1 /*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 #include "netdev.h"
73
74 #undef pr_fmt
75 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
76
77 /*
78 * min buffers we want to have per context, after driver
79 */
80 #define HFI1_MIN_USER_CTXT_BUFCNT 7
81
82 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
83 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
84
85 #define NUM_IB_PORTS 1
86
87 /*
88 * Number of user receive contexts we are configured to use (to allow for more
89 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
90 */
91 int num_user_contexts = -1;
92 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
93 MODULE_PARM_DESC(
94 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
95
96 uint krcvqs[RXE_NUM_DATA_VL];
97 int krcvqsset;
98 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
99 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
100
101 /* computed based on above array */
102 unsigned long n_krcvqs;
103
104 static unsigned hfi1_rcvarr_split = 25;
105 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
106 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
107
108 static uint eager_buffer_size = (8 << 20); /* 8MB */
109 module_param(eager_buffer_size, uint, S_IRUGO);
110 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
111
112 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
113 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
114 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
115
116 static uint hfi1_hdrq_entsize = 32;
117 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
118 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
119
120 unsigned int user_credit_return_threshold = 33; /* default is 33% */
121 module_param(user_credit_return_threshold, uint, S_IRUGO);
122 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
123
124 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
125
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)126 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
127 struct hfi1_pportdata *ppd)
128 {
129 struct hfi1_ctxtdata *rcd;
130 int ret;
131
132 /* Control context has to be always 0 */
133 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
134
135 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
136 if (ret < 0) {
137 dd_dev_err(dd, "Kernel receive context allocation failed\n");
138 return ret;
139 }
140
141 /*
142 * Set up the kernel context flags here and now because they use
143 * default values for all receive side memories. User contexts will
144 * be handled as they are created.
145 */
146 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
147 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
148 HFI1_CAP_KGET(NODROP_EGR_FULL) |
149 HFI1_CAP_KGET(DMA_RTAIL);
150
151 /* Control context must use DMA_RTAIL */
152 if (rcd->ctxt == HFI1_CTRL_CTXT)
153 rcd->flags |= HFI1_CAP_DMA_RTAIL;
154 rcd->fast_handler = get_dma_rtail_setting(rcd) ?
155 handle_receive_interrupt_dma_rtail :
156 handle_receive_interrupt_nodma_rtail;
157
158 hfi1_set_seq_cnt(rcd, 1);
159
160 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
161 if (!rcd->sc) {
162 dd_dev_err(dd, "Kernel send context allocation failed\n");
163 return -ENOMEM;
164 }
165 hfi1_init_ctxt(rcd->sc);
166
167 return 0;
168 }
169
170 /*
171 * Create the receive context array and one or more kernel contexts
172 */
hfi1_create_kctxts(struct hfi1_devdata * dd)173 int hfi1_create_kctxts(struct hfi1_devdata *dd)
174 {
175 u16 i;
176 int ret;
177
178 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
179 GFP_KERNEL, dd->node);
180 if (!dd->rcd)
181 return -ENOMEM;
182
183 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
184 ret = hfi1_create_kctxt(dd, dd->pport);
185 if (ret)
186 goto bail;
187 }
188
189 return 0;
190 bail:
191 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
192 hfi1_free_ctxt(dd->rcd[i]);
193
194 /* All the contexts should be freed, free the array */
195 kfree(dd->rcd);
196 dd->rcd = NULL;
197 return ret;
198 }
199
200 /*
201 * Helper routines for the receive context reference count (rcd and uctxt).
202 */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)203 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
204 {
205 kref_init(&rcd->kref);
206 }
207
208 /**
209 * hfi1_rcd_free - When reference is zero clean up.
210 * @kref: pointer to an initialized rcd data structure
211 *
212 */
hfi1_rcd_free(struct kref * kref)213 static void hfi1_rcd_free(struct kref *kref)
214 {
215 unsigned long flags;
216 struct hfi1_ctxtdata *rcd =
217 container_of(kref, struct hfi1_ctxtdata, kref);
218
219 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
220 rcd->dd->rcd[rcd->ctxt] = NULL;
221 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
222
223 hfi1_free_ctxtdata(rcd->dd, rcd);
224
225 kfree(rcd);
226 }
227
228 /**
229 * hfi1_rcd_put - decrement reference for rcd
230 * @rcd: pointer to an initialized rcd data structure
231 *
232 * Use this to put a reference after the init.
233 */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)234 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
235 {
236 if (rcd)
237 return kref_put(&rcd->kref, hfi1_rcd_free);
238
239 return 0;
240 }
241
242 /**
243 * hfi1_rcd_get - increment reference for rcd
244 * @rcd: pointer to an initialized rcd data structure
245 *
246 * Use this to get a reference after the init.
247 *
248 * Return : reflect kref_get_unless_zero(), which returns non-zero on
249 * increment, otherwise 0.
250 */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)251 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
252 {
253 return kref_get_unless_zero(&rcd->kref);
254 }
255
256 /**
257 * allocate_rcd_index - allocate an rcd index from the rcd array
258 * @dd: pointer to a valid devdata structure
259 * @rcd: rcd data structure to assign
260 * @index: pointer to index that is allocated
261 *
262 * Find an empty index in the rcd array, and assign the given rcd to it.
263 * If the array is full, we are EBUSY.
264 *
265 */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)266 static int allocate_rcd_index(struct hfi1_devdata *dd,
267 struct hfi1_ctxtdata *rcd, u16 *index)
268 {
269 unsigned long flags;
270 u16 ctxt;
271
272 spin_lock_irqsave(&dd->uctxt_lock, flags);
273 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
274 if (!dd->rcd[ctxt])
275 break;
276
277 if (ctxt < dd->num_rcv_contexts) {
278 rcd->ctxt = ctxt;
279 dd->rcd[ctxt] = rcd;
280 hfi1_rcd_init(rcd);
281 }
282 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
283
284 if (ctxt >= dd->num_rcv_contexts)
285 return -EBUSY;
286
287 *index = ctxt;
288
289 return 0;
290 }
291
292 /**
293 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
294 * array
295 * @dd: pointer to a valid devdata structure
296 * @ctxt: the index of an possilbe rcd
297 *
298 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
299 * ctxt index is valid.
300 *
301 * The caller is responsible for making the _put().
302 *
303 */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)304 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
305 u16 ctxt)
306 {
307 if (ctxt < dd->num_rcv_contexts)
308 return hfi1_rcd_get_by_index(dd, ctxt);
309
310 return NULL;
311 }
312
313 /**
314 * hfi1_rcd_get_by_index
315 * @dd: pointer to a valid devdata structure
316 * @ctxt: the index of an possilbe rcd
317 *
318 * We need to protect access to the rcd array. If access is needed to
319 * one or more index, get the protecting spinlock and then increment the
320 * kref.
321 *
322 * The caller is responsible for making the _put().
323 *
324 */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)325 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
326 {
327 unsigned long flags;
328 struct hfi1_ctxtdata *rcd = NULL;
329
330 spin_lock_irqsave(&dd->uctxt_lock, flags);
331 if (dd->rcd[ctxt]) {
332 rcd = dd->rcd[ctxt];
333 if (!hfi1_rcd_get(rcd))
334 rcd = NULL;
335 }
336 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
337
338 return rcd;
339 }
340
341 /*
342 * Common code for user and kernel context create and setup.
343 * NOTE: the initial kref is done here (hf1_rcd_init()).
344 */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)345 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
346 struct hfi1_ctxtdata **context)
347 {
348 struct hfi1_devdata *dd = ppd->dd;
349 struct hfi1_ctxtdata *rcd;
350 unsigned kctxt_ngroups = 0;
351 u32 base;
352
353 if (dd->rcv_entries.nctxt_extra >
354 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
355 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
356 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
357 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
358 if (rcd) {
359 u32 rcvtids, max_entries;
360 u16 ctxt;
361 int ret;
362
363 ret = allocate_rcd_index(dd, rcd, &ctxt);
364 if (ret) {
365 *context = NULL;
366 kfree(rcd);
367 return ret;
368 }
369
370 INIT_LIST_HEAD(&rcd->qp_wait_list);
371 hfi1_exp_tid_group_init(rcd);
372 rcd->ppd = ppd;
373 rcd->dd = dd;
374 rcd->numa_id = numa;
375 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
376 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
377 rcd->slow_handler = handle_receive_interrupt;
378 rcd->do_interrupt = rcd->slow_handler;
379 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
380
381 mutex_init(&rcd->exp_mutex);
382 spin_lock_init(&rcd->exp_lock);
383 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
384 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
385
386 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
387
388 /*
389 * Calculate the context's RcvArray entry starting point.
390 * We do this here because we have to take into account all
391 * the RcvArray entries that previous context would have
392 * taken and we have to account for any extra groups assigned
393 * to the static (kernel) or dynamic (vnic/user) contexts.
394 */
395 if (ctxt < dd->first_dyn_alloc_ctxt) {
396 if (ctxt < kctxt_ngroups) {
397 base = ctxt * (dd->rcv_entries.ngroups + 1);
398 rcd->rcv_array_groups++;
399 } else {
400 base = kctxt_ngroups +
401 (ctxt * dd->rcv_entries.ngroups);
402 }
403 } else {
404 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
405
406 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
407 kctxt_ngroups);
408 if (ct < dd->rcv_entries.nctxt_extra) {
409 base += ct * (dd->rcv_entries.ngroups + 1);
410 rcd->rcv_array_groups++;
411 } else {
412 base += dd->rcv_entries.nctxt_extra +
413 (ct * dd->rcv_entries.ngroups);
414 }
415 }
416 rcd->eager_base = base * dd->rcv_entries.group_size;
417
418 rcd->rcvhdrq_cnt = rcvhdrcnt;
419 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
420 rcd->rhf_offset =
421 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
422 /*
423 * Simple Eager buffer allocation: we have already pre-allocated
424 * the number of RcvArray entry groups. Each ctxtdata structure
425 * holds the number of groups for that context.
426 *
427 * To follow CSR requirements and maintain cacheline alignment,
428 * make sure all sizes and bases are multiples of group_size.
429 *
430 * The expected entry count is what is left after assigning
431 * eager.
432 */
433 max_entries = rcd->rcv_array_groups *
434 dd->rcv_entries.group_size;
435 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
436 rcd->egrbufs.count = round_down(rcvtids,
437 dd->rcv_entries.group_size);
438 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
439 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
440 rcd->ctxt);
441 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
442 }
443 hfi1_cdbg(PROC,
444 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
445 rcd->ctxt, rcd->egrbufs.count);
446
447 /*
448 * Allocate array that will hold the eager buffer accounting
449 * data.
450 * This will allocate the maximum possible buffer count based
451 * on the value of the RcvArray split parameter.
452 * The resulting value will be rounded down to the closest
453 * multiple of dd->rcv_entries.group_size.
454 */
455 rcd->egrbufs.buffers =
456 kcalloc_node(rcd->egrbufs.count,
457 sizeof(*rcd->egrbufs.buffers),
458 GFP_KERNEL, numa);
459 if (!rcd->egrbufs.buffers)
460 goto bail;
461 rcd->egrbufs.rcvtids =
462 kcalloc_node(rcd->egrbufs.count,
463 sizeof(*rcd->egrbufs.rcvtids),
464 GFP_KERNEL, numa);
465 if (!rcd->egrbufs.rcvtids)
466 goto bail;
467 rcd->egrbufs.size = eager_buffer_size;
468 /*
469 * The size of the buffers programmed into the RcvArray
470 * entries needs to be big enough to handle the highest
471 * MTU supported.
472 */
473 if (rcd->egrbufs.size < hfi1_max_mtu) {
474 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
475 hfi1_cdbg(PROC,
476 "ctxt%u: eager bufs size too small. Adjusting to %u\n",
477 rcd->ctxt, rcd->egrbufs.size);
478 }
479 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
480
481 /* Applicable only for statically created kernel contexts */
482 if (ctxt < dd->first_dyn_alloc_ctxt) {
483 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
484 GFP_KERNEL, numa);
485 if (!rcd->opstats)
486 goto bail;
487
488 /* Initialize TID flow generations for the context */
489 hfi1_kern_init_ctxt_generations(rcd);
490 }
491
492 *context = rcd;
493 return 0;
494 }
495
496 bail:
497 *context = NULL;
498 hfi1_free_ctxt(rcd);
499 return -ENOMEM;
500 }
501
502 /**
503 * hfi1_free_ctxt
504 * @rcd: pointer to an initialized rcd data structure
505 *
506 * This wrapper is the free function that matches hfi1_create_ctxtdata().
507 * When a context is done being used (kernel or user), this function is called
508 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
509 * Other users of the context do a get/put sequence to make sure that the
510 * structure isn't removed while in use.
511 */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)512 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
513 {
514 hfi1_rcd_put(rcd);
515 }
516
517 /*
518 * Select the largest ccti value over all SLs to determine the intra-
519 * packet gap for the link.
520 *
521 * called with cca_timer_lock held (to protect access to cca_timer
522 * array), and rcu_read_lock() (to protect access to cc_state).
523 */
set_link_ipg(struct hfi1_pportdata * ppd)524 void set_link_ipg(struct hfi1_pportdata *ppd)
525 {
526 struct hfi1_devdata *dd = ppd->dd;
527 struct cc_state *cc_state;
528 int i;
529 u16 cce, ccti_limit, max_ccti = 0;
530 u16 shift, mult;
531 u64 src;
532 u32 current_egress_rate; /* Mbits /sec */
533 u64 max_pkt_time;
534 /*
535 * max_pkt_time is the maximum packet egress time in units
536 * of the fabric clock period 1/(805 MHz).
537 */
538
539 cc_state = get_cc_state(ppd);
540
541 if (!cc_state)
542 /*
543 * This should _never_ happen - rcu_read_lock() is held,
544 * and set_link_ipg() should not be called if cc_state
545 * is NULL.
546 */
547 return;
548
549 for (i = 0; i < OPA_MAX_SLS; i++) {
550 u16 ccti = ppd->cca_timer[i].ccti;
551
552 if (ccti > max_ccti)
553 max_ccti = ccti;
554 }
555
556 ccti_limit = cc_state->cct.ccti_limit;
557 if (max_ccti > ccti_limit)
558 max_ccti = ccti_limit;
559
560 cce = cc_state->cct.entries[max_ccti].entry;
561 shift = (cce & 0xc000) >> 14;
562 mult = (cce & 0x3fff);
563
564 current_egress_rate = active_egress_rate(ppd);
565
566 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
567
568 src = (max_pkt_time >> shift) * mult;
569
570 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
571 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
572
573 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
574 }
575
cca_timer_fn(struct hrtimer * t)576 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
577 {
578 struct cca_timer *cca_timer;
579 struct hfi1_pportdata *ppd;
580 int sl;
581 u16 ccti_timer, ccti_min;
582 struct cc_state *cc_state;
583 unsigned long flags;
584 enum hrtimer_restart ret = HRTIMER_NORESTART;
585
586 cca_timer = container_of(t, struct cca_timer, hrtimer);
587 ppd = cca_timer->ppd;
588 sl = cca_timer->sl;
589
590 rcu_read_lock();
591
592 cc_state = get_cc_state(ppd);
593
594 if (!cc_state) {
595 rcu_read_unlock();
596 return HRTIMER_NORESTART;
597 }
598
599 /*
600 * 1) decrement ccti for SL
601 * 2) calculate IPG for link (set_link_ipg())
602 * 3) restart timer, unless ccti is at min value
603 */
604
605 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
606 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
607
608 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
609
610 if (cca_timer->ccti > ccti_min) {
611 cca_timer->ccti--;
612 set_link_ipg(ppd);
613 }
614
615 if (cca_timer->ccti > ccti_min) {
616 unsigned long nsec = 1024 * ccti_timer;
617 /* ccti_timer is in units of 1.024 usec */
618 hrtimer_forward_now(t, ns_to_ktime(nsec));
619 ret = HRTIMER_RESTART;
620 }
621
622 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
623 rcu_read_unlock();
624 return ret;
625 }
626
627 /*
628 * Common code for initializing the physical port structure.
629 */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u8 port)630 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
631 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
632 {
633 int i;
634 uint default_pkey_idx;
635 struct cc_state *cc_state;
636
637 ppd->dd = dd;
638 ppd->hw_pidx = hw_pidx;
639 ppd->port = port; /* IB port number, not index */
640 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
641 /*
642 * There are C_VL_COUNT number of PortVLXmitWait counters.
643 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
644 */
645 for (i = 0; i < C_VL_COUNT + 1; i++) {
646 ppd->port_vl_xmit_wait_last[i] = 0;
647 ppd->vl_xmit_flit_cnt[i] = 0;
648 }
649
650 default_pkey_idx = 1;
651
652 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
653 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
654 ppd->pkeys[0] = 0x8001;
655
656 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
657 INIT_WORK(&ppd->link_up_work, handle_link_up);
658 INIT_WORK(&ppd->link_down_work, handle_link_down);
659 INIT_WORK(&ppd->freeze_work, handle_freeze);
660 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
661 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
662 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
663 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
664 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
665 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
666
667 mutex_init(&ppd->hls_lock);
668 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
669
670 ppd->qsfp_info.ppd = ppd;
671 ppd->sm_trap_qp = 0x0;
672 ppd->sa_qp = 0x1;
673
674 ppd->hfi1_wq = NULL;
675
676 spin_lock_init(&ppd->cca_timer_lock);
677
678 for (i = 0; i < OPA_MAX_SLS; i++) {
679 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
680 HRTIMER_MODE_REL);
681 ppd->cca_timer[i].ppd = ppd;
682 ppd->cca_timer[i].sl = i;
683 ppd->cca_timer[i].ccti = 0;
684 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
685 }
686
687 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
688
689 spin_lock_init(&ppd->cc_state_lock);
690 spin_lock_init(&ppd->cc_log_lock);
691 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
692 RCU_INIT_POINTER(ppd->cc_state, cc_state);
693 if (!cc_state)
694 goto bail;
695 return;
696
697 bail:
698 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
699 }
700
701 /*
702 * Do initialization for device that is only needed on
703 * first detect, not on resets.
704 */
loadtime_init(struct hfi1_devdata * dd)705 static int loadtime_init(struct hfi1_devdata *dd)
706 {
707 return 0;
708 }
709
710 /**
711 * init_after_reset - re-initialize after a reset
712 * @dd: the hfi1_ib device
713 *
714 * sanity check at least some of the values after reset, and
715 * ensure no receive or transmit (explicitly, in case reset
716 * failed
717 */
init_after_reset(struct hfi1_devdata * dd)718 static int init_after_reset(struct hfi1_devdata *dd)
719 {
720 int i;
721 struct hfi1_ctxtdata *rcd;
722 /*
723 * Ensure chip does no sends or receives, tail updates, or
724 * pioavail updates while we re-initialize. This is mostly
725 * for the driver data structures, not chip registers.
726 */
727 for (i = 0; i < dd->num_rcv_contexts; i++) {
728 rcd = hfi1_rcd_get_by_index(dd, i);
729 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
730 HFI1_RCVCTRL_INTRAVAIL_DIS |
731 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
732 hfi1_rcd_put(rcd);
733 }
734 pio_send_control(dd, PSC_GLOBAL_DISABLE);
735 for (i = 0; i < dd->num_send_contexts; i++)
736 sc_disable(dd->send_contexts[i].sc);
737
738 return 0;
739 }
740
enable_chip(struct hfi1_devdata * dd)741 static void enable_chip(struct hfi1_devdata *dd)
742 {
743 struct hfi1_ctxtdata *rcd;
744 u32 rcvmask;
745 u16 i;
746
747 /* enable PIO send */
748 pio_send_control(dd, PSC_GLOBAL_ENABLE);
749
750 /*
751 * Enable kernel ctxts' receive and receive interrupt.
752 * Other ctxts done as user opens and initializes them.
753 */
754 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
755 rcd = hfi1_rcd_get_by_index(dd, i);
756 if (!rcd)
757 continue;
758 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
759 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
760 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
761 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
762 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
763 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
764 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
765 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
766 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
767 if (HFI1_CAP_IS_KSET(TID_RDMA))
768 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
769 hfi1_rcvctrl(dd, rcvmask, rcd);
770 sc_enable(rcd->sc);
771 hfi1_rcd_put(rcd);
772 }
773 }
774
775 /**
776 * create_workqueues - create per port workqueues
777 * @dd: the hfi1_ib device
778 */
create_workqueues(struct hfi1_devdata * dd)779 static int create_workqueues(struct hfi1_devdata *dd)
780 {
781 int pidx;
782 struct hfi1_pportdata *ppd;
783
784 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
785 ppd = dd->pport + pidx;
786 if (!ppd->hfi1_wq) {
787 ppd->hfi1_wq =
788 alloc_workqueue(
789 "hfi%d_%d",
790 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
791 WQ_MEM_RECLAIM,
792 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
793 dd->unit, pidx);
794 if (!ppd->hfi1_wq)
795 goto wq_error;
796 }
797 if (!ppd->link_wq) {
798 /*
799 * Make the link workqueue single-threaded to enforce
800 * serialization.
801 */
802 ppd->link_wq =
803 alloc_workqueue(
804 "hfi_link_%d_%d",
805 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
806 1, /* max_active */
807 dd->unit, pidx);
808 if (!ppd->link_wq)
809 goto wq_error;
810 }
811 }
812 return 0;
813 wq_error:
814 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
815 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
816 ppd = dd->pport + pidx;
817 if (ppd->hfi1_wq) {
818 destroy_workqueue(ppd->hfi1_wq);
819 ppd->hfi1_wq = NULL;
820 }
821 if (ppd->link_wq) {
822 destroy_workqueue(ppd->link_wq);
823 ppd->link_wq = NULL;
824 }
825 }
826 return -ENOMEM;
827 }
828
829 /**
830 * destroy_workqueues - destroy per port workqueues
831 * @dd: the hfi1_ib device
832 */
destroy_workqueues(struct hfi1_devdata * dd)833 static void destroy_workqueues(struct hfi1_devdata *dd)
834 {
835 int pidx;
836 struct hfi1_pportdata *ppd;
837
838 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
839 ppd = dd->pport + pidx;
840
841 if (ppd->hfi1_wq) {
842 destroy_workqueue(ppd->hfi1_wq);
843 ppd->hfi1_wq = NULL;
844 }
845 if (ppd->link_wq) {
846 destroy_workqueue(ppd->link_wq);
847 ppd->link_wq = NULL;
848 }
849 }
850 }
851
852 /**
853 * enable_general_intr() - Enable the IRQs that will be handled by the
854 * general interrupt handler.
855 * @dd: valid devdata
856 *
857 */
enable_general_intr(struct hfi1_devdata * dd)858 static void enable_general_intr(struct hfi1_devdata *dd)
859 {
860 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
861 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
862 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
863 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
864 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
865 set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
866 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
867 }
868
869 /**
870 * hfi1_init - do the actual initialization sequence on the chip
871 * @dd: the hfi1_ib device
872 * @reinit: re-initializing, so don't allocate new memory
873 *
874 * Do the actual initialization sequence on the chip. This is done
875 * both from the init routine called from the PCI infrastructure, and
876 * when we reset the chip, or detect that it was reset internally,
877 * or it's administratively re-enabled.
878 *
879 * Memory allocation here and in called routines is only done in
880 * the first case (reinit == 0). We have to be careful, because even
881 * without memory allocation, we need to re-write all the chip registers
882 * TIDs, etc. after the reset or enable has completed.
883 */
hfi1_init(struct hfi1_devdata * dd,int reinit)884 int hfi1_init(struct hfi1_devdata *dd, int reinit)
885 {
886 int ret = 0, pidx, lastfail = 0;
887 unsigned long len;
888 u16 i;
889 struct hfi1_ctxtdata *rcd;
890 struct hfi1_pportdata *ppd;
891
892 /* Set up send low level handlers */
893 dd->process_pio_send = hfi1_verbs_send_pio;
894 dd->process_dma_send = hfi1_verbs_send_dma;
895 dd->pio_inline_send = pio_copy;
896 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
897
898 if (is_ax(dd)) {
899 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
900 dd->do_drop = true;
901 } else {
902 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
903 dd->do_drop = false;
904 }
905
906 /* make sure the link is not "up" */
907 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
908 ppd = dd->pport + pidx;
909 ppd->linkup = 0;
910 }
911
912 if (reinit)
913 ret = init_after_reset(dd);
914 else
915 ret = loadtime_init(dd);
916 if (ret)
917 goto done;
918
919 /* dd->rcd can be NULL if early initialization failed */
920 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
921 /*
922 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
923 * re-init, the simplest way to handle this is to free
924 * existing, and re-allocate.
925 * Need to re-create rest of ctxt 0 ctxtdata as well.
926 */
927 rcd = hfi1_rcd_get_by_index(dd, i);
928 if (!rcd)
929 continue;
930
931 lastfail = hfi1_create_rcvhdrq(dd, rcd);
932 if (!lastfail)
933 lastfail = hfi1_setup_eagerbufs(rcd);
934 if (!lastfail)
935 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
936 if (lastfail) {
937 dd_dev_err(dd,
938 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
939 ret = lastfail;
940 }
941 /* enable IRQ */
942 hfi1_rcd_put(rcd);
943 }
944
945 /* Allocate enough memory for user event notification. */
946 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
947 sizeof(*dd->events));
948 dd->events = vmalloc_user(len);
949 if (!dd->events)
950 dd_dev_err(dd, "Failed to allocate user events page\n");
951 /*
952 * Allocate a page for device and port status.
953 * Page will be shared amongst all user processes.
954 */
955 dd->status = vmalloc_user(PAGE_SIZE);
956 if (!dd->status)
957 dd_dev_err(dd, "Failed to allocate dev status page\n");
958 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
959 ppd = dd->pport + pidx;
960 if (dd->status)
961 /* Currently, we only have one port */
962 ppd->statusp = &dd->status->port;
963
964 set_mtu(ppd);
965 }
966
967 /* enable chip even if we have an error, so we can debug cause */
968 enable_chip(dd);
969
970 done:
971 /*
972 * Set status even if port serdes is not initialized
973 * so that diags will work.
974 */
975 if (dd->status)
976 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
977 HFI1_STATUS_INITTED;
978 if (!ret) {
979 /* enable all interrupts from the chip */
980 enable_general_intr(dd);
981 init_qsfp_int(dd);
982
983 /* chip is OK for user apps; mark it as initialized */
984 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
985 ppd = dd->pport + pidx;
986
987 /*
988 * start the serdes - must be after interrupts are
989 * enabled so we are notified when the link goes up
990 */
991 lastfail = bringup_serdes(ppd);
992 if (lastfail)
993 dd_dev_info(dd,
994 "Failed to bring up port %u\n",
995 ppd->port);
996
997 /*
998 * Set status even if port serdes is not initialized
999 * so that diags will work.
1000 */
1001 if (ppd->statusp)
1002 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1003 HFI1_STATUS_INITTED;
1004 if (!ppd->link_speed_enabled)
1005 continue;
1006 }
1007 }
1008
1009 /* if ret is non-zero, we probably should do some cleanup here... */
1010 return ret;
1011 }
1012
hfi1_lookup(int unit)1013 struct hfi1_devdata *hfi1_lookup(int unit)
1014 {
1015 return xa_load(&hfi1_dev_table, unit);
1016 }
1017
1018 /*
1019 * Stop the timers during unit shutdown, or after an error late
1020 * in initialization.
1021 */
stop_timers(struct hfi1_devdata * dd)1022 static void stop_timers(struct hfi1_devdata *dd)
1023 {
1024 struct hfi1_pportdata *ppd;
1025 int pidx;
1026
1027 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1028 ppd = dd->pport + pidx;
1029 if (ppd->led_override_timer.function) {
1030 del_timer_sync(&ppd->led_override_timer);
1031 atomic_set(&ppd->led_override_timer_active, 0);
1032 }
1033 }
1034 }
1035
1036 /**
1037 * shutdown_device - shut down a device
1038 * @dd: the hfi1_ib device
1039 *
1040 * This is called to make the device quiet when we are about to
1041 * unload the driver, and also when the device is administratively
1042 * disabled. It does not free any data structures.
1043 * Everything it does has to be setup again by hfi1_init(dd, 1)
1044 */
shutdown_device(struct hfi1_devdata * dd)1045 static void shutdown_device(struct hfi1_devdata *dd)
1046 {
1047 struct hfi1_pportdata *ppd;
1048 struct hfi1_ctxtdata *rcd;
1049 unsigned pidx;
1050 int i;
1051
1052 if (dd->flags & HFI1_SHUTDOWN)
1053 return;
1054 dd->flags |= HFI1_SHUTDOWN;
1055
1056 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1057 ppd = dd->pport + pidx;
1058
1059 ppd->linkup = 0;
1060 if (ppd->statusp)
1061 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1062 HFI1_STATUS_IB_READY);
1063 }
1064 dd->flags &= ~HFI1_INITTED;
1065
1066 /* mask and clean up interrupts */
1067 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1068 msix_clean_up_interrupts(dd);
1069
1070 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1071 ppd = dd->pport + pidx;
1072 for (i = 0; i < dd->num_rcv_contexts; i++) {
1073 rcd = hfi1_rcd_get_by_index(dd, i);
1074 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1075 HFI1_RCVCTRL_CTXT_DIS |
1076 HFI1_RCVCTRL_INTRAVAIL_DIS |
1077 HFI1_RCVCTRL_PKEY_DIS |
1078 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1079 hfi1_rcd_put(rcd);
1080 }
1081 /*
1082 * Gracefully stop all sends allowing any in progress to
1083 * trickle out first.
1084 */
1085 for (i = 0; i < dd->num_send_contexts; i++)
1086 sc_flush(dd->send_contexts[i].sc);
1087 }
1088
1089 /*
1090 * Enough for anything that's going to trickle out to have actually
1091 * done so.
1092 */
1093 udelay(20);
1094
1095 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1096 ppd = dd->pport + pidx;
1097
1098 /* disable all contexts */
1099 for (i = 0; i < dd->num_send_contexts; i++)
1100 sc_disable(dd->send_contexts[i].sc);
1101 /* disable the send device */
1102 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1103
1104 shutdown_led_override(ppd);
1105
1106 /*
1107 * Clear SerdesEnable.
1108 * We can't count on interrupts since we are stopping.
1109 */
1110 hfi1_quiet_serdes(ppd);
1111 if (ppd->hfi1_wq)
1112 flush_workqueue(ppd->hfi1_wq);
1113 if (ppd->link_wq)
1114 flush_workqueue(ppd->link_wq);
1115 }
1116 sdma_exit(dd);
1117 }
1118
1119 /**
1120 * hfi1_free_ctxtdata - free a context's allocated data
1121 * @dd: the hfi1_ib device
1122 * @rcd: the ctxtdata structure
1123 *
1124 * free up any allocated data for a context
1125 * It should never change any chip state, or global driver state.
1126 */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1127 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1128 {
1129 u32 e;
1130
1131 if (!rcd)
1132 return;
1133
1134 if (rcd->rcvhdrq) {
1135 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1136 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1137 rcd->rcvhdrq = NULL;
1138 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1139 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1140 (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1141 rcd->rcvhdrqtailaddr_dma);
1142 rcd->rcvhdrtail_kvaddr = NULL;
1143 }
1144 }
1145
1146 /* all the RcvArray entries should have been cleared by now */
1147 kfree(rcd->egrbufs.rcvtids);
1148 rcd->egrbufs.rcvtids = NULL;
1149
1150 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1151 if (rcd->egrbufs.buffers[e].addr)
1152 dma_free_coherent(&dd->pcidev->dev,
1153 rcd->egrbufs.buffers[e].len,
1154 rcd->egrbufs.buffers[e].addr,
1155 rcd->egrbufs.buffers[e].dma);
1156 }
1157 kfree(rcd->egrbufs.buffers);
1158 rcd->egrbufs.alloced = 0;
1159 rcd->egrbufs.buffers = NULL;
1160
1161 sc_free(rcd->sc);
1162 rcd->sc = NULL;
1163
1164 vfree(rcd->subctxt_uregbase);
1165 vfree(rcd->subctxt_rcvegrbuf);
1166 vfree(rcd->subctxt_rcvhdr_base);
1167 kfree(rcd->opstats);
1168
1169 rcd->subctxt_uregbase = NULL;
1170 rcd->subctxt_rcvegrbuf = NULL;
1171 rcd->subctxt_rcvhdr_base = NULL;
1172 rcd->opstats = NULL;
1173 }
1174
1175 /*
1176 * Release our hold on the shared asic data. If we are the last one,
1177 * return the structure to be finalized outside the lock. Must be
1178 * holding hfi1_dev_table lock.
1179 */
release_asic_data(struct hfi1_devdata * dd)1180 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1181 {
1182 struct hfi1_asic_data *ad;
1183 int other;
1184
1185 if (!dd->asic_data)
1186 return NULL;
1187 dd->asic_data->dds[dd->hfi1_id] = NULL;
1188 other = dd->hfi1_id ? 0 : 1;
1189 ad = dd->asic_data;
1190 dd->asic_data = NULL;
1191 /* return NULL if the other dd still has a link */
1192 return ad->dds[other] ? NULL : ad;
1193 }
1194
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1195 static void finalize_asic_data(struct hfi1_devdata *dd,
1196 struct hfi1_asic_data *ad)
1197 {
1198 clean_up_i2c(dd, ad);
1199 kfree(ad);
1200 }
1201
1202 /**
1203 * hfi1_free_devdata - cleans up and frees per-unit data structure
1204 * @dd: pointer to a valid devdata structure
1205 *
1206 * It cleans up and frees all data structures set up by
1207 * by hfi1_alloc_devdata().
1208 */
hfi1_free_devdata(struct hfi1_devdata * dd)1209 void hfi1_free_devdata(struct hfi1_devdata *dd)
1210 {
1211 struct hfi1_asic_data *ad;
1212 unsigned long flags;
1213
1214 xa_lock_irqsave(&hfi1_dev_table, flags);
1215 __xa_erase(&hfi1_dev_table, dd->unit);
1216 ad = release_asic_data(dd);
1217 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1218
1219 finalize_asic_data(dd, ad);
1220 free_platform_config(dd);
1221 rcu_barrier(); /* wait for rcu callbacks to complete */
1222 free_percpu(dd->int_counter);
1223 free_percpu(dd->rcv_limit);
1224 free_percpu(dd->send_schedule);
1225 free_percpu(dd->tx_opstats);
1226 dd->int_counter = NULL;
1227 dd->rcv_limit = NULL;
1228 dd->send_schedule = NULL;
1229 dd->tx_opstats = NULL;
1230 kfree(dd->comp_vect);
1231 dd->comp_vect = NULL;
1232 if (dd->rcvhdrtail_dummy_kvaddr)
1233 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1234 (void *)dd->rcvhdrtail_dummy_kvaddr,
1235 dd->rcvhdrtail_dummy_dma);
1236 dd->rcvhdrtail_dummy_kvaddr = NULL;
1237 sdma_clean(dd, dd->num_sdma);
1238 rvt_dealloc_device(&dd->verbs_dev.rdi);
1239 }
1240
1241 /**
1242 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1243 * @pdev: Valid PCI device
1244 * @extra: How many bytes to alloc past the default
1245 *
1246 * Must be done via verbs allocator, because the verbs cleanup process
1247 * both does cleanup and free of the data structure.
1248 * "extra" is for chip-specific data.
1249 */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1250 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1251 size_t extra)
1252 {
1253 struct hfi1_devdata *dd;
1254 int ret, nports;
1255
1256 /* extra is * number of ports */
1257 nports = extra / sizeof(struct hfi1_pportdata);
1258
1259 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1260 nports);
1261 if (!dd)
1262 return ERR_PTR(-ENOMEM);
1263 dd->num_pports = nports;
1264 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1265 dd->pcidev = pdev;
1266 pci_set_drvdata(pdev, dd);
1267
1268 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1269 GFP_KERNEL);
1270 if (ret < 0) {
1271 dev_err(&pdev->dev,
1272 "Could not allocate unit ID: error %d\n", -ret);
1273 goto bail;
1274 }
1275 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1276 /*
1277 * If the BIOS does not have the NUMA node information set, select
1278 * NUMA 0 so we get consistent performance.
1279 */
1280 dd->node = pcibus_to_node(pdev->bus);
1281 if (dd->node == NUMA_NO_NODE) {
1282 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1283 dd->node = 0;
1284 }
1285
1286 /*
1287 * Initialize all locks for the device. This needs to be as early as
1288 * possible so locks are usable.
1289 */
1290 spin_lock_init(&dd->sc_lock);
1291 spin_lock_init(&dd->sendctrl_lock);
1292 spin_lock_init(&dd->rcvctrl_lock);
1293 spin_lock_init(&dd->uctxt_lock);
1294 spin_lock_init(&dd->hfi1_diag_trans_lock);
1295 spin_lock_init(&dd->sc_init_lock);
1296 spin_lock_init(&dd->dc8051_memlock);
1297 seqlock_init(&dd->sc2vl_lock);
1298 spin_lock_init(&dd->sde_map_lock);
1299 spin_lock_init(&dd->pio_map_lock);
1300 mutex_init(&dd->dc8051_lock);
1301 init_waitqueue_head(&dd->event_queue);
1302 spin_lock_init(&dd->irq_src_lock);
1303
1304 dd->int_counter = alloc_percpu(u64);
1305 if (!dd->int_counter) {
1306 ret = -ENOMEM;
1307 goto bail;
1308 }
1309
1310 dd->rcv_limit = alloc_percpu(u64);
1311 if (!dd->rcv_limit) {
1312 ret = -ENOMEM;
1313 goto bail;
1314 }
1315
1316 dd->send_schedule = alloc_percpu(u64);
1317 if (!dd->send_schedule) {
1318 ret = -ENOMEM;
1319 goto bail;
1320 }
1321
1322 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1323 if (!dd->tx_opstats) {
1324 ret = -ENOMEM;
1325 goto bail;
1326 }
1327
1328 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1329 if (!dd->comp_vect) {
1330 ret = -ENOMEM;
1331 goto bail;
1332 }
1333
1334 /* allocate dummy tail memory for all receive contexts */
1335 dd->rcvhdrtail_dummy_kvaddr =
1336 dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1337 &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1338 if (!dd->rcvhdrtail_dummy_kvaddr) {
1339 ret = -ENOMEM;
1340 goto bail;
1341 }
1342
1343 atomic_set(&dd->ipoib_rsm_usr_num, 0);
1344 return dd;
1345
1346 bail:
1347 hfi1_free_devdata(dd);
1348 return ERR_PTR(ret);
1349 }
1350
1351 /*
1352 * Called from freeze mode handlers, and from PCI error
1353 * reporting code. Should be paranoid about state of
1354 * system and data structures.
1355 */
hfi1_disable_after_error(struct hfi1_devdata * dd)1356 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1357 {
1358 if (dd->flags & HFI1_INITTED) {
1359 u32 pidx;
1360
1361 dd->flags &= ~HFI1_INITTED;
1362 if (dd->pport)
1363 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1364 struct hfi1_pportdata *ppd;
1365
1366 ppd = dd->pport + pidx;
1367 if (dd->flags & HFI1_PRESENT)
1368 set_link_state(ppd, HLS_DN_DISABLE);
1369
1370 if (ppd->statusp)
1371 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1372 }
1373 }
1374
1375 /*
1376 * Mark as having had an error for driver, and also
1377 * for /sys and status word mapped to user programs.
1378 * This marks unit as not usable, until reset.
1379 */
1380 if (dd->status)
1381 dd->status->dev |= HFI1_STATUS_HWERROR;
1382 }
1383
1384 static void remove_one(struct pci_dev *);
1385 static int init_one(struct pci_dev *, const struct pci_device_id *);
1386 static void shutdown_one(struct pci_dev *);
1387
1388 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1389 #define PFX DRIVER_NAME ": "
1390
1391 const struct pci_device_id hfi1_pci_tbl[] = {
1392 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1393 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1394 { 0, }
1395 };
1396
1397 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1398
1399 static struct pci_driver hfi1_pci_driver = {
1400 .name = DRIVER_NAME,
1401 .probe = init_one,
1402 .remove = remove_one,
1403 .shutdown = shutdown_one,
1404 .id_table = hfi1_pci_tbl,
1405 .err_handler = &hfi1_pci_err_handler,
1406 };
1407
compute_krcvqs(void)1408 static void __init compute_krcvqs(void)
1409 {
1410 int i;
1411
1412 for (i = 0; i < krcvqsset; i++)
1413 n_krcvqs += krcvqs[i];
1414 }
1415
1416 /*
1417 * Do all the generic driver unit- and chip-independent memory
1418 * allocation and initialization.
1419 */
hfi1_mod_init(void)1420 static int __init hfi1_mod_init(void)
1421 {
1422 int ret;
1423
1424 ret = dev_init();
1425 if (ret)
1426 goto bail;
1427
1428 ret = node_affinity_init();
1429 if (ret)
1430 goto bail;
1431
1432 /* validate max MTU before any devices start */
1433 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1434 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1435 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1436 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1437 }
1438 /* valid CUs run from 1-128 in powers of 2 */
1439 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1440 hfi1_cu = 1;
1441 /* valid credit return threshold is 0-100, variable is unsigned */
1442 if (user_credit_return_threshold > 100)
1443 user_credit_return_threshold = 100;
1444
1445 compute_krcvqs();
1446 /*
1447 * sanitize receive interrupt count, time must wait until after
1448 * the hardware type is known
1449 */
1450 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1451 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1452 /* reject invalid combinations */
1453 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1454 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1455 rcv_intr_count = 1;
1456 }
1457 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1458 /*
1459 * Avoid indefinite packet delivery by requiring a timeout
1460 * if count is > 1.
1461 */
1462 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1463 rcv_intr_timeout = 1;
1464 }
1465 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1466 /*
1467 * The dynamic algorithm expects a non-zero timeout
1468 * and a count > 1.
1469 */
1470 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1471 rcv_intr_dynamic = 0;
1472 }
1473
1474 /* sanitize link CRC options */
1475 link_crc_mask &= SUPPORTED_CRCS;
1476
1477 ret = opfn_init();
1478 if (ret < 0) {
1479 pr_err("Failed to allocate opfn_wq");
1480 goto bail_dev;
1481 }
1482
1483 /*
1484 * These must be called before the driver is registered with
1485 * the PCI subsystem.
1486 */
1487 hfi1_dbg_init();
1488 ret = pci_register_driver(&hfi1_pci_driver);
1489 if (ret < 0) {
1490 pr_err("Unable to register driver: error %d\n", -ret);
1491 goto bail_dev;
1492 }
1493 goto bail; /* all OK */
1494
1495 bail_dev:
1496 hfi1_dbg_exit();
1497 dev_cleanup();
1498 bail:
1499 return ret;
1500 }
1501
1502 module_init(hfi1_mod_init);
1503
1504 /*
1505 * Do the non-unit driver cleanup, memory free, etc. at unload.
1506 */
hfi1_mod_cleanup(void)1507 static void __exit hfi1_mod_cleanup(void)
1508 {
1509 pci_unregister_driver(&hfi1_pci_driver);
1510 opfn_exit();
1511 node_affinity_destroy_all();
1512 hfi1_dbg_exit();
1513
1514 WARN_ON(!xa_empty(&hfi1_dev_table));
1515 dispose_firmware(); /* asymmetric with obtain_firmware() */
1516 dev_cleanup();
1517 }
1518
1519 module_exit(hfi1_mod_cleanup);
1520
1521 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1522 static void cleanup_device_data(struct hfi1_devdata *dd)
1523 {
1524 int ctxt;
1525 int pidx;
1526
1527 /* users can't do anything more with chip */
1528 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1529 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1530 struct cc_state *cc_state;
1531 int i;
1532
1533 if (ppd->statusp)
1534 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1535
1536 for (i = 0; i < OPA_MAX_SLS; i++)
1537 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1538
1539 spin_lock(&ppd->cc_state_lock);
1540 cc_state = get_cc_state_protected(ppd);
1541 RCU_INIT_POINTER(ppd->cc_state, NULL);
1542 spin_unlock(&ppd->cc_state_lock);
1543
1544 if (cc_state)
1545 kfree_rcu(cc_state, rcu);
1546 }
1547
1548 free_credit_return(dd);
1549
1550 /*
1551 * Free any resources still in use (usually just kernel contexts)
1552 * at unload; we do for ctxtcnt, because that's what we allocate.
1553 */
1554 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1555 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1556
1557 if (rcd) {
1558 hfi1_free_ctxt_rcv_groups(rcd);
1559 hfi1_free_ctxt(rcd);
1560 }
1561 }
1562
1563 kfree(dd->rcd);
1564 dd->rcd = NULL;
1565
1566 free_pio_map(dd);
1567 /* must follow rcv context free - need to remove rcv's hooks */
1568 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1569 sc_free(dd->send_contexts[ctxt].sc);
1570 dd->num_send_contexts = 0;
1571 kfree(dd->send_contexts);
1572 dd->send_contexts = NULL;
1573 kfree(dd->hw_to_sw);
1574 dd->hw_to_sw = NULL;
1575 kfree(dd->boardname);
1576 vfree(dd->events);
1577 vfree(dd->status);
1578 }
1579
1580 /*
1581 * Clean up on unit shutdown, or error during unit load after
1582 * successful initialization.
1583 */
postinit_cleanup(struct hfi1_devdata * dd)1584 static void postinit_cleanup(struct hfi1_devdata *dd)
1585 {
1586 hfi1_start_cleanup(dd);
1587 hfi1_comp_vectors_clean_up(dd);
1588 hfi1_dev_affinity_clean_up(dd);
1589
1590 hfi1_pcie_ddcleanup(dd);
1591 hfi1_pcie_cleanup(dd->pcidev);
1592
1593 cleanup_device_data(dd);
1594
1595 hfi1_free_devdata(dd);
1596 }
1597
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1599 {
1600 int ret = 0, j, pidx, initfail;
1601 struct hfi1_devdata *dd;
1602 struct hfi1_pportdata *ppd;
1603
1604 /* First, lock the non-writable module parameters */
1605 HFI1_CAP_LOCK();
1606
1607 /* Validate dev ids */
1608 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1609 ent->device == PCI_DEVICE_ID_INTEL1)) {
1610 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1611 ent->device);
1612 ret = -ENODEV;
1613 goto bail;
1614 }
1615
1616 /* Allocate the dd so we can get to work */
1617 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1618 sizeof(struct hfi1_pportdata));
1619 if (IS_ERR(dd)) {
1620 ret = PTR_ERR(dd);
1621 goto bail;
1622 }
1623
1624 /* Validate some global module parameters */
1625 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1626 if (ret)
1627 goto bail;
1628
1629 /* use the encoding function as a sanitization check */
1630 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1631 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1632 hfi1_hdrq_entsize);
1633 ret = -EINVAL;
1634 goto bail;
1635 }
1636
1637 /* The receive eager buffer size must be set before the receive
1638 * contexts are created.
1639 *
1640 * Set the eager buffer size. Validate that it falls in a range
1641 * allowed by the hardware - all powers of 2 between the min and
1642 * max. The maximum valid MTU is within the eager buffer range
1643 * so we do not need to cap the max_mtu by an eager buffer size
1644 * setting.
1645 */
1646 if (eager_buffer_size) {
1647 if (!is_power_of_2(eager_buffer_size))
1648 eager_buffer_size =
1649 roundup_pow_of_two(eager_buffer_size);
1650 eager_buffer_size =
1651 clamp_val(eager_buffer_size,
1652 MIN_EAGER_BUFFER * 8,
1653 MAX_EAGER_BUFFER_TOTAL);
1654 dd_dev_info(dd, "Eager buffer size %u\n",
1655 eager_buffer_size);
1656 } else {
1657 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1658 ret = -EINVAL;
1659 goto bail;
1660 }
1661
1662 /* restrict value of hfi1_rcvarr_split */
1663 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1664
1665 ret = hfi1_pcie_init(dd);
1666 if (ret)
1667 goto bail;
1668
1669 /*
1670 * Do device-specific initialization, function table setup, dd
1671 * allocation, etc.
1672 */
1673 ret = hfi1_init_dd(dd);
1674 if (ret)
1675 goto clean_bail; /* error already printed */
1676
1677 ret = create_workqueues(dd);
1678 if (ret)
1679 goto clean_bail;
1680
1681 /* do the generic initialization */
1682 initfail = hfi1_init(dd, 0);
1683
1684 ret = hfi1_register_ib_device(dd);
1685
1686 /*
1687 * Now ready for use. this should be cleared whenever we
1688 * detect a reset, or initiate one. If earlier failure,
1689 * we still create devices, so diags, etc. can be used
1690 * to determine cause of problem.
1691 */
1692 if (!initfail && !ret) {
1693 dd->flags |= HFI1_INITTED;
1694 /* create debufs files after init and ib register */
1695 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1696 }
1697
1698 j = hfi1_device_create(dd);
1699 if (j)
1700 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1701
1702 if (initfail || ret) {
1703 msix_clean_up_interrupts(dd);
1704 stop_timers(dd);
1705 flush_workqueue(ib_wq);
1706 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1707 hfi1_quiet_serdes(dd->pport + pidx);
1708 ppd = dd->pport + pidx;
1709 if (ppd->hfi1_wq) {
1710 destroy_workqueue(ppd->hfi1_wq);
1711 ppd->hfi1_wq = NULL;
1712 }
1713 if (ppd->link_wq) {
1714 destroy_workqueue(ppd->link_wq);
1715 ppd->link_wq = NULL;
1716 }
1717 }
1718 if (!j)
1719 hfi1_device_remove(dd);
1720 if (!ret)
1721 hfi1_unregister_ib_device(dd);
1722 postinit_cleanup(dd);
1723 if (initfail)
1724 ret = initfail;
1725 goto bail; /* everything already cleaned */
1726 }
1727
1728 sdma_start(dd);
1729
1730 return 0;
1731
1732 clean_bail:
1733 hfi1_pcie_cleanup(pdev);
1734 bail:
1735 return ret;
1736 }
1737
wait_for_clients(struct hfi1_devdata * dd)1738 static void wait_for_clients(struct hfi1_devdata *dd)
1739 {
1740 /*
1741 * Remove the device init value and complete the device if there is
1742 * no clients or wait for active clients to finish.
1743 */
1744 if (atomic_dec_and_test(&dd->user_refcount))
1745 complete(&dd->user_comp);
1746
1747 wait_for_completion(&dd->user_comp);
1748 }
1749
remove_one(struct pci_dev * pdev)1750 static void remove_one(struct pci_dev *pdev)
1751 {
1752 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1753
1754 /* close debugfs files before ib unregister */
1755 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1756
1757 /* remove the /dev hfi1 interface */
1758 hfi1_device_remove(dd);
1759
1760 /* wait for existing user space clients to finish */
1761 wait_for_clients(dd);
1762
1763 /* unregister from IB core */
1764 hfi1_unregister_ib_device(dd);
1765
1766 /* free netdev data */
1767 hfi1_netdev_free(dd);
1768
1769 /*
1770 * Disable the IB link, disable interrupts on the device,
1771 * clear dma engines, etc.
1772 */
1773 shutdown_device(dd);
1774 destroy_workqueues(dd);
1775
1776 stop_timers(dd);
1777
1778 /* wait until all of our (qsfp) queue_work() calls complete */
1779 flush_workqueue(ib_wq);
1780
1781 postinit_cleanup(dd);
1782 }
1783
shutdown_one(struct pci_dev * pdev)1784 static void shutdown_one(struct pci_dev *pdev)
1785 {
1786 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1787
1788 shutdown_device(dd);
1789 }
1790
1791 /**
1792 * hfi1_create_rcvhdrq - create a receive header queue
1793 * @dd: the hfi1_ib device
1794 * @rcd: the context data
1795 *
1796 * This must be contiguous memory (from an i/o perspective), and must be
1797 * DMA'able (which means for some systems, it will go through an IOMMU,
1798 * or be forced into a low address range).
1799 */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1800 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1801 {
1802 unsigned amt;
1803
1804 if (!rcd->rcvhdrq) {
1805 gfp_t gfp_flags;
1806
1807 amt = rcvhdrq_size(rcd);
1808
1809 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1810 gfp_flags = GFP_KERNEL;
1811 else
1812 gfp_flags = GFP_USER;
1813 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1814 &rcd->rcvhdrq_dma,
1815 gfp_flags | __GFP_COMP);
1816
1817 if (!rcd->rcvhdrq) {
1818 dd_dev_err(dd,
1819 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1820 amt, rcd->ctxt);
1821 goto bail;
1822 }
1823
1824 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1825 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1826 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1827 PAGE_SIZE,
1828 &rcd->rcvhdrqtailaddr_dma,
1829 gfp_flags);
1830 if (!rcd->rcvhdrtail_kvaddr)
1831 goto bail_free;
1832 }
1833 }
1834
1835 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1836 rcd->rcvhdrq_cnt);
1837
1838 return 0;
1839
1840 bail_free:
1841 dd_dev_err(dd,
1842 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1843 rcd->ctxt);
1844 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1845 rcd->rcvhdrq_dma);
1846 rcd->rcvhdrq = NULL;
1847 bail:
1848 return -ENOMEM;
1849 }
1850
1851 /**
1852 * allocate eager buffers, both kernel and user contexts.
1853 * @rcd: the context we are setting up.
1854 *
1855 * Allocate the eager TID buffers and program them into hip.
1856 * They are no longer completely contiguous, we do multiple allocation
1857 * calls. Otherwise we get the OOM code involved, by asking for too
1858 * much per call, with disastrous results on some kernels.
1859 */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1860 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1861 {
1862 struct hfi1_devdata *dd = rcd->dd;
1863 u32 max_entries, egrtop, alloced_bytes = 0;
1864 gfp_t gfp_flags;
1865 u16 order, idx = 0;
1866 int ret = 0;
1867 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1868
1869 /*
1870 * GFP_USER, but without GFP_FS, so buffer cache can be
1871 * coalesced (we hope); otherwise, even at order 4,
1872 * heavy filesystem activity makes these fail, and we can
1873 * use compound pages.
1874 */
1875 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1876
1877 /*
1878 * The minimum size of the eager buffers is a groups of MTU-sized
1879 * buffers.
1880 * The global eager_buffer_size parameter is checked against the
1881 * theoretical lower limit of the value. Here, we check against the
1882 * MTU.
1883 */
1884 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1885 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1886 /*
1887 * If using one-pkt-per-egr-buffer, lower the eager buffer
1888 * size to the max MTU (page-aligned).
1889 */
1890 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1891 rcd->egrbufs.rcvtid_size = round_mtu;
1892
1893 /*
1894 * Eager buffers sizes of 1MB or less require smaller TID sizes
1895 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1896 */
1897 if (rcd->egrbufs.size <= (1 << 20))
1898 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1899 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1900
1901 while (alloced_bytes < rcd->egrbufs.size &&
1902 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1903 rcd->egrbufs.buffers[idx].addr =
1904 dma_alloc_coherent(&dd->pcidev->dev,
1905 rcd->egrbufs.rcvtid_size,
1906 &rcd->egrbufs.buffers[idx].dma,
1907 gfp_flags);
1908 if (rcd->egrbufs.buffers[idx].addr) {
1909 rcd->egrbufs.buffers[idx].len =
1910 rcd->egrbufs.rcvtid_size;
1911 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1912 rcd->egrbufs.buffers[idx].addr;
1913 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1914 rcd->egrbufs.buffers[idx].dma;
1915 rcd->egrbufs.alloced++;
1916 alloced_bytes += rcd->egrbufs.rcvtid_size;
1917 idx++;
1918 } else {
1919 u32 new_size, i, j;
1920 u64 offset = 0;
1921
1922 /*
1923 * Fail the eager buffer allocation if:
1924 * - we are already using the lowest acceptable size
1925 * - we are using one-pkt-per-egr-buffer (this implies
1926 * that we are accepting only one size)
1927 */
1928 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1929 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1930 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1931 rcd->ctxt);
1932 ret = -ENOMEM;
1933 goto bail_rcvegrbuf_phys;
1934 }
1935
1936 new_size = rcd->egrbufs.rcvtid_size / 2;
1937
1938 /*
1939 * If the first attempt to allocate memory failed, don't
1940 * fail everything but continue with the next lower
1941 * size.
1942 */
1943 if (idx == 0) {
1944 rcd->egrbufs.rcvtid_size = new_size;
1945 continue;
1946 }
1947
1948 /*
1949 * Re-partition already allocated buffers to a smaller
1950 * size.
1951 */
1952 rcd->egrbufs.alloced = 0;
1953 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1954 if (i >= rcd->egrbufs.count)
1955 break;
1956 rcd->egrbufs.rcvtids[i].dma =
1957 rcd->egrbufs.buffers[j].dma + offset;
1958 rcd->egrbufs.rcvtids[i].addr =
1959 rcd->egrbufs.buffers[j].addr + offset;
1960 rcd->egrbufs.alloced++;
1961 if ((rcd->egrbufs.buffers[j].dma + offset +
1962 new_size) ==
1963 (rcd->egrbufs.buffers[j].dma +
1964 rcd->egrbufs.buffers[j].len)) {
1965 j++;
1966 offset = 0;
1967 } else {
1968 offset += new_size;
1969 }
1970 }
1971 rcd->egrbufs.rcvtid_size = new_size;
1972 }
1973 }
1974 rcd->egrbufs.numbufs = idx;
1975 rcd->egrbufs.size = alloced_bytes;
1976
1977 hfi1_cdbg(PROC,
1978 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1979 rcd->ctxt, rcd->egrbufs.alloced,
1980 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1981
1982 /*
1983 * Set the contexts rcv array head update threshold to the closest
1984 * power of 2 (so we can use a mask instead of modulo) below half
1985 * the allocated entries.
1986 */
1987 rcd->egrbufs.threshold =
1988 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1989 /*
1990 * Compute the expected RcvArray entry base. This is done after
1991 * allocating the eager buffers in order to maximize the
1992 * expected RcvArray entries for the context.
1993 */
1994 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1995 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1996 rcd->expected_count = max_entries - egrtop;
1997 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1998 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1999
2000 rcd->expected_base = rcd->eager_base + egrtop;
2001 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2002 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2003 rcd->eager_base, rcd->expected_base);
2004
2005 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2006 hfi1_cdbg(PROC,
2007 "ctxt%u: current Eager buffer size is invalid %u\n",
2008 rcd->ctxt, rcd->egrbufs.rcvtid_size);
2009 ret = -EINVAL;
2010 goto bail_rcvegrbuf_phys;
2011 }
2012
2013 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2014 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2015 rcd->egrbufs.rcvtids[idx].dma, order);
2016 cond_resched();
2017 }
2018
2019 return 0;
2020
2021 bail_rcvegrbuf_phys:
2022 for (idx = 0; idx < rcd->egrbufs.alloced &&
2023 rcd->egrbufs.buffers[idx].addr;
2024 idx++) {
2025 dma_free_coherent(&dd->pcidev->dev,
2026 rcd->egrbufs.buffers[idx].len,
2027 rcd->egrbufs.buffers[idx].addr,
2028 rcd->egrbufs.buffers[idx].dma);
2029 rcd->egrbufs.buffers[idx].addr = NULL;
2030 rcd->egrbufs.buffers[idx].dma = 0;
2031 rcd->egrbufs.buffers[idx].len = 0;
2032 }
2033
2034 return ret;
2035 }
2036