1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
update_gc_after_writeback(struct cache_set * c)20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29 /* Rate limiting */
__calc_target_rate(struct cached_dev * dc)30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 struct cache_set *c = dc->disk.c;
33
34 /*
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
37 */
38 uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41 /*
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
46 */
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
__update_writeback_rate(struct cached_dev * dc)61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63 /*
64 * PI controller:
65 * Figures out the amount that should be written per second.
66 *
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
70 *
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
77 *
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
82 */
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 (error > 0 && time_before64(local_clock(),
93 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94 /*
95 * Only decrease the integral term if it's more than
96 * zero. Only increase the integral term if the device
97 * is keeping up. (Don't wind up the integral
98 * ineffectively in either case).
99 *
100 * It's necessary to scale this by
101 * writeback_rate_update_seconds to keep the integral
102 * term dimensioned properly.
103 */
104 dc->writeback_rate_integral += error *
105 dc->writeback_rate_update_seconds;
106 }
107
108 integral_scaled = div_s64(dc->writeback_rate_integral,
109 dc->writeback_rate_i_term_inverse);
110
111 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114 dc->writeback_rate_proportional = proportional_scaled;
115 dc->writeback_rate_integral_scaled = integral_scaled;
116 dc->writeback_rate_change = new_rate -
117 atomic_long_read(&dc->writeback_rate.rate);
118 atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 dc->writeback_rate_target = target;
120 }
121
idle_counter_exceeded(struct cache_set * c)122 static bool idle_counter_exceeded(struct cache_set *c)
123 {
124 int counter, dev_nr;
125
126 /*
127 * If c->idle_counter is overflow (idel for really long time),
128 * reset as 0 and not set maximum rate this time for code
129 * simplicity.
130 */
131 counter = atomic_inc_return(&c->idle_counter);
132 if (counter <= 0) {
133 atomic_set(&c->idle_counter, 0);
134 return false;
135 }
136
137 dev_nr = atomic_read(&c->attached_dev_nr);
138 if (dev_nr == 0)
139 return false;
140
141 /*
142 * c->idle_counter is increased by writeback thread of all
143 * attached backing devices, in order to represent a rough
144 * time period, counter should be divided by dev_nr.
145 * Otherwise the idle time cannot be larger with more backing
146 * device attached.
147 * The following calculation equals to checking
148 * (counter / dev_nr) < (dev_nr * 6)
149 */
150 if (counter < (dev_nr * dev_nr * 6))
151 return false;
152
153 return true;
154 }
155
156 /*
157 * Idle_counter is increased every time when update_writeback_rate() is
158 * called. If all backing devices attached to the same cache set have
159 * identical dc->writeback_rate_update_seconds values, it is about 6
160 * rounds of update_writeback_rate() on each backing device before
161 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
162 * to each dc->writeback_rate.rate.
163 * In order to avoid extra locking cost for counting exact dirty cached
164 * devices number, c->attached_dev_nr is used to calculate the idle
165 * throushold. It might be bigger if not all cached device are in write-
166 * back mode, but it still works well with limited extra rounds of
167 * update_writeback_rate().
168 */
set_at_max_writeback_rate(struct cache_set * c,struct cached_dev * dc)169 static bool set_at_max_writeback_rate(struct cache_set *c,
170 struct cached_dev *dc)
171 {
172 /* Don't sst max writeback rate if it is disabled */
173 if (!c->idle_max_writeback_rate_enabled)
174 return false;
175
176 /* Don't set max writeback rate if gc is running */
177 if (!c->gc_mark_valid)
178 return false;
179
180 if (!idle_counter_exceeded(c))
181 return false;
182
183 if (atomic_read(&c->at_max_writeback_rate) != 1)
184 atomic_set(&c->at_max_writeback_rate, 1);
185
186 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
187
188 /* keep writeback_rate_target as existing value */
189 dc->writeback_rate_proportional = 0;
190 dc->writeback_rate_integral_scaled = 0;
191 dc->writeback_rate_change = 0;
192
193 /*
194 * In case new I/O arrives during before
195 * set_at_max_writeback_rate() returns.
196 */
197 if (!idle_counter_exceeded(c) ||
198 !atomic_read(&c->at_max_writeback_rate))
199 return false;
200
201 return true;
202 }
203
update_writeback_rate(struct work_struct * work)204 static void update_writeback_rate(struct work_struct *work)
205 {
206 struct cached_dev *dc = container_of(to_delayed_work(work),
207 struct cached_dev,
208 writeback_rate_update);
209 struct cache_set *c = dc->disk.c;
210
211 /*
212 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
213 * cancel_delayed_work_sync().
214 */
215 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
216 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
217 smp_mb__after_atomic();
218
219 /*
220 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
221 * check it here too.
222 */
223 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
224 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
225 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
226 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
227 smp_mb__after_atomic();
228 return;
229 }
230
231 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
232 /*
233 * If the whole cache set is idle, set_at_max_writeback_rate()
234 * will set writeback rate to a max number. Then it is
235 * unncessary to update writeback rate for an idle cache set
236 * in maximum writeback rate number(s).
237 */
238 if (!set_at_max_writeback_rate(c, dc)) {
239 down_read(&dc->writeback_lock);
240 __update_writeback_rate(dc);
241 update_gc_after_writeback(c);
242 up_read(&dc->writeback_lock);
243 }
244 }
245
246
247 /*
248 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
249 * check it here too.
250 */
251 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
252 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
253 schedule_delayed_work(&dc->writeback_rate_update,
254 dc->writeback_rate_update_seconds * HZ);
255 }
256
257 /*
258 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
259 * cancel_delayed_work_sync().
260 */
261 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
262 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
263 smp_mb__after_atomic();
264 }
265
writeback_delay(struct cached_dev * dc,unsigned int sectors)266 static unsigned int writeback_delay(struct cached_dev *dc,
267 unsigned int sectors)
268 {
269 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
270 !dc->writeback_percent)
271 return 0;
272
273 return bch_next_delay(&dc->writeback_rate, sectors);
274 }
275
276 struct dirty_io {
277 struct closure cl;
278 struct cached_dev *dc;
279 uint16_t sequence;
280 struct bio bio;
281 };
282
dirty_init(struct keybuf_key * w)283 static void dirty_init(struct keybuf_key *w)
284 {
285 struct dirty_io *io = w->private;
286 struct bio *bio = &io->bio;
287
288 bio_init(bio, bio->bi_inline_vecs,
289 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
290 if (!io->dc->writeback_percent)
291 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
292
293 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
294 bio->bi_private = w;
295 bch_bio_map(bio, NULL);
296 }
297
dirty_io_destructor(struct closure * cl)298 static void dirty_io_destructor(struct closure *cl)
299 {
300 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
301
302 kfree(io);
303 }
304
write_dirty_finish(struct closure * cl)305 static void write_dirty_finish(struct closure *cl)
306 {
307 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308 struct keybuf_key *w = io->bio.bi_private;
309 struct cached_dev *dc = io->dc;
310
311 bio_free_pages(&io->bio);
312
313 /* This is kind of a dumb way of signalling errors. */
314 if (KEY_DIRTY(&w->key)) {
315 int ret;
316 unsigned int i;
317 struct keylist keys;
318
319 bch_keylist_init(&keys);
320
321 bkey_copy(keys.top, &w->key);
322 SET_KEY_DIRTY(keys.top, false);
323 bch_keylist_push(&keys);
324
325 for (i = 0; i < KEY_PTRS(&w->key); i++)
326 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
327
328 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
329
330 if (ret)
331 trace_bcache_writeback_collision(&w->key);
332
333 atomic_long_inc(ret
334 ? &dc->disk.c->writeback_keys_failed
335 : &dc->disk.c->writeback_keys_done);
336 }
337
338 bch_keybuf_del(&dc->writeback_keys, w);
339 up(&dc->in_flight);
340
341 closure_return_with_destructor(cl, dirty_io_destructor);
342 }
343
dirty_endio(struct bio * bio)344 static void dirty_endio(struct bio *bio)
345 {
346 struct keybuf_key *w = bio->bi_private;
347 struct dirty_io *io = w->private;
348
349 if (bio->bi_status) {
350 SET_KEY_DIRTY(&w->key, false);
351 bch_count_backing_io_errors(io->dc, bio);
352 }
353
354 closure_put(&io->cl);
355 }
356
write_dirty(struct closure * cl)357 static void write_dirty(struct closure *cl)
358 {
359 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
360 struct keybuf_key *w = io->bio.bi_private;
361 struct cached_dev *dc = io->dc;
362
363 uint16_t next_sequence;
364
365 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
366 /* Not our turn to write; wait for a write to complete */
367 closure_wait(&dc->writeback_ordering_wait, cl);
368
369 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
370 /*
371 * Edge case-- it happened in indeterminate order
372 * relative to when we were added to wait list..
373 */
374 closure_wake_up(&dc->writeback_ordering_wait);
375 }
376
377 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378 return;
379 }
380
381 next_sequence = io->sequence + 1;
382
383 /*
384 * IO errors are signalled using the dirty bit on the key.
385 * If we failed to read, we should not attempt to write to the
386 * backing device. Instead, immediately go to write_dirty_finish
387 * to clean up.
388 */
389 if (KEY_DIRTY(&w->key)) {
390 dirty_init(w);
391 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
392 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
393 bio_set_dev(&io->bio, io->dc->bdev);
394 io->bio.bi_end_io = dirty_endio;
395
396 /* I/O request sent to backing device */
397 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
398 }
399
400 atomic_set(&dc->writeback_sequence_next, next_sequence);
401 closure_wake_up(&dc->writeback_ordering_wait);
402
403 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
404 }
405
read_dirty_endio(struct bio * bio)406 static void read_dirty_endio(struct bio *bio)
407 {
408 struct keybuf_key *w = bio->bi_private;
409 struct dirty_io *io = w->private;
410
411 /* is_read = 1 */
412 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
413 bio->bi_status, 1,
414 "reading dirty data from cache");
415
416 dirty_endio(bio);
417 }
418
read_dirty_submit(struct closure * cl)419 static void read_dirty_submit(struct closure *cl)
420 {
421 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
422
423 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
424
425 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
426 }
427
read_dirty(struct cached_dev * dc)428 static void read_dirty(struct cached_dev *dc)
429 {
430 unsigned int delay = 0;
431 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
432 size_t size;
433 int nk, i;
434 struct dirty_io *io;
435 struct closure cl;
436 uint16_t sequence = 0;
437
438 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
439 atomic_set(&dc->writeback_sequence_next, sequence);
440 closure_init_stack(&cl);
441
442 /*
443 * XXX: if we error, background writeback just spins. Should use some
444 * mempools.
445 */
446
447 next = bch_keybuf_next(&dc->writeback_keys);
448
449 while (!kthread_should_stop() &&
450 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
451 next) {
452 size = 0;
453 nk = 0;
454
455 do {
456 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
457
458 /*
459 * Don't combine too many operations, even if they
460 * are all small.
461 */
462 if (nk >= MAX_WRITEBACKS_IN_PASS)
463 break;
464
465 /*
466 * If the current operation is very large, don't
467 * further combine operations.
468 */
469 if (size >= MAX_WRITESIZE_IN_PASS)
470 break;
471
472 /*
473 * Operations are only eligible to be combined
474 * if they are contiguous.
475 *
476 * TODO: add a heuristic willing to fire a
477 * certain amount of non-contiguous IO per pass,
478 * so that we can benefit from backing device
479 * command queueing.
480 */
481 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
482 &START_KEY(&next->key)))
483 break;
484
485 size += KEY_SIZE(&next->key);
486 keys[nk++] = next;
487 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
488
489 /* Now we have gathered a set of 1..5 keys to write back. */
490 for (i = 0; i < nk; i++) {
491 w = keys[i];
492
493 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
494 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
495 GFP_KERNEL);
496 if (!io)
497 goto err;
498
499 w->private = io;
500 io->dc = dc;
501 io->sequence = sequence++;
502
503 dirty_init(w);
504 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
505 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
506 bio_set_dev(&io->bio,
507 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
508 io->bio.bi_end_io = read_dirty_endio;
509
510 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
511 goto err_free;
512
513 trace_bcache_writeback(&w->key);
514
515 down(&dc->in_flight);
516
517 /*
518 * We've acquired a semaphore for the maximum
519 * simultaneous number of writebacks; from here
520 * everything happens asynchronously.
521 */
522 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
523 }
524
525 delay = writeback_delay(dc, size);
526
527 while (!kthread_should_stop() &&
528 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
529 delay) {
530 schedule_timeout_interruptible(delay);
531 delay = writeback_delay(dc, 0);
532 }
533 }
534
535 if (0) {
536 err_free:
537 kfree(w->private);
538 err:
539 bch_keybuf_del(&dc->writeback_keys, w);
540 }
541
542 /*
543 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
544 * freed) before refilling again
545 */
546 closure_sync(&cl);
547 }
548
549 /* Scan for dirty data */
550
bcache_dev_sectors_dirty_add(struct cache_set * c,unsigned int inode,uint64_t offset,int nr_sectors)551 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
552 uint64_t offset, int nr_sectors)
553 {
554 struct bcache_device *d = c->devices[inode];
555 unsigned int stripe_offset, sectors_dirty;
556 int stripe;
557
558 if (!d)
559 return;
560
561 stripe = offset_to_stripe(d, offset);
562 if (stripe < 0)
563 return;
564
565 if (UUID_FLASH_ONLY(&c->uuids[inode]))
566 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
567
568 stripe_offset = offset & (d->stripe_size - 1);
569
570 while (nr_sectors) {
571 int s = min_t(unsigned int, abs(nr_sectors),
572 d->stripe_size - stripe_offset);
573
574 if (nr_sectors < 0)
575 s = -s;
576
577 if (stripe >= d->nr_stripes)
578 return;
579
580 sectors_dirty = atomic_add_return(s,
581 d->stripe_sectors_dirty + stripe);
582 if (sectors_dirty == d->stripe_size)
583 set_bit(stripe, d->full_dirty_stripes);
584 else
585 clear_bit(stripe, d->full_dirty_stripes);
586
587 nr_sectors -= s;
588 stripe_offset = 0;
589 stripe++;
590 }
591 }
592
dirty_pred(struct keybuf * buf,struct bkey * k)593 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
594 {
595 struct cached_dev *dc = container_of(buf,
596 struct cached_dev,
597 writeback_keys);
598
599 BUG_ON(KEY_INODE(k) != dc->disk.id);
600
601 return KEY_DIRTY(k);
602 }
603
refill_full_stripes(struct cached_dev * dc)604 static void refill_full_stripes(struct cached_dev *dc)
605 {
606 struct keybuf *buf = &dc->writeback_keys;
607 unsigned int start_stripe, next_stripe;
608 int stripe;
609 bool wrapped = false;
610
611 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
612 if (stripe < 0)
613 stripe = 0;
614
615 start_stripe = stripe;
616
617 while (1) {
618 stripe = find_next_bit(dc->disk.full_dirty_stripes,
619 dc->disk.nr_stripes, stripe);
620
621 if (stripe == dc->disk.nr_stripes)
622 goto next;
623
624 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
625 dc->disk.nr_stripes, stripe);
626
627 buf->last_scanned = KEY(dc->disk.id,
628 stripe * dc->disk.stripe_size, 0);
629
630 bch_refill_keybuf(dc->disk.c, buf,
631 &KEY(dc->disk.id,
632 next_stripe * dc->disk.stripe_size, 0),
633 dirty_pred);
634
635 if (array_freelist_empty(&buf->freelist))
636 return;
637
638 stripe = next_stripe;
639 next:
640 if (wrapped && stripe > start_stripe)
641 return;
642
643 if (stripe == dc->disk.nr_stripes) {
644 stripe = 0;
645 wrapped = true;
646 }
647 }
648 }
649
650 /*
651 * Returns true if we scanned the entire disk
652 */
refill_dirty(struct cached_dev * dc)653 static bool refill_dirty(struct cached_dev *dc)
654 {
655 struct keybuf *buf = &dc->writeback_keys;
656 struct bkey start = KEY(dc->disk.id, 0, 0);
657 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
658 struct bkey start_pos;
659
660 /*
661 * make sure keybuf pos is inside the range for this disk - at bringup
662 * we might not be attached yet so this disk's inode nr isn't
663 * initialized then
664 */
665 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
666 bkey_cmp(&buf->last_scanned, &end) > 0)
667 buf->last_scanned = start;
668
669 if (dc->partial_stripes_expensive) {
670 refill_full_stripes(dc);
671 if (array_freelist_empty(&buf->freelist))
672 return false;
673 }
674
675 start_pos = buf->last_scanned;
676 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
677
678 if (bkey_cmp(&buf->last_scanned, &end) < 0)
679 return false;
680
681 /*
682 * If we get to the end start scanning again from the beginning, and
683 * only scan up to where we initially started scanning from:
684 */
685 buf->last_scanned = start;
686 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
687
688 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
689 }
690
bch_writeback_thread(void * arg)691 static int bch_writeback_thread(void *arg)
692 {
693 struct cached_dev *dc = arg;
694 struct cache_set *c = dc->disk.c;
695 bool searched_full_index;
696
697 bch_ratelimit_reset(&dc->writeback_rate);
698
699 while (!kthread_should_stop() &&
700 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
701 down_write(&dc->writeback_lock);
702 set_current_state(TASK_INTERRUPTIBLE);
703 /*
704 * If the bache device is detaching, skip here and continue
705 * to perform writeback. Otherwise, if no dirty data on cache,
706 * or there is dirty data on cache but writeback is disabled,
707 * the writeback thread should sleep here and wait for others
708 * to wake up it.
709 */
710 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
711 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
712 up_write(&dc->writeback_lock);
713
714 if (kthread_should_stop() ||
715 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
716 set_current_state(TASK_RUNNING);
717 break;
718 }
719
720 schedule();
721 continue;
722 }
723 set_current_state(TASK_RUNNING);
724
725 searched_full_index = refill_dirty(dc);
726
727 if (searched_full_index &&
728 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
729 atomic_set(&dc->has_dirty, 0);
730 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
731 bch_write_bdev_super(dc, NULL);
732 /*
733 * If bcache device is detaching via sysfs interface,
734 * writeback thread should stop after there is no dirty
735 * data on cache. BCACHE_DEV_DETACHING flag is set in
736 * bch_cached_dev_detach().
737 */
738 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
739 up_write(&dc->writeback_lock);
740 break;
741 }
742
743 /*
744 * When dirty data rate is high (e.g. 50%+), there might
745 * be heavy buckets fragmentation after writeback
746 * finished, which hurts following write performance.
747 * If users really care about write performance they
748 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
749 * BCH_DO_AUTO_GC is set, garbage collection thread
750 * will be wake up here. After moving gc, the shrunk
751 * btree and discarded free buckets SSD space may be
752 * helpful for following write requests.
753 */
754 if (c->gc_after_writeback ==
755 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
756 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
757 force_wake_up_gc(c);
758 }
759 }
760
761 up_write(&dc->writeback_lock);
762
763 read_dirty(dc);
764
765 if (searched_full_index) {
766 unsigned int delay = dc->writeback_delay * HZ;
767
768 while (delay &&
769 !kthread_should_stop() &&
770 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
771 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
772 delay = schedule_timeout_interruptible(delay);
773
774 bch_ratelimit_reset(&dc->writeback_rate);
775 }
776 }
777
778 if (dc->writeback_write_wq) {
779 flush_workqueue(dc->writeback_write_wq);
780 destroy_workqueue(dc->writeback_write_wq);
781 }
782 cached_dev_put(dc);
783 wait_for_kthread_stop();
784
785 return 0;
786 }
787
788 /* Init */
789 #define INIT_KEYS_EACH_TIME 500000
790
791 struct sectors_dirty_init {
792 struct btree_op op;
793 unsigned int inode;
794 size_t count;
795 };
796
sectors_dirty_init_fn(struct btree_op * _op,struct btree * b,struct bkey * k)797 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
798 struct bkey *k)
799 {
800 struct sectors_dirty_init *op = container_of(_op,
801 struct sectors_dirty_init, op);
802 if (KEY_INODE(k) > op->inode)
803 return MAP_DONE;
804
805 if (KEY_DIRTY(k))
806 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
807 KEY_START(k), KEY_SIZE(k));
808
809 op->count++;
810 if (!(op->count % INIT_KEYS_EACH_TIME))
811 cond_resched();
812
813 return MAP_CONTINUE;
814 }
815
bch_root_node_dirty_init(struct cache_set * c,struct bcache_device * d,struct bkey * k)816 static int bch_root_node_dirty_init(struct cache_set *c,
817 struct bcache_device *d,
818 struct bkey *k)
819 {
820 struct sectors_dirty_init op;
821 int ret;
822
823 bch_btree_op_init(&op.op, -1);
824 op.inode = d->id;
825 op.count = 0;
826
827 ret = bcache_btree(map_keys_recurse,
828 k,
829 c->root,
830 &op.op,
831 &KEY(op.inode, 0, 0),
832 sectors_dirty_init_fn,
833 0);
834 if (ret < 0)
835 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
836
837 /*
838 * The op may be added to cache_set's btree_cache_wait
839 * in mca_cannibalize(), must ensure it is removed from
840 * the list and release btree_cache_alloc_lock before
841 * free op memory.
842 * Otherwise, the btree_cache_wait will be damaged.
843 */
844 bch_cannibalize_unlock(c);
845 finish_wait(&c->btree_cache_wait, &(&op.op)->wait);
846
847 return ret;
848 }
849
bch_dirty_init_thread(void * arg)850 static int bch_dirty_init_thread(void *arg)
851 {
852 struct dirty_init_thrd_info *info = arg;
853 struct bch_dirty_init_state *state = info->state;
854 struct cache_set *c = state->c;
855 struct btree_iter iter;
856 struct bkey *k, *p;
857 int cur_idx, prev_idx, skip_nr;
858
859 k = p = NULL;
860 prev_idx = 0;
861
862 bch_btree_iter_init(&c->root->keys, &iter, NULL);
863 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
864 BUG_ON(!k);
865
866 p = k;
867
868 while (k) {
869 spin_lock(&state->idx_lock);
870 cur_idx = state->key_idx;
871 state->key_idx++;
872 spin_unlock(&state->idx_lock);
873
874 skip_nr = cur_idx - prev_idx;
875
876 while (skip_nr) {
877 k = bch_btree_iter_next_filter(&iter,
878 &c->root->keys,
879 bch_ptr_bad);
880 if (k)
881 p = k;
882 else {
883 atomic_set(&state->enough, 1);
884 /* Update state->enough earlier */
885 smp_mb__after_atomic();
886 goto out;
887 }
888 skip_nr--;
889 }
890
891 if (p) {
892 if (bch_root_node_dirty_init(c, state->d, p) < 0)
893 goto out;
894 }
895
896 p = NULL;
897 prev_idx = cur_idx;
898 }
899
900 out:
901 /* In order to wake up state->wait in time */
902 smp_mb__before_atomic();
903 if (atomic_dec_and_test(&state->started))
904 wake_up(&state->wait);
905
906 return 0;
907 }
908
bch_btre_dirty_init_thread_nr(void)909 static int bch_btre_dirty_init_thread_nr(void)
910 {
911 int n = num_online_cpus()/2;
912
913 if (n == 0)
914 n = 1;
915 else if (n > BCH_DIRTY_INIT_THRD_MAX)
916 n = BCH_DIRTY_INIT_THRD_MAX;
917
918 return n;
919 }
920
bch_sectors_dirty_init(struct bcache_device * d)921 void bch_sectors_dirty_init(struct bcache_device *d)
922 {
923 int i;
924 struct btree *b = NULL;
925 struct bkey *k = NULL;
926 struct btree_iter iter;
927 struct sectors_dirty_init op;
928 struct cache_set *c = d->c;
929 struct bch_dirty_init_state state;
930
931 retry_lock:
932 b = c->root;
933 rw_lock(0, b, b->level);
934 if (b != c->root) {
935 rw_unlock(0, b);
936 goto retry_lock;
937 }
938
939 /* Just count root keys if no leaf node */
940 if (c->root->level == 0) {
941 bch_btree_op_init(&op.op, -1);
942 op.inode = d->id;
943 op.count = 0;
944
945 for_each_key_filter(&c->root->keys,
946 k, &iter, bch_ptr_invalid) {
947 if (KEY_INODE(k) != op.inode)
948 continue;
949 sectors_dirty_init_fn(&op.op, c->root, k);
950 }
951
952 rw_unlock(0, b);
953 return;
954 }
955
956 memset(&state, 0, sizeof(struct bch_dirty_init_state));
957 state.c = c;
958 state.d = d;
959 state.total_threads = bch_btre_dirty_init_thread_nr();
960 state.key_idx = 0;
961 spin_lock_init(&state.idx_lock);
962 atomic_set(&state.started, 0);
963 atomic_set(&state.enough, 0);
964 init_waitqueue_head(&state.wait);
965
966 for (i = 0; i < state.total_threads; i++) {
967 /* Fetch latest state.enough earlier */
968 smp_mb__before_atomic();
969 if (atomic_read(&state.enough))
970 break;
971
972 atomic_inc(&state.started);
973 state.infos[i].state = &state;
974 state.infos[i].thread =
975 kthread_run(bch_dirty_init_thread, &state.infos[i],
976 "bch_dirtcnt[%d]", i);
977 if (IS_ERR(state.infos[i].thread)) {
978 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
979 atomic_dec(&state.started);
980 for (--i; i >= 0; i--)
981 kthread_stop(state.infos[i].thread);
982 goto out;
983 }
984 }
985
986 out:
987 /* Must wait for all threads to stop. */
988 wait_event(state.wait, atomic_read(&state.started) == 0);
989 rw_unlock(0, b);
990 }
991
bch_cached_dev_writeback_init(struct cached_dev * dc)992 void bch_cached_dev_writeback_init(struct cached_dev *dc)
993 {
994 sema_init(&dc->in_flight, 64);
995 init_rwsem(&dc->writeback_lock);
996 bch_keybuf_init(&dc->writeback_keys);
997
998 dc->writeback_metadata = true;
999 dc->writeback_running = false;
1000 dc->writeback_percent = 10;
1001 dc->writeback_delay = 30;
1002 atomic_long_set(&dc->writeback_rate.rate, 1024);
1003 dc->writeback_rate_minimum = 8;
1004
1005 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1006 dc->writeback_rate_p_term_inverse = 40;
1007 dc->writeback_rate_i_term_inverse = 10000;
1008
1009 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1010 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1011 }
1012
bch_cached_dev_writeback_start(struct cached_dev * dc)1013 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1014 {
1015 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1016 WQ_MEM_RECLAIM, 0);
1017 if (!dc->writeback_write_wq)
1018 return -ENOMEM;
1019
1020 cached_dev_get(dc);
1021 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1022 "bcache_writeback");
1023 if (IS_ERR(dc->writeback_thread)) {
1024 cached_dev_put(dc);
1025 destroy_workqueue(dc->writeback_write_wq);
1026 return PTR_ERR(dc->writeback_thread);
1027 }
1028 dc->writeback_running = true;
1029
1030 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1031 schedule_delayed_work(&dc->writeback_rate_update,
1032 dc->writeback_rate_update_seconds * HZ);
1033
1034 bch_writeback_queue(dc);
1035
1036 return 0;
1037 }
1038