1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/msidef.h>
24
25 #include "../irq_remapping.h"
26
27 enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85
ir_pre_enabled(struct intel_iommu * iommu)86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90
clear_ir_pre_enabled(struct intel_iommu * iommu)91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95
init_ir_status(struct intel_iommu * iommu)96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98 u32 gsts;
99
100 gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 if (gsts & DMA_GSTS_IRES)
102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)105 static int alloc_irte(struct intel_iommu *iommu,
106 struct irq_2_iommu *irq_iommu, u16 count)
107 {
108 struct ir_table *table = iommu->ir_table;
109 unsigned int mask = 0;
110 unsigned long flags;
111 int index;
112
113 if (!count || !irq_iommu)
114 return -1;
115
116 if (count > 1) {
117 count = __roundup_pow_of_two(count);
118 mask = ilog2(count);
119 }
120
121 if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 pr_err("Requested mask %x exceeds the max invalidation handle"
123 " mask value %Lx\n", mask,
124 ecap_max_handle_mask(iommu->ecap));
125 return -1;
126 }
127
128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 index = bitmap_find_free_region(table->bitmap,
130 INTR_REMAP_TABLE_ENTRIES, mask);
131 if (index < 0) {
132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 } else {
134 irq_iommu->iommu = iommu;
135 irq_iommu->irte_index = index;
136 irq_iommu->sub_handle = 0;
137 irq_iommu->irte_mask = mask;
138 irq_iommu->mode = IRQ_REMAPPING;
139 }
140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142 return index;
143 }
144
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147 struct qi_desc desc;
148
149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 | QI_IEC_SELECTIVE;
151 desc.qw1 = 0;
152 desc.qw2 = 0;
153 desc.qw3 = 0;
154
155 return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159 struct irte *irte_modified)
160 {
161 struct intel_iommu *iommu;
162 unsigned long flags;
163 struct irte *irte;
164 int rc, index;
165
166 if (!irq_iommu)
167 return -1;
168
169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171 iommu = irq_iommu->iommu;
172
173 index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 irte = &iommu->ir_table->base[index];
175
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else
191 #endif
192 {
193 set_64bit(&irte->low, irte_modified->low);
194 set_64bit(&irte->high, irte_modified->high);
195 }
196 __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198 rc = qi_flush_iec(iommu, index, 0);
199
200 /* Update iommu mode according to the IRTE mode */
201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205 }
206
map_hpet_to_ir(u8 hpet_id)207 static struct irq_domain *map_hpet_to_ir(u8 hpet_id)
208 {
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++) {
212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 return ir_hpet[i].iommu->ir_domain;
214 }
215 return NULL;
216 }
217
map_ioapic_to_iommu(int apic)218 static struct intel_iommu *map_ioapic_to_iommu(int apic)
219 {
220 int i;
221
222 for (i = 0; i < MAX_IO_APICS; i++) {
223 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
224 return ir_ioapic[i].iommu;
225 }
226 return NULL;
227 }
228
map_ioapic_to_ir(int apic)229 static struct irq_domain *map_ioapic_to_ir(int apic)
230 {
231 struct intel_iommu *iommu = map_ioapic_to_iommu(apic);
232
233 return iommu ? iommu->ir_domain : NULL;
234 }
235
map_dev_to_ir(struct pci_dev * dev)236 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
237 {
238 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
239
240 return drhd ? drhd->iommu->ir_msi_domain : NULL;
241 }
242
clear_entries(struct irq_2_iommu * irq_iommu)243 static int clear_entries(struct irq_2_iommu *irq_iommu)
244 {
245 struct irte *start, *entry, *end;
246 struct intel_iommu *iommu;
247 int index;
248
249 if (irq_iommu->sub_handle)
250 return 0;
251
252 iommu = irq_iommu->iommu;
253 index = irq_iommu->irte_index;
254
255 start = iommu->ir_table->base + index;
256 end = start + (1 << irq_iommu->irte_mask);
257
258 for (entry = start; entry < end; entry++) {
259 set_64bit(&entry->low, 0);
260 set_64bit(&entry->high, 0);
261 }
262 bitmap_release_region(iommu->ir_table->bitmap, index,
263 irq_iommu->irte_mask);
264
265 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
266 }
267
268 /*
269 * source validation type
270 */
271 #define SVT_NO_VERIFY 0x0 /* no verification is required */
272 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
273 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
274
275 /*
276 * source-id qualifier
277 */
278 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
279 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
280 * the third least significant bit
281 */
282 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
283 * the second and third least significant bits
284 */
285 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
286 * the least three significant bits
287 */
288
289 /*
290 * set SVT, SQ and SID fields of irte to verify
291 * source ids of interrupt requests
292 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)293 static void set_irte_sid(struct irte *irte, unsigned int svt,
294 unsigned int sq, unsigned int sid)
295 {
296 if (disable_sourceid_checking)
297 svt = SVT_NO_VERIFY;
298 irte->svt = svt;
299 irte->sq = sq;
300 irte->sid = sid;
301 }
302
303 /*
304 * Set an IRTE to match only the bus number. Interrupt requests that reference
305 * this IRTE must have a requester-id whose bus number is between or equal
306 * to the start_bus and end_bus arguments.
307 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)308 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
309 unsigned int end_bus)
310 {
311 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
312 (start_bus << 8) | end_bus);
313 }
314
set_ioapic_sid(struct irte * irte,int apic)315 static int set_ioapic_sid(struct irte *irte, int apic)
316 {
317 int i;
318 u16 sid = 0;
319
320 if (!irte)
321 return -1;
322
323 down_read(&dmar_global_lock);
324 for (i = 0; i < MAX_IO_APICS; i++) {
325 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
326 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
327 break;
328 }
329 }
330 up_read(&dmar_global_lock);
331
332 if (sid == 0) {
333 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
334 return -1;
335 }
336
337 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
338
339 return 0;
340 }
341
set_hpet_sid(struct irte * irte,u8 id)342 static int set_hpet_sid(struct irte *irte, u8 id)
343 {
344 int i;
345 u16 sid = 0;
346
347 if (!irte)
348 return -1;
349
350 down_read(&dmar_global_lock);
351 for (i = 0; i < MAX_HPET_TBS; i++) {
352 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
353 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
354 break;
355 }
356 }
357 up_read(&dmar_global_lock);
358
359 if (sid == 0) {
360 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
361 return -1;
362 }
363
364 /*
365 * Should really use SQ_ALL_16. Some platforms are broken.
366 * While we figure out the right quirks for these broken platforms, use
367 * SQ_13_IGNORE_3 for now.
368 */
369 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
370
371 return 0;
372 }
373
374 struct set_msi_sid_data {
375 struct pci_dev *pdev;
376 u16 alias;
377 int count;
378 int busmatch_count;
379 };
380
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)381 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
382 {
383 struct set_msi_sid_data *data = opaque;
384
385 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
386 data->busmatch_count++;
387
388 data->pdev = pdev;
389 data->alias = alias;
390 data->count++;
391
392 return 0;
393 }
394
set_msi_sid(struct irte * irte,struct pci_dev * dev)395 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
396 {
397 struct set_msi_sid_data data;
398
399 if (!irte || !dev)
400 return -1;
401
402 data.count = 0;
403 data.busmatch_count = 0;
404 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
405
406 /*
407 * DMA alias provides us with a PCI device and alias. The only case
408 * where the it will return an alias on a different bus than the
409 * device is the case of a PCIe-to-PCI bridge, where the alias is for
410 * the subordinate bus. In this case we can only verify the bus.
411 *
412 * If there are multiple aliases, all with the same bus number,
413 * then all we can do is verify the bus. This is typical in NTB
414 * hardware which use proxy IDs where the device will generate traffic
415 * from multiple devfn numbers on the same bus.
416 *
417 * If the alias device is on a different bus than our source device
418 * then we have a topology based alias, use it.
419 *
420 * Otherwise, the alias is for a device DMA quirk and we cannot
421 * assume that MSI uses the same requester ID. Therefore use the
422 * original device.
423 */
424 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
425 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
426 dev->bus->number);
427 else if (data.count >= 2 && data.busmatch_count == data.count)
428 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
429 else if (data.pdev->bus->number != dev->bus->number)
430 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
431 else
432 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
433 pci_dev_id(dev));
434
435 return 0;
436 }
437
iommu_load_old_irte(struct intel_iommu * iommu)438 static int iommu_load_old_irte(struct intel_iommu *iommu)
439 {
440 struct irte *old_ir_table;
441 phys_addr_t irt_phys;
442 unsigned int i;
443 size_t size;
444 u64 irta;
445
446 /* Check whether the old ir-table has the same size as ours */
447 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
448 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
449 != INTR_REMAP_TABLE_REG_SIZE)
450 return -EINVAL;
451
452 irt_phys = irta & VTD_PAGE_MASK;
453 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
454
455 /* Map the old IR table */
456 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
457 if (!old_ir_table)
458 return -ENOMEM;
459
460 /* Copy data over */
461 memcpy(iommu->ir_table->base, old_ir_table, size);
462
463 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
464
465 /*
466 * Now check the table for used entries and mark those as
467 * allocated in the bitmap
468 */
469 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
470 if (iommu->ir_table->base[i].present)
471 bitmap_set(iommu->ir_table->bitmap, i, 1);
472 }
473
474 memunmap(old_ir_table);
475
476 return 0;
477 }
478
479
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)480 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
481 {
482 unsigned long flags;
483 u64 addr;
484 u32 sts;
485
486 addr = virt_to_phys((void *)iommu->ir_table->base);
487
488 raw_spin_lock_irqsave(&iommu->register_lock, flags);
489
490 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
491 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
492
493 /* Set interrupt-remapping table pointer */
494 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
495
496 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
497 readl, (sts & DMA_GSTS_IRTPS), sts);
498 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
499
500 /*
501 * Global invalidation of interrupt entry cache to make sure the
502 * hardware uses the new irq remapping table.
503 */
504 qi_global_iec(iommu);
505 }
506
iommu_enable_irq_remapping(struct intel_iommu * iommu)507 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
508 {
509 unsigned long flags;
510 u32 sts;
511
512 raw_spin_lock_irqsave(&iommu->register_lock, flags);
513
514 /* Enable interrupt-remapping */
515 iommu->gcmd |= DMA_GCMD_IRE;
516 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
517 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
518 readl, (sts & DMA_GSTS_IRES), sts);
519
520 /* Block compatibility-format MSIs */
521 if (sts & DMA_GSTS_CFIS) {
522 iommu->gcmd &= ~DMA_GCMD_CFI;
523 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
524 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
525 readl, !(sts & DMA_GSTS_CFIS), sts);
526 }
527
528 /*
529 * With CFI clear in the Global Command register, we should be
530 * protected from dangerous (i.e. compatibility) interrupts
531 * regardless of x2apic status. Check just to be sure.
532 */
533 if (sts & DMA_GSTS_CFIS)
534 WARN(1, KERN_WARNING
535 "Compatibility-format IRQs enabled despite intr remapping;\n"
536 "you are vulnerable to IRQ injection.\n");
537
538 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
539 }
540
intel_setup_irq_remapping(struct intel_iommu * iommu)541 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
542 {
543 struct ir_table *ir_table;
544 struct fwnode_handle *fn;
545 unsigned long *bitmap;
546 struct page *pages;
547
548 if (iommu->ir_table)
549 return 0;
550
551 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
552 if (!ir_table)
553 return -ENOMEM;
554
555 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
556 INTR_REMAP_PAGE_ORDER);
557 if (!pages) {
558 pr_err("IR%d: failed to allocate pages of order %d\n",
559 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
560 goto out_free_table;
561 }
562
563 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
564 if (bitmap == NULL) {
565 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
566 goto out_free_pages;
567 }
568
569 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
570 if (!fn)
571 goto out_free_bitmap;
572
573 iommu->ir_domain =
574 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
575 0, INTR_REMAP_TABLE_ENTRIES,
576 fn, &intel_ir_domain_ops,
577 iommu);
578 if (!iommu->ir_domain) {
579 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
580 goto out_free_fwnode;
581 }
582 iommu->ir_msi_domain =
583 arch_create_remap_msi_irq_domain(iommu->ir_domain,
584 "INTEL-IR-MSI",
585 iommu->seq_id);
586
587 ir_table->base = page_address(pages);
588 ir_table->bitmap = bitmap;
589 iommu->ir_table = ir_table;
590
591 /*
592 * If the queued invalidation is already initialized,
593 * shouldn't disable it.
594 */
595 if (!iommu->qi) {
596 /*
597 * Clear previous faults.
598 */
599 dmar_fault(-1, iommu);
600 dmar_disable_qi(iommu);
601
602 if (dmar_enable_qi(iommu)) {
603 pr_err("Failed to enable queued invalidation\n");
604 goto out_free_ir_domain;
605 }
606 }
607
608 init_ir_status(iommu);
609
610 if (ir_pre_enabled(iommu)) {
611 if (!is_kdump_kernel()) {
612 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
613 iommu->name);
614 clear_ir_pre_enabled(iommu);
615 iommu_disable_irq_remapping(iommu);
616 } else if (iommu_load_old_irte(iommu))
617 pr_err("Failed to copy IR table for %s from previous kernel\n",
618 iommu->name);
619 else
620 pr_info("Copied IR table for %s from previous kernel\n",
621 iommu->name);
622 }
623
624 iommu_set_irq_remapping(iommu, eim_mode);
625
626 return 0;
627
628 out_free_ir_domain:
629 if (iommu->ir_msi_domain)
630 irq_domain_remove(iommu->ir_msi_domain);
631 iommu->ir_msi_domain = NULL;
632 irq_domain_remove(iommu->ir_domain);
633 iommu->ir_domain = NULL;
634 out_free_fwnode:
635 irq_domain_free_fwnode(fn);
636 out_free_bitmap:
637 bitmap_free(bitmap);
638 out_free_pages:
639 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
640 out_free_table:
641 kfree(ir_table);
642
643 iommu->ir_table = NULL;
644
645 return -ENOMEM;
646 }
647
intel_teardown_irq_remapping(struct intel_iommu * iommu)648 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
649 {
650 struct fwnode_handle *fn;
651
652 if (iommu && iommu->ir_table) {
653 if (iommu->ir_msi_domain) {
654 fn = iommu->ir_msi_domain->fwnode;
655
656 irq_domain_remove(iommu->ir_msi_domain);
657 irq_domain_free_fwnode(fn);
658 iommu->ir_msi_domain = NULL;
659 }
660 if (iommu->ir_domain) {
661 fn = iommu->ir_domain->fwnode;
662
663 irq_domain_remove(iommu->ir_domain);
664 irq_domain_free_fwnode(fn);
665 iommu->ir_domain = NULL;
666 }
667 free_pages((unsigned long)iommu->ir_table->base,
668 INTR_REMAP_PAGE_ORDER);
669 bitmap_free(iommu->ir_table->bitmap);
670 kfree(iommu->ir_table);
671 iommu->ir_table = NULL;
672 }
673 }
674
675 /*
676 * Disable Interrupt Remapping.
677 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)678 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
679 {
680 unsigned long flags;
681 u32 sts;
682
683 if (!ecap_ir_support(iommu->ecap))
684 return;
685
686 /*
687 * global invalidation of interrupt entry cache before disabling
688 * interrupt-remapping.
689 */
690 qi_global_iec(iommu);
691
692 raw_spin_lock_irqsave(&iommu->register_lock, flags);
693
694 sts = readl(iommu->reg + DMAR_GSTS_REG);
695 if (!(sts & DMA_GSTS_IRES))
696 goto end;
697
698 iommu->gcmd &= ~DMA_GCMD_IRE;
699 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
700
701 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
702 readl, !(sts & DMA_GSTS_IRES), sts);
703
704 end:
705 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
706 }
707
dmar_x2apic_optout(void)708 static int __init dmar_x2apic_optout(void)
709 {
710 struct acpi_table_dmar *dmar;
711 dmar = (struct acpi_table_dmar *)dmar_tbl;
712 if (!dmar || no_x2apic_optout)
713 return 0;
714 return dmar->flags & DMAR_X2APIC_OPT_OUT;
715 }
716
intel_cleanup_irq_remapping(void)717 static void __init intel_cleanup_irq_remapping(void)
718 {
719 struct dmar_drhd_unit *drhd;
720 struct intel_iommu *iommu;
721
722 for_each_iommu(iommu, drhd) {
723 if (ecap_ir_support(iommu->ecap)) {
724 iommu_disable_irq_remapping(iommu);
725 intel_teardown_irq_remapping(iommu);
726 }
727 }
728
729 if (x2apic_supported())
730 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
731 }
732
intel_prepare_irq_remapping(void)733 static int __init intel_prepare_irq_remapping(void)
734 {
735 struct dmar_drhd_unit *drhd;
736 struct intel_iommu *iommu;
737 int eim = 0;
738
739 if (irq_remap_broken) {
740 pr_warn("This system BIOS has enabled interrupt remapping\n"
741 "on a chipset that contains an erratum making that\n"
742 "feature unstable. To maintain system stability\n"
743 "interrupt remapping is being disabled. Please\n"
744 "contact your BIOS vendor for an update\n");
745 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
746 return -ENODEV;
747 }
748
749 if (dmar_table_init() < 0)
750 return -ENODEV;
751
752 if (!dmar_ir_support())
753 return -ENODEV;
754
755 if (parse_ioapics_under_ir()) {
756 pr_info("Not enabling interrupt remapping\n");
757 goto error;
758 }
759
760 /* First make sure all IOMMUs support IRQ remapping */
761 for_each_iommu(iommu, drhd)
762 if (!ecap_ir_support(iommu->ecap))
763 goto error;
764
765 /* Detect remapping mode: lapic or x2apic */
766 if (x2apic_supported()) {
767 eim = !dmar_x2apic_optout();
768 if (!eim) {
769 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
770 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
771 }
772 }
773
774 for_each_iommu(iommu, drhd) {
775 if (eim && !ecap_eim_support(iommu->ecap)) {
776 pr_info("%s does not support EIM\n", iommu->name);
777 eim = 0;
778 }
779 }
780
781 eim_mode = eim;
782 if (eim)
783 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
784
785 /* Do the initializations early */
786 for_each_iommu(iommu, drhd) {
787 if (intel_setup_irq_remapping(iommu)) {
788 pr_err("Failed to setup irq remapping for %s\n",
789 iommu->name);
790 goto error;
791 }
792 }
793
794 return 0;
795
796 error:
797 intel_cleanup_irq_remapping();
798 return -ENODEV;
799 }
800
801 /*
802 * Set Posted-Interrupts capability.
803 */
set_irq_posting_cap(void)804 static inline void set_irq_posting_cap(void)
805 {
806 struct dmar_drhd_unit *drhd;
807 struct intel_iommu *iommu;
808
809 if (!disable_irq_post) {
810 /*
811 * If IRTE is in posted format, the 'pda' field goes across the
812 * 64-bit boundary, we need use cmpxchg16b to atomically update
813 * it. We only expose posted-interrupt when X86_FEATURE_CX16
814 * is supported. Actually, hardware platforms supporting PI
815 * should have X86_FEATURE_CX16 support, this has been confirmed
816 * with Intel hardware guys.
817 */
818 if (boot_cpu_has(X86_FEATURE_CX16))
819 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
820
821 for_each_iommu(iommu, drhd)
822 if (!cap_pi_support(iommu->cap)) {
823 intel_irq_remap_ops.capability &=
824 ~(1 << IRQ_POSTING_CAP);
825 break;
826 }
827 }
828 }
829
intel_enable_irq_remapping(void)830 static int __init intel_enable_irq_remapping(void)
831 {
832 struct dmar_drhd_unit *drhd;
833 struct intel_iommu *iommu;
834 bool setup = false;
835
836 /*
837 * Setup Interrupt-remapping for all the DRHD's now.
838 */
839 for_each_iommu(iommu, drhd) {
840 if (!ir_pre_enabled(iommu))
841 iommu_enable_irq_remapping(iommu);
842 setup = true;
843 }
844
845 if (!setup)
846 goto error;
847
848 irq_remapping_enabled = 1;
849
850 set_irq_posting_cap();
851
852 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
853
854 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
855
856 error:
857 intel_cleanup_irq_remapping();
858 return -1;
859 }
860
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)861 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
862 struct intel_iommu *iommu,
863 struct acpi_dmar_hardware_unit *drhd)
864 {
865 struct acpi_dmar_pci_path *path;
866 u8 bus;
867 int count, free = -1;
868
869 bus = scope->bus;
870 path = (struct acpi_dmar_pci_path *)(scope + 1);
871 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
872 / sizeof(struct acpi_dmar_pci_path);
873
874 while (--count > 0) {
875 /*
876 * Access PCI directly due to the PCI
877 * subsystem isn't initialized yet.
878 */
879 bus = read_pci_config_byte(bus, path->device, path->function,
880 PCI_SECONDARY_BUS);
881 path++;
882 }
883
884 for (count = 0; count < MAX_HPET_TBS; count++) {
885 if (ir_hpet[count].iommu == iommu &&
886 ir_hpet[count].id == scope->enumeration_id)
887 return 0;
888 else if (ir_hpet[count].iommu == NULL && free == -1)
889 free = count;
890 }
891 if (free == -1) {
892 pr_warn("Exceeded Max HPET blocks\n");
893 return -ENOSPC;
894 }
895
896 ir_hpet[free].iommu = iommu;
897 ir_hpet[free].id = scope->enumeration_id;
898 ir_hpet[free].bus = bus;
899 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
900 pr_info("HPET id %d under DRHD base 0x%Lx\n",
901 scope->enumeration_id, drhd->address);
902
903 return 0;
904 }
905
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)906 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
907 struct intel_iommu *iommu,
908 struct acpi_dmar_hardware_unit *drhd)
909 {
910 struct acpi_dmar_pci_path *path;
911 u8 bus;
912 int count, free = -1;
913
914 bus = scope->bus;
915 path = (struct acpi_dmar_pci_path *)(scope + 1);
916 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
917 / sizeof(struct acpi_dmar_pci_path);
918
919 while (--count > 0) {
920 /*
921 * Access PCI directly due to the PCI
922 * subsystem isn't initialized yet.
923 */
924 bus = read_pci_config_byte(bus, path->device, path->function,
925 PCI_SECONDARY_BUS);
926 path++;
927 }
928
929 for (count = 0; count < MAX_IO_APICS; count++) {
930 if (ir_ioapic[count].iommu == iommu &&
931 ir_ioapic[count].id == scope->enumeration_id)
932 return 0;
933 else if (ir_ioapic[count].iommu == NULL && free == -1)
934 free = count;
935 }
936 if (free == -1) {
937 pr_warn("Exceeded Max IO APICS\n");
938 return -ENOSPC;
939 }
940
941 ir_ioapic[free].bus = bus;
942 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
943 ir_ioapic[free].iommu = iommu;
944 ir_ioapic[free].id = scope->enumeration_id;
945 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
946 scope->enumeration_id, drhd->address, iommu->seq_id);
947
948 return 0;
949 }
950
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)951 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
952 struct intel_iommu *iommu)
953 {
954 int ret = 0;
955 struct acpi_dmar_hardware_unit *drhd;
956 struct acpi_dmar_device_scope *scope;
957 void *start, *end;
958
959 drhd = (struct acpi_dmar_hardware_unit *)header;
960 start = (void *)(drhd + 1);
961 end = ((void *)drhd) + header->length;
962
963 while (start < end && ret == 0) {
964 scope = start;
965 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
966 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
967 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
968 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
969 start += scope->length;
970 }
971
972 return ret;
973 }
974
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)975 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
976 {
977 int i;
978
979 for (i = 0; i < MAX_HPET_TBS; i++)
980 if (ir_hpet[i].iommu == iommu)
981 ir_hpet[i].iommu = NULL;
982
983 for (i = 0; i < MAX_IO_APICS; i++)
984 if (ir_ioapic[i].iommu == iommu)
985 ir_ioapic[i].iommu = NULL;
986 }
987
988 /*
989 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
990 * hardware unit.
991 */
parse_ioapics_under_ir(void)992 static int __init parse_ioapics_under_ir(void)
993 {
994 struct dmar_drhd_unit *drhd;
995 struct intel_iommu *iommu;
996 bool ir_supported = false;
997 int ioapic_idx;
998
999 for_each_iommu(iommu, drhd) {
1000 int ret;
1001
1002 if (!ecap_ir_support(iommu->ecap))
1003 continue;
1004
1005 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
1006 if (ret)
1007 return ret;
1008
1009 ir_supported = true;
1010 }
1011
1012 if (!ir_supported)
1013 return -ENODEV;
1014
1015 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1016 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1017 if (!map_ioapic_to_iommu(ioapic_id)) {
1018 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1019 "interrupt remapping will be disabled\n",
1020 ioapic_id);
1021 return -1;
1022 }
1023 }
1024
1025 return 0;
1026 }
1027
ir_dev_scope_init(void)1028 static int __init ir_dev_scope_init(void)
1029 {
1030 int ret;
1031
1032 if (!irq_remapping_enabled)
1033 return 0;
1034
1035 down_write(&dmar_global_lock);
1036 ret = dmar_dev_scope_init();
1037 up_write(&dmar_global_lock);
1038
1039 return ret;
1040 }
1041 rootfs_initcall(ir_dev_scope_init);
1042
disable_irq_remapping(void)1043 static void disable_irq_remapping(void)
1044 {
1045 struct dmar_drhd_unit *drhd;
1046 struct intel_iommu *iommu = NULL;
1047
1048 /*
1049 * Disable Interrupt-remapping for all the DRHD's now.
1050 */
1051 for_each_iommu(iommu, drhd) {
1052 if (!ecap_ir_support(iommu->ecap))
1053 continue;
1054
1055 iommu_disable_irq_remapping(iommu);
1056 }
1057
1058 /*
1059 * Clear Posted-Interrupts capability.
1060 */
1061 if (!disable_irq_post)
1062 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1063 }
1064
reenable_irq_remapping(int eim)1065 static int reenable_irq_remapping(int eim)
1066 {
1067 struct dmar_drhd_unit *drhd;
1068 bool setup = false;
1069 struct intel_iommu *iommu = NULL;
1070
1071 for_each_iommu(iommu, drhd)
1072 if (iommu->qi)
1073 dmar_reenable_qi(iommu);
1074
1075 /*
1076 * Setup Interrupt-remapping for all the DRHD's now.
1077 */
1078 for_each_iommu(iommu, drhd) {
1079 if (!ecap_ir_support(iommu->ecap))
1080 continue;
1081
1082 /* Set up interrupt remapping for iommu.*/
1083 iommu_set_irq_remapping(iommu, eim);
1084 iommu_enable_irq_remapping(iommu);
1085 setup = true;
1086 }
1087
1088 if (!setup)
1089 goto error;
1090
1091 set_irq_posting_cap();
1092
1093 return 0;
1094
1095 error:
1096 /*
1097 * handle error condition gracefully here!
1098 */
1099 return -1;
1100 }
1101
1102 /*
1103 * Store the MSI remapping domain pointer in the device if enabled.
1104 *
1105 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1106 * remapping is disabled. Only update the pointer if the device is not
1107 * already handled by a non default PCI/MSI interrupt domain. This protects
1108 * e.g. VMD devices.
1109 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1110 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1111 {
1112 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
1113 return;
1114
1115 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1116 }
1117
prepare_irte(struct irte * irte,int vector,unsigned int dest)1118 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1119 {
1120 memset(irte, 0, sizeof(*irte));
1121
1122 irte->present = 1;
1123 irte->dst_mode = apic->irq_dest_mode;
1124 /*
1125 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1126 * actual level or edge trigger will be setup in the IO-APIC
1127 * RTE. This will help simplify level triggered irq migration.
1128 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1129 * irq migration in the presence of interrupt-remapping.
1130 */
1131 irte->trigger_mode = 0;
1132 irte->dlvry_mode = apic->irq_delivery_mode;
1133 irte->vector = vector;
1134 irte->dest_id = IRTE_DEST(dest);
1135 irte->redir_hint = 1;
1136 }
1137
intel_get_irq_domain(struct irq_alloc_info * info)1138 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1139 {
1140 if (!info)
1141 return NULL;
1142
1143 switch (info->type) {
1144 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
1145 return map_ioapic_to_ir(info->devid);
1146 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
1147 return map_hpet_to_ir(info->devid);
1148 default:
1149 WARN_ON_ONCE(1);
1150 return NULL;
1151 }
1152 }
1153
1154 struct irq_remap_ops intel_irq_remap_ops = {
1155 .prepare = intel_prepare_irq_remapping,
1156 .enable = intel_enable_irq_remapping,
1157 .disable = disable_irq_remapping,
1158 .reenable = reenable_irq_remapping,
1159 .enable_faulting = enable_drhd_fault_handling,
1160 .get_irq_domain = intel_get_irq_domain,
1161 };
1162
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1163 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1164 {
1165 struct intel_ir_data *ir_data = irqd->chip_data;
1166 struct irte *irte = &ir_data->irte_entry;
1167 struct irq_cfg *cfg = irqd_cfg(irqd);
1168
1169 /*
1170 * Atomically updates the IRTE with the new destination, vector
1171 * and flushes the interrupt entry cache.
1172 */
1173 irte->vector = cfg->vector;
1174 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1175
1176 /* Update the hardware only if the interrupt is in remapped mode. */
1177 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1178 modify_irte(&ir_data->irq_2_iommu, irte);
1179 }
1180
1181 /*
1182 * Migrate the IO-APIC irq in the presence of intr-remapping.
1183 *
1184 * For both level and edge triggered, irq migration is a simple atomic
1185 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1186 *
1187 * For level triggered, we eliminate the io-apic RTE modification (with the
1188 * updated vector information), by using a virtual vector (io-apic pin number).
1189 * Real vector that is used for interrupting cpu will be coming from
1190 * the interrupt-remapping table entry.
1191 *
1192 * As the migration is a simple atomic update of IRTE, the same mechanism
1193 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1194 */
1195 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1196 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1197 bool force)
1198 {
1199 struct irq_data *parent = data->parent_data;
1200 struct irq_cfg *cfg = irqd_cfg(data);
1201 int ret;
1202
1203 ret = parent->chip->irq_set_affinity(parent, mask, force);
1204 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1205 return ret;
1206
1207 intel_ir_reconfigure_irte(data, false);
1208 /*
1209 * After this point, all the interrupts will start arriving
1210 * at the new destination. So, time to cleanup the previous
1211 * vector allocation.
1212 */
1213 send_cleanup_vector(cfg);
1214
1215 return IRQ_SET_MASK_OK_DONE;
1216 }
1217
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1218 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1219 struct msi_msg *msg)
1220 {
1221 struct intel_ir_data *ir_data = irq_data->chip_data;
1222
1223 *msg = ir_data->msi_entry;
1224 }
1225
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1226 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1227 {
1228 struct intel_ir_data *ir_data = data->chip_data;
1229 struct vcpu_data *vcpu_pi_info = info;
1230
1231 /* stop posting interrupts, back to remapping mode */
1232 if (!vcpu_pi_info) {
1233 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1234 } else {
1235 struct irte irte_pi;
1236
1237 /*
1238 * We are not caching the posted interrupt entry. We
1239 * copy the data from the remapped entry and modify
1240 * the fields which are relevant for posted mode. The
1241 * cached remapped entry is used for switching back to
1242 * remapped mode.
1243 */
1244 memset(&irte_pi, 0, sizeof(irte_pi));
1245 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1246
1247 /* Update the posted mode fields */
1248 irte_pi.p_pst = 1;
1249 irte_pi.p_urgent = 0;
1250 irte_pi.p_vector = vcpu_pi_info->vector;
1251 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1252 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1253 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1254 ~(-1UL << PDA_HIGH_BIT);
1255
1256 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1257 }
1258
1259 return 0;
1260 }
1261
1262 static struct irq_chip intel_ir_chip = {
1263 .name = "INTEL-IR",
1264 .irq_ack = apic_ack_irq,
1265 .irq_set_affinity = intel_ir_set_affinity,
1266 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1267 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1268 };
1269
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1270 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1271 struct irq_cfg *irq_cfg,
1272 struct irq_alloc_info *info,
1273 int index, int sub_handle)
1274 {
1275 struct IR_IO_APIC_route_entry *entry;
1276 struct irte *irte = &data->irte_entry;
1277 struct msi_msg *msg = &data->msi_entry;
1278
1279 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1280 switch (info->type) {
1281 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1282 /* Set source-id of interrupt request */
1283 set_ioapic_sid(irte, info->devid);
1284 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1285 info->devid, irte->present, irte->fpd,
1286 irte->dst_mode, irte->redir_hint,
1287 irte->trigger_mode, irte->dlvry_mode,
1288 irte->avail, irte->vector, irte->dest_id,
1289 irte->sid, irte->sq, irte->svt);
1290
1291 entry = (struct IR_IO_APIC_route_entry *)info->ioapic.entry;
1292 info->ioapic.entry = NULL;
1293 memset(entry, 0, sizeof(*entry));
1294 entry->index2 = (index >> 15) & 0x1;
1295 entry->zero = 0;
1296 entry->format = 1;
1297 entry->index = (index & 0x7fff);
1298 /*
1299 * IO-APIC RTE will be configured with virtual vector.
1300 * irq handler will do the explicit EOI to the io-apic.
1301 */
1302 entry->vector = info->ioapic.pin;
1303 entry->mask = 0; /* enable IRQ */
1304 entry->trigger = info->ioapic.trigger;
1305 entry->polarity = info->ioapic.polarity;
1306 if (info->ioapic.trigger)
1307 entry->mask = 1; /* Mask level triggered irqs. */
1308 break;
1309
1310 case X86_IRQ_ALLOC_TYPE_HPET:
1311 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1312 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1313 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1314 set_hpet_sid(irte, info->devid);
1315 else
1316 set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1317
1318 msg->address_hi = MSI_ADDR_BASE_HI;
1319 msg->data = sub_handle;
1320 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1321 MSI_ADDR_IR_SHV |
1322 MSI_ADDR_IR_INDEX1(index) |
1323 MSI_ADDR_IR_INDEX2(index);
1324 break;
1325
1326 default:
1327 BUG_ON(1);
1328 break;
1329 }
1330 }
1331
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1332 static void intel_free_irq_resources(struct irq_domain *domain,
1333 unsigned int virq, unsigned int nr_irqs)
1334 {
1335 struct irq_data *irq_data;
1336 struct intel_ir_data *data;
1337 struct irq_2_iommu *irq_iommu;
1338 unsigned long flags;
1339 int i;
1340 for (i = 0; i < nr_irqs; i++) {
1341 irq_data = irq_domain_get_irq_data(domain, virq + i);
1342 if (irq_data && irq_data->chip_data) {
1343 data = irq_data->chip_data;
1344 irq_iommu = &data->irq_2_iommu;
1345 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1346 clear_entries(irq_iommu);
1347 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1348 irq_domain_reset_irq_data(irq_data);
1349 kfree(data);
1350 }
1351 }
1352 }
1353
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1354 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1355 unsigned int virq, unsigned int nr_irqs,
1356 void *arg)
1357 {
1358 struct intel_iommu *iommu = domain->host_data;
1359 struct irq_alloc_info *info = arg;
1360 struct intel_ir_data *data, *ird;
1361 struct irq_data *irq_data;
1362 struct irq_cfg *irq_cfg;
1363 int i, ret, index;
1364
1365 if (!info || !iommu)
1366 return -EINVAL;
1367 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
1368 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1369 return -EINVAL;
1370
1371 /*
1372 * With IRQ remapping enabled, don't need contiguous CPU vectors
1373 * to support multiple MSI interrupts.
1374 */
1375 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1376 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1377
1378 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1379 if (ret < 0)
1380 return ret;
1381
1382 ret = -ENOMEM;
1383 data = kzalloc(sizeof(*data), GFP_KERNEL);
1384 if (!data)
1385 goto out_free_parent;
1386
1387 down_read(&dmar_global_lock);
1388 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1389 up_read(&dmar_global_lock);
1390 if (index < 0) {
1391 pr_warn("Failed to allocate IRTE\n");
1392 kfree(data);
1393 goto out_free_parent;
1394 }
1395
1396 for (i = 0; i < nr_irqs; i++) {
1397 irq_data = irq_domain_get_irq_data(domain, virq + i);
1398 irq_cfg = irqd_cfg(irq_data);
1399 if (!irq_data || !irq_cfg) {
1400 if (!i)
1401 kfree(data);
1402 ret = -EINVAL;
1403 goto out_free_data;
1404 }
1405
1406 if (i > 0) {
1407 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1408 if (!ird)
1409 goto out_free_data;
1410 /* Initialize the common data */
1411 ird->irq_2_iommu = data->irq_2_iommu;
1412 ird->irq_2_iommu.sub_handle = i;
1413 } else {
1414 ird = data;
1415 }
1416
1417 irq_data->hwirq = (index << 16) + i;
1418 irq_data->chip_data = ird;
1419 irq_data->chip = &intel_ir_chip;
1420 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1421 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1422 }
1423 return 0;
1424
1425 out_free_data:
1426 intel_free_irq_resources(domain, virq, i);
1427 out_free_parent:
1428 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1429 return ret;
1430 }
1431
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1432 static void intel_irq_remapping_free(struct irq_domain *domain,
1433 unsigned int virq, unsigned int nr_irqs)
1434 {
1435 intel_free_irq_resources(domain, virq, nr_irqs);
1436 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1437 }
1438
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1439 static int intel_irq_remapping_activate(struct irq_domain *domain,
1440 struct irq_data *irq_data, bool reserve)
1441 {
1442 intel_ir_reconfigure_irte(irq_data, true);
1443 return 0;
1444 }
1445
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1446 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1447 struct irq_data *irq_data)
1448 {
1449 struct intel_ir_data *data = irq_data->chip_data;
1450 struct irte entry;
1451
1452 memset(&entry, 0, sizeof(entry));
1453 modify_irte(&data->irq_2_iommu, &entry);
1454 }
1455
1456 static const struct irq_domain_ops intel_ir_domain_ops = {
1457 .alloc = intel_irq_remapping_alloc,
1458 .free = intel_irq_remapping_free,
1459 .activate = intel_irq_remapping_activate,
1460 .deactivate = intel_irq_remapping_deactivate,
1461 };
1462
1463 /*
1464 * Support of Interrupt Remapping Unit Hotplug
1465 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1466 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1467 {
1468 int ret;
1469 int eim = x2apic_enabled();
1470
1471 if (eim && !ecap_eim_support(iommu->ecap)) {
1472 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1473 iommu->reg_phys, iommu->ecap);
1474 return -ENODEV;
1475 }
1476
1477 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1478 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1479 iommu->reg_phys);
1480 return -ENODEV;
1481 }
1482
1483 /* TODO: check all IOAPICs are covered by IOMMU */
1484
1485 /* Setup Interrupt-remapping now. */
1486 ret = intel_setup_irq_remapping(iommu);
1487 if (ret) {
1488 pr_err("Failed to setup irq remapping for %s\n",
1489 iommu->name);
1490 intel_teardown_irq_remapping(iommu);
1491 ir_remove_ioapic_hpet_scope(iommu);
1492 } else {
1493 iommu_enable_irq_remapping(iommu);
1494 }
1495
1496 return ret;
1497 }
1498
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1499 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1500 {
1501 int ret = 0;
1502 struct intel_iommu *iommu = dmaru->iommu;
1503
1504 if (!irq_remapping_enabled)
1505 return 0;
1506 if (iommu == NULL)
1507 return -EINVAL;
1508 if (!ecap_ir_support(iommu->ecap))
1509 return 0;
1510 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1511 !cap_pi_support(iommu->cap))
1512 return -EBUSY;
1513
1514 if (insert) {
1515 if (!iommu->ir_table)
1516 ret = dmar_ir_add(dmaru, iommu);
1517 } else {
1518 if (iommu->ir_table) {
1519 if (!bitmap_empty(iommu->ir_table->bitmap,
1520 INTR_REMAP_TABLE_ENTRIES)) {
1521 ret = -EBUSY;
1522 } else {
1523 iommu_disable_irq_remapping(iommu);
1524 intel_teardown_irq_remapping(iommu);
1525 ir_remove_ioapic_hpet_scope(iommu);
1526 }
1527 }
1528 }
1529
1530 return ret;
1531 }
1532