cpu %d\n", cpunum);
2154 
2155 	return 0;
2156 }
2157 
intel_pstate_set_update_util_hook(unsigned int cpu_num)2158 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2159 {
2160 	struct cpudata *cpu = all_cpu_data[cpu_num];
2161 
2162 	if (hwp_active && !hwp_boost)
2163 		return;
2164 
2165 	if (cpu->update_util_set)
2166 		return;
2167 
2168 	/* Prevent intel_pstate_update_util() from using stale data. */
2169 	cpu->sample.time = 0;
2170 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2171 				     (hwp_active ?
2172 				      intel_pstate_update_util_hwp :
2173 				      intel_pstate_update_util));
2174 	cpu->update_util_set = true;
2175 }
2176 
intel_pstate_clear_update_util_hook(unsigned int cpu)2177 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2178 {
2179 	struct cpudata *cpu_data = all_cpu_data[cpu];
2180 
2181 	if (!cpu_data->update_util_set)
2182 		return;
2183 
2184 	cpufreq_remove_update_util_hook(cpu);
2185 	cpu_data->update_util_set = false;
2186 	synchronize_rcu();
2187 }
2188 
intel_pstate_get_max_freq(struct cpudata * cpu)2189 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2190 {
2191 	return global.turbo_disabled || global.no_turbo ?
2192 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2193 }
2194 
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2195 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2196 					    unsigned int policy_min,
2197 					    unsigned int policy_max)
2198 {
2199 	int32_t max_policy_perf, min_policy_perf;
2200 	int max_state, turbo_max;
2201 	int max_freq;
2202 
2203 	/*
2204 	 * HWP needs some special consideration, because on BDX the
2205 	 * HWP_REQUEST uses abstract value to represent performance
2206 	 * rather than pure ratios.
2207 	 */
2208 	if (hwp_active) {
2209 		intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2210 	} else {
2211 		max_state = global.no_turbo || global.turbo_disabled ?
2212 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2213 		turbo_max = cpu->pstate.turbo_pstate;
2214 	}
2215 	max_freq = max_state * cpu->pstate.scaling;
2216 
2217 	max_policy_perf = max_state * policy_max / max_freq;
2218 	if (policy_max == policy_min) {
2219 		min_policy_perf = max_policy_perf;
2220 	} else {
2221 		min_policy_perf = max_state * policy_min / max_freq;
2222 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2223 					  0, max_policy_perf);
2224 	}
2225 
2226 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2227 		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2228 
2229 	/* Normalize user input to [min_perf, max_perf] */
2230 	if (per_cpu_limits) {
2231 		cpu->min_perf_ratio = min_policy_perf;
2232 		cpu->max_perf_ratio = max_policy_perf;
2233 	} else {
2234 		int32_t global_min, global_max;
2235 
2236 		/* Global limits are in percent of the maximum turbo P-state. */
2237 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2238 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2239 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2240 
2241 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2242 			 global_min, global_max);
2243 
2244 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2245 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2246 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2247 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2248 
2249 		/* Make sure min_perf <= max_perf */
2250 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2251 					  cpu->max_perf_ratio);
2252 
2253 	}
2254 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2255 		 cpu->max_perf_ratio,
2256 		 cpu->min_perf_ratio);
2257 }
2258 
intel_pstate_set_policy(struct cpufreq_policy * policy)2259 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2260 {
2261 	struct cpudata *cpu;
2262 
2263 	if (!policy->cpuinfo.max_freq)
2264 		return -ENODEV;
2265 
2266 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2267 		 policy->cpuinfo.max_freq, policy->max);
2268 
2269 	cpu = all_cpu_data[policy->cpu];
2270 	cpu->policy = policy->policy;
2271 
2272 	mutex_lock(&intel_pstate_limits_lock);
2273 
2274 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2275 
2276 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2277 		/*
2278 		 * NOHZ_FULL CPUs need this as the governor callback may not
2279 		 * be invoked on them.
2280 		 */
2281 		intel_pstate_clear_update_util_hook(policy->cpu);
2282 		intel_pstate_max_within_limits(cpu);
2283 	} else {
2284 		intel_pstate_set_update_util_hook(policy->cpu);
2285 	}
2286 
2287 	if (hwp_active) {
2288 		/*
2289 		 * When hwp_boost was active before and dynamically it
2290 		 * was turned off, in that case we need to clear the
2291 		 * update util hook.
2292 		 */
2293 		if (!hwp_boost)
2294 			intel_pstate_clear_update_util_hook(policy->cpu);
2295 		intel_pstate_hwp_set(policy->cpu);
2296 	}
2297 
2298 	mutex_unlock(&intel_pstate_limits_lock);
2299 
2300 	return 0;
2301 }
2302 
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2303 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2304 					   struct cpufreq_policy_data *policy)
2305 {
2306 	if (!hwp_active &&
2307 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2308 	    policy->max < policy->cpuinfo.max_freq &&
2309 	    policy->max > cpu->pstate.max_freq) {
2310 		pr_debug("policy->max > max non turbo frequency\n");
2311 		policy->max = policy->cpuinfo.max_freq;
2312 	}
2313 }
2314 
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2315 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2316 					   struct cpufreq_policy_data *policy)
2317 {
2318 	int max_freq;
2319 
2320 	update_turbo_state();
2321 	if (hwp_active) {
2322 		int max_state, turbo_max;
2323 
2324 		intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2325 		max_freq = max_state * cpu->pstate.scaling;
2326 	} else {
2327 		max_freq = intel_pstate_get_max_freq(cpu);
2328 	}
2329 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2330 
2331 	intel_pstate_adjust_policy_max(cpu, policy);
2332 }
2333 
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2334 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2335 {
2336 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2337 
2338 	return 0;
2339 }
2340 
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2341 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2342 {
2343 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2344 
2345 	pr_debug("CPU %d going offline\n", cpu->cpu);
2346 
2347 	if (cpu->suspended)
2348 		return 0;
2349 
2350 	/*
2351 	 * If the CPU is an SMT thread and it goes offline with the performance
2352 	 * settings different from the minimum, it will prevent its sibling
2353 	 * from getting to lower performance levels, so force the minimum
2354 	 * performance on CPU offline to prevent that from happening.
2355 	 */
2356 	if (hwp_active)
2357 		intel_pstate_hwp_offline(cpu);
2358 	else
2359 		intel_pstate_set_min_pstate(cpu);
2360 
2361 	intel_pstate_exit_perf_limits(policy);
2362 
2363 	return 0;
2364 }
2365 
intel_pstate_cpu_online(struct cpufreq_policy * policy)2366 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2367 {
2368 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2369 
2370 	pr_debug("CPU %d going online\n", cpu->cpu);
2371 
2372 	intel_pstate_init_acpi_perf_limits(policy);
2373 
2374 	if (hwp_active) {
2375 		/*
2376 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2377 		 * know that it need not do that.
2378 		 */
2379 		intel_pstate_hwp_reenable(cpu);
2380 		cpu->suspended = false;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
intel_pstate_stop_cpu(struct cpufreq_policy * policy)2386 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2387 {
2388 	pr_debug("CPU %d stopping\n", policy->cpu);
2389 
2390 	intel_pstate_clear_update_util_hook(policy->cpu);
2391 }
2392 
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2393 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2394 {
2395 	pr_debug("CPU %d exiting\n", policy->cpu);
2396 
2397 	policy->fast_switch_possible = false;
2398 
2399 	return 0;
2400 }
2401 
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2402 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2403 {
2404 	struct cpudata *cpu;
2405 	int rc;
2406 
2407 	rc = intel_pstate_init_cpu(policy->cpu);
2408 	if (rc)
2409 		return rc;
2410 
2411 	cpu = all_cpu_data[policy->cpu];
2412 
2413 	cpu->max_perf_ratio = 0xFF;
2414 	cpu->min_perf_ratio = 0;
2415 
2416 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2417 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2418 
2419 	/* cpuinfo and default policy values */
2420 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2421 	update_turbo_state();
2422 	global.turbo_disabled_mf = global.turbo_disabled;
2423 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2424 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2425 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2426 
2427 	if (hwp_active) {
2428 		unsigned int max_freq;
2429 
2430 		max_freq = global.turbo_disabled ?
2431 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2432 		if (max_freq < policy->cpuinfo.max_freq)
2433 			policy->cpuinfo.max_freq = max_freq;
2434 	}
2435 
2436 	intel_pstate_init_acpi_perf_limits(policy);
2437 
2438 	policy->fast_switch_possible = true;
2439 
2440 	return 0;
2441 }
2442 
intel_pstate_cpu_init(struct cpufreq_policy * policy)2443 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2444 {
2445 	int ret = __intel_pstate_cpu_init(policy);
2446 
2447 	if (ret)
2448 		return ret;
2449 
2450 	/*
2451 	 * Set the policy to powersave to provide a valid fallback value in case
2452 	 * the default cpufreq governor is neither powersave nor performance.
2453 	 */
2454 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2455 
2456 	if (hwp_active) {
2457 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2458 
2459 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static struct cpufreq_driver intel_pstate = {
2466 	.flags		= CPUFREQ_CONST_LOOPS,
2467 	.verify		= intel_pstate_verify_policy,
2468 	.setpolicy	= intel_pstate_set_policy,
2469 	.suspend	= intel_pstate_suspend,
2470 	.resume		= intel_pstate_resume,
2471 	.init		= intel_pstate_cpu_init,
2472 	.exit		= intel_pstate_cpu_exit,
2473 	.stop_cpu	= intel_pstate_stop_cpu,
2474 	.offline	= intel_pstate_cpu_offline,
2475 	.online		= intel_pstate_cpu_online,
2476 	.update_limits	= intel_pstate_update_limits,
2477 	.name		= "intel_pstate",
2478 };
2479 
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)2480 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2481 {
2482 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2483 
2484 	intel_pstate_verify_cpu_policy(cpu, policy);
2485 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2486 
2487 	return 0;
2488 }
2489 
2490 /* Use of trace in passive mode:
2491  *
2492  * In passive mode the trace core_busy field (also known as the
2493  * performance field, and lablelled as such on the graphs; also known as
2494  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2495  * driver call was via the normal or fast switch path. Various graphs
2496  * output from the intel_pstate_tracer.py utility that include core_busy
2497  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2498  * so we use 10 to indicate the the normal path through the driver, and
2499  * 90 to indicate the fast switch path through the driver.
2500  * The scaled_busy field is not used, and is set to 0.
2501  */
2502 
2503 #define	INTEL_PSTATE_TRACE_TARGET 10
2504 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2505 
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2506 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2507 {
2508 	struct sample *sample;
2509 
2510 	if (!trace_pstate_sample_enabled())
2511 		return;
2512 
2513 	if (!intel_pstate_sample(cpu, ktime_get()))
2514 		return;
2515 
2516 	sample = &cpu->sample;
2517 	trace_pstate_sample(trace_type,
2518 		0,
2519 		old_pstate,
2520 		cpu->pstate.current_pstate,
2521 		sample->mperf,
2522 		sample->aperf,
2523 		sample->tsc,
2524 		get_avg_frequency(cpu),
2525 		fp_toint(cpu->iowait_boost * 100));
2526 }
2527 
intel_cpufreq_adjust_hwp(struct cpudata * cpu,u32 target_pstate,bool strict,bool fast_switch)2528 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2529 				     bool strict, bool fast_switch)
2530 {
2531 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2532 
2533 	value &= ~HWP_MIN_PERF(~0L);
2534 	value |= HWP_MIN_PERF(target_pstate);
2535 
2536 	/*
2537 	 * The entire MSR needs to be updated in order to update the HWP min
2538 	 * field in it, so opportunistically update the max too if needed.
2539 	 */
2540 	value &= ~HWP_MAX_PERF(~0L);
2541 	value |= HWP_MAX_PERF(strict ? target_pstate : cpu->max_perf_ratio);
2542 
2543 	if (value == prev)
2544 		return;
2545 
2546 	WRITE_ONCE(cpu->hwp_req_cached, value);
2547 	if (fast_switch)
2548 		wrmsrl(MSR_HWP_REQUEST, value);
2549 	else
2550 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2551 }
2552 
intel_cpufreq_adjust_perf_ctl(struct cpudata * cpu,u32 target_pstate,bool fast_switch)2553 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2554 					  u32 target_pstate, bool fast_switch)
2555 {
2556 	if (fast_switch)
2557 		wrmsrl(MSR_IA32_PERF_CTL,
2558 		       pstate_funcs.get_val(cpu, target_pstate));
2559 	else
2560 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2561 			      pstate_funcs.get_val(cpu, target_pstate));
2562 }
2563 
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)2564 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2565 				       int target_pstate, bool fast_switch)
2566 {
2567 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2568 	int old_pstate = cpu->pstate.current_pstate;
2569 
2570 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2571 	if (hwp_active) {
2572 		intel_cpufreq_adjust_hwp(cpu, target_pstate,
2573 					 policy->strict_target, fast_switch);
2574 		cpu->pstate.current_pstate = target_pstate;
2575 	} else if (target_pstate != old_pstate) {
2576 		intel_cpufreq_adjust_perf_ctl(cpu, target_pstate, fast_switch);
2577 		cpu->pstate.current_pstate = target_pstate;
2578 	}
2579 
2580 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2581 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2582 
2583 	return target_pstate;
2584 }
2585 
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2586 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2587 				unsigned int target_freq,
2588 				unsigned int relation)
2589 {
2590 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2591 	struct cpufreq_freqs freqs;
2592 	int target_pstate;
2593 
2594 	update_turbo_state();
2595 
2596 	freqs.old = policy->cur;
2597 	freqs.new = target_freq;
2598 
2599 	cpufreq_freq_transition_begin(policy, &freqs);
2600 
2601 	switch (relation) {
2602 	case CPUFREQ_RELATION_L:
2603 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2604 		break;
2605 	case CPUFREQ_RELATION_H:
2606 		target_pstate = freqs.new / cpu->pstate.scaling;
2607 		break;
2608 	default:
2609 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2610 		break;
2611 	}
2612 
2613 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2614 
2615 	freqs.new = target_pstate * cpu->pstate.scaling;
2616 
2617 	cpufreq_freq_transition_end(policy, &freqs, false);
2618 
2619 	return 0;
2620 }
2621 
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2622 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2623 					      unsigned int target_freq)
2624 {
2625 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2626 	int target_pstate;
2627 
2628 	update_turbo_state();
2629 
2630 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2631 
2632 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2633 
2634 	return target_pstate * cpu->pstate.scaling;
2635 }
2636 
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2637 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2638 {
2639 	int max_state, turbo_max, min_freq, max_freq, ret;
2640 	struct freq_qos_request *req;
2641 	struct cpudata *cpu;
2642 	struct device *dev;
2643 
2644 	dev = get_cpu_device(policy->cpu);
2645 	if (!dev)
2646 		return -ENODEV;
2647 
2648 	ret = __intel_pstate_cpu_init(policy);
2649 	if (ret)
2650 		return ret;
2651 
2652 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2653 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2654 	policy->cur = policy->cpuinfo.min_freq;
2655 
2656 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2657 	if (!req) {
2658 		ret = -ENOMEM;
2659 		goto pstate_exit;
2660 	}
2661 
2662 	cpu = all_cpu_data[policy->cpu];
2663 
2664 	if (hwp_active) {
2665 		u64 value;
2666 
2667 		intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state);
2668 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2669 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2670 		WRITE_ONCE(cpu->hwp_req_cached, value);
2671 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2672 	} else {
2673 		turbo_max = cpu->pstate.turbo_pstate;
2674 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2675 	}
2676 
2677 	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2678 	min_freq *= cpu->pstate.scaling;
2679 	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2680 	max_freq *= cpu->pstate.scaling;
2681 
2682 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2683 				   min_freq);
2684 	if (ret < 0) {
2685 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2686 		goto free_req;
2687 	}
2688 
2689 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2690 				   max_freq);
2691 	if (ret < 0) {
2692 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2693 		goto remove_min_req;
2694 	}
2695 
2696 	policy->driver_data = req;
2697 
2698 	return 0;
2699 
2700 remove_min_req:
2701 	freq_qos_remove_request(req);
2702 free_req:
2703 	kfree(req);
2704 pstate_exit:
2705 	intel_pstate_exit_perf_limits(policy);
2706 
2707 	return ret;
2708 }
2709 
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)2710 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2711 {
2712 	struct freq_qos_request *req;
2713 
2714 	req = policy->driver_data;
2715 
2716 	freq_qos_remove_request(req + 1);
2717 	freq_qos_remove_request(req);
2718 	kfree(req);
2719 
2720 	return intel_pstate_cpu_exit(policy);
2721 }
2722 
2723 static struct cpufreq_driver intel_cpufreq = {
2724 	.flags		= CPUFREQ_CONST_LOOPS,
2725 	.verify		= intel_cpufreq_verify_policy,
2726 	.target		= intel_cpufreq_target,
2727 	.fast_switch	= intel_cpufreq_fast_switch,
2728 	.init		= intel_cpufreq_cpu_init,
2729 	.exit		= intel_cpufreq_cpu_exit,
2730 	.offline	= intel_pstate_cpu_offline,
2731 	.online		= intel_pstate_cpu_online,
2732 	.suspend	= intel_pstate_suspend,
2733 	.resume		= intel_pstate_resume,
2734 	.update_limits	= intel_pstate_update_limits,
2735 	.name		= "intel_cpufreq",
2736 };
2737 
2738 static struct cpufreq_driver *default_driver;
2739 
intel_pstate_driver_cleanup(void)2740 static void intel_pstate_driver_cleanup(void)
2741 {
2742 	unsigned int cpu;
2743 
2744 	get_online_cpus();
2745 	for_each_online_cpu(cpu) {
2746 		if (all_cpu_data[cpu]) {
2747 			if (intel_pstate_driver == &intel_pstate)
2748 				intel_pstate_clear_update_util_hook(cpu);
2749 
2750 			kfree(all_cpu_data[cpu]);
2751 			all_cpu_data[cpu] = NULL;
2752 		}
2753 	}
2754 	put_online_cpus();
2755 
2756 	intel_pstate_driver = NULL;
2757 }
2758 
intel_pstate_register_driver(struct cpufreq_driver * driver)2759 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2760 {
2761 	int ret;
2762 
2763 	if (driver == &intel_pstate)
2764 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
2765 
2766 	memset(&global, 0, sizeof(global));
2767 	global.max_perf_pct = 100;
2768 
2769 	intel_pstate_driver = driver;
2770 	ret = cpufreq_register_driver(intel_pstate_driver);
2771 	if (ret) {
2772 		intel_pstate_driver_cleanup();
2773 		return ret;
2774 	}
2775 
2776 	global.min_perf_pct = min_perf_pct_min();
2777 
2778 	return 0;
2779 }
2780 
intel_pstate_show_status(char * buf)2781 static ssize_t intel_pstate_show_status(char *buf)
2782 {
2783 	if (!intel_pstate_driver)
2784 		return sprintf(buf, "off\n");
2785 
2786 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2787 					"active" : "passive");
2788 }
2789 
intel_pstate_update_status(const char * buf,size_t size)2790 static int intel_pstate_update_status(const char *buf, size_t size)
2791 {
2792 	if (size == 3 && !strncmp(buf, "off", size)) {
2793 		if (!intel_pstate_driver)
2794 			return -EINVAL;
2795 
2796 		if (hwp_active)
2797 			return -EBUSY;
2798 
2799 		cpufreq_unregister_driver(intel_pstate_driver);
2800 		intel_pstate_driver_cleanup();
2801 		return 0;
2802 	}
2803 
2804 	if (size == 6 && !strncmp(buf, "active", size)) {
2805 		if (intel_pstate_driver) {
2806 			if (intel_pstate_driver == &intel_pstate)
2807 				return 0;
2808 
2809 			cpufreq_unregister_driver(intel_pstate_driver);
2810 		}
2811 
2812 		return intel_pstate_register_driver(&intel_pstate);
2813 	}
2814 
2815 	if (size == 7 && !strncmp(buf, "passive", size)) {
2816 		if (intel_pstate_driver) {
2817 			if (intel_pstate_driver == &intel_cpufreq)
2818 				return 0;
2819 
2820 			cpufreq_unregister_driver(intel_pstate_driver);
2821 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
2822 		}
2823 
2824 		return intel_pstate_register_driver(&intel_cpufreq);
2825 	}
2826 
2827 	return -EINVAL;
2828 }
2829 
2830 static int no_load __initdata;
2831 static int no_hwp __initdata;
2832 static int hwp_only __initdata;
2833 static unsigned int force_load __initdata;
2834 
intel_pstate_msrs_not_valid(void)2835 static int __init intel_pstate_msrs_not_valid(void)
2836 {
2837 	if (!pstate_funcs.get_max() ||
2838 	    !pstate_funcs.get_min() ||
2839 	    !pstate_funcs.get_turbo())
2840 		return -ENODEV;
2841 
2842 	return 0;
2843 }
2844 
copy_cpu_funcs(struct pstate_funcs * funcs)2845 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2846 {
2847 	pstate_funcs.get_max   = funcs->get_max;
2848 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2849 	pstate_funcs.get_min   = funcs->get_min;
2850 	pstate_funcs.get_turbo = funcs->get_turbo;
2851 	pstate_funcs.get_scaling = funcs->get_scaling;
2852 	pstate_funcs.get_val   = funcs->get_val;
2853 	pstate_funcs.get_vid   = funcs->get_vid;
2854 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2855 }
2856 
2857 #ifdef CONFIG_ACPI
2858 
intel_pstate_no_acpi_pss(void)2859 static bool __init intel_pstate_no_acpi_pss(void)
2860 {
2861 	int i;
2862 
2863 	for_each_possible_cpu(i) {
2864 		acpi_status status;
2865 		union acpi_object *pss;
2866 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2867 		struct acpi_processor *pr = per_cpu(processors, i);
2868 
2869 		if (!pr)
2870 			continue;
2871 
2872 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2873 		if (ACPI_FAILURE(status))
2874 			continue;
2875 
2876 		pss = buffer.pointer;
2877 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2878 			kfree(pss);
2879 			return false;
2880 		}
2881 
2882 		kfree(pss);
2883 	}
2884 
2885 	pr_debug("ACPI _PSS not found\n");
2886 	return true;
2887 }
2888 
intel_pstate_no_acpi_pcch(void)2889 static bool __init intel_pstate_no_acpi_pcch(void)
2890 {
2891 	acpi_status status;
2892 	acpi_handle handle;
2893 
2894 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2895 	if (ACPI_FAILURE(status))
2896 		goto not_found;
2897 
2898 	if (acpi_has_method(handle, "PCCH"))
2899 		return false;
2900 
2901 not_found:
2902 	pr_debug("ACPI PCCH not found\n");
2903 	return true;
2904 }
2905 
intel_pstate_has_acpi_ppc(void)2906 static bool __init intel_pstate_has_acpi_ppc(void)
2907 {
2908 	int i;
2909 
2910 	for_each_possible_cpu(i) {
2911 		struct acpi_processor *pr = per_cpu(processors, i);
2912 
2913 		if (!pr)
2914 			continue;
2915 		if (acpi_has_method(pr->handle, "_PPC"))
2916 			return true;
2917 	}
2918 	pr_debug("ACPI _PPC not found\n");
2919 	return false;
2920 }
2921 
2922 enum {
2923 	PSS,
2924 	PPC,
2925 };
2926 
2927 /* Hardware vendor-specific info that has its own power management modes */
2928 static struct acpi_platform_list plat_info[] __initdata = {
2929 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2930 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2931 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2932 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2933 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2934 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2935 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2936 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2937 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2938 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2939 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2940 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2941 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2942 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2943 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2944 	{ } /* End */
2945 };
2946 
2947 #define BITMASK_OOB	(BIT(8) | BIT(18))
2948 
intel_pstate_platform_pwr_mgmt_exists(void)2949 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2950 {
2951 	const struct x86_cpu_id *id;
2952 	u64 misc_pwr;
2953 	int idx;
2954 
2955 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2956 	if (id) {
2957 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2958 		if (misc_pwr & BITMASK_OOB) {
2959 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2960 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2961 			return true;
2962 		}
2963 	}
2964 
2965 	idx = acpi_match_platform_list(plat_info);
2966 	if (idx < 0)
2967 		return false;
2968 
2969 	switch (plat_info[idx].data) {
2970 	case PSS:
2971 		if (!intel_pstate_no_acpi_pss())
2972 			return false;
2973 
2974 		return intel_pstate_no_acpi_pcch();
2975 	case PPC:
2976 		return intel_pstate_has_acpi_ppc() && !force_load;
2977 	}
2978 
2979 	return false;
2980 }
2981 
intel_pstate_request_control_from_smm(void)2982 static void intel_pstate_request_control_from_smm(void)
2983 {
2984 	/*
2985 	 * It may be unsafe to request P-states control from SMM if _PPC support
2986 	 * has not been enabled.
2987 	 */
2988 	if (acpi_ppc)
2989 		acpi_processor_pstate_control();
2990 }
2991 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)2992 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)2993 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)2994 static inline void intel_pstate_request_control_from_smm(void) {}
2995 #endif /* CONFIG_ACPI */
2996 
2997 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2998 
2999 #define X86_MATCH_HWP(model, hwp_mode)					\
3000 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3001 					   X86_FEATURE_HWP, hwp_mode)
3002 
3003 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3004 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3005 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3006 	X86_MATCH_HWP(ANY,		0),
3007 	{}
3008 };
3009 
intel_pstate_hwp_is_enabled(void)3010 static bool intel_pstate_hwp_is_enabled(void)
3011 {
3012 	u64 value;
3013 
3014 	rdmsrl(MSR_PM_ENABLE, value);
3015 	return !!(value & 0x1);
3016 }
3017 
intel_pstate_init(void)3018 static int __init intel_pstate_init(void)
3019 {
3020 	const struct x86_cpu_id *id;
3021 	int rc;
3022 
3023 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3024 		return -ENODEV;
3025 
3026 	id = x86_match_cpu(hwp_support_ids);
3027 	if (id) {
3028 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3029 
3030 		if (hwp_forced)
3031 			pr_info("HWP enabled by BIOS\n");
3032 		else if (no_load)
3033 			return -ENODEV;
3034 
3035 		copy_cpu_funcs(&core_funcs);
3036 		/*
3037 		 * Avoid enabling HWP for processors without EPP support,
3038 		 * because that means incomplete HWP implementation which is a
3039 		 * corner case and supporting it is generally problematic.
3040 		 *
3041 		 * If HWP is enabled already, though, there is no choice but to
3042 		 * deal with it.
3043 		 */
3044 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3045 			hwp_active++;
3046 			hwp_mode_bdw = id->driver_data;
3047 			intel_pstate.attr = hwp_cpufreq_attrs;
3048 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3049 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3050 			if (!default_driver)
3051 				default_driver = &intel_pstate;
3052 
3053 			goto hwp_cpu_matched;
3054 		}
3055 		pr_info("HWP not enabled\n");
3056 	} else {
3057 		if (no_load)
3058 			return -ENODEV;
3059 
3060 		id = x86_match_cpu(intel_pstate_cpu_ids);
3061 		if (!id) {
3062 			pr_info("CPU model not supported\n");
3063 			return -ENODEV;
3064 		}
3065 
3066 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3067 	}
3068 
3069 	if (intel_pstate_msrs_not_valid()) {
3070 		pr_info("Invalid MSRs\n");
3071 		return -ENODEV;
3072 	}
3073 	/* Without HWP start in the passive mode. */
3074 	if (!default_driver)
3075 		default_driver = &intel_cpufreq;
3076 
3077 hwp_cpu_matched:
3078 	/*
3079 	 * The Intel pstate driver will be ignored if the platform
3080 	 * firmware has its own power management modes.
3081 	 */
3082 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3083 		pr_info("P-states controlled by the platform\n");
3084 		return -ENODEV;
3085 	}
3086 
3087 	if (!hwp_active && hwp_only)
3088 		return -ENOTSUPP;
3089 
3090 	pr_info("Intel P-state driver initializing\n");
3091 
3092 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3093 	if (!all_cpu_data)
3094 		return -ENOMEM;
3095 
3096 	intel_pstate_request_control_from_smm();
3097 
3098 	intel_pstate_sysfs_expose_params();
3099 
3100 	mutex_lock(&intel_pstate_driver_lock);
3101 	rc = intel_pstate_register_driver(default_driver);
3102 	mutex_unlock(&intel_pstate_driver_lock);
3103 	if (rc) {
3104 		intel_pstate_sysfs_remove();
3105 		return rc;
3106 	}
3107 
3108 	if (hwp_active) {
3109 		const struct x86_cpu_id *id;
3110 
3111 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3112 		if (id) {
3113 			set_power_ctl_ee_state(false);
3114 			pr_info("Disabling energy efficiency optimization\n");
3115 		}
3116 
3117 		pr_info("HWP enabled\n");
3118 	}
3119 
3120 	return 0;
3121 }
3122 device_initcall(intel_pstate_init);
3123 
intel_pstate_setup(char * str)3124 static int __init intel_pstate_setup(char *str)
3125 {
3126 	if (!str)
3127 		return -EINVAL;
3128 
3129 	if (!strcmp(str, "disable"))
3130 		no_load = 1;
3131 	else if (!strcmp(str, "active"))
3132 		default_driver = &intel_pstate;
3133 	else if (!strcmp(str, "passive"))
3134 		default_driver = &intel_cpufreq;
3135 
3136 	if (!strcmp(str, "no_hwp"))
3137 		no_hwp = 1;
3138 
3139 	if (!strcmp(str, "force"))
3140 		force_load = 1;
3141 	if (!strcmp(str, "hwp_only"))
3142 		hwp_only = 1;
3143 	if (!strcmp(str, "per_cpu_perf_limits"))
3144 		per_cpu_limits = true;
3145 
3146 #ifdef CONFIG_ACPI
3147 	if (!strcmp(str, "support_acpi_ppc"))
3148 		acpi_ppc = true;
3149 #endif
3150 
3151 	return 0;
3152 }
3153 early_param("intel_pstate", intel_pstate_setup);
3154 
3155 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3156 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3157 MODULE_LICENSE("GPL");
3158