1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static const struct ttm_place vram_placement_flags = {
34 .fpfn = 0,
35 .lpfn = 0,
36 .mem_type = TTM_PL_VRAM,
37 .flags = TTM_PL_FLAG_CACHED
38 };
39
40 static const struct ttm_place vram_ne_placement_flags = {
41 .fpfn = 0,
42 .lpfn = 0,
43 .mem_type = TTM_PL_VRAM,
44 .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
45 };
46
47 static const struct ttm_place sys_placement_flags = {
48 .fpfn = 0,
49 .lpfn = 0,
50 .mem_type = TTM_PL_SYSTEM,
51 .flags = TTM_PL_FLAG_CACHED
52 };
53
54 static const struct ttm_place sys_ne_placement_flags = {
55 .fpfn = 0,
56 .lpfn = 0,
57 .mem_type = TTM_PL_SYSTEM,
58 .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
59 };
60
61 static const struct ttm_place gmr_placement_flags = {
62 .fpfn = 0,
63 .lpfn = 0,
64 .mem_type = VMW_PL_GMR,
65 .flags = TTM_PL_FLAG_CACHED
66 };
67
68 static const struct ttm_place gmr_ne_placement_flags = {
69 .fpfn = 0,
70 .lpfn = 0,
71 .mem_type = VMW_PL_GMR,
72 .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
73 };
74
75 static const struct ttm_place mob_placement_flags = {
76 .fpfn = 0,
77 .lpfn = 0,
78 .mem_type = VMW_PL_MOB,
79 .flags = TTM_PL_FLAG_CACHED
80 };
81
82 static const struct ttm_place mob_ne_placement_flags = {
83 .fpfn = 0,
84 .lpfn = 0,
85 .mem_type = VMW_PL_MOB,
86 .flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
87 };
88
89 struct ttm_placement vmw_vram_placement = {
90 .num_placement = 1,
91 .placement = &vram_placement_flags,
92 .num_busy_placement = 1,
93 .busy_placement = &vram_placement_flags
94 };
95
96 static const struct ttm_place vram_gmr_placement_flags[] = {
97 {
98 .fpfn = 0,
99 .lpfn = 0,
100 .mem_type = TTM_PL_VRAM,
101 .flags = TTM_PL_FLAG_CACHED
102 }, {
103 .fpfn = 0,
104 .lpfn = 0,
105 .mem_type = VMW_PL_GMR,
106 .flags = TTM_PL_FLAG_CACHED
107 }
108 };
109
110 static const struct ttm_place gmr_vram_placement_flags[] = {
111 {
112 .fpfn = 0,
113 .lpfn = 0,
114 .mem_type = VMW_PL_GMR,
115 .flags = TTM_PL_FLAG_CACHED
116 }, {
117 .fpfn = 0,
118 .lpfn = 0,
119 .mem_type = TTM_PL_VRAM,
120 .flags = TTM_PL_FLAG_CACHED
121 }
122 };
123
124 struct ttm_placement vmw_vram_gmr_placement = {
125 .num_placement = 2,
126 .placement = vram_gmr_placement_flags,
127 .num_busy_placement = 1,
128 .busy_placement = &gmr_placement_flags
129 };
130
131 static const struct ttm_place vram_gmr_ne_placement_flags[] = {
132 {
133 .fpfn = 0,
134 .lpfn = 0,
135 .mem_type = TTM_PL_VRAM,
136 .flags = TTM_PL_FLAG_CACHED |
137 TTM_PL_FLAG_NO_EVICT
138 }, {
139 .fpfn = 0,
140 .lpfn = 0,
141 .mem_type = VMW_PL_GMR,
142 .flags = TTM_PL_FLAG_CACHED |
143 TTM_PL_FLAG_NO_EVICT
144 }
145 };
146
147 struct ttm_placement vmw_vram_gmr_ne_placement = {
148 .num_placement = 2,
149 .placement = vram_gmr_ne_placement_flags,
150 .num_busy_placement = 1,
151 .busy_placement = &gmr_ne_placement_flags
152 };
153
154 struct ttm_placement vmw_vram_sys_placement = {
155 .num_placement = 1,
156 .placement = &vram_placement_flags,
157 .num_busy_placement = 1,
158 .busy_placement = &sys_placement_flags
159 };
160
161 struct ttm_placement vmw_vram_ne_placement = {
162 .num_placement = 1,
163 .placement = &vram_ne_placement_flags,
164 .num_busy_placement = 1,
165 .busy_placement = &vram_ne_placement_flags
166 };
167
168 struct ttm_placement vmw_sys_placement = {
169 .num_placement = 1,
170 .placement = &sys_placement_flags,
171 .num_busy_placement = 1,
172 .busy_placement = &sys_placement_flags
173 };
174
175 struct ttm_placement vmw_sys_ne_placement = {
176 .num_placement = 1,
177 .placement = &sys_ne_placement_flags,
178 .num_busy_placement = 1,
179 .busy_placement = &sys_ne_placement_flags
180 };
181
182 static const struct ttm_place evictable_placement_flags[] = {
183 {
184 .fpfn = 0,
185 .lpfn = 0,
186 .mem_type = TTM_PL_SYSTEM,
187 .flags = TTM_PL_FLAG_CACHED
188 }, {
189 .fpfn = 0,
190 .lpfn = 0,
191 .mem_type = TTM_PL_VRAM,
192 .flags = TTM_PL_FLAG_CACHED
193 }, {
194 .fpfn = 0,
195 .lpfn = 0,
196 .mem_type = VMW_PL_GMR,
197 .flags = TTM_PL_FLAG_CACHED
198 }, {
199 .fpfn = 0,
200 .lpfn = 0,
201 .mem_type = VMW_PL_MOB,
202 .flags = TTM_PL_FLAG_CACHED
203 }
204 };
205
206 static const struct ttm_place nonfixed_placement_flags[] = {
207 {
208 .fpfn = 0,
209 .lpfn = 0,
210 .mem_type = TTM_PL_SYSTEM,
211 .flags = TTM_PL_FLAG_CACHED
212 }, {
213 .fpfn = 0,
214 .lpfn = 0,
215 .mem_type = VMW_PL_GMR,
216 .flags = TTM_PL_FLAG_CACHED
217 }, {
218 .fpfn = 0,
219 .lpfn = 0,
220 .mem_type = VMW_PL_MOB,
221 .flags = TTM_PL_FLAG_CACHED
222 }
223 };
224
225 struct ttm_placement vmw_evictable_placement = {
226 .num_placement = 4,
227 .placement = evictable_placement_flags,
228 .num_busy_placement = 1,
229 .busy_placement = &sys_placement_flags
230 };
231
232 struct ttm_placement vmw_srf_placement = {
233 .num_placement = 1,
234 .num_busy_placement = 2,
235 .placement = &gmr_placement_flags,
236 .busy_placement = gmr_vram_placement_flags
237 };
238
239 struct ttm_placement vmw_mob_placement = {
240 .num_placement = 1,
241 .num_busy_placement = 1,
242 .placement = &mob_placement_flags,
243 .busy_placement = &mob_placement_flags
244 };
245
246 struct ttm_placement vmw_mob_ne_placement = {
247 .num_placement = 1,
248 .num_busy_placement = 1,
249 .placement = &mob_ne_placement_flags,
250 .busy_placement = &mob_ne_placement_flags
251 };
252
253 struct ttm_placement vmw_nonfixed_placement = {
254 .num_placement = 3,
255 .placement = nonfixed_placement_flags,
256 .num_busy_placement = 1,
257 .busy_placement = &sys_placement_flags
258 };
259
260 struct vmw_ttm_tt {
261 struct ttm_dma_tt dma_ttm;
262 struct vmw_private *dev_priv;
263 int gmr_id;
264 struct vmw_mob *mob;
265 int mem_type;
266 struct sg_table sgt;
267 struct vmw_sg_table vsgt;
268 uint64_t sg_alloc_size;
269 bool mapped;
270 bool bound;
271 };
272
273 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
274
275 /**
276 * Helper functions to advance a struct vmw_piter iterator.
277 *
278 * @viter: Pointer to the iterator.
279 *
280 * These functions return false if past the end of the list,
281 * true otherwise. Functions are selected depending on the current
282 * DMA mapping mode.
283 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)284 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
285 {
286 return ++(viter->i) < viter->num_pages;
287 }
288
__vmw_piter_sg_next(struct vmw_piter * viter)289 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
290 {
291 bool ret = __vmw_piter_non_sg_next(viter);
292
293 return __sg_page_iter_dma_next(&viter->iter) && ret;
294 }
295
296
297 /**
298 * Helper functions to return a pointer to the current page.
299 *
300 * @viter: Pointer to the iterator
301 *
302 * These functions return a pointer to the page currently
303 * pointed to by @viter. Functions are selected depending on the
304 * current mapping mode.
305 */
__vmw_piter_non_sg_page(struct vmw_piter * viter)306 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
307 {
308 return viter->pages[viter->i];
309 }
310
311 /**
312 * Helper functions to return the DMA address of the current page.
313 *
314 * @viter: Pointer to the iterator
315 *
316 * These functions return the DMA address of the page currently
317 * pointed to by @viter. Functions are selected depending on the
318 * current mapping mode.
319 */
__vmw_piter_phys_addr(struct vmw_piter * viter)320 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
321 {
322 return page_to_phys(viter->pages[viter->i]);
323 }
324
__vmw_piter_dma_addr(struct vmw_piter * viter)325 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
326 {
327 return viter->addrs[viter->i];
328 }
329
__vmw_piter_sg_addr(struct vmw_piter * viter)330 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
331 {
332 return sg_page_iter_dma_address(&viter->iter);
333 }
334
335
336 /**
337 * vmw_piter_start - Initialize a struct vmw_piter.
338 *
339 * @viter: Pointer to the iterator to initialize
340 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
341 *
342 * Note that we're following the convention of __sg_page_iter_start, so that
343 * the iterator doesn't point to a valid page after initialization; it has
344 * to be advanced one step first.
345 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)346 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
347 unsigned long p_offset)
348 {
349 viter->i = p_offset - 1;
350 viter->num_pages = vsgt->num_pages;
351 viter->page = &__vmw_piter_non_sg_page;
352 viter->pages = vsgt->pages;
353 switch (vsgt->mode) {
354 case vmw_dma_phys:
355 viter->next = &__vmw_piter_non_sg_next;
356 viter->dma_address = &__vmw_piter_phys_addr;
357 break;
358 case vmw_dma_alloc_coherent:
359 viter->next = &__vmw_piter_non_sg_next;
360 viter->dma_address = &__vmw_piter_dma_addr;
361 viter->addrs = vsgt->addrs;
362 break;
363 case vmw_dma_map_populate:
364 case vmw_dma_map_bind:
365 viter->next = &__vmw_piter_sg_next;
366 viter->dma_address = &__vmw_piter_sg_addr;
367 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
368 vsgt->sgt->orig_nents, p_offset);
369 break;
370 default:
371 BUG();
372 }
373 }
374
375 /**
376 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
377 * TTM pages
378 *
379 * @vmw_tt: Pointer to a struct vmw_ttm_backend
380 *
381 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
382 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)383 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
384 {
385 struct device *dev = vmw_tt->dev_priv->dev->dev;
386
387 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
388 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
389 }
390
391 /**
392 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
393 *
394 * @vmw_tt: Pointer to a struct vmw_ttm_backend
395 *
396 * This function is used to get device addresses from the kernel DMA layer.
397 * However, it's violating the DMA API in that when this operation has been
398 * performed, it's illegal for the CPU to write to the pages without first
399 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
400 * therefore only legal to call this function if we know that the function
401 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
402 * a CPU write buffer flush.
403 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)404 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
405 {
406 struct device *dev = vmw_tt->dev_priv->dev->dev;
407
408 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
409 }
410
411 /**
412 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
413 *
414 * @vmw_tt: Pointer to a struct vmw_ttm_tt
415 *
416 * Select the correct function for and make sure the TTM pages are
417 * visible to the device. Allocate storage for the device mappings.
418 * If a mapping has already been performed, indicated by the storage
419 * pointer being non NULL, the function returns success.
420 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)421 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
422 {
423 struct vmw_private *dev_priv = vmw_tt->dev_priv;
424 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
425 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
426 struct ttm_operation_ctx ctx = {
427 .interruptible = true,
428 .no_wait_gpu = false
429 };
430 struct vmw_piter iter;
431 dma_addr_t old;
432 int ret = 0;
433 static size_t sgl_size;
434 static size_t sgt_size;
435 struct scatterlist *sg;
436
437 if (vmw_tt->mapped)
438 return 0;
439
440 vsgt->mode = dev_priv->map_mode;
441 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
442 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
443 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
444 vsgt->sgt = &vmw_tt->sgt;
445
446 switch (dev_priv->map_mode) {
447 case vmw_dma_map_bind:
448 case vmw_dma_map_populate:
449 if (unlikely(!sgl_size)) {
450 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
451 sgt_size = ttm_round_pot(sizeof(struct sg_table));
452 }
453 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
454 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
455 if (unlikely(ret != 0))
456 return ret;
457
458 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
459 vsgt->num_pages, 0,
460 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
461 dma_get_max_seg_size(dev_priv->dev->dev),
462 NULL, 0, GFP_KERNEL);
463 if (IS_ERR(sg)) {
464 ret = PTR_ERR(sg);
465 goto out_sg_alloc_fail;
466 }
467
468 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
469 uint64_t over_alloc =
470 sgl_size * (vsgt->num_pages -
471 vmw_tt->sgt.orig_nents);
472
473 ttm_mem_global_free(glob, over_alloc);
474 vmw_tt->sg_alloc_size -= over_alloc;
475 }
476
477 ret = vmw_ttm_map_for_dma(vmw_tt);
478 if (unlikely(ret != 0))
479 goto out_map_fail;
480
481 break;
482 default:
483 break;
484 }
485
486 old = ~((dma_addr_t) 0);
487 vmw_tt->vsgt.num_regions = 0;
488 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
489 dma_addr_t cur = vmw_piter_dma_addr(&iter);
490
491 if (cur != old + PAGE_SIZE)
492 vmw_tt->vsgt.num_regions++;
493 old = cur;
494 }
495
496 vmw_tt->mapped = true;
497 return 0;
498
499 out_map_fail:
500 sg_free_table(vmw_tt->vsgt.sgt);
501 vmw_tt->vsgt.sgt = NULL;
502 out_sg_alloc_fail:
503 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
504 return ret;
505 }
506
507 /**
508 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
509 *
510 * @vmw_tt: Pointer to a struct vmw_ttm_tt
511 *
512 * Tear down any previously set up device DMA mappings and free
513 * any storage space allocated for them. If there are no mappings set up,
514 * this function is a NOP.
515 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)516 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
517 {
518 struct vmw_private *dev_priv = vmw_tt->dev_priv;
519
520 if (!vmw_tt->vsgt.sgt)
521 return;
522
523 switch (dev_priv->map_mode) {
524 case vmw_dma_map_bind:
525 case vmw_dma_map_populate:
526 vmw_ttm_unmap_from_dma(vmw_tt);
527 sg_free_table(vmw_tt->vsgt.sgt);
528 vmw_tt->vsgt.sgt = NULL;
529 ttm_mem_global_free(vmw_mem_glob(dev_priv),
530 vmw_tt->sg_alloc_size);
531 break;
532 default:
533 break;
534 }
535 vmw_tt->mapped = false;
536 }
537
538 /**
539 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
540 * TTM buffer object
541 *
542 * @bo: Pointer to a struct ttm_buffer_object
543 *
544 * Returns a pointer to a struct vmw_sg_table object. The object should
545 * not be freed after use.
546 * Note that for the device addresses to be valid, the buffer object must
547 * either be reserved or pinned.
548 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)549 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
550 {
551 struct vmw_ttm_tt *vmw_tt =
552 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
553
554 return &vmw_tt->vsgt;
555 }
556
557
vmw_ttm_bind(struct ttm_bo_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)558 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
559 struct ttm_tt *ttm, struct ttm_resource *bo_mem)
560 {
561 struct vmw_ttm_tt *vmw_be =
562 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
563 int ret = 0;
564
565 if (!bo_mem)
566 return -EINVAL;
567
568 if (vmw_be->bound)
569 return 0;
570
571 ret = vmw_ttm_map_dma(vmw_be);
572 if (unlikely(ret != 0))
573 return ret;
574
575 vmw_be->gmr_id = bo_mem->start;
576 vmw_be->mem_type = bo_mem->mem_type;
577
578 switch (bo_mem->mem_type) {
579 case VMW_PL_GMR:
580 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
581 ttm->num_pages, vmw_be->gmr_id);
582 break;
583 case VMW_PL_MOB:
584 if (unlikely(vmw_be->mob == NULL)) {
585 vmw_be->mob =
586 vmw_mob_create(ttm->num_pages);
587 if (unlikely(vmw_be->mob == NULL))
588 return -ENOMEM;
589 }
590
591 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
592 &vmw_be->vsgt, ttm->num_pages,
593 vmw_be->gmr_id);
594 break;
595 default:
596 BUG();
597 }
598 vmw_be->bound = true;
599 return ret;
600 }
601
vmw_ttm_unbind(struct ttm_bo_device * bdev,struct ttm_tt * ttm)602 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
603 struct ttm_tt *ttm)
604 {
605 struct vmw_ttm_tt *vmw_be =
606 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
607
608 if (!vmw_be->bound)
609 return;
610
611 switch (vmw_be->mem_type) {
612 case VMW_PL_GMR:
613 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
614 break;
615 case VMW_PL_MOB:
616 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
617 break;
618 default:
619 BUG();
620 }
621
622 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
623 vmw_ttm_unmap_dma(vmw_be);
624 vmw_be->bound = false;
625 }
626
627
vmw_ttm_destroy(struct ttm_bo_device * bdev,struct ttm_tt * ttm)628 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
629 {
630 struct vmw_ttm_tt *vmw_be =
631 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
632
633 vmw_ttm_unbind(bdev, ttm);
634 ttm_tt_destroy_common(bdev, ttm);
635 vmw_ttm_unmap_dma(vmw_be);
636 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
637 ttm_dma_tt_fini(&vmw_be->dma_ttm);
638 else
639 ttm_tt_fini(ttm);
640
641 if (vmw_be->mob)
642 vmw_mob_destroy(vmw_be->mob);
643
644 kfree(vmw_be);
645 }
646
647
vmw_ttm_populate(struct ttm_bo_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)648 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
649 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
650 {
651 struct vmw_ttm_tt *vmw_tt =
652 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
653 struct vmw_private *dev_priv = vmw_tt->dev_priv;
654 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
655 int ret;
656
657 if (ttm_tt_is_populated(ttm))
658 return 0;
659
660 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
661 size_t size =
662 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
663 ret = ttm_mem_global_alloc(glob, size, ctx);
664 if (unlikely(ret != 0))
665 return ret;
666
667 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
668 ctx);
669 if (unlikely(ret != 0))
670 ttm_mem_global_free(glob, size);
671 } else
672 ret = ttm_pool_populate(ttm, ctx);
673
674 return ret;
675 }
676
vmw_ttm_unpopulate(struct ttm_bo_device * bdev,struct ttm_tt * ttm)677 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
678 struct ttm_tt *ttm)
679 {
680 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
681 dma_ttm.ttm);
682 struct vmw_private *dev_priv = vmw_tt->dev_priv;
683 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
684
685
686 if (vmw_tt->mob) {
687 vmw_mob_destroy(vmw_tt->mob);
688 vmw_tt->mob = NULL;
689 }
690
691 vmw_ttm_unmap_dma(vmw_tt);
692 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
693 size_t size =
694 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
695
696 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
697 ttm_mem_global_free(glob, size);
698 } else
699 ttm_pool_unpopulate(ttm);
700 }
701
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)702 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
703 uint32_t page_flags)
704 {
705 struct vmw_ttm_tt *vmw_be;
706 int ret;
707
708 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
709 if (!vmw_be)
710 return NULL;
711
712 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
713 vmw_be->mob = NULL;
714
715 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
716 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
717 else
718 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
719 if (unlikely(ret != 0))
720 goto out_no_init;
721
722 return &vmw_be->dma_ttm.ttm;
723 out_no_init:
724 kfree(vmw_be);
725 return NULL;
726 }
727
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)728 static void vmw_evict_flags(struct ttm_buffer_object *bo,
729 struct ttm_placement *placement)
730 {
731 *placement = vmw_sys_placement;
732 }
733
vmw_verify_access(struct ttm_buffer_object * bo,struct file * filp)734 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
735 {
736 struct ttm_object_file *tfile =
737 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
738
739 return vmw_user_bo_verify_access(bo, tfile);
740 }
741
vmw_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_resource * mem)742 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
743 {
744 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
745
746 switch (mem->mem_type) {
747 case TTM_PL_SYSTEM:
748 case VMW_PL_GMR:
749 case VMW_PL_MOB:
750 return 0;
751 case TTM_PL_VRAM:
752 mem->bus.offset = (mem->start << PAGE_SHIFT) +
753 dev_priv->vram_start;
754 mem->bus.is_iomem = true;
755 break;
756 default:
757 return -EINVAL;
758 }
759 return 0;
760 }
761
762 /**
763 * vmw_move_notify - TTM move_notify_callback
764 *
765 * @bo: The TTM buffer object about to move.
766 * @mem: The struct ttm_resource indicating to what memory
767 * region the move is taking place.
768 *
769 * Calls move_notify for all subsystems needing it.
770 * (currently only resources).
771 */
vmw_move_notify(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * mem)772 static void vmw_move_notify(struct ttm_buffer_object *bo,
773 bool evict,
774 struct ttm_resource *mem)
775 {
776 vmw_bo_move_notify(bo, mem);
777 vmw_query_move_notify(bo, mem);
778 }
779
780
781 /**
782 * vmw_swap_notify - TTM move_notify_callback
783 *
784 * @bo: The TTM buffer object about to be swapped out.
785 */
vmw_swap_notify(struct ttm_buffer_object * bo)786 static void vmw_swap_notify(struct ttm_buffer_object *bo)
787 {
788 vmw_bo_swap_notify(bo);
789 (void) ttm_bo_wait(bo, false, false);
790 }
791
792
793 struct ttm_bo_driver vmw_bo_driver = {
794 .ttm_tt_create = &vmw_ttm_tt_create,
795 .ttm_tt_populate = &vmw_ttm_populate,
796 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
797 .ttm_tt_bind = &vmw_ttm_bind,
798 .ttm_tt_unbind = &vmw_ttm_unbind,
799 .ttm_tt_destroy = &vmw_ttm_destroy,
800 .eviction_valuable = ttm_bo_eviction_valuable,
801 .evict_flags = vmw_evict_flags,
802 .move = NULL,
803 .verify_access = vmw_verify_access,
804 .move_notify = vmw_move_notify,
805 .swap_notify = vmw_swap_notify,
806 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
807 };
808
vmw_bo_create_and_populate(struct vmw_private * dev_priv,unsigned long bo_size,struct ttm_buffer_object ** bo_p)809 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
810 unsigned long bo_size,
811 struct ttm_buffer_object **bo_p)
812 {
813 struct ttm_operation_ctx ctx = {
814 .interruptible = false,
815 .no_wait_gpu = false
816 };
817 struct ttm_buffer_object *bo;
818 int ret;
819
820 ret = ttm_bo_create(&dev_priv->bdev, bo_size,
821 ttm_bo_type_device,
822 &vmw_sys_ne_placement,
823 0, false, &bo);
824
825 if (unlikely(ret != 0))
826 return ret;
827
828 ret = ttm_bo_reserve(bo, false, true, NULL);
829 BUG_ON(ret != 0);
830 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
831 if (likely(ret == 0)) {
832 struct vmw_ttm_tt *vmw_tt =
833 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
834 ret = vmw_ttm_map_dma(vmw_tt);
835 }
836
837 ttm_bo_unreserve(bo);
838
839 if (likely(ret == 0))
840 *bo_p = bo;
841 return ret;
842 }
843