1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6 /*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55
56 #include "dmaengine.h"
57
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66
67 static struct dentry *rootdir;
68
dmaengine_debug_register(struct dma_device * dma_dev)69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 rootdir);
73 if (IS_ERR(dma_dev->dbg_dev_root))
74 dma_dev->dbg_dev_root = NULL;
75 }
76
dmaengine_debug_unregister(struct dma_device * dma_dev)77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 dma_dev->dbg_dev_root = NULL;
81 }
82
dmaengine_dbg_summary_show(struct seq_file * s,struct dma_device * dma_dev)83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 struct dma_device *dma_dev)
85 {
86 struct dma_chan *chan;
87
88 list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 if (chan->client_count) {
90 seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 chan->dbg_client_name ?: "in-use");
92
93 if (chan->router)
94 seq_printf(s, " (via router: %s)\n",
95 dev_name(chan->router->dev));
96 else
97 seq_puts(s, "\n");
98 }
99 }
100 }
101
dmaengine_summary_show(struct seq_file * s,void * data)102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 struct dma_device *dma_dev = NULL;
105
106 mutex_lock(&dma_list_mutex);
107 list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 dma_dev->dev_id, dev_name(dma_dev->dev),
110 dma_dev->chancnt);
111
112 if (dma_dev->dbg_summary_show)
113 dma_dev->dbg_summary_show(s, dma_dev);
114 else
115 dmaengine_dbg_summary_show(s, dma_dev);
116
117 if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 seq_puts(s, "\n");
119 }
120 mutex_unlock(&dma_list_mutex);
121
122 return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125
dmaengine_debugfs_init(void)126 static void __init dmaengine_debugfs_init(void)
127 {
128 rootdir = debugfs_create_dir("dmaengine", NULL);
129
130 /* /sys/kernel/debug/dmaengine/summary */
131 debugfs_create_file("summary", 0444, rootdir, NULL,
132 &dmaengine_summary_fops);
133 }
134 #else
dmaengine_debugfs_init(void)135 static inline void dmaengine_debugfs_init(void) { }
dmaengine_debug_register(struct dma_device * dma_dev)136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 return 0;
139 }
140
dmaengine_debug_unregister(struct dma_device * dma_dev)141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif /* DEBUG_FS */
143
144 /* --- sysfs implementation --- */
145
146 #define DMA_SLAVE_NAME "slave"
147
148 /**
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
150 * @dev: device node
151 *
152 * Must be called under dma_list_mutex.
153 */
dev_to_dma_chan(struct device * dev)154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 struct dma_chan_dev *chan_dev;
157
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 return chan_dev->chan;
160 }
161
memcpy_count_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t memcpy_count_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct dma_chan *chan;
166 unsigned long count = 0;
167 int i;
168 int err;
169
170 mutex_lock(&dma_list_mutex);
171 chan = dev_to_dma_chan(dev);
172 if (chan) {
173 for_each_possible_cpu(i)
174 count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 err = sprintf(buf, "%lu\n", count);
176 } else
177 err = -ENODEV;
178 mutex_unlock(&dma_list_mutex);
179
180 return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183
bytes_transferred_show(struct device * dev,struct device_attribute * attr,char * buf)184 static ssize_t bytes_transferred_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186 {
187 struct dma_chan *chan;
188 unsigned long count = 0;
189 int i;
190 int err;
191
192 mutex_lock(&dma_list_mutex);
193 chan = dev_to_dma_chan(dev);
194 if (chan) {
195 for_each_possible_cpu(i)
196 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 err = sprintf(buf, "%lu\n", count);
198 } else
199 err = -ENODEV;
200 mutex_unlock(&dma_list_mutex);
201
202 return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205
in_use_show(struct device * dev,struct device_attribute * attr,char * buf)206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 char *buf)
208 {
209 struct dma_chan *chan;
210 int err;
211
212 mutex_lock(&dma_list_mutex);
213 chan = dev_to_dma_chan(dev);
214 if (chan)
215 err = sprintf(buf, "%d\n", chan->client_count);
216 else
217 err = -ENODEV;
218 mutex_unlock(&dma_list_mutex);
219
220 return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223
224 static struct attribute *dma_dev_attrs[] = {
225 &dev_attr_memcpy_count.attr,
226 &dev_attr_bytes_transferred.attr,
227 &dev_attr_in_use.attr,
228 NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231
chan_dev_release(struct device * dev)232 static void chan_dev_release(struct device *dev)
233 {
234 struct dma_chan_dev *chan_dev;
235
236 chan_dev = container_of(dev, typeof(*chan_dev), device);
237 kfree(chan_dev);
238 }
239
240 static struct class dma_devclass = {
241 .name = "dma",
242 .dev_groups = dma_dev_groups,
243 .dev_release = chan_dev_release,
244 };
245
246 /* --- client and device registration --- */
247
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250
251 /**
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan: associated channel for this entry
254 */
255 struct dma_chan_tbl_ent {
256 struct dma_chan *chan;
257 };
258
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261
dma_channel_table_init(void)262 static int __init dma_channel_table_init(void)
263 {
264 enum dma_transaction_type cap;
265 int err = 0;
266
267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268
269 /* 'interrupt', 'private', and 'slave' are channel capabilities,
270 * but are not associated with an operation so they do not need
271 * an entry in the channel_table
272 */
273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276
277 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 if (!channel_table[cap]) {
280 err = -ENOMEM;
281 break;
282 }
283 }
284
285 if (err) {
286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 free_percpu(channel_table[cap]);
289 }
290
291 return err;
292 }
293 arch_initcall(dma_channel_table_init);
294
295 /**
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan: DMA channel to test
298 * @cpu: CPU index which the channel should be close to
299 *
300 * Returns true if the channel is in the same NUMA-node as the CPU.
301 */
dma_chan_is_local(struct dma_chan * chan,int cpu)302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 int node = dev_to_node(chan->device->dev);
305 return node == NUMA_NO_NODE ||
306 cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308
309 /**
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap: capability to match
312 * @cpu: CPU index which the channel should be close to
313 *
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
317 *
318 * Must be called under dma_list_mutex.
319 */
min_chan(enum dma_transaction_type cap,int cpu)320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 struct dma_device *device;
323 struct dma_chan *chan;
324 struct dma_chan *min = NULL;
325 struct dma_chan *localmin = NULL;
326
327 list_for_each_entry(device, &dma_device_list, global_node) {
328 if (!dma_has_cap(cap, device->cap_mask) ||
329 dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 continue;
331 list_for_each_entry(chan, &device->channels, device_node) {
332 if (!chan->client_count)
333 continue;
334 if (!min || chan->table_count < min->table_count)
335 min = chan;
336
337 if (dma_chan_is_local(chan, cpu))
338 if (!localmin ||
339 chan->table_count < localmin->table_count)
340 localmin = chan;
341 }
342 }
343
344 chan = localmin ? localmin : min;
345
346 if (chan)
347 chan->table_count++;
348
349 return chan;
350 }
351
352 /**
353 * dma_channel_rebalance - redistribute the available channels
354 *
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
358 *
359 * Must be called under dma_list_mutex.
360 */
dma_channel_rebalance(void)361 static void dma_channel_rebalance(void)
362 {
363 struct dma_chan *chan;
364 struct dma_device *device;
365 int cpu;
366 int cap;
367
368 /* undo the last distribution */
369 for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 for_each_possible_cpu(cpu)
371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372
373 list_for_each_entry(device, &dma_device_list, global_node) {
374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 continue;
376 list_for_each_entry(chan, &device->channels, device_node)
377 chan->table_count = 0;
378 }
379
380 /* don't populate the channel_table if no clients are available */
381 if (!dmaengine_ref_count)
382 return;
383
384 /* redistribute available channels */
385 for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 for_each_online_cpu(cpu) {
387 chan = min_chan(cap, cpu);
388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 }
390 }
391
dma_device_satisfies_mask(struct dma_device * device,const dma_cap_mask_t * want)392 static int dma_device_satisfies_mask(struct dma_device *device,
393 const dma_cap_mask_t *want)
394 {
395 dma_cap_mask_t has;
396
397 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 DMA_TX_TYPE_END);
399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401
dma_chan_to_owner(struct dma_chan * chan)402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 return chan->device->owner;
405 }
406
407 /**
408 * balance_ref_count - catch up the channel reference count
409 * @chan: channel to balance ->client_count versus dmaengine_ref_count
410 *
411 * Must be called under dma_list_mutex.
412 */
balance_ref_count(struct dma_chan * chan)413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 struct module *owner = dma_chan_to_owner(chan);
416
417 while (chan->client_count < dmaengine_ref_count) {
418 __module_get(owner);
419 chan->client_count++;
420 }
421 }
422
dma_device_release(struct kref * ref)423 static void dma_device_release(struct kref *ref)
424 {
425 struct dma_device *device = container_of(ref, struct dma_device, ref);
426
427 list_del_rcu(&device->global_node);
428 dma_channel_rebalance();
429
430 if (device->device_release)
431 device->device_release(device);
432 }
433
dma_device_put(struct dma_device * device)434 static void dma_device_put(struct dma_device *device)
435 {
436 lockdep_assert_held(&dma_list_mutex);
437 kref_put(&device->ref, dma_device_release);
438 }
439
440 /**
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan: channel to grab
443 *
444 * Must be called under dma_list_mutex.
445 */
dma_chan_get(struct dma_chan * chan)446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 struct module *owner = dma_chan_to_owner(chan);
449 int ret;
450
451 /* The channel is already in use, update client count */
452 if (chan->client_count) {
453 __module_get(owner);
454 chan->client_count++;
455 return 0;
456 }
457
458 if (!try_module_get(owner))
459 return -ENODEV;
460
461 ret = kref_get_unless_zero(&chan->device->ref);
462 if (!ret) {
463 ret = -ENODEV;
464 goto module_put_out;
465 }
466
467 /* allocate upon first client reference */
468 if (chan->device->device_alloc_chan_resources) {
469 ret = chan->device->device_alloc_chan_resources(chan);
470 if (ret < 0)
471 goto err_out;
472 }
473
474 chan->client_count++;
475
476 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
477 balance_ref_count(chan);
478
479 return 0;
480
481 err_out:
482 dma_device_put(chan->device);
483 module_put_out:
484 module_put(owner);
485 return ret;
486 }
487
488 /**
489 * dma_chan_put - drop a reference to a DMA channel's parent driver module
490 * @chan: channel to release
491 *
492 * Must be called under dma_list_mutex.
493 */
dma_chan_put(struct dma_chan * chan)494 static void dma_chan_put(struct dma_chan *chan)
495 {
496 /* This channel is not in use, bail out */
497 if (!chan->client_count)
498 return;
499
500 chan->client_count--;
501
502 /* This channel is not in use anymore, free it */
503 if (!chan->client_count && chan->device->device_free_chan_resources) {
504 /* Make sure all operations have completed */
505 dmaengine_synchronize(chan);
506 chan->device->device_free_chan_resources(chan);
507 }
508
509 /* If the channel is used via a DMA request router, free the mapping */
510 if (chan->router && chan->router->route_free) {
511 chan->router->route_free(chan->router->dev, chan->route_data);
512 chan->router = NULL;
513 chan->route_data = NULL;
514 }
515
516 dma_device_put(chan->device);
517 module_put(dma_chan_to_owner(chan));
518 }
519
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)520 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521 {
522 enum dma_status status;
523 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524
525 dma_async_issue_pending(chan);
526 do {
527 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
528 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
529 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
530 return DMA_ERROR;
531 }
532 if (status != DMA_IN_PROGRESS)
533 break;
534 cpu_relax();
535 } while (1);
536
537 return status;
538 }
539 EXPORT_SYMBOL(dma_sync_wait);
540
541 /**
542 * dma_find_channel - find a channel to carry out the operation
543 * @tx_type: transaction type
544 */
dma_find_channel(enum dma_transaction_type tx_type)545 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546 {
547 return this_cpu_read(channel_table[tx_type]->chan);
548 }
549 EXPORT_SYMBOL(dma_find_channel);
550
551 /**
552 * dma_issue_pending_all - flush all pending operations across all channels
553 */
dma_issue_pending_all(void)554 void dma_issue_pending_all(void)
555 {
556 struct dma_device *device;
557 struct dma_chan *chan;
558
559 rcu_read_lock();
560 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
561 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562 continue;
563 list_for_each_entry(chan, &device->channels, device_node)
564 if (chan->client_count)
565 device->device_issue_pending(chan);
566 }
567 rcu_read_unlock();
568 }
569 EXPORT_SYMBOL(dma_issue_pending_all);
570
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)571 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572 {
573 struct dma_device *device;
574
575 if (!chan || !caps)
576 return -EINVAL;
577
578 device = chan->device;
579
580 /* check if the channel supports slave transactions */
581 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
582 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
583 return -ENXIO;
584
585 /*
586 * Check whether it reports it uses the generic slave
587 * capabilities, if not, that means it doesn't support any
588 * kind of slave capabilities reporting.
589 */
590 if (!device->directions)
591 return -ENXIO;
592
593 caps->src_addr_widths = device->src_addr_widths;
594 caps->dst_addr_widths = device->dst_addr_widths;
595 caps->directions = device->directions;
596 caps->min_burst = device->min_burst;
597 caps->max_burst = device->max_burst;
598 caps->max_sg_burst = device->max_sg_burst;
599 caps->residue_granularity = device->residue_granularity;
600 caps->descriptor_reuse = device->descriptor_reuse;
601 caps->cmd_pause = !!device->device_pause;
602 caps->cmd_resume = !!device->device_resume;
603 caps->cmd_terminate = !!device->device_terminate_all;
604
605 /*
606 * DMA engine device might be configured with non-uniformly
607 * distributed slave capabilities per device channels. In this
608 * case the corresponding driver may provide the device_caps
609 * callback to override the generic capabilities with
610 * channel-specific ones.
611 */
612 if (device->device_caps)
613 device->device_caps(chan, caps);
614
615 return 0;
616 }
617 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618
private_candidate(const dma_cap_mask_t * mask,struct dma_device * dev,dma_filter_fn fn,void * fn_param)619 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
620 struct dma_device *dev,
621 dma_filter_fn fn, void *fn_param)
622 {
623 struct dma_chan *chan;
624
625 if (mask && !dma_device_satisfies_mask(dev, mask)) {
626 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
627 return NULL;
628 }
629 /* devices with multiple channels need special handling as we need to
630 * ensure that all channels are either private or public.
631 */
632 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
633 list_for_each_entry(chan, &dev->channels, device_node) {
634 /* some channels are already publicly allocated */
635 if (chan->client_count)
636 return NULL;
637 }
638
639 list_for_each_entry(chan, &dev->channels, device_node) {
640 if (chan->client_count) {
641 dev_dbg(dev->dev, "%s: %s busy\n",
642 __func__, dma_chan_name(chan));
643 continue;
644 }
645 if (fn && !fn(chan, fn_param)) {
646 dev_dbg(dev->dev, "%s: %s filter said false\n",
647 __func__, dma_chan_name(chan));
648 continue;
649 }
650 return chan;
651 }
652
653 return NULL;
654 }
655
find_candidate(struct dma_device * device,const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)656 static struct dma_chan *find_candidate(struct dma_device *device,
657 const dma_cap_mask_t *mask,
658 dma_filter_fn fn, void *fn_param)
659 {
660 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
661 int err;
662
663 if (chan) {
664 /* Found a suitable channel, try to grab, prep, and return it.
665 * We first set DMA_PRIVATE to disable balance_ref_count as this
666 * channel will not be published in the general-purpose
667 * allocator
668 */
669 dma_cap_set(DMA_PRIVATE, device->cap_mask);
670 device->privatecnt++;
671 err = dma_chan_get(chan);
672
673 if (err) {
674 if (err == -ENODEV) {
675 dev_dbg(device->dev, "%s: %s module removed\n",
676 __func__, dma_chan_name(chan));
677 list_del_rcu(&device->global_node);
678 } else
679 dev_dbg(device->dev,
680 "%s: failed to get %s: (%d)\n",
681 __func__, dma_chan_name(chan), err);
682
683 if (--device->privatecnt == 0)
684 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
685
686 chan = ERR_PTR(err);
687 }
688 }
689
690 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
691 }
692
693 /**
694 * dma_get_slave_channel - try to get specific channel exclusively
695 * @chan: target channel
696 */
dma_get_slave_channel(struct dma_chan * chan)697 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698 {
699 int err = -EBUSY;
700
701 /* lock against __dma_request_channel */
702 mutex_lock(&dma_list_mutex);
703
704 if (chan->client_count == 0) {
705 struct dma_device *device = chan->device;
706
707 dma_cap_set(DMA_PRIVATE, device->cap_mask);
708 device->privatecnt++;
709 err = dma_chan_get(chan);
710 if (err) {
711 dev_dbg(chan->device->dev,
712 "%s: failed to get %s: (%d)\n",
713 __func__, dma_chan_name(chan), err);
714 chan = NULL;
715 if (--device->privatecnt == 0)
716 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
717 }
718 } else
719 chan = NULL;
720
721 mutex_unlock(&dma_list_mutex);
722
723
724 return chan;
725 }
726 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
727
dma_get_any_slave_channel(struct dma_device * device)728 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
729 {
730 dma_cap_mask_t mask;
731 struct dma_chan *chan;
732
733 dma_cap_zero(mask);
734 dma_cap_set(DMA_SLAVE, mask);
735
736 /* lock against __dma_request_channel */
737 mutex_lock(&dma_list_mutex);
738
739 chan = find_candidate(device, &mask, NULL, NULL);
740
741 mutex_unlock(&dma_list_mutex);
742
743 return IS_ERR(chan) ? NULL : chan;
744 }
745 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
746
747 /**
748 * __dma_request_channel - try to allocate an exclusive channel
749 * @mask: capabilities that the channel must satisfy
750 * @fn: optional callback to disposition available channels
751 * @fn_param: opaque parameter to pass to dma_filter_fn()
752 * @np: device node to look for DMA channels
753 *
754 * Returns pointer to appropriate DMA channel on success or NULL.
755 */
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)756 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
757 dma_filter_fn fn, void *fn_param,
758 struct device_node *np)
759 {
760 struct dma_device *device, *_d;
761 struct dma_chan *chan = NULL;
762
763 /* Find a channel */
764 mutex_lock(&dma_list_mutex);
765 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
766 /* Finds a DMA controller with matching device node */
767 if (np && device->dev->of_node && np != device->dev->of_node)
768 continue;
769
770 chan = find_candidate(device, mask, fn, fn_param);
771 if (!IS_ERR(chan))
772 break;
773
774 chan = NULL;
775 }
776 mutex_unlock(&dma_list_mutex);
777
778 pr_debug("%s: %s (%s)\n",
779 __func__,
780 chan ? "success" : "fail",
781 chan ? dma_chan_name(chan) : NULL);
782
783 return chan;
784 }
785 EXPORT_SYMBOL_GPL(__dma_request_channel);
786
dma_filter_match(struct dma_device * device,const char * name,struct device * dev)787 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
788 const char *name,
789 struct device *dev)
790 {
791 int i;
792
793 if (!device->filter.mapcnt)
794 return NULL;
795
796 for (i = 0; i < device->filter.mapcnt; i++) {
797 const struct dma_slave_map *map = &device->filter.map[i];
798
799 if (!strcmp(map->devname, dev_name(dev)) &&
800 !strcmp(map->slave, name))
801 return map;
802 }
803
804 return NULL;
805 }
806
807 /**
808 * dma_request_chan - try to allocate an exclusive slave channel
809 * @dev: pointer to client device structure
810 * @name: slave channel name
811 *
812 * Returns pointer to appropriate DMA channel on success or an error pointer.
813 */
dma_request_chan(struct device * dev,const char * name)814 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
815 {
816 struct dma_device *d, *_d;
817 struct dma_chan *chan = NULL;
818
819 /* If device-tree is present get slave info from here */
820 if (dev->of_node)
821 chan = of_dma_request_slave_channel(dev->of_node, name);
822
823 /* If device was enumerated by ACPI get slave info from here */
824 if (has_acpi_companion(dev) && !chan)
825 chan = acpi_dma_request_slave_chan_by_name(dev, name);
826
827 if (PTR_ERR(chan) == -EPROBE_DEFER)
828 return chan;
829
830 if (!IS_ERR_OR_NULL(chan))
831 goto found;
832
833 /* Try to find the channel via the DMA filter map(s) */
834 mutex_lock(&dma_list_mutex);
835 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
836 dma_cap_mask_t mask;
837 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
838
839 if (!map)
840 continue;
841
842 dma_cap_zero(mask);
843 dma_cap_set(DMA_SLAVE, mask);
844
845 chan = find_candidate(d, &mask, d->filter.fn, map->param);
846 if (!IS_ERR(chan))
847 break;
848 }
849 mutex_unlock(&dma_list_mutex);
850
851 if (IS_ERR(chan))
852 return chan;
853 if (!chan)
854 return ERR_PTR(-EPROBE_DEFER);
855
856 found:
857 #ifdef CONFIG_DEBUG_FS
858 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
859 name);
860 #endif
861
862 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
863 if (!chan->name)
864 return chan;
865 chan->slave = dev;
866
867 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
868 DMA_SLAVE_NAME))
869 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
870 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
871 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
872
873 return chan;
874 }
875 EXPORT_SYMBOL_GPL(dma_request_chan);
876
877 /**
878 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
879 * @mask: capabilities that the channel must satisfy
880 *
881 * Returns pointer to appropriate DMA channel on success or an error pointer.
882 */
dma_request_chan_by_mask(const dma_cap_mask_t * mask)883 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
884 {
885 struct dma_chan *chan;
886
887 if (!mask)
888 return ERR_PTR(-ENODEV);
889
890 chan = __dma_request_channel(mask, NULL, NULL, NULL);
891 if (!chan) {
892 mutex_lock(&dma_list_mutex);
893 if (list_empty(&dma_device_list))
894 chan = ERR_PTR(-EPROBE_DEFER);
895 else
896 chan = ERR_PTR(-ENODEV);
897 mutex_unlock(&dma_list_mutex);
898 }
899
900 return chan;
901 }
902 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
903
dma_release_channel(struct dma_chan * chan)904 void dma_release_channel(struct dma_chan *chan)
905 {
906 mutex_lock(&dma_list_mutex);
907 WARN_ONCE(chan->client_count != 1,
908 "chan reference count %d != 1\n", chan->client_count);
909 dma_chan_put(chan);
910 /* drop PRIVATE cap enabled by __dma_request_channel() */
911 if (--chan->device->privatecnt == 0)
912 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
913
914 if (chan->slave) {
915 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
916 sysfs_remove_link(&chan->slave->kobj, chan->name);
917 kfree(chan->name);
918 chan->name = NULL;
919 chan->slave = NULL;
920 }
921
922 #ifdef CONFIG_DEBUG_FS
923 kfree(chan->dbg_client_name);
924 chan->dbg_client_name = NULL;
925 #endif
926 mutex_unlock(&dma_list_mutex);
927 }
928 EXPORT_SYMBOL_GPL(dma_release_channel);
929
930 /**
931 * dmaengine_get - register interest in dma_channels
932 */
dmaengine_get(void)933 void dmaengine_get(void)
934 {
935 struct dma_device *device, *_d;
936 struct dma_chan *chan;
937 int err;
938
939 mutex_lock(&dma_list_mutex);
940 dmaengine_ref_count++;
941
942 /* try to grab channels */
943 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
944 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
945 continue;
946 list_for_each_entry(chan, &device->channels, device_node) {
947 err = dma_chan_get(chan);
948 if (err == -ENODEV) {
949 /* module removed before we could use it */
950 list_del_rcu(&device->global_node);
951 break;
952 } else if (err)
953 dev_dbg(chan->device->dev,
954 "%s: failed to get %s: (%d)\n",
955 __func__, dma_chan_name(chan), err);
956 }
957 }
958
959 /* if this is the first reference and there were channels
960 * waiting we need to rebalance to get those channels
961 * incorporated into the channel table
962 */
963 if (dmaengine_ref_count == 1)
964 dma_channel_rebalance();
965 mutex_unlock(&dma_list_mutex);
966 }
967 EXPORT_SYMBOL(dmaengine_get);
968
969 /**
970 * dmaengine_put - let DMA drivers be removed when ref_count == 0
971 */
dmaengine_put(void)972 void dmaengine_put(void)
973 {
974 struct dma_device *device, *_d;
975 struct dma_chan *chan;
976
977 mutex_lock(&dma_list_mutex);
978 dmaengine_ref_count--;
979 BUG_ON(dmaengine_ref_count < 0);
980 /* drop channel references */
981 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
982 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
983 continue;
984 list_for_each_entry(chan, &device->channels, device_node)
985 dma_chan_put(chan);
986 }
987 mutex_unlock(&dma_list_mutex);
988 }
989 EXPORT_SYMBOL(dmaengine_put);
990
device_has_all_tx_types(struct dma_device * device)991 static bool device_has_all_tx_types(struct dma_device *device)
992 {
993 /* A device that satisfies this test has channels that will never cause
994 * an async_tx channel switch event as all possible operation types can
995 * be handled.
996 */
997 #ifdef CONFIG_ASYNC_TX_DMA
998 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
999 return false;
1000 #endif
1001
1002 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1003 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1004 return false;
1005 #endif
1006
1007 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1008 if (!dma_has_cap(DMA_XOR, device->cap_mask))
1009 return false;
1010
1011 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1012 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1013 return false;
1014 #endif
1015 #endif
1016
1017 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1018 if (!dma_has_cap(DMA_PQ, device->cap_mask))
1019 return false;
1020
1021 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1022 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1023 return false;
1024 #endif
1025 #endif
1026
1027 return true;
1028 }
1029
get_dma_id(struct dma_device * device)1030 static int get_dma_id(struct dma_device *device)
1031 {
1032 int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1033
1034 if (rc < 0)
1035 return rc;
1036 device->dev_id = rc;
1037 return 0;
1038 }
1039
__dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan)1040 static int __dma_async_device_channel_register(struct dma_device *device,
1041 struct dma_chan *chan)
1042 {
1043 int rc;
1044
1045 chan->local = alloc_percpu(typeof(*chan->local));
1046 if (!chan->local)
1047 return -ENOMEM;
1048 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1049 if (!chan->dev) {
1050 rc = -ENOMEM;
1051 goto err_free_local;
1052 }
1053
1054 /*
1055 * When the chan_id is a negative value, we are dynamically adding
1056 * the channel. Otherwise we are static enumerating.
1057 */
1058 mutex_lock(&device->chan_mutex);
1059 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1060 mutex_unlock(&device->chan_mutex);
1061 if (chan->chan_id < 0) {
1062 pr_err("%s: unable to alloc ida for chan: %d\n",
1063 __func__, chan->chan_id);
1064 rc = chan->chan_id;
1065 goto err_free_dev;
1066 }
1067
1068 chan->dev->device.class = &dma_devclass;
1069 chan->dev->device.parent = device->dev;
1070 chan->dev->chan = chan;
1071 chan->dev->dev_id = device->dev_id;
1072 dev_set_name(&chan->dev->device, "dma%dchan%d",
1073 device->dev_id, chan->chan_id);
1074 rc = device_register(&chan->dev->device);
1075 if (rc)
1076 goto err_out_ida;
1077 chan->client_count = 0;
1078 device->chancnt++;
1079
1080 return 0;
1081
1082 err_out_ida:
1083 mutex_lock(&device->chan_mutex);
1084 ida_free(&device->chan_ida, chan->chan_id);
1085 mutex_unlock(&device->chan_mutex);
1086 err_free_dev:
1087 kfree(chan->dev);
1088 err_free_local:
1089 free_percpu(chan->local);
1090 chan->local = NULL;
1091 return rc;
1092 }
1093
dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan)1094 int dma_async_device_channel_register(struct dma_device *device,
1095 struct dma_chan *chan)
1096 {
1097 int rc;
1098
1099 rc = __dma_async_device_channel_register(device, chan);
1100 if (rc < 0)
1101 return rc;
1102
1103 dma_channel_rebalance();
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1107
__dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1108 static void __dma_async_device_channel_unregister(struct dma_device *device,
1109 struct dma_chan *chan)
1110 {
1111 if (chan->local == NULL)
1112 return;
1113
1114 WARN_ONCE(!device->device_release && chan->client_count,
1115 "%s called while %d clients hold a reference\n",
1116 __func__, chan->client_count);
1117 mutex_lock(&dma_list_mutex);
1118 device->chancnt--;
1119 chan->dev->chan = NULL;
1120 mutex_unlock(&dma_list_mutex);
1121 mutex_lock(&device->chan_mutex);
1122 ida_free(&device->chan_ida, chan->chan_id);
1123 mutex_unlock(&device->chan_mutex);
1124 device_unregister(&chan->dev->device);
1125 free_percpu(chan->local);
1126 }
1127
dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1128 void dma_async_device_channel_unregister(struct dma_device *device,
1129 struct dma_chan *chan)
1130 {
1131 __dma_async_device_channel_unregister(device, chan);
1132 dma_channel_rebalance();
1133 }
1134 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1135
1136 /**
1137 * dma_async_device_register - registers DMA devices found
1138 * @device: pointer to &struct dma_device
1139 *
1140 * After calling this routine the structure should not be freed except in the
1141 * device_release() callback which will be called after
1142 * dma_async_device_unregister() is called and no further references are taken.
1143 */
dma_async_device_register(struct dma_device * device)1144 int dma_async_device_register(struct dma_device *device)
1145 {
1146 int rc;
1147 struct dma_chan* chan;
1148
1149 if (!device)
1150 return -ENODEV;
1151
1152 /* validate device routines */
1153 if (!device->dev) {
1154 pr_err("DMAdevice must have dev\n");
1155 return -EIO;
1156 }
1157
1158 device->owner = device->dev->driver->owner;
1159
1160 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1161 dev_err(device->dev,
1162 "Device claims capability %s, but op is not defined\n",
1163 "DMA_MEMCPY");
1164 return -EIO;
1165 }
1166
1167 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1168 dev_err(device->dev,
1169 "Device claims capability %s, but op is not defined\n",
1170 "DMA_XOR");
1171 return -EIO;
1172 }
1173
1174 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1175 dev_err(device->dev,
1176 "Device claims capability %s, but op is not defined\n",
1177 "DMA_XOR_VAL");
1178 return -EIO;
1179 }
1180
1181 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1182 dev_err(device->dev,
1183 "Device claims capability %s, but op is not defined\n",
1184 "DMA_PQ");
1185 return -EIO;
1186 }
1187
1188 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1189 dev_err(device->dev,
1190 "Device claims capability %s, but op is not defined\n",
1191 "DMA_PQ_VAL");
1192 return -EIO;
1193 }
1194
1195 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1196 dev_err(device->dev,
1197 "Device claims capability %s, but op is not defined\n",
1198 "DMA_MEMSET");
1199 return -EIO;
1200 }
1201
1202 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1203 dev_err(device->dev,
1204 "Device claims capability %s, but op is not defined\n",
1205 "DMA_INTERRUPT");
1206 return -EIO;
1207 }
1208
1209 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1210 dev_err(device->dev,
1211 "Device claims capability %s, but op is not defined\n",
1212 "DMA_CYCLIC");
1213 return -EIO;
1214 }
1215
1216 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1217 dev_err(device->dev,
1218 "Device claims capability %s, but op is not defined\n",
1219 "DMA_INTERLEAVE");
1220 return -EIO;
1221 }
1222
1223
1224 if (!device->device_tx_status) {
1225 dev_err(device->dev, "Device tx_status is not defined\n");
1226 return -EIO;
1227 }
1228
1229
1230 if (!device->device_issue_pending) {
1231 dev_err(device->dev, "Device issue_pending is not defined\n");
1232 return -EIO;
1233 }
1234
1235 if (!device->device_release)
1236 dev_dbg(device->dev,
1237 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1238
1239 kref_init(&device->ref);
1240
1241 /* note: this only matters in the
1242 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1243 */
1244 if (device_has_all_tx_types(device))
1245 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1246
1247 rc = get_dma_id(device);
1248 if (rc != 0)
1249 return rc;
1250
1251 mutex_init(&device->chan_mutex);
1252 ida_init(&device->chan_ida);
1253
1254 /* represent channels in sysfs. Probably want devs too */
1255 list_for_each_entry(chan, &device->channels, device_node) {
1256 rc = __dma_async_device_channel_register(device, chan);
1257 if (rc < 0)
1258 goto err_out;
1259 }
1260
1261 mutex_lock(&dma_list_mutex);
1262 /* take references on public channels */
1263 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1264 list_for_each_entry(chan, &device->channels, device_node) {
1265 /* if clients are already waiting for channels we need
1266 * to take references on their behalf
1267 */
1268 if (dma_chan_get(chan) == -ENODEV) {
1269 /* note we can only get here for the first
1270 * channel as the remaining channels are
1271 * guaranteed to get a reference
1272 */
1273 rc = -ENODEV;
1274 mutex_unlock(&dma_list_mutex);
1275 goto err_out;
1276 }
1277 }
1278 list_add_tail_rcu(&device->global_node, &dma_device_list);
1279 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1280 device->privatecnt++; /* Always private */
1281 dma_channel_rebalance();
1282 mutex_unlock(&dma_list_mutex);
1283
1284 dmaengine_debug_register(device);
1285
1286 return 0;
1287
1288 err_out:
1289 /* if we never registered a channel just release the idr */
1290 if (!device->chancnt) {
1291 ida_free(&dma_ida, device->dev_id);
1292 return rc;
1293 }
1294
1295 list_for_each_entry(chan, &device->channels, device_node) {
1296 if (chan->local == NULL)
1297 continue;
1298 mutex_lock(&dma_list_mutex);
1299 chan->dev->chan = NULL;
1300 mutex_unlock(&dma_list_mutex);
1301 device_unregister(&chan->dev->device);
1302 free_percpu(chan->local);
1303 }
1304 return rc;
1305 }
1306 EXPORT_SYMBOL(dma_async_device_register);
1307
1308 /**
1309 * dma_async_device_unregister - unregister a DMA device
1310 * @device: pointer to &struct dma_device
1311 *
1312 * This routine is called by dma driver exit routines, dmaengine holds module
1313 * references to prevent it being called while channels are in use.
1314 */
dma_async_device_unregister(struct dma_device * device)1315 void dma_async_device_unregister(struct dma_device *device)
1316 {
1317 struct dma_chan *chan, *n;
1318
1319 dmaengine_debug_unregister(device);
1320
1321 list_for_each_entry_safe(chan, n, &device->channels, device_node)
1322 __dma_async_device_channel_unregister(device, chan);
1323
1324 mutex_lock(&dma_list_mutex);
1325 /*
1326 * setting DMA_PRIVATE ensures the device being torn down will not
1327 * be used in the channel_table
1328 */
1329 dma_cap_set(DMA_PRIVATE, device->cap_mask);
1330 dma_channel_rebalance();
1331 ida_free(&dma_ida, device->dev_id);
1332 dma_device_put(device);
1333 mutex_unlock(&dma_list_mutex);
1334 }
1335 EXPORT_SYMBOL(dma_async_device_unregister);
1336
dmam_device_release(struct device * dev,void * res)1337 static void dmam_device_release(struct device *dev, void *res)
1338 {
1339 struct dma_device *device;
1340
1341 device = *(struct dma_device **)res;
1342 dma_async_device_unregister(device);
1343 }
1344
1345 /**
1346 * dmaenginem_async_device_register - registers DMA devices found
1347 * @device: pointer to &struct dma_device
1348 *
1349 * The operation is managed and will be undone on driver detach.
1350 */
dmaenginem_async_device_register(struct dma_device * device)1351 int dmaenginem_async_device_register(struct dma_device *device)
1352 {
1353 void *p;
1354 int ret;
1355
1356 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1357 if (!p)
1358 return -ENOMEM;
1359
1360 ret = dma_async_device_register(device);
1361 if (!ret) {
1362 *(struct dma_device **)p = device;
1363 devres_add(device->dev, p);
1364 } else {
1365 devres_free(p);
1366 }
1367
1368 return ret;
1369 }
1370 EXPORT_SYMBOL(dmaenginem_async_device_register);
1371
1372 struct dmaengine_unmap_pool {
1373 struct kmem_cache *cache;
1374 const char *name;
1375 mempool_t *pool;
1376 size_t size;
1377 };
1378
1379 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1380 static struct dmaengine_unmap_pool unmap_pool[] = {
1381 __UNMAP_POOL(2),
1382 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1383 __UNMAP_POOL(16),
1384 __UNMAP_POOL(128),
1385 __UNMAP_POOL(256),
1386 #endif
1387 };
1388
__get_unmap_pool(int nr)1389 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1390 {
1391 int order = get_count_order(nr);
1392
1393 switch (order) {
1394 case 0 ... 1:
1395 return &unmap_pool[0];
1396 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1397 case 2 ... 4:
1398 return &unmap_pool[1];
1399 case 5 ... 7:
1400 return &unmap_pool[2];
1401 case 8:
1402 return &unmap_pool[3];
1403 #endif
1404 default:
1405 BUG();
1406 return NULL;
1407 }
1408 }
1409
dmaengine_unmap(struct kref * kref)1410 static void dmaengine_unmap(struct kref *kref)
1411 {
1412 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1413 struct device *dev = unmap->dev;
1414 int cnt, i;
1415
1416 cnt = unmap->to_cnt;
1417 for (i = 0; i < cnt; i++)
1418 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1419 DMA_TO_DEVICE);
1420 cnt += unmap->from_cnt;
1421 for (; i < cnt; i++)
1422 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1423 DMA_FROM_DEVICE);
1424 cnt += unmap->bidi_cnt;
1425 for (; i < cnt; i++) {
1426 if (unmap->addr[i] == 0)
1427 continue;
1428 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1429 DMA_BIDIRECTIONAL);
1430 }
1431 cnt = unmap->map_cnt;
1432 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1433 }
1434
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)1435 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1436 {
1437 if (unmap)
1438 kref_put(&unmap->kref, dmaengine_unmap);
1439 }
1440 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1441
dmaengine_destroy_unmap_pool(void)1442 static void dmaengine_destroy_unmap_pool(void)
1443 {
1444 int i;
1445
1446 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1447 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1448
1449 mempool_destroy(p->pool);
1450 p->pool = NULL;
1451 kmem_cache_destroy(p->cache);
1452 p->cache = NULL;
1453 }
1454 }
1455
dmaengine_init_unmap_pool(void)1456 static int __init dmaengine_init_unmap_pool(void)
1457 {
1458 int i;
1459
1460 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1461 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1462 size_t size;
1463
1464 size = sizeof(struct dmaengine_unmap_data) +
1465 sizeof(dma_addr_t) * p->size;
1466
1467 p->cache = kmem_cache_create(p->name, size, 0,
1468 SLAB_HWCACHE_ALIGN, NULL);
1469 if (!p->cache)
1470 break;
1471 p->pool = mempool_create_slab_pool(1, p->cache);
1472 if (!p->pool)
1473 break;
1474 }
1475
1476 if (i == ARRAY_SIZE(unmap_pool))
1477 return 0;
1478
1479 dmaengine_destroy_unmap_pool();
1480 return -ENOMEM;
1481 }
1482
1483 struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)1484 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1485 {
1486 struct dmaengine_unmap_data *unmap;
1487
1488 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1489 if (!unmap)
1490 return NULL;
1491
1492 memset(unmap, 0, sizeof(*unmap));
1493 kref_init(&unmap->kref);
1494 unmap->dev = dev;
1495 unmap->map_cnt = nr;
1496
1497 return unmap;
1498 }
1499 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1500
dma_async_tx_descriptor_init(struct dma_async_tx_descriptor * tx,struct dma_chan * chan)1501 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1502 struct dma_chan *chan)
1503 {
1504 tx->chan = chan;
1505 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1506 spin_lock_init(&tx->lock);
1507 #endif
1508 }
1509 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1510
desc_check_and_set_metadata_mode(struct dma_async_tx_descriptor * desc,enum dma_desc_metadata_mode mode)1511 static inline int desc_check_and_set_metadata_mode(
1512 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1513 {
1514 /* Make sure that the metadata mode is not mixed */
1515 if (!desc->desc_metadata_mode) {
1516 if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1517 desc->desc_metadata_mode = mode;
1518 else
1519 return -ENOTSUPP;
1520 } else if (desc->desc_metadata_mode != mode) {
1521 return -EINVAL;
1522 }
1523
1524 return 0;
1525 }
1526
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1527 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1528 void *data, size_t len)
1529 {
1530 int ret;
1531
1532 if (!desc)
1533 return -EINVAL;
1534
1535 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1536 if (ret)
1537 return ret;
1538
1539 if (!desc->metadata_ops || !desc->metadata_ops->attach)
1540 return -ENOTSUPP;
1541
1542 return desc->metadata_ops->attach(desc, data, len);
1543 }
1544 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1545
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1546 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1547 size_t *payload_len, size_t *max_len)
1548 {
1549 int ret;
1550
1551 if (!desc)
1552 return ERR_PTR(-EINVAL);
1553
1554 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1555 if (ret)
1556 return ERR_PTR(ret);
1557
1558 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1559 return ERR_PTR(-ENOTSUPP);
1560
1561 return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1562 }
1563 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1564
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1565 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1566 size_t payload_len)
1567 {
1568 int ret;
1569
1570 if (!desc)
1571 return -EINVAL;
1572
1573 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1574 if (ret)
1575 return ret;
1576
1577 if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1578 return -ENOTSUPP;
1579
1580 return desc->metadata_ops->set_len(desc, payload_len);
1581 }
1582 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1583
1584 /**
1585 * dma_wait_for_async_tx - spin wait for a transaction to complete
1586 * @tx: in-flight transaction to wait on
1587 */
1588 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1589 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1590 {
1591 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1592
1593 if (!tx)
1594 return DMA_COMPLETE;
1595
1596 while (tx->cookie == -EBUSY) {
1597 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1598 dev_err(tx->chan->device->dev,
1599 "%s timeout waiting for descriptor submission\n",
1600 __func__);
1601 return DMA_ERROR;
1602 }
1603 cpu_relax();
1604 }
1605 return dma_sync_wait(tx->chan, tx->cookie);
1606 }
1607 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1608
1609 /**
1610 * dma_run_dependencies - process dependent operations on the target channel
1611 * @tx: transaction with dependencies
1612 *
1613 * Helper routine for DMA drivers to process (start) dependent operations
1614 * on their target channel.
1615 */
dma_run_dependencies(struct dma_async_tx_descriptor * tx)1616 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1617 {
1618 struct dma_async_tx_descriptor *dep = txd_next(tx);
1619 struct dma_async_tx_descriptor *dep_next;
1620 struct dma_chan *chan;
1621
1622 if (!dep)
1623 return;
1624
1625 /* we'll submit tx->next now, so clear the link */
1626 txd_clear_next(tx);
1627 chan = dep->chan;
1628
1629 /* keep submitting up until a channel switch is detected
1630 * in that case we will be called again as a result of
1631 * processing the interrupt from async_tx_channel_switch
1632 */
1633 for (; dep; dep = dep_next) {
1634 txd_lock(dep);
1635 txd_clear_parent(dep);
1636 dep_next = txd_next(dep);
1637 if (dep_next && dep_next->chan == chan)
1638 txd_clear_next(dep); /* ->next will be submitted */
1639 else
1640 dep_next = NULL; /* submit current dep and terminate */
1641 txd_unlock(dep);
1642
1643 dep->tx_submit(dep);
1644 }
1645
1646 chan->device->device_issue_pending(chan);
1647 }
1648 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1649
dma_bus_init(void)1650 static int __init dma_bus_init(void)
1651 {
1652 int err = dmaengine_init_unmap_pool();
1653
1654 if (err)
1655 return err;
1656
1657 err = class_register(&dma_devclass);
1658 if (!err)
1659 dmaengine_debugfs_init();
1660
1661 return err;
1662 }
1663 arch_initcall(dma_bus_init);
1664