1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2011-2016 Synaptics Incorporated
4 * Copyright (c) 2011 Unixphere
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/rmi.h>
10 #include <linux/slab.h>
11 #include <linux/spi/spi.h>
12 #include <linux/of.h>
13 #include "rmi_driver.h"
14
15 #define RMI_SPI_DEFAULT_XFER_BUF_SIZE 64
16
17 #define RMI_PAGE_SELECT_REGISTER 0x00FF
18 #define RMI_SPI_PAGE(addr) (((addr) >> 8) & 0x80)
19 #define RMI_SPI_XFER_SIZE_LIMIT 255
20
21 #define BUFFER_SIZE_INCREMENT 32
22
23 enum rmi_spi_op {
24 RMI_SPI_WRITE = 0,
25 RMI_SPI_READ,
26 RMI_SPI_V2_READ_UNIFIED,
27 RMI_SPI_V2_READ_SPLIT,
28 RMI_SPI_V2_WRITE,
29 };
30
31 struct rmi_spi_cmd {
32 enum rmi_spi_op op;
33 u16 addr;
34 };
35
36 struct rmi_spi_xport {
37 struct rmi_transport_dev xport;
38 struct spi_device *spi;
39
40 struct mutex page_mutex;
41 int page;
42
43 u8 *rx_buf;
44 u8 *tx_buf;
45 int xfer_buf_size;
46
47 struct spi_transfer *rx_xfers;
48 struct spi_transfer *tx_xfers;
49 int rx_xfer_count;
50 int tx_xfer_count;
51 };
52
rmi_spi_manage_pools(struct rmi_spi_xport * rmi_spi,int len)53 static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
54 {
55 struct spi_device *spi = rmi_spi->spi;
56 int buf_size = rmi_spi->xfer_buf_size
57 ? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
58 struct spi_transfer *xfer_buf;
59 void *buf;
60 void *tmp;
61
62 while (buf_size < len)
63 buf_size *= 2;
64
65 if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
66 buf_size = RMI_SPI_XFER_SIZE_LIMIT;
67
68 tmp = rmi_spi->rx_buf;
69 buf = devm_kcalloc(&spi->dev, buf_size, 2,
70 GFP_KERNEL | GFP_DMA);
71 if (!buf)
72 return -ENOMEM;
73
74 rmi_spi->rx_buf = buf;
75 rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
76 rmi_spi->xfer_buf_size = buf_size;
77
78 if (tmp)
79 devm_kfree(&spi->dev, tmp);
80
81 if (rmi_spi->xport.pdata.spi_data.read_delay_us)
82 rmi_spi->rx_xfer_count = buf_size;
83 else
84 rmi_spi->rx_xfer_count = 1;
85
86 if (rmi_spi->xport.pdata.spi_data.write_delay_us)
87 rmi_spi->tx_xfer_count = buf_size;
88 else
89 rmi_spi->tx_xfer_count = 1;
90
91 /*
92 * Allocate a pool of spi_transfer buffers for devices which need
93 * per byte delays.
94 */
95 tmp = rmi_spi->rx_xfers;
96 xfer_buf = devm_kcalloc(&spi->dev,
97 rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count,
98 sizeof(struct spi_transfer),
99 GFP_KERNEL);
100 if (!xfer_buf)
101 return -ENOMEM;
102
103 rmi_spi->rx_xfers = xfer_buf;
104 rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
105
106 if (tmp)
107 devm_kfree(&spi->dev, tmp);
108
109 return 0;
110 }
111
rmi_spi_xfer(struct rmi_spi_xport * rmi_spi,const struct rmi_spi_cmd * cmd,const u8 * tx_buf,int tx_len,u8 * rx_buf,int rx_len)112 static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
113 const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
114 int tx_len, u8 *rx_buf, int rx_len)
115 {
116 struct spi_device *spi = rmi_spi->spi;
117 struct rmi_device_platform_data_spi *spi_data =
118 &rmi_spi->xport.pdata.spi_data;
119 struct spi_message msg;
120 struct spi_transfer *xfer;
121 int ret = 0;
122 int len;
123 int cmd_len = 0;
124 int total_tx_len;
125 int i;
126 u16 addr = cmd->addr;
127
128 spi_message_init(&msg);
129
130 switch (cmd->op) {
131 case RMI_SPI_WRITE:
132 case RMI_SPI_READ:
133 cmd_len += 2;
134 break;
135 case RMI_SPI_V2_READ_UNIFIED:
136 case RMI_SPI_V2_READ_SPLIT:
137 case RMI_SPI_V2_WRITE:
138 cmd_len += 4;
139 break;
140 }
141
142 total_tx_len = cmd_len + tx_len;
143 len = max(total_tx_len, rx_len);
144
145 if (len > RMI_SPI_XFER_SIZE_LIMIT)
146 return -EINVAL;
147
148 if (rmi_spi->xfer_buf_size < len) {
149 ret = rmi_spi_manage_pools(rmi_spi, len);
150 if (ret < 0)
151 return ret;
152 }
153
154 if (addr == 0)
155 /*
156 * SPI needs an address. Use 0x7FF if we want to keep
157 * reading from the last position of the register pointer.
158 */
159 addr = 0x7FF;
160
161 switch (cmd->op) {
162 case RMI_SPI_WRITE:
163 rmi_spi->tx_buf[0] = (addr >> 8);
164 rmi_spi->tx_buf[1] = addr & 0xFF;
165 break;
166 case RMI_SPI_READ:
167 rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
168 rmi_spi->tx_buf[1] = addr & 0xFF;
169 break;
170 case RMI_SPI_V2_READ_UNIFIED:
171 break;
172 case RMI_SPI_V2_READ_SPLIT:
173 break;
174 case RMI_SPI_V2_WRITE:
175 rmi_spi->tx_buf[0] = 0x40;
176 rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
177 rmi_spi->tx_buf[2] = addr & 0xFF;
178 rmi_spi->tx_buf[3] = tx_len;
179 break;
180 }
181
182 if (tx_buf)
183 memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
184
185 if (rmi_spi->tx_xfer_count > 1) {
186 for (i = 0; i < total_tx_len; i++) {
187 xfer = &rmi_spi->tx_xfers[i];
188 memset(xfer, 0, sizeof(struct spi_transfer));
189 xfer->tx_buf = &rmi_spi->tx_buf[i];
190 xfer->len = 1;
191 xfer->delay_usecs = spi_data->write_delay_us;
192 spi_message_add_tail(xfer, &msg);
193 }
194 } else {
195 xfer = rmi_spi->tx_xfers;
196 memset(xfer, 0, sizeof(struct spi_transfer));
197 xfer->tx_buf = rmi_spi->tx_buf;
198 xfer->len = total_tx_len;
199 spi_message_add_tail(xfer, &msg);
200 }
201
202 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
203 __func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
204 total_tx_len, total_tx_len, rmi_spi->tx_buf);
205
206 if (rx_buf) {
207 if (rmi_spi->rx_xfer_count > 1) {
208 for (i = 0; i < rx_len; i++) {
209 xfer = &rmi_spi->rx_xfers[i];
210 memset(xfer, 0, sizeof(struct spi_transfer));
211 xfer->rx_buf = &rmi_spi->rx_buf[i];
212 xfer->len = 1;
213 xfer->delay_usecs = spi_data->read_delay_us;
214 spi_message_add_tail(xfer, &msg);
215 }
216 } else {
217 xfer = rmi_spi->rx_xfers;
218 memset(xfer, 0, sizeof(struct spi_transfer));
219 xfer->rx_buf = rmi_spi->rx_buf;
220 xfer->len = rx_len;
221 spi_message_add_tail(xfer, &msg);
222 }
223 }
224
225 ret = spi_sync(spi, &msg);
226 if (ret < 0) {
227 dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
228 return ret;
229 }
230
231 if (rx_buf) {
232 memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
233 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
234 __func__, rx_len, rx_len, rx_buf);
235 }
236
237 return 0;
238 }
239
240 /*
241 * rmi_set_page - Set RMI page
242 * @xport: The pointer to the rmi_transport_dev struct
243 * @page: The new page address.
244 *
245 * RMI devices have 16-bit addressing, but some of the transport
246 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
247 * a page address at 0xff of every page so we can reliable page addresses
248 * every 256 registers.
249 *
250 * The page_mutex lock must be held when this function is entered.
251 *
252 * Returns zero on success, non-zero on failure.
253 */
rmi_set_page(struct rmi_spi_xport * rmi_spi,u8 page)254 static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
255 {
256 struct rmi_spi_cmd cmd;
257 int ret;
258
259 cmd.op = RMI_SPI_WRITE;
260 cmd.addr = RMI_PAGE_SELECT_REGISTER;
261
262 ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
263
264 if (ret)
265 rmi_spi->page = page;
266
267 return ret;
268 }
269
rmi_spi_write_block(struct rmi_transport_dev * xport,u16 addr,const void * buf,size_t len)270 static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
271 const void *buf, size_t len)
272 {
273 struct rmi_spi_xport *rmi_spi =
274 container_of(xport, struct rmi_spi_xport, xport);
275 struct rmi_spi_cmd cmd;
276 int ret;
277
278 mutex_lock(&rmi_spi->page_mutex);
279
280 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
281 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
282 if (ret)
283 goto exit;
284 }
285
286 cmd.op = RMI_SPI_WRITE;
287 cmd.addr = addr;
288
289 ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
290
291 exit:
292 mutex_unlock(&rmi_spi->page_mutex);
293 return ret;
294 }
295
rmi_spi_read_block(struct rmi_transport_dev * xport,u16 addr,void * buf,size_t len)296 static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
297 void *buf, size_t len)
298 {
299 struct rmi_spi_xport *rmi_spi =
300 container_of(xport, struct rmi_spi_xport, xport);
301 struct rmi_spi_cmd cmd;
302 int ret;
303
304 mutex_lock(&rmi_spi->page_mutex);
305
306 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
307 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
308 if (ret)
309 goto exit;
310 }
311
312 cmd.op = RMI_SPI_READ;
313 cmd.addr = addr;
314
315 ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
316
317 exit:
318 mutex_unlock(&rmi_spi->page_mutex);
319 return ret;
320 }
321
322 static const struct rmi_transport_ops rmi_spi_ops = {
323 .write_block = rmi_spi_write_block,
324 .read_block = rmi_spi_read_block,
325 };
326
327 #ifdef CONFIG_OF
rmi_spi_of_probe(struct spi_device * spi,struct rmi_device_platform_data * pdata)328 static int rmi_spi_of_probe(struct spi_device *spi,
329 struct rmi_device_platform_data *pdata)
330 {
331 struct device *dev = &spi->dev;
332 int retval;
333
334 retval = rmi_of_property_read_u32(dev,
335 &pdata->spi_data.read_delay_us,
336 "spi-rx-delay-us", 1);
337 if (retval)
338 return retval;
339
340 retval = rmi_of_property_read_u32(dev,
341 &pdata->spi_data.write_delay_us,
342 "spi-tx-delay-us", 1);
343 if (retval)
344 return retval;
345
346 return 0;
347 }
348
349 static const struct of_device_id rmi_spi_of_match[] = {
350 { .compatible = "syna,rmi4-spi" },
351 {},
352 };
353 MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
354 #else
rmi_spi_of_probe(struct spi_device * spi,struct rmi_device_platform_data * pdata)355 static inline int rmi_spi_of_probe(struct spi_device *spi,
356 struct rmi_device_platform_data *pdata)
357 {
358 return -ENODEV;
359 }
360 #endif
361
rmi_spi_unregister_transport(void * data)362 static void rmi_spi_unregister_transport(void *data)
363 {
364 struct rmi_spi_xport *rmi_spi = data;
365
366 rmi_unregister_transport_device(&rmi_spi->xport);
367 }
368
rmi_spi_probe(struct spi_device * spi)369 static int rmi_spi_probe(struct spi_device *spi)
370 {
371 struct rmi_spi_xport *rmi_spi;
372 struct rmi_device_platform_data *pdata;
373 struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
374 int error;
375
376 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
377 return -EINVAL;
378
379 rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
380 GFP_KERNEL);
381 if (!rmi_spi)
382 return -ENOMEM;
383
384 pdata = &rmi_spi->xport.pdata;
385
386 if (spi->dev.of_node) {
387 error = rmi_spi_of_probe(spi, pdata);
388 if (error)
389 return error;
390 } else if (spi_pdata) {
391 *pdata = *spi_pdata;
392 }
393
394 if (pdata->spi_data.bits_per_word)
395 spi->bits_per_word = pdata->spi_data.bits_per_word;
396
397 if (pdata->spi_data.mode)
398 spi->mode = pdata->spi_data.mode;
399
400 error = spi_setup(spi);
401 if (error < 0) {
402 dev_err(&spi->dev, "spi_setup failed!\n");
403 return error;
404 }
405
406 pdata->irq = spi->irq;
407
408 rmi_spi->spi = spi;
409 mutex_init(&rmi_spi->page_mutex);
410
411 rmi_spi->xport.dev = &spi->dev;
412 rmi_spi->xport.proto_name = "spi";
413 rmi_spi->xport.ops = &rmi_spi_ops;
414
415 spi_set_drvdata(spi, rmi_spi);
416
417 error = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
418 if (error)
419 return error;
420
421 /*
422 * Setting the page to zero will (a) make sure the PSR is in a
423 * known state, and (b) make sure we can talk to the device.
424 */
425 error = rmi_set_page(rmi_spi, 0);
426 if (error) {
427 dev_err(&spi->dev, "Failed to set page select to 0.\n");
428 return error;
429 }
430
431 dev_info(&spi->dev, "registering SPI-connected sensor\n");
432
433 error = rmi_register_transport_device(&rmi_spi->xport);
434 if (error) {
435 dev_err(&spi->dev, "failed to register sensor: %d\n", error);
436 return error;
437 }
438
439 error = devm_add_action_or_reset(&spi->dev,
440 rmi_spi_unregister_transport,
441 rmi_spi);
442 if (error)
443 return error;
444
445 return 0;
446 }
447
448 #ifdef CONFIG_PM_SLEEP
rmi_spi_suspend(struct device * dev)449 static int rmi_spi_suspend(struct device *dev)
450 {
451 struct spi_device *spi = to_spi_device(dev);
452 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
453 int ret;
454
455 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
456 if (ret)
457 dev_warn(dev, "Failed to resume device: %d\n", ret);
458
459 return ret;
460 }
461
rmi_spi_resume(struct device * dev)462 static int rmi_spi_resume(struct device *dev)
463 {
464 struct spi_device *spi = to_spi_device(dev);
465 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
466 int ret;
467
468 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
469 if (ret)
470 dev_warn(dev, "Failed to resume device: %d\n", ret);
471
472 return ret;
473 }
474 #endif
475
476 #ifdef CONFIG_PM
rmi_spi_runtime_suspend(struct device * dev)477 static int rmi_spi_runtime_suspend(struct device *dev)
478 {
479 struct spi_device *spi = to_spi_device(dev);
480 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
481 int ret;
482
483 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
484 if (ret)
485 dev_warn(dev, "Failed to resume device: %d\n", ret);
486
487 return 0;
488 }
489
rmi_spi_runtime_resume(struct device * dev)490 static int rmi_spi_runtime_resume(struct device *dev)
491 {
492 struct spi_device *spi = to_spi_device(dev);
493 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
494 int ret;
495
496 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
497 if (ret)
498 dev_warn(dev, "Failed to resume device: %d\n", ret);
499
500 return 0;
501 }
502 #endif
503
504 static const struct dev_pm_ops rmi_spi_pm = {
505 SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
506 SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
507 NULL)
508 };
509
510 static const struct spi_device_id rmi_id[] = {
511 { "rmi4_spi", 0 },
512 { }
513 };
514 MODULE_DEVICE_TABLE(spi, rmi_id);
515
516 static struct spi_driver rmi_spi_driver = {
517 .driver = {
518 .name = "rmi4_spi",
519 .pm = &rmi_spi_pm,
520 .of_match_table = of_match_ptr(rmi_spi_of_match),
521 },
522 .id_table = rmi_id,
523 .probe = rmi_spi_probe,
524 };
525
526 module_spi_driver(rmi_spi_driver);
527
528 MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
529 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
530 MODULE_DESCRIPTION("RMI SPI driver");
531 MODULE_LICENSE("GPL");
532