1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/scatterlist.h>
24 #include <linux/vmalloc.h>
25 #include <linux/crash_dump.h>
26 #include <trace/hooks/iommu.h>
27
28 struct iommu_dma_msi_page {
29 struct list_head list;
30 dma_addr_t iova;
31 phys_addr_t phys;
32 };
33
34 enum iommu_dma_cookie_type {
35 IOMMU_DMA_IOVA_COOKIE,
36 IOMMU_DMA_MSI_COOKIE,
37 };
38
39 struct iommu_dma_cookie {
40 enum iommu_dma_cookie_type type;
41 union {
42 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
43 struct iova_domain iovad;
44 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
45 dma_addr_t msi_iova;
46 };
47 struct list_head msi_page_list;
48
49 /* Domain for flush queue callback; NULL if flush queue not in use */
50 struct iommu_domain *fq_domain;
51 };
52
cookie_msi_granule(struct iommu_dma_cookie * cookie)53 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
54 {
55 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
56 return cookie->iovad.granule;
57 return PAGE_SIZE;
58 }
59
cookie_alloc(enum iommu_dma_cookie_type type)60 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
61 {
62 struct iommu_dma_cookie *cookie;
63
64 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
65 if (cookie) {
66 INIT_LIST_HEAD(&cookie->msi_page_list);
67 cookie->type = type;
68 }
69 return cookie;
70 }
71
72 /**
73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
74 * @domain: IOMMU domain to prepare for DMA-API usage
75 *
76 * IOMMU drivers should normally call this from their domain_alloc
77 * callback when domain->type == IOMMU_DOMAIN_DMA.
78 */
iommu_get_dma_cookie(struct iommu_domain * domain)79 int iommu_get_dma_cookie(struct iommu_domain *domain)
80 {
81 if (domain->iova_cookie)
82 return -EEXIST;
83
84 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
85 if (!domain->iova_cookie)
86 return -ENOMEM;
87
88 return 0;
89 }
90 EXPORT_SYMBOL(iommu_get_dma_cookie);
91
92 /**
93 * iommu_get_msi_cookie - Acquire just MSI remapping resources
94 * @domain: IOMMU domain to prepare
95 * @base: Start address of IOVA region for MSI mappings
96 *
97 * Users who manage their own IOVA allocation and do not want DMA API support,
98 * but would still like to take advantage of automatic MSI remapping, can use
99 * this to initialise their own domain appropriately. Users should reserve a
100 * contiguous IOVA region, starting at @base, large enough to accommodate the
101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
102 * used by the devices attached to @domain.
103 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)104 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
105 {
106 struct iommu_dma_cookie *cookie;
107
108 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
109 return -EINVAL;
110
111 if (domain->iova_cookie)
112 return -EEXIST;
113
114 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
115 if (!cookie)
116 return -ENOMEM;
117
118 cookie->msi_iova = base;
119 domain->iova_cookie = cookie;
120 return 0;
121 }
122 EXPORT_SYMBOL(iommu_get_msi_cookie);
123
124 /**
125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
127 * iommu_get_msi_cookie()
128 *
129 * IOMMU drivers should normally call this from their domain_free callback.
130 */
iommu_put_dma_cookie(struct iommu_domain * domain)131 void iommu_put_dma_cookie(struct iommu_domain *domain)
132 {
133 struct iommu_dma_cookie *cookie = domain->iova_cookie;
134 struct iommu_dma_msi_page *msi, *tmp;
135
136 if (!cookie)
137 return;
138
139 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
140 put_iova_domain(&cookie->iovad);
141
142 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
143 list_del(&msi->list);
144 kfree(msi);
145 }
146 kfree(cookie);
147 domain->iova_cookie = NULL;
148 }
149 EXPORT_SYMBOL(iommu_put_dma_cookie);
150
151 /**
152 * iommu_dma_get_resv_regions - Reserved region driver helper
153 * @dev: Device from iommu_get_resv_regions()
154 * @list: Reserved region list from iommu_get_resv_regions()
155 *
156 * IOMMU drivers can use this to implement their .get_resv_regions callback
157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
159 * reservation.
160 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)161 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
162 {
163
164 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
165 iort_iommu_msi_get_resv_regions(dev, list);
166
167 }
168 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
169
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)170 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
171 phys_addr_t start, phys_addr_t end)
172 {
173 struct iova_domain *iovad = &cookie->iovad;
174 struct iommu_dma_msi_page *msi_page;
175 int i, num_pages;
176
177 start -= iova_offset(iovad, start);
178 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
179
180 for (i = 0; i < num_pages; i++) {
181 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
182 if (!msi_page)
183 return -ENOMEM;
184
185 msi_page->phys = start;
186 msi_page->iova = start;
187 INIT_LIST_HEAD(&msi_page->list);
188 list_add(&msi_page->list, &cookie->msi_page_list);
189 start += iovad->granule;
190 }
191
192 return 0;
193 }
194
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)195 static int iova_reserve_pci_windows(struct pci_dev *dev,
196 struct iova_domain *iovad)
197 {
198 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
199 struct resource_entry *window;
200 unsigned long lo, hi;
201 phys_addr_t start = 0, end;
202
203 resource_list_for_each_entry(window, &bridge->windows) {
204 if (resource_type(window->res) != IORESOURCE_MEM)
205 continue;
206
207 lo = iova_pfn(iovad, window->res->start - window->offset);
208 hi = iova_pfn(iovad, window->res->end - window->offset);
209 reserve_iova(iovad, lo, hi);
210 }
211
212 /* Get reserved DMA windows from host bridge */
213 resource_list_for_each_entry(window, &bridge->dma_ranges) {
214 end = window->res->start - window->offset;
215 resv_iova:
216 if (end > start) {
217 lo = iova_pfn(iovad, start);
218 hi = iova_pfn(iovad, end);
219 reserve_iova(iovad, lo, hi);
220 } else if (end < start) {
221 /* dma_ranges list should be sorted */
222 dev_err(&dev->dev,
223 "Failed to reserve IOVA [%pa-%pa]\n",
224 &start, &end);
225 return -EINVAL;
226 }
227
228 start = window->res->end - window->offset + 1;
229 /* If window is last entry */
230 if (window->node.next == &bridge->dma_ranges &&
231 end != ~(phys_addr_t)0) {
232 end = ~(phys_addr_t)0;
233 goto resv_iova;
234 }
235 }
236
237 return 0;
238 }
239
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)240 static int iova_reserve_iommu_regions(struct device *dev,
241 struct iommu_domain *domain)
242 {
243 struct iommu_dma_cookie *cookie = domain->iova_cookie;
244 struct iova_domain *iovad = &cookie->iovad;
245 struct iommu_resv_region *region;
246 LIST_HEAD(resv_regions);
247 int ret = 0;
248
249 if (dev_is_pci(dev)) {
250 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
251 if (ret)
252 return ret;
253 }
254
255 iommu_get_resv_regions(dev, &resv_regions);
256 list_for_each_entry(region, &resv_regions, list) {
257 unsigned long lo, hi;
258
259 /* We ARE the software that manages these! */
260 if (region->type == IOMMU_RESV_SW_MSI)
261 continue;
262
263 lo = iova_pfn(iovad, region->start);
264 hi = iova_pfn(iovad, region->start + region->length - 1);
265 reserve_iova(iovad, lo, hi);
266
267 if (region->type == IOMMU_RESV_MSI)
268 ret = cookie_init_hw_msi_region(cookie, region->start,
269 region->start + region->length);
270 if (ret)
271 break;
272 }
273 iommu_put_resv_regions(dev, &resv_regions);
274
275 return ret;
276 }
277
iommu_dma_flush_iotlb_all(struct iova_domain * iovad)278 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
279 {
280 struct iommu_dma_cookie *cookie;
281 struct iommu_domain *domain;
282
283 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
284 domain = cookie->fq_domain;
285 /*
286 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
287 * implies that ops->flush_iotlb_all must be non-NULL.
288 */
289 domain->ops->flush_iotlb_all(domain);
290 }
291
292 /**
293 * iommu_dma_init_domain - Initialise a DMA mapping domain
294 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
295 * @base: IOVA at which the mappable address space starts
296 * @size: Size of IOVA space
297 * @dev: Device the domain is being initialised for
298 *
299 * @base and @size should be exact multiples of IOMMU page granularity to
300 * avoid rounding surprises. If necessary, we reserve the page at address 0
301 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
302 * any change which could make prior IOVAs invalid will fail.
303 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,u64 size,struct device * dev)304 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
305 u64 size, struct device *dev)
306 {
307 struct iommu_dma_cookie *cookie = domain->iova_cookie;
308 unsigned long order, base_pfn;
309 struct iova_domain *iovad;
310 int attr;
311
312 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
313 return -EINVAL;
314
315 iovad = &cookie->iovad;
316
317 /* Use the smallest supported page size for IOVA granularity */
318 order = __ffs(domain->pgsize_bitmap);
319 base_pfn = max_t(unsigned long, 1, base >> order);
320
321 /* Check the domain allows at least some access to the device... */
322 if (domain->geometry.force_aperture) {
323 if (base > domain->geometry.aperture_end ||
324 base + size <= domain->geometry.aperture_start) {
325 pr_warn("specified DMA range outside IOMMU capability\n");
326 return -EFAULT;
327 }
328 /* ...then finally give it a kicking to make sure it fits */
329 base_pfn = max_t(unsigned long, base_pfn,
330 domain->geometry.aperture_start >> order);
331 }
332
333 /* start_pfn is always nonzero for an already-initialised domain */
334 if (iovad->start_pfn) {
335 if (1UL << order != iovad->granule ||
336 base_pfn != iovad->start_pfn) {
337 pr_warn("Incompatible range for DMA domain\n");
338 return -EFAULT;
339 }
340
341 return 0;
342 }
343
344 init_iova_domain(iovad, 1UL << order, base_pfn);
345
346 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
347 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
348 if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
349 NULL))
350 pr_warn("iova flush queue initialization failed\n");
351 else
352 cookie->fq_domain = domain;
353 }
354
355 if (!dev)
356 return 0;
357
358 return iova_reserve_iommu_regions(dev, domain);
359 }
360
iommu_dma_deferred_attach(struct device * dev,struct iommu_domain * domain)361 static int iommu_dma_deferred_attach(struct device *dev,
362 struct iommu_domain *domain)
363 {
364 const struct iommu_ops *ops = domain->ops;
365
366 if (!is_kdump_kernel())
367 return 0;
368
369 if (unlikely(ops->is_attach_deferred &&
370 ops->is_attach_deferred(domain, dev)))
371 return iommu_attach_device(domain, dev);
372
373 return 0;
374 }
375
376 /*
377 * Should be called prior to using dma-apis
378 */
iommu_dma_reserve_iova(struct device * dev,dma_addr_t base,u64 size)379 int iommu_dma_reserve_iova(struct device *dev, dma_addr_t base,
380 u64 size)
381 {
382 struct iommu_domain *domain;
383 struct iommu_dma_cookie *cookie;
384 struct iova_domain *iovad;
385 unsigned long pfn_lo, pfn_hi;
386
387 domain = iommu_get_domain_for_dev(dev);
388 if (!domain || !domain->iova_cookie)
389 return -EINVAL;
390
391 cookie = domain->iova_cookie;
392 iovad = &cookie->iovad;
393
394 /* iova will be freed automatically by put_iova_domain() */
395 pfn_lo = iova_pfn(iovad, base);
396 pfn_hi = iova_pfn(iovad, base + size - 1);
397 if (!reserve_iova(iovad, pfn_lo, pfn_hi))
398 return -EINVAL;
399
400 return 0;
401 }
402 EXPORT_SYMBOL(iommu_dma_reserve_iova);
403
404 /*
405 * Should be called prior to using dma-apis.
406 */
iommu_dma_enable_best_fit_algo(struct device * dev)407 int iommu_dma_enable_best_fit_algo(struct device *dev)
408 {
409 struct iommu_domain *domain;
410 struct iova_domain *iovad;
411
412 domain = iommu_get_domain_for_dev(dev);
413 if (!domain || !domain->iova_cookie)
414 return -EINVAL;
415
416 iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
417 iovad->best_fit = true;
418 return 0;
419 }
420 EXPORT_SYMBOL(iommu_dma_enable_best_fit_algo);
421
422 /**
423 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
424 * page flags.
425 * @dir: Direction of DMA transfer
426 * @coherent: Is the DMA master cache-coherent?
427 * @attrs: DMA attributes for the mapping
428 *
429 * Return: corresponding IOMMU API page protection flags
430 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)431 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
432 unsigned long attrs)
433 {
434 int prot = coherent ? IOMMU_CACHE : 0;
435
436 if (attrs & DMA_ATTR_PRIVILEGED)
437 prot |= IOMMU_PRIV;
438 if (attrs & DMA_ATTR_SYS_CACHE_ONLY)
439 prot |= IOMMU_SYS_CACHE;
440 if (attrs & DMA_ATTR_SYS_CACHE_ONLY_NWA)
441 prot |= IOMMU_SYS_CACHE_NWA;
442
443 switch (dir) {
444 case DMA_BIDIRECTIONAL:
445 return prot | IOMMU_READ | IOMMU_WRITE;
446 case DMA_TO_DEVICE:
447 return prot | IOMMU_READ;
448 case DMA_FROM_DEVICE:
449 return prot | IOMMU_WRITE;
450 default:
451 return 0;
452 }
453 }
454
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)455 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
456 size_t size, u64 dma_limit, struct device *dev)
457 {
458 struct iommu_dma_cookie *cookie = domain->iova_cookie;
459 struct iova_domain *iovad = &cookie->iovad;
460 unsigned long shift, iova_len, iova = 0;
461
462 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
463 cookie->msi_iova += size;
464 return cookie->msi_iova - size;
465 }
466
467 shift = iova_shift(iovad);
468 iova_len = size >> shift;
469 /*
470 * Freeing non-power-of-two-sized allocations back into the IOVA caches
471 * will come back to bite us badly, so we have to waste a bit of space
472 * rounding up anything cacheable to make sure that can't happen. The
473 * order of the unadjusted size will still match upon freeing.
474 */
475 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
476 iova_len = roundup_pow_of_two(iova_len);
477
478 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
479
480 if (domain->geometry.force_aperture)
481 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
482
483 /* Try to get PCI devices a SAC address */
484 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
485 iova = alloc_iova_fast(iovad, iova_len,
486 DMA_BIT_MASK(32) >> shift, false);
487
488 if (!iova)
489 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
490 true);
491
492 trace_android_vh_iommu_alloc_iova(dev, (dma_addr_t)iova << shift, size);
493
494 return (dma_addr_t)iova << shift;
495 }
496
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size)497 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
498 dma_addr_t iova, size_t size)
499 {
500 struct iova_domain *iovad = &cookie->iovad;
501
502 /* The MSI case is only ever cleaning up its most recent allocation */
503 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
504 cookie->msi_iova -= size;
505 else if (cookie->fq_domain) /* non-strict mode */
506 queue_iova(iovad, iova_pfn(iovad, iova),
507 size >> iova_shift(iovad), 0);
508 else
509 free_iova_fast(iovad, iova_pfn(iovad, iova),
510 size >> iova_shift(iovad));
511
512 trace_android_vh_iommu_free_iova(iova, size);
513 }
514
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)515 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
516 size_t size)
517 {
518 struct iommu_domain *domain = iommu_get_dma_domain(dev);
519 struct iommu_dma_cookie *cookie = domain->iova_cookie;
520 struct iova_domain *iovad = &cookie->iovad;
521 size_t iova_off = iova_offset(iovad, dma_addr);
522 struct iommu_iotlb_gather iotlb_gather;
523 size_t unmapped;
524
525 dma_addr -= iova_off;
526 size = iova_align(iovad, size + iova_off);
527 iommu_iotlb_gather_init(&iotlb_gather);
528
529 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
530 WARN_ON(unmapped != size);
531
532 if (!cookie->fq_domain)
533 iommu_iotlb_sync(domain, &iotlb_gather);
534 iommu_dma_free_iova(cookie, dma_addr, size);
535 }
536
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)537 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
538 size_t size, int prot, u64 dma_mask)
539 {
540 struct iommu_domain *domain = iommu_get_dma_domain(dev);
541 struct iommu_dma_cookie *cookie = domain->iova_cookie;
542 struct iova_domain *iovad = &cookie->iovad;
543 size_t iova_off = iova_offset(iovad, phys);
544 dma_addr_t iova;
545
546 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
547 return DMA_MAPPING_ERROR;
548
549 size = iova_align(iovad, size + iova_off);
550
551 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
552 if (!iova)
553 return DMA_MAPPING_ERROR;
554
555 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
556 iommu_dma_free_iova(cookie, iova, size);
557 return DMA_MAPPING_ERROR;
558 }
559 return iova + iova_off;
560 }
561
__iommu_dma_free_pages(struct page ** pages,int count)562 static void __iommu_dma_free_pages(struct page **pages, int count)
563 {
564 while (count--)
565 __free_page(pages[count]);
566 kvfree(pages);
567 }
568
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)569 static struct page **__iommu_dma_alloc_pages(struct device *dev,
570 unsigned int count, unsigned long order_mask, gfp_t gfp)
571 {
572 struct page **pages;
573 unsigned int i = 0, nid = dev_to_node(dev);
574
575 order_mask &= (2U << MAX_ORDER) - 1;
576 if (!order_mask)
577 return NULL;
578
579 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
580 if (!pages)
581 return NULL;
582
583 /* IOMMU can map any pages, so himem can also be used here */
584 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
585
586 /* It makes no sense to muck about with huge pages */
587 gfp &= ~__GFP_COMP;
588
589 while (count) {
590 struct page *page = NULL;
591 unsigned int order_size;
592
593 /*
594 * Higher-order allocations are a convenience rather
595 * than a necessity, hence using __GFP_NORETRY until
596 * falling back to minimum-order allocations.
597 */
598 for (order_mask &= (2U << __fls(count)) - 1;
599 order_mask; order_mask &= ~order_size) {
600 unsigned int order = __fls(order_mask);
601 gfp_t alloc_flags = gfp;
602
603 order_size = 1U << order;
604 if (order_mask > order_size)
605 alloc_flags |= __GFP_NORETRY;
606 page = alloc_pages_node(nid, alloc_flags, order);
607 if (!page)
608 continue;
609 if (order)
610 split_page(page, order);
611 break;
612 }
613 if (!page) {
614 __iommu_dma_free_pages(pages, i);
615 return NULL;
616 }
617 count -= order_size;
618 while (order_size--)
619 pages[i++] = page++;
620 }
621 return pages;
622 }
623
624 /**
625 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
626 * @dev: Device to allocate memory for. Must be a real device
627 * attached to an iommu_dma_domain
628 * @size: Size of buffer in bytes
629 * @dma_handle: Out argument for allocated DMA handle
630 * @gfp: Allocation flags
631 * @prot: pgprot_t to use for the remapped mapping
632 * @attrs: DMA attributes for this allocation
633 *
634 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
635 * but an IOMMU which supports smaller pages might not map the whole thing.
636 *
637 * Return: Mapped virtual address, or NULL on failure.
638 */
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)639 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
640 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
641 unsigned long attrs)
642 {
643 struct iommu_domain *domain = iommu_get_dma_domain(dev);
644 struct iommu_dma_cookie *cookie = domain->iova_cookie;
645 struct iova_domain *iovad = &cookie->iovad;
646 bool coherent = dev_is_dma_coherent(dev);
647 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
648 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
649 struct page **pages;
650 struct sg_table sgt;
651 dma_addr_t iova;
652 void *vaddr;
653
654 *dma_handle = DMA_MAPPING_ERROR;
655
656 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
657 return NULL;
658
659 min_size = alloc_sizes & -alloc_sizes;
660 if (min_size < PAGE_SIZE) {
661 min_size = PAGE_SIZE;
662 alloc_sizes |= PAGE_SIZE;
663 } else {
664 size = ALIGN(size, min_size);
665 }
666 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
667 alloc_sizes = min_size;
668
669 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
670 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
671 gfp);
672 if (!pages)
673 return NULL;
674
675 size = iova_align(iovad, size);
676 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
677 if (!iova)
678 goto out_free_pages;
679
680 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
681 goto out_free_iova;
682
683 if (!(ioprot & IOMMU_CACHE)) {
684 struct scatterlist *sg;
685 int i;
686
687 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
688 arch_dma_prep_coherent(sg_page(sg), sg->length);
689 }
690
691 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
692 < size)
693 goto out_free_sg;
694
695 vaddr = dma_common_pages_remap(pages, size, prot,
696 __builtin_return_address(0));
697 if (!vaddr)
698 goto out_unmap;
699
700 *dma_handle = iova;
701 sg_free_table(&sgt);
702 return vaddr;
703
704 out_unmap:
705 __iommu_dma_unmap(dev, iova, size);
706 out_free_sg:
707 sg_free_table(&sgt);
708 out_free_iova:
709 iommu_dma_free_iova(cookie, iova, size);
710 out_free_pages:
711 __iommu_dma_free_pages(pages, count);
712 return NULL;
713 }
714
715 /**
716 * __iommu_dma_mmap - Map a buffer into provided user VMA
717 * @pages: Array representing buffer from __iommu_dma_alloc()
718 * @size: Size of buffer in bytes
719 * @vma: VMA describing requested userspace mapping
720 *
721 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
722 * for verifying the correct size and protection of @vma beforehand.
723 */
__iommu_dma_mmap(struct page ** pages,size_t size,struct vm_area_struct * vma)724 static int __iommu_dma_mmap(struct page **pages, size_t size,
725 struct vm_area_struct *vma)
726 {
727 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
728 }
729
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)730 static void iommu_dma_sync_single_for_cpu(struct device *dev,
731 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
732 {
733 phys_addr_t phys;
734
735 if (dev_is_dma_coherent(dev))
736 return;
737
738 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
739 arch_sync_dma_for_cpu(phys, size, dir);
740 }
741
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)742 static void iommu_dma_sync_single_for_device(struct device *dev,
743 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
744 {
745 phys_addr_t phys;
746
747 if (dev_is_dma_coherent(dev))
748 return;
749
750 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
751 arch_sync_dma_for_device(phys, size, dir);
752 }
753
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)754 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
755 struct scatterlist *sgl, int nelems,
756 enum dma_data_direction dir)
757 {
758 struct scatterlist *sg;
759 int i;
760
761 if (dev_is_dma_coherent(dev))
762 return;
763
764 for_each_sg(sgl, sg, nelems, i)
765 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
766 }
767
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)768 static void iommu_dma_sync_sg_for_device(struct device *dev,
769 struct scatterlist *sgl, int nelems,
770 enum dma_data_direction dir)
771 {
772 struct scatterlist *sg;
773 int i;
774
775 if (dev_is_dma_coherent(dev))
776 return;
777
778 for_each_sg(sgl, sg, nelems, i)
779 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
780 }
781
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)782 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
783 unsigned long offset, size_t size, enum dma_data_direction dir,
784 unsigned long attrs)
785 {
786 phys_addr_t phys = page_to_phys(page) + offset;
787 bool coherent = dev_is_dma_coherent(dev);
788 int prot = dma_info_to_prot(dir, coherent, attrs);
789 dma_addr_t dma_handle;
790
791 dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
792 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
793 dma_handle != DMA_MAPPING_ERROR)
794 arch_sync_dma_for_device(phys, size, dir);
795 return dma_handle;
796 }
797
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)798 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
799 size_t size, enum dma_data_direction dir, unsigned long attrs)
800 {
801 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
802 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
803 __iommu_dma_unmap(dev, dma_handle, size);
804 }
805
806 /*
807 * Prepare a successfully-mapped scatterlist to give back to the caller.
808 *
809 * At this point the segments are already laid out by iommu_dma_map_sg() to
810 * avoid individually crossing any boundaries, so we merely need to check a
811 * segment's start address to avoid concatenating across one.
812 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)813 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
814 dma_addr_t dma_addr)
815 {
816 struct scatterlist *s, *cur = sg;
817 unsigned long seg_mask = dma_get_seg_boundary(dev);
818 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
819 int i, count = 0;
820
821 for_each_sg(sg, s, nents, i) {
822 /* Restore this segment's original unaligned fields first */
823 unsigned int s_iova_off = sg_dma_address(s);
824 unsigned int s_length = sg_dma_len(s);
825 unsigned int s_iova_len = s->length;
826
827 s->offset += s_iova_off;
828 s->length = s_length;
829 sg_dma_address(s) = DMA_MAPPING_ERROR;
830 sg_dma_len(s) = 0;
831
832 /*
833 * Now fill in the real DMA data. If...
834 * - there is a valid output segment to append to
835 * - and this segment starts on an IOVA page boundary
836 * - but doesn't fall at a segment boundary
837 * - and wouldn't make the resulting output segment too long
838 */
839 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
840 (max_len - cur_len >= s_length)) {
841 /* ...then concatenate it with the previous one */
842 cur_len += s_length;
843 } else {
844 /* Otherwise start the next output segment */
845 if (i > 0)
846 cur = sg_next(cur);
847 cur_len = s_length;
848 count++;
849
850 sg_dma_address(cur) = dma_addr + s_iova_off;
851 }
852
853 sg_dma_len(cur) = cur_len;
854 dma_addr += s_iova_len;
855
856 if (s_length + s_iova_off < s_iova_len)
857 cur_len = 0;
858 }
859 return count;
860 }
861
862 /*
863 * If mapping failed, then just restore the original list,
864 * but making sure the DMA fields are invalidated.
865 */
__invalidate_sg(struct scatterlist * sg,int nents)866 static void __invalidate_sg(struct scatterlist *sg, int nents)
867 {
868 struct scatterlist *s;
869 int i;
870
871 for_each_sg(sg, s, nents, i) {
872 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
873 s->offset += sg_dma_address(s);
874 if (sg_dma_len(s))
875 s->length = sg_dma_len(s);
876 sg_dma_address(s) = DMA_MAPPING_ERROR;
877 sg_dma_len(s) = 0;
878 }
879 }
880
881 /*
882 * The DMA API client is passing in a scatterlist which could describe
883 * any old buffer layout, but the IOMMU API requires everything to be
884 * aligned to IOMMU pages. Hence the need for this complicated bit of
885 * impedance-matching, to be able to hand off a suitably-aligned list,
886 * but still preserve the original offsets and sizes for the caller.
887 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)888 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
889 int nents, enum dma_data_direction dir, unsigned long attrs)
890 {
891 struct iommu_domain *domain = iommu_get_dma_domain(dev);
892 struct iommu_dma_cookie *cookie = domain->iova_cookie;
893 struct iova_domain *iovad = &cookie->iovad;
894 struct scatterlist *s, *prev = NULL;
895 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
896 dma_addr_t iova;
897 size_t iova_len = 0;
898 unsigned long mask = dma_get_seg_boundary(dev);
899 int i;
900
901 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
902 return 0;
903
904 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
905 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
906
907 /*
908 * Work out how much IOVA space we need, and align the segments to
909 * IOVA granules for the IOMMU driver to handle. With some clever
910 * trickery we can modify the list in-place, but reversibly, by
911 * stashing the unaligned parts in the as-yet-unused DMA fields.
912 */
913 for_each_sg(sg, s, nents, i) {
914 size_t s_iova_off = iova_offset(iovad, s->offset);
915 size_t s_length = s->length;
916 size_t pad_len = (mask - iova_len + 1) & mask;
917
918 sg_dma_address(s) = s_iova_off;
919 sg_dma_len(s) = s_length;
920 s->offset -= s_iova_off;
921 s_length = iova_align(iovad, s_length + s_iova_off);
922 s->length = s_length;
923
924 /*
925 * Due to the alignment of our single IOVA allocation, we can
926 * depend on these assumptions about the segment boundary mask:
927 * - If mask size >= IOVA size, then the IOVA range cannot
928 * possibly fall across a boundary, so we don't care.
929 * - If mask size < IOVA size, then the IOVA range must start
930 * exactly on a boundary, therefore we can lay things out
931 * based purely on segment lengths without needing to know
932 * the actual addresses beforehand.
933 * - The mask must be a power of 2, so pad_len == 0 if
934 * iova_len == 0, thus we cannot dereference prev the first
935 * time through here (i.e. before it has a meaningful value).
936 */
937 if (pad_len && pad_len < s_length - 1) {
938 prev->length += pad_len;
939 iova_len += pad_len;
940 }
941
942 iova_len += s_length;
943 prev = s;
944 }
945
946 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
947 if (!iova)
948 goto out_restore_sg;
949
950 /*
951 * We'll leave any physical concatenation to the IOMMU driver's
952 * implementation - it knows better than we do.
953 */
954 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
955 goto out_free_iova;
956
957 return __finalise_sg(dev, sg, nents, iova);
958
959 out_free_iova:
960 iommu_dma_free_iova(cookie, iova, iova_len);
961 out_restore_sg:
962 __invalidate_sg(sg, nents);
963 return 0;
964 }
965
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)966 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
967 int nents, enum dma_data_direction dir, unsigned long attrs)
968 {
969 dma_addr_t start, end;
970 struct scatterlist *tmp;
971 int i;
972
973 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
974 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
975
976 /*
977 * The scatterlist segments are mapped into a single
978 * contiguous IOVA allocation, so this is incredibly easy.
979 */
980 start = sg_dma_address(sg);
981 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
982 if (sg_dma_len(tmp) == 0)
983 break;
984 sg = tmp;
985 }
986 end = sg_dma_address(sg) + sg_dma_len(sg);
987 __iommu_dma_unmap(dev, start, end - start);
988 }
989
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)990 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
991 size_t size, enum dma_data_direction dir, unsigned long attrs)
992 {
993 return __iommu_dma_map(dev, phys, size,
994 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
995 dma_get_mask(dev));
996 }
997
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)998 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
999 size_t size, enum dma_data_direction dir, unsigned long attrs)
1000 {
1001 __iommu_dma_unmap(dev, handle, size);
1002 }
1003
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1004 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1005 {
1006 size_t alloc_size = PAGE_ALIGN(size);
1007 int count = alloc_size >> PAGE_SHIFT;
1008 struct page *page = NULL, **pages = NULL;
1009
1010 /* Non-coherent atomic allocation? Easy */
1011 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1012 dma_free_from_pool(dev, cpu_addr, alloc_size))
1013 return;
1014
1015 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1016 /*
1017 * If it the address is remapped, then it's either non-coherent
1018 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1019 */
1020 pages = dma_common_find_pages(cpu_addr);
1021 if (!pages)
1022 page = vmalloc_to_page(cpu_addr);
1023 dma_common_free_remap(cpu_addr, alloc_size);
1024 } else {
1025 /* Lowmem means a coherent atomic or CMA allocation */
1026 page = virt_to_page(cpu_addr);
1027 }
1028
1029 if (pages)
1030 __iommu_dma_free_pages(pages, count);
1031 if (page)
1032 dma_free_contiguous(dev, page, alloc_size);
1033 }
1034
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1035 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1036 dma_addr_t handle, unsigned long attrs)
1037 {
1038 __iommu_dma_unmap(dev, handle, size);
1039 __iommu_dma_free(dev, size, cpu_addr);
1040 }
1041
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1042 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1043 struct page **pagep, gfp_t gfp, unsigned long attrs)
1044 {
1045 bool coherent = dev_is_dma_coherent(dev);
1046 size_t alloc_size = PAGE_ALIGN(size);
1047 int node = dev_to_node(dev);
1048 struct page *page = NULL;
1049 void *cpu_addr;
1050
1051 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1052 if (!page)
1053 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1054 if (!page)
1055 return NULL;
1056
1057 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1058 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1059
1060 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1061 prot, __builtin_return_address(0));
1062 if (!cpu_addr)
1063 goto out_free_pages;
1064
1065 if (!coherent)
1066 arch_dma_prep_coherent(page, size);
1067 } else {
1068 cpu_addr = page_address(page);
1069 }
1070
1071 *pagep = page;
1072 memset(cpu_addr, 0, alloc_size);
1073 return cpu_addr;
1074 out_free_pages:
1075 dma_free_contiguous(dev, page, alloc_size);
1076 return NULL;
1077 }
1078
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1079 static void *iommu_dma_alloc(struct device *dev, size_t size,
1080 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1081 {
1082 bool coherent = dev_is_dma_coherent(dev);
1083 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1084 struct page *page = NULL;
1085 void *cpu_addr;
1086
1087 gfp |= __GFP_ZERO;
1088
1089 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1090 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1091 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1092 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1093 }
1094
1095 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1096 !gfpflags_allow_blocking(gfp) && !coherent)
1097 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1098 gfp, NULL);
1099 else
1100 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1101 if (!cpu_addr)
1102 return NULL;
1103
1104 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1105 dev->coherent_dma_mask);
1106 if (*handle == DMA_MAPPING_ERROR) {
1107 __iommu_dma_free(dev, size, cpu_addr);
1108 return NULL;
1109 }
1110
1111 return cpu_addr;
1112 }
1113
1114 #ifdef CONFIG_DMA_REMAP
iommu_dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * handle,enum dma_data_direction dir,gfp_t gfp)1115 static void *iommu_dma_alloc_noncoherent(struct device *dev, size_t size,
1116 dma_addr_t *handle, enum dma_data_direction dir, gfp_t gfp)
1117 {
1118 if (!gfpflags_allow_blocking(gfp)) {
1119 struct page *page;
1120
1121 page = dma_common_alloc_pages(dev, size, handle, dir, gfp);
1122 if (!page)
1123 return NULL;
1124 return page_address(page);
1125 }
1126
1127 return iommu_dma_alloc_remap(dev, size, handle, gfp | __GFP_ZERO,
1128 PAGE_KERNEL, 0);
1129 }
1130
iommu_dma_free_noncoherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,enum dma_data_direction dir)1131 static void iommu_dma_free_noncoherent(struct device *dev, size_t size,
1132 void *cpu_addr, dma_addr_t handle, enum dma_data_direction dir)
1133 {
1134 __iommu_dma_unmap(dev, handle, size);
1135 __iommu_dma_free(dev, size, cpu_addr);
1136 }
1137 #else
1138 #define iommu_dma_alloc_noncoherent NULL
1139 #define iommu_dma_free_noncoherent NULL
1140 #endif /* CONFIG_DMA_REMAP */
1141
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1142 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1143 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1144 unsigned long attrs)
1145 {
1146 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1147 unsigned long pfn, off = vma->vm_pgoff;
1148 int ret;
1149
1150 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1151
1152 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1153 return ret;
1154
1155 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1156 return -ENXIO;
1157
1158 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1159 struct page **pages = dma_common_find_pages(cpu_addr);
1160
1161 if (pages)
1162 return __iommu_dma_mmap(pages, size, vma);
1163 pfn = vmalloc_to_pfn(cpu_addr);
1164 } else {
1165 pfn = page_to_pfn(virt_to_page(cpu_addr));
1166 }
1167
1168 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1169 vma->vm_end - vma->vm_start,
1170 vma->vm_page_prot);
1171 }
1172
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1173 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1174 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1175 unsigned long attrs)
1176 {
1177 struct page *page;
1178 int ret;
1179
1180 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1181 struct page **pages = dma_common_find_pages(cpu_addr);
1182
1183 if (pages) {
1184 return sg_alloc_table_from_pages(sgt, pages,
1185 PAGE_ALIGN(size) >> PAGE_SHIFT,
1186 0, size, GFP_KERNEL);
1187 }
1188
1189 page = vmalloc_to_page(cpu_addr);
1190 } else {
1191 page = virt_to_page(cpu_addr);
1192 }
1193
1194 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1195 if (!ret)
1196 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1197 return ret;
1198 }
1199
iommu_dma_get_merge_boundary(struct device * dev)1200 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1201 {
1202 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1203
1204 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1205 }
1206
1207 static const struct dma_map_ops iommu_dma_ops = {
1208 .alloc = iommu_dma_alloc,
1209 .free = iommu_dma_free,
1210 .alloc_pages = dma_common_alloc_pages,
1211 .free_pages = dma_common_free_pages,
1212 .alloc_noncoherent = iommu_dma_alloc_noncoherent,
1213 .free_noncoherent = iommu_dma_free_noncoherent,
1214 .mmap = iommu_dma_mmap,
1215 .get_sgtable = iommu_dma_get_sgtable,
1216 .map_page = iommu_dma_map_page,
1217 .unmap_page = iommu_dma_unmap_page,
1218 .map_sg = iommu_dma_map_sg,
1219 .unmap_sg = iommu_dma_unmap_sg,
1220 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1221 .sync_single_for_device = iommu_dma_sync_single_for_device,
1222 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1223 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1224 .map_resource = iommu_dma_map_resource,
1225 .unmap_resource = iommu_dma_unmap_resource,
1226 .get_merge_boundary = iommu_dma_get_merge_boundary,
1227 };
1228
1229 /*
1230 * The IOMMU core code allocates the default DMA domain, which the underlying
1231 * IOMMU driver needs to support via the dma-iommu layer.
1232 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 size)1233 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1234 {
1235 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1236
1237 if (!domain)
1238 goto out_err;
1239
1240 /*
1241 * The IOMMU core code allocates the default DMA domain, which the
1242 * underlying IOMMU driver needs to support via the dma-iommu layer.
1243 */
1244 if (domain->type == IOMMU_DOMAIN_DMA) {
1245 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1246 goto out_err;
1247 dev->dma_ops = &iommu_dma_ops;
1248 }
1249
1250 return;
1251 out_err:
1252 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1253 dev_name(dev));
1254 }
1255
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1256 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1257 phys_addr_t msi_addr, struct iommu_domain *domain)
1258 {
1259 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1260 struct iommu_dma_msi_page *msi_page;
1261 dma_addr_t iova;
1262 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1263 size_t size = cookie_msi_granule(cookie);
1264
1265 msi_addr &= ~(phys_addr_t)(size - 1);
1266 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1267 if (msi_page->phys == msi_addr)
1268 return msi_page;
1269
1270 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1271 if (!msi_page)
1272 return NULL;
1273
1274 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1275 if (!iova)
1276 goto out_free_page;
1277
1278 if (iommu_map(domain, iova, msi_addr, size, prot))
1279 goto out_free_iova;
1280
1281 INIT_LIST_HEAD(&msi_page->list);
1282 msi_page->phys = msi_addr;
1283 msi_page->iova = iova;
1284 list_add(&msi_page->list, &cookie->msi_page_list);
1285 return msi_page;
1286
1287 out_free_iova:
1288 iommu_dma_free_iova(cookie, iova, size);
1289 out_free_page:
1290 kfree(msi_page);
1291 return NULL;
1292 }
1293
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1294 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1295 {
1296 struct device *dev = msi_desc_to_dev(desc);
1297 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1298 struct iommu_dma_msi_page *msi_page;
1299 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1300
1301 if (!domain || !domain->iova_cookie) {
1302 desc->iommu_cookie = NULL;
1303 return 0;
1304 }
1305
1306 /*
1307 * In fact the whole prepare operation should already be serialised by
1308 * irq_domain_mutex further up the callchain, but that's pretty subtle
1309 * on its own, so consider this locking as failsafe documentation...
1310 */
1311 mutex_lock(&msi_prepare_lock);
1312 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1313 mutex_unlock(&msi_prepare_lock);
1314
1315 msi_desc_set_iommu_cookie(desc, msi_page);
1316
1317 if (!msi_page)
1318 return -ENOMEM;
1319 return 0;
1320 }
1321
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1322 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1323 struct msi_msg *msg)
1324 {
1325 struct device *dev = msi_desc_to_dev(desc);
1326 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1327 const struct iommu_dma_msi_page *msi_page;
1328
1329 msi_page = msi_desc_get_iommu_cookie(desc);
1330
1331 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1332 return;
1333
1334 msg->address_hi = upper_32_bits(msi_page->iova);
1335 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1336 msg->address_lo += lower_32_bits(msi_page->iova);
1337 }
1338
iommu_dma_init(void)1339 static int iommu_dma_init(void)
1340 {
1341 return iova_cache_get();
1342 }
1343 arch_initcall(iommu_dma_init);
1344