• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NAND flash simulator.
4  *
5  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6  *
7  * Copyright (C) 2004 Nokia Corporation
8  *
9  * Note: NS means "NAND Simulator".
10  * Note: Input means input TO flash chip, output means output FROM chip.
11  */
12 
13 #define pr_fmt(fmt)  "[nandsim]" fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/nand_bch.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/delay.h>
29 #include <linux/list.h>
30 #include <linux/random.h>
31 #include <linux/sched.h>
32 #include <linux/sched/mm.h>
33 #include <linux/fs.h>
34 #include <linux/pagemap.h>
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 
38 /* Default simulator parameters values */
39 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
40     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
41     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
42     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
43 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
44 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
45 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
46 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
47 #endif
48 
49 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
50 #define CONFIG_NANDSIM_ACCESS_DELAY 25
51 #endif
52 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
53 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
54 #endif
55 #ifndef CONFIG_NANDSIM_ERASE_DELAY
56 #define CONFIG_NANDSIM_ERASE_DELAY 2
57 #endif
58 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
59 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
60 #endif
61 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
62 #define CONFIG_NANDSIM_INPUT_CYCLE  50
63 #endif
64 #ifndef CONFIG_NANDSIM_BUS_WIDTH
65 #define CONFIG_NANDSIM_BUS_WIDTH  8
66 #endif
67 #ifndef CONFIG_NANDSIM_DO_DELAYS
68 #define CONFIG_NANDSIM_DO_DELAYS  0
69 #endif
70 #ifndef CONFIG_NANDSIM_LOG
71 #define CONFIG_NANDSIM_LOG        0
72 #endif
73 #ifndef CONFIG_NANDSIM_DBG
74 #define CONFIG_NANDSIM_DBG        0
75 #endif
76 #ifndef CONFIG_NANDSIM_MAX_PARTS
77 #define CONFIG_NANDSIM_MAX_PARTS  32
78 #endif
79 
80 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
81 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
82 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
83 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
84 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
85 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
86 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
87 static uint log            = CONFIG_NANDSIM_LOG;
88 static uint dbg            = CONFIG_NANDSIM_DBG;
89 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
90 static unsigned int parts_num;
91 static char *badblocks = NULL;
92 static char *weakblocks = NULL;
93 static char *weakpages = NULL;
94 static unsigned int bitflips = 0;
95 static char *gravepages = NULL;
96 static unsigned int overridesize = 0;
97 static char *cache_file = NULL;
98 static unsigned int bbt;
99 static unsigned int bch;
100 static u_char id_bytes[8] = {
101 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
102 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
103 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
104 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
105 	[4 ... 7] = 0xFF,
106 };
107 
108 module_param_array(id_bytes, byte, NULL, 0400);
109 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
110 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
111 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
112 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
113 module_param(access_delay,   uint, 0400);
114 module_param(programm_delay, uint, 0400);
115 module_param(erase_delay,    uint, 0400);
116 module_param(output_cycle,   uint, 0400);
117 module_param(input_cycle,    uint, 0400);
118 module_param(bus_width,      uint, 0400);
119 module_param(do_delays,      uint, 0400);
120 module_param(log,            uint, 0400);
121 module_param(dbg,            uint, 0400);
122 module_param_array(parts, ulong, &parts_num, 0400);
123 module_param(badblocks,      charp, 0400);
124 module_param(weakblocks,     charp, 0400);
125 module_param(weakpages,      charp, 0400);
126 module_param(bitflips,       uint, 0400);
127 module_param(gravepages,     charp, 0400);
128 module_param(overridesize,   uint, 0400);
129 module_param(cache_file,     charp, 0400);
130 module_param(bbt,	     uint, 0400);
131 module_param(bch,	     uint, 0400);
132 
133 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
136 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
138 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
140 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
141 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
142 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
143 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
144 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
145 MODULE_PARM_DESC(log,            "Perform logging if not zero");
146 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
147 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
148 /* Page and erase block positions for the following parameters are independent of any partitions */
149 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
150 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
151 				 " separated by commas e.g. 113:2 means eb 113"
152 				 " can be erased only twice before failing");
153 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
154 				 " separated by commas e.g. 1401:2 means page 1401"
155 				 " can be written only twice before failing");
156 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
157 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
158 				 " separated by commas e.g. 1401:2 means page 1401"
159 				 " can be read only twice before failing");
160 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
161 				 "The size is specified in erase blocks and as the exponent of a power of two"
162 				 " e.g. 5 means a size of 32 erase blocks");
163 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
164 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
165 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
166 				 "be correctable in 512-byte blocks");
167 
168 /* The largest possible page size */
169 #define NS_LARGEST_PAGE_SIZE	4096
170 
171 /* Simulator's output macros (logging, debugging, warning, error) */
172 #define NS_LOG(args...) \
173 	do { if (log) pr_debug(" log: " args); } while(0)
174 #define NS_DBG(args...) \
175 	do { if (dbg) pr_debug(" debug: " args); } while(0)
176 #define NS_WARN(args...) \
177 	do { pr_warn(" warning: " args); } while(0)
178 #define NS_ERR(args...) \
179 	do { pr_err(" error: " args); } while(0)
180 #define NS_INFO(args...) \
181 	do { pr_info(" " args); } while(0)
182 
183 /* Busy-wait delay macros (microseconds, milliseconds) */
184 #define NS_UDELAY(us) \
185         do { if (do_delays) udelay(us); } while(0)
186 #define NS_MDELAY(us) \
187         do { if (do_delays) mdelay(us); } while(0)
188 
189 /* Is the nandsim structure initialized ? */
190 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
191 
192 /* Good operation completion status */
193 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
194 
195 /* Operation failed completion status */
196 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
197 
198 /* Calculate the page offset in flash RAM image by (row, column) address */
199 #define NS_RAW_OFFSET(ns) \
200 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
201 
202 /* Calculate the OOB offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
204 
205 /* After a command is input, the simulator goes to one of the following states */
206 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
207 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
208 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
209 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
210 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
211 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
212 #define STATE_CMD_STATUS       0x00000007 /* read status */
213 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
214 #define STATE_CMD_READID       0x0000000A /* read ID */
215 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
216 #define STATE_CMD_RESET        0x0000000C /* reset */
217 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
218 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
219 #define STATE_CMD_MASK         0x0000000F /* command states mask */
220 
221 /* After an address is input, the simulator goes to one of these states */
222 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
223 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
224 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
225 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
226 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
227 
228 /* During data input/output the simulator is in these states */
229 #define STATE_DATAIN           0x00000100 /* waiting for data input */
230 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
231 
232 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
233 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
234 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
235 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
236 
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY            0x00000000
239 
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN          0x10000000
242 
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
246 #define ACTION_SECERASE  0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK      0x00700000 /* action mask */
251 
252 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
254 
255 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
257 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
258 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
259 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
260 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
261 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
262 
263 /* Remove action bits from state */
264 #define NS_STATE(x) ((x) & ~ACTION_MASK)
265 
266 /*
267  * Maximum previous states which need to be saved. Currently saving is
268  * only needed for page program operation with preceded read command
269  * (which is only valid for 512-byte pages).
270  */
271 #define NS_MAX_PREVSTATES 1
272 
273 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
274 #define NS_MAX_HELD_PAGES 16
275 
276 /*
277  * A union to represent flash memory contents and flash buffer.
278  */
279 union ns_mem {
280 	u_char *byte;    /* for byte access */
281 	uint16_t *word;  /* for 16-bit word access */
282 };
283 
284 /*
285  * The structure which describes all the internal simulator data.
286  */
287 struct nandsim {
288 	struct nand_chip chip;
289 	struct nand_controller base;
290 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
291 	unsigned int nbparts;
292 
293 	uint busw;              /* flash chip bus width (8 or 16) */
294 	u_char ids[8];          /* chip's ID bytes */
295 	uint32_t options;       /* chip's characteristic bits */
296 	uint32_t state;         /* current chip state */
297 	uint32_t nxstate;       /* next expected state */
298 
299 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
300 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
301 	uint16_t npstates;      /* number of previous states saved */
302 	uint16_t stateidx;      /* current state index */
303 
304 	/* The simulated NAND flash pages array */
305 	union ns_mem *pages;
306 
307 	/* Slab allocator for nand pages */
308 	struct kmem_cache *nand_pages_slab;
309 
310 	/* Internal buffer of page + OOB size bytes */
311 	union ns_mem buf;
312 
313 	/* NAND flash "geometry" */
314 	struct {
315 		uint64_t totsz;     /* total flash size, bytes */
316 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
317 		uint pgsz;          /* NAND flash page size, bytes */
318 		uint oobsz;         /* page OOB area size, bytes */
319 		uint64_t totszoob;  /* total flash size including OOB, bytes */
320 		uint pgszoob;       /* page size including OOB , bytes*/
321 		uint secszoob;      /* sector size including OOB, bytes */
322 		uint pgnum;         /* total number of pages */
323 		uint pgsec;         /* number of pages per sector */
324 		uint secshift;      /* bits number in sector size */
325 		uint pgshift;       /* bits number in page size */
326 		uint pgaddrbytes;   /* bytes per page address */
327 		uint secaddrbytes;  /* bytes per sector address */
328 		uint idbytes;       /* the number ID bytes that this chip outputs */
329 	} geom;
330 
331 	/* NAND flash internal registers */
332 	struct {
333 		unsigned command; /* the command register */
334 		u_char   status;  /* the status register */
335 		uint     row;     /* the page number */
336 		uint     column;  /* the offset within page */
337 		uint     count;   /* internal counter */
338 		uint     num;     /* number of bytes which must be processed */
339 		uint     off;     /* fixed page offset */
340 	} regs;
341 
342 	/* NAND flash lines state */
343         struct {
344                 int ce;  /* chip Enable */
345                 int cle; /* command Latch Enable */
346                 int ale; /* address Latch Enable */
347                 int wp;  /* write Protect */
348         } lines;
349 
350 	/* Fields needed when using a cache file */
351 	struct file *cfile; /* Open file */
352 	unsigned long *pages_written; /* Which pages have been written */
353 	void *file_buf;
354 	struct page *held_pages[NS_MAX_HELD_PAGES];
355 	int held_cnt;
356 
357 	/* debugfs entry */
358 	struct dentry *dent;
359 };
360 
361 /*
362  * Operations array. To perform any operation the simulator must pass
363  * through the correspondent states chain.
364  */
365 static struct nandsim_operations {
366 	uint32_t reqopts;  /* options which are required to perform the operation */
367 	uint32_t states[NS_OPER_STATES]; /* operation's states */
368 } ops[NS_OPER_NUM] = {
369 	/* Read page + OOB from the beginning */
370 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
371 			STATE_DATAOUT, STATE_READY}},
372 	/* Read page + OOB from the second half */
373 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
374 			STATE_DATAOUT, STATE_READY}},
375 	/* Read OOB */
376 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
377 			STATE_DATAOUT, STATE_READY}},
378 	/* Program page starting from the beginning */
379 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
380 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
381 	/* Program page starting from the beginning */
382 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
383 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
384 	/* Program page starting from the second half */
385 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
386 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
387 	/* Program OOB */
388 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
389 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
390 	/* Erase sector */
391 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
392 	/* Read status */
393 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
394 	/* Read ID */
395 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
396 	/* Large page devices read page */
397 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
398 			       STATE_DATAOUT, STATE_READY}},
399 	/* Large page devices random page read */
400 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
401 			       STATE_DATAOUT, STATE_READY}},
402 };
403 
404 struct weak_block {
405 	struct list_head list;
406 	unsigned int erase_block_no;
407 	unsigned int max_erases;
408 	unsigned int erases_done;
409 };
410 
411 static LIST_HEAD(weak_blocks);
412 
413 struct weak_page {
414 	struct list_head list;
415 	unsigned int page_no;
416 	unsigned int max_writes;
417 	unsigned int writes_done;
418 };
419 
420 static LIST_HEAD(weak_pages);
421 
422 struct grave_page {
423 	struct list_head list;
424 	unsigned int page_no;
425 	unsigned int max_reads;
426 	unsigned int reads_done;
427 };
428 
429 static LIST_HEAD(grave_pages);
430 
431 static unsigned long *erase_block_wear = NULL;
432 static unsigned int wear_eb_count = 0;
433 static unsigned long total_wear = 0;
434 
435 /* MTD structure for NAND controller */
436 static struct mtd_info *nsmtd;
437 
ns_show(struct seq_file * m,void * private)438 static int ns_show(struct seq_file *m, void *private)
439 {
440 	unsigned long wmin = -1, wmax = 0, avg;
441 	unsigned long deciles[10], decile_max[10], tot = 0;
442 	unsigned int i;
443 
444 	/* Calc wear stats */
445 	for (i = 0; i < wear_eb_count; ++i) {
446 		unsigned long wear = erase_block_wear[i];
447 		if (wear < wmin)
448 			wmin = wear;
449 		if (wear > wmax)
450 			wmax = wear;
451 		tot += wear;
452 	}
453 
454 	for (i = 0; i < 9; ++i) {
455 		deciles[i] = 0;
456 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
457 	}
458 	deciles[9] = 0;
459 	decile_max[9] = wmax;
460 	for (i = 0; i < wear_eb_count; ++i) {
461 		int d;
462 		unsigned long wear = erase_block_wear[i];
463 		for (d = 0; d < 10; ++d)
464 			if (wear <= decile_max[d]) {
465 				deciles[d] += 1;
466 				break;
467 			}
468 	}
469 	avg = tot / wear_eb_count;
470 
471 	/* Output wear report */
472 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
473 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
474 	seq_printf(m, "Average number of erases: %lu\n", avg);
475 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
476 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
477 	for (i = 0; i < 10; ++i) {
478 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
479 		if (from > decile_max[i])
480 			continue;
481 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
482 			from,
483 			decile_max[i],
484 			deciles[i]);
485 	}
486 
487 	return 0;
488 }
489 DEFINE_SHOW_ATTRIBUTE(ns);
490 
491 /**
492  * ns_debugfs_create - initialize debugfs
493  * @ns: nandsim device description object
494  *
495  * This function creates all debugfs files for UBI device @ubi. Returns zero in
496  * case of success and a negative error code in case of failure.
497  */
ns_debugfs_create(struct nandsim * ns)498 static int ns_debugfs_create(struct nandsim *ns)
499 {
500 	struct dentry *root = nsmtd->dbg.dfs_dir;
501 
502 	/*
503 	 * Just skip debugfs initialization when the debugfs directory is
504 	 * missing.
505 	 */
506 	if (IS_ERR_OR_NULL(root)) {
507 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
508 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
509 			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
510 		return 0;
511 	}
512 
513 	ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns,
514 				       &ns_fops);
515 	if (IS_ERR_OR_NULL(ns->dent)) {
516 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
517 		return -1;
518 	}
519 
520 	return 0;
521 }
522 
ns_debugfs_remove(struct nandsim * ns)523 static void ns_debugfs_remove(struct nandsim *ns)
524 {
525 	debugfs_remove_recursive(ns->dent);
526 }
527 
528 /*
529  * Allocate array of page pointers, create slab allocation for an array
530  * and initialize the array by NULL pointers.
531  *
532  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
533  */
ns_alloc_device(struct nandsim * ns)534 static int __init ns_alloc_device(struct nandsim *ns)
535 {
536 	struct file *cfile;
537 	int i, err;
538 
539 	if (cache_file) {
540 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
541 		if (IS_ERR(cfile))
542 			return PTR_ERR(cfile);
543 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
544 			NS_ERR("alloc_device: cache file not readable\n");
545 			err = -EINVAL;
546 			goto err_close_filp;
547 		}
548 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
549 			NS_ERR("alloc_device: cache file not writeable\n");
550 			err = -EINVAL;
551 			goto err_close_filp;
552 		}
553 		ns->pages_written =
554 			vzalloc(array_size(sizeof(unsigned long),
555 					   BITS_TO_LONGS(ns->geom.pgnum)));
556 		if (!ns->pages_written) {
557 			NS_ERR("alloc_device: unable to allocate pages written array\n");
558 			err = -ENOMEM;
559 			goto err_close_filp;
560 		}
561 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
562 		if (!ns->file_buf) {
563 			NS_ERR("alloc_device: unable to allocate file buf\n");
564 			err = -ENOMEM;
565 			goto err_free_pw;
566 		}
567 		ns->cfile = cfile;
568 
569 		return 0;
570 
571 err_free_pw:
572 		vfree(ns->pages_written);
573 err_close_filp:
574 		filp_close(cfile, NULL);
575 
576 		return err;
577 	}
578 
579 	ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
580 	if (!ns->pages) {
581 		NS_ERR("alloc_device: unable to allocate page array\n");
582 		return -ENOMEM;
583 	}
584 	for (i = 0; i < ns->geom.pgnum; i++) {
585 		ns->pages[i].byte = NULL;
586 	}
587 	ns->nand_pages_slab = kmem_cache_create("nandsim",
588 						ns->geom.pgszoob, 0, 0, NULL);
589 	if (!ns->nand_pages_slab) {
590 		NS_ERR("cache_create: unable to create kmem_cache\n");
591 		err = -ENOMEM;
592 		goto err_free_pg;
593 	}
594 
595 	return 0;
596 
597 err_free_pg:
598 	vfree(ns->pages);
599 
600 	return err;
601 }
602 
603 /*
604  * Free any allocated pages, and free the array of page pointers.
605  */
ns_free_device(struct nandsim * ns)606 static void ns_free_device(struct nandsim *ns)
607 {
608 	int i;
609 
610 	if (ns->cfile) {
611 		kfree(ns->file_buf);
612 		vfree(ns->pages_written);
613 		filp_close(ns->cfile, NULL);
614 		return;
615 	}
616 
617 	if (ns->pages) {
618 		for (i = 0; i < ns->geom.pgnum; i++) {
619 			if (ns->pages[i].byte)
620 				kmem_cache_free(ns->nand_pages_slab,
621 						ns->pages[i].byte);
622 		}
623 		kmem_cache_destroy(ns->nand_pages_slab);
624 		vfree(ns->pages);
625 	}
626 }
627 
ns_get_partition_name(int i)628 static char __init *ns_get_partition_name(int i)
629 {
630 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
631 }
632 
633 /*
634  * Initialize the nandsim structure.
635  *
636  * RETURNS: 0 if success, -ERRNO if failure.
637  */
ns_init(struct mtd_info * mtd)638 static int __init ns_init(struct mtd_info *mtd)
639 {
640 	struct nand_chip *chip = mtd_to_nand(mtd);
641 	struct nandsim   *ns   = nand_get_controller_data(chip);
642 	int i, ret = 0;
643 	uint64_t remains;
644 	uint64_t next_offset;
645 
646 	if (NS_IS_INITIALIZED(ns)) {
647 		NS_ERR("init_nandsim: nandsim is already initialized\n");
648 		return -EIO;
649 	}
650 
651 	/* Initialize the NAND flash parameters */
652 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
653 	ns->geom.totsz    = mtd->size;
654 	ns->geom.pgsz     = mtd->writesize;
655 	ns->geom.oobsz    = mtd->oobsize;
656 	ns->geom.secsz    = mtd->erasesize;
657 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
658 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
659 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
660 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
661 	ns->geom.pgshift  = chip->page_shift;
662 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
663 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
664 	ns->options = 0;
665 
666 	if (ns->geom.pgsz == 512) {
667 		ns->options |= OPT_PAGE512;
668 		if (ns->busw == 8)
669 			ns->options |= OPT_PAGE512_8BIT;
670 	} else if (ns->geom.pgsz == 2048) {
671 		ns->options |= OPT_PAGE2048;
672 	} else if (ns->geom.pgsz == 4096) {
673 		ns->options |= OPT_PAGE4096;
674 	} else {
675 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
676 		return -EIO;
677 	}
678 
679 	if (ns->options & OPT_SMALLPAGE) {
680 		if (ns->geom.totsz <= (32 << 20)) {
681 			ns->geom.pgaddrbytes  = 3;
682 			ns->geom.secaddrbytes = 2;
683 		} else {
684 			ns->geom.pgaddrbytes  = 4;
685 			ns->geom.secaddrbytes = 3;
686 		}
687 	} else {
688 		if (ns->geom.totsz <= (128 << 20)) {
689 			ns->geom.pgaddrbytes  = 4;
690 			ns->geom.secaddrbytes = 2;
691 		} else {
692 			ns->geom.pgaddrbytes  = 5;
693 			ns->geom.secaddrbytes = 3;
694 		}
695 	}
696 
697 	/* Fill the partition_info structure */
698 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
699 		NS_ERR("too many partitions.\n");
700 		return -EINVAL;
701 	}
702 	remains = ns->geom.totsz;
703 	next_offset = 0;
704 	for (i = 0; i < parts_num; ++i) {
705 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
706 
707 		if (!part_sz || part_sz > remains) {
708 			NS_ERR("bad partition size.\n");
709 			return -EINVAL;
710 		}
711 		ns->partitions[i].name = ns_get_partition_name(i);
712 		if (!ns->partitions[i].name) {
713 			NS_ERR("unable to allocate memory.\n");
714 			return -ENOMEM;
715 		}
716 		ns->partitions[i].offset = next_offset;
717 		ns->partitions[i].size   = part_sz;
718 		next_offset += ns->partitions[i].size;
719 		remains -= ns->partitions[i].size;
720 	}
721 	ns->nbparts = parts_num;
722 	if (remains) {
723 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
724 			NS_ERR("too many partitions.\n");
725 			ret = -EINVAL;
726 			goto free_partition_names;
727 		}
728 		ns->partitions[i].name = ns_get_partition_name(i);
729 		if (!ns->partitions[i].name) {
730 			NS_ERR("unable to allocate memory.\n");
731 			ret = -ENOMEM;
732 			goto free_partition_names;
733 		}
734 		ns->partitions[i].offset = next_offset;
735 		ns->partitions[i].size   = remains;
736 		ns->nbparts += 1;
737 	}
738 
739 	if (ns->busw == 16)
740 		NS_WARN("16-bit flashes support wasn't tested\n");
741 
742 	printk("flash size: %llu MiB\n",
743 			(unsigned long long)ns->geom.totsz >> 20);
744 	printk("page size: %u bytes\n",         ns->geom.pgsz);
745 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
746 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
747 	printk("pages number: %u\n",            ns->geom.pgnum);
748 	printk("pages per sector: %u\n",        ns->geom.pgsec);
749 	printk("bus width: %u\n",               ns->busw);
750 	printk("bits in sector size: %u\n",     ns->geom.secshift);
751 	printk("bits in page size: %u\n",       ns->geom.pgshift);
752 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
753 	printk("flash size with OOB: %llu KiB\n",
754 			(unsigned long long)ns->geom.totszoob >> 10);
755 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
756 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
757 	printk("options: %#x\n",                ns->options);
758 
759 	ret = ns_alloc_device(ns);
760 	if (ret)
761 		goto free_partition_names;
762 
763 	/* Allocate / initialize the internal buffer */
764 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
765 	if (!ns->buf.byte) {
766 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
767 			ns->geom.pgszoob);
768 		ret = -ENOMEM;
769 		goto free_device;
770 	}
771 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
772 
773 	return 0;
774 
775 free_device:
776 	ns_free_device(ns);
777 free_partition_names:
778 	for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
779 		kfree(ns->partitions[i].name);
780 
781 	return ret;
782 }
783 
784 /*
785  * Free the nandsim structure.
786  */
ns_free(struct nandsim * ns)787 static void ns_free(struct nandsim *ns)
788 {
789 	int i;
790 
791 	for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
792 		kfree(ns->partitions[i].name);
793 
794 	kfree(ns->buf.byte);
795 	ns_free_device(ns);
796 
797 	return;
798 }
799 
ns_parse_badblocks(struct nandsim * ns,struct mtd_info * mtd)800 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
801 {
802 	char *w;
803 	int zero_ok;
804 	unsigned int erase_block_no;
805 	loff_t offset;
806 
807 	if (!badblocks)
808 		return 0;
809 	w = badblocks;
810 	do {
811 		zero_ok = (*w == '0' ? 1 : 0);
812 		erase_block_no = simple_strtoul(w, &w, 0);
813 		if (!zero_ok && !erase_block_no) {
814 			NS_ERR("invalid badblocks.\n");
815 			return -EINVAL;
816 		}
817 		offset = (loff_t)erase_block_no * ns->geom.secsz;
818 		if (mtd_block_markbad(mtd, offset)) {
819 			NS_ERR("invalid badblocks.\n");
820 			return -EINVAL;
821 		}
822 		if (*w == ',')
823 			w += 1;
824 	} while (*w);
825 	return 0;
826 }
827 
ns_parse_weakblocks(void)828 static int ns_parse_weakblocks(void)
829 {
830 	char *w;
831 	int zero_ok;
832 	unsigned int erase_block_no;
833 	unsigned int max_erases;
834 	struct weak_block *wb;
835 
836 	if (!weakblocks)
837 		return 0;
838 	w = weakblocks;
839 	do {
840 		zero_ok = (*w == '0' ? 1 : 0);
841 		erase_block_no = simple_strtoul(w, &w, 0);
842 		if (!zero_ok && !erase_block_no) {
843 			NS_ERR("invalid weakblocks.\n");
844 			return -EINVAL;
845 		}
846 		max_erases = 3;
847 		if (*w == ':') {
848 			w += 1;
849 			max_erases = simple_strtoul(w, &w, 0);
850 		}
851 		if (*w == ',')
852 			w += 1;
853 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
854 		if (!wb) {
855 			NS_ERR("unable to allocate memory.\n");
856 			return -ENOMEM;
857 		}
858 		wb->erase_block_no = erase_block_no;
859 		wb->max_erases = max_erases;
860 		list_add(&wb->list, &weak_blocks);
861 	} while (*w);
862 	return 0;
863 }
864 
ns_erase_error(unsigned int erase_block_no)865 static int ns_erase_error(unsigned int erase_block_no)
866 {
867 	struct weak_block *wb;
868 
869 	list_for_each_entry(wb, &weak_blocks, list)
870 		if (wb->erase_block_no == erase_block_no) {
871 			if (wb->erases_done >= wb->max_erases)
872 				return 1;
873 			wb->erases_done += 1;
874 			return 0;
875 		}
876 	return 0;
877 }
878 
ns_parse_weakpages(void)879 static int ns_parse_weakpages(void)
880 {
881 	char *w;
882 	int zero_ok;
883 	unsigned int page_no;
884 	unsigned int max_writes;
885 	struct weak_page *wp;
886 
887 	if (!weakpages)
888 		return 0;
889 	w = weakpages;
890 	do {
891 		zero_ok = (*w == '0' ? 1 : 0);
892 		page_no = simple_strtoul(w, &w, 0);
893 		if (!zero_ok && !page_no) {
894 			NS_ERR("invalid weakpages.\n");
895 			return -EINVAL;
896 		}
897 		max_writes = 3;
898 		if (*w == ':') {
899 			w += 1;
900 			max_writes = simple_strtoul(w, &w, 0);
901 		}
902 		if (*w == ',')
903 			w += 1;
904 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
905 		if (!wp) {
906 			NS_ERR("unable to allocate memory.\n");
907 			return -ENOMEM;
908 		}
909 		wp->page_no = page_no;
910 		wp->max_writes = max_writes;
911 		list_add(&wp->list, &weak_pages);
912 	} while (*w);
913 	return 0;
914 }
915 
ns_write_error(unsigned int page_no)916 static int ns_write_error(unsigned int page_no)
917 {
918 	struct weak_page *wp;
919 
920 	list_for_each_entry(wp, &weak_pages, list)
921 		if (wp->page_no == page_no) {
922 			if (wp->writes_done >= wp->max_writes)
923 				return 1;
924 			wp->writes_done += 1;
925 			return 0;
926 		}
927 	return 0;
928 }
929 
ns_parse_gravepages(void)930 static int ns_parse_gravepages(void)
931 {
932 	char *g;
933 	int zero_ok;
934 	unsigned int page_no;
935 	unsigned int max_reads;
936 	struct grave_page *gp;
937 
938 	if (!gravepages)
939 		return 0;
940 	g = gravepages;
941 	do {
942 		zero_ok = (*g == '0' ? 1 : 0);
943 		page_no = simple_strtoul(g, &g, 0);
944 		if (!zero_ok && !page_no) {
945 			NS_ERR("invalid gravepagess.\n");
946 			return -EINVAL;
947 		}
948 		max_reads = 3;
949 		if (*g == ':') {
950 			g += 1;
951 			max_reads = simple_strtoul(g, &g, 0);
952 		}
953 		if (*g == ',')
954 			g += 1;
955 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
956 		if (!gp) {
957 			NS_ERR("unable to allocate memory.\n");
958 			return -ENOMEM;
959 		}
960 		gp->page_no = page_no;
961 		gp->max_reads = max_reads;
962 		list_add(&gp->list, &grave_pages);
963 	} while (*g);
964 	return 0;
965 }
966 
ns_read_error(unsigned int page_no)967 static int ns_read_error(unsigned int page_no)
968 {
969 	struct grave_page *gp;
970 
971 	list_for_each_entry(gp, &grave_pages, list)
972 		if (gp->page_no == page_no) {
973 			if (gp->reads_done >= gp->max_reads)
974 				return 1;
975 			gp->reads_done += 1;
976 			return 0;
977 		}
978 	return 0;
979 }
980 
ns_setup_wear_reporting(struct mtd_info * mtd)981 static int ns_setup_wear_reporting(struct mtd_info *mtd)
982 {
983 	size_t mem;
984 
985 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
986 	mem = wear_eb_count * sizeof(unsigned long);
987 	if (mem / sizeof(unsigned long) != wear_eb_count) {
988 		NS_ERR("Too many erase blocks for wear reporting\n");
989 		return -ENOMEM;
990 	}
991 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
992 	if (!erase_block_wear) {
993 		NS_ERR("Too many erase blocks for wear reporting\n");
994 		return -ENOMEM;
995 	}
996 	return 0;
997 }
998 
ns_update_wear(unsigned int erase_block_no)999 static void ns_update_wear(unsigned int erase_block_no)
1000 {
1001 	if (!erase_block_wear)
1002 		return;
1003 	total_wear += 1;
1004 	/*
1005 	 * TODO: Notify this through a debugfs entry,
1006 	 * instead of showing an error message.
1007 	 */
1008 	if (total_wear == 0)
1009 		NS_ERR("Erase counter total overflow\n");
1010 	erase_block_wear[erase_block_no] += 1;
1011 	if (erase_block_wear[erase_block_no] == 0)
1012 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1013 }
1014 
1015 /*
1016  * Returns the string representation of 'state' state.
1017  */
ns_get_state_name(uint32_t state)1018 static char *ns_get_state_name(uint32_t state)
1019 {
1020 	switch (NS_STATE(state)) {
1021 		case STATE_CMD_READ0:
1022 			return "STATE_CMD_READ0";
1023 		case STATE_CMD_READ1:
1024 			return "STATE_CMD_READ1";
1025 		case STATE_CMD_PAGEPROG:
1026 			return "STATE_CMD_PAGEPROG";
1027 		case STATE_CMD_READOOB:
1028 			return "STATE_CMD_READOOB";
1029 		case STATE_CMD_READSTART:
1030 			return "STATE_CMD_READSTART";
1031 		case STATE_CMD_ERASE1:
1032 			return "STATE_CMD_ERASE1";
1033 		case STATE_CMD_STATUS:
1034 			return "STATE_CMD_STATUS";
1035 		case STATE_CMD_SEQIN:
1036 			return "STATE_CMD_SEQIN";
1037 		case STATE_CMD_READID:
1038 			return "STATE_CMD_READID";
1039 		case STATE_CMD_ERASE2:
1040 			return "STATE_CMD_ERASE2";
1041 		case STATE_CMD_RESET:
1042 			return "STATE_CMD_RESET";
1043 		case STATE_CMD_RNDOUT:
1044 			return "STATE_CMD_RNDOUT";
1045 		case STATE_CMD_RNDOUTSTART:
1046 			return "STATE_CMD_RNDOUTSTART";
1047 		case STATE_ADDR_PAGE:
1048 			return "STATE_ADDR_PAGE";
1049 		case STATE_ADDR_SEC:
1050 			return "STATE_ADDR_SEC";
1051 		case STATE_ADDR_ZERO:
1052 			return "STATE_ADDR_ZERO";
1053 		case STATE_ADDR_COLUMN:
1054 			return "STATE_ADDR_COLUMN";
1055 		case STATE_DATAIN:
1056 			return "STATE_DATAIN";
1057 		case STATE_DATAOUT:
1058 			return "STATE_DATAOUT";
1059 		case STATE_DATAOUT_ID:
1060 			return "STATE_DATAOUT_ID";
1061 		case STATE_DATAOUT_STATUS:
1062 			return "STATE_DATAOUT_STATUS";
1063 		case STATE_READY:
1064 			return "STATE_READY";
1065 		case STATE_UNKNOWN:
1066 			return "STATE_UNKNOWN";
1067 	}
1068 
1069 	NS_ERR("get_state_name: unknown state, BUG\n");
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * Check if command is valid.
1075  *
1076  * RETURNS: 1 if wrong command, 0 if right.
1077  */
ns_check_command(int cmd)1078 static int ns_check_command(int cmd)
1079 {
1080 	switch (cmd) {
1081 
1082 	case NAND_CMD_READ0:
1083 	case NAND_CMD_READ1:
1084 	case NAND_CMD_READSTART:
1085 	case NAND_CMD_PAGEPROG:
1086 	case NAND_CMD_READOOB:
1087 	case NAND_CMD_ERASE1:
1088 	case NAND_CMD_STATUS:
1089 	case NAND_CMD_SEQIN:
1090 	case NAND_CMD_READID:
1091 	case NAND_CMD_ERASE2:
1092 	case NAND_CMD_RESET:
1093 	case NAND_CMD_RNDOUT:
1094 	case NAND_CMD_RNDOUTSTART:
1095 		return 0;
1096 
1097 	default:
1098 		return 1;
1099 	}
1100 }
1101 
1102 /*
1103  * Returns state after command is accepted by command number.
1104  */
ns_get_state_by_command(unsigned command)1105 static uint32_t ns_get_state_by_command(unsigned command)
1106 {
1107 	switch (command) {
1108 		case NAND_CMD_READ0:
1109 			return STATE_CMD_READ0;
1110 		case NAND_CMD_READ1:
1111 			return STATE_CMD_READ1;
1112 		case NAND_CMD_PAGEPROG:
1113 			return STATE_CMD_PAGEPROG;
1114 		case NAND_CMD_READSTART:
1115 			return STATE_CMD_READSTART;
1116 		case NAND_CMD_READOOB:
1117 			return STATE_CMD_READOOB;
1118 		case NAND_CMD_ERASE1:
1119 			return STATE_CMD_ERASE1;
1120 		case NAND_CMD_STATUS:
1121 			return STATE_CMD_STATUS;
1122 		case NAND_CMD_SEQIN:
1123 			return STATE_CMD_SEQIN;
1124 		case NAND_CMD_READID:
1125 			return STATE_CMD_READID;
1126 		case NAND_CMD_ERASE2:
1127 			return STATE_CMD_ERASE2;
1128 		case NAND_CMD_RESET:
1129 			return STATE_CMD_RESET;
1130 		case NAND_CMD_RNDOUT:
1131 			return STATE_CMD_RNDOUT;
1132 		case NAND_CMD_RNDOUTSTART:
1133 			return STATE_CMD_RNDOUTSTART;
1134 	}
1135 
1136 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Move an address byte to the correspondent internal register.
1142  */
ns_accept_addr_byte(struct nandsim * ns,u_char bt)1143 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt)
1144 {
1145 	uint byte = (uint)bt;
1146 
1147 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1148 		ns->regs.column |= (byte << 8 * ns->regs.count);
1149 	else {
1150 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1151 						ns->geom.pgaddrbytes +
1152 						ns->geom.secaddrbytes));
1153 	}
1154 
1155 	return;
1156 }
1157 
1158 /*
1159  * Switch to STATE_READY state.
1160  */
ns_switch_to_ready_state(struct nandsim * ns,u_char status)1161 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status)
1162 {
1163 	NS_DBG("switch_to_ready_state: switch to %s state\n",
1164 	       ns_get_state_name(STATE_READY));
1165 
1166 	ns->state       = STATE_READY;
1167 	ns->nxstate     = STATE_UNKNOWN;
1168 	ns->op          = NULL;
1169 	ns->npstates    = 0;
1170 	ns->stateidx    = 0;
1171 	ns->regs.num    = 0;
1172 	ns->regs.count  = 0;
1173 	ns->regs.off    = 0;
1174 	ns->regs.row    = 0;
1175 	ns->regs.column = 0;
1176 	ns->regs.status = status;
1177 }
1178 
1179 /*
1180  * If the operation isn't known yet, try to find it in the global array
1181  * of supported operations.
1182  *
1183  * Operation can be unknown because of the following.
1184  *   1. New command was accepted and this is the first call to find the
1185  *      correspondent states chain. In this case ns->npstates = 0;
1186  *   2. There are several operations which begin with the same command(s)
1187  *      (for example program from the second half and read from the
1188  *      second half operations both begin with the READ1 command). In this
1189  *      case the ns->pstates[] array contains previous states.
1190  *
1191  * Thus, the function tries to find operation containing the following
1192  * states (if the 'flag' parameter is 0):
1193  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1194  *
1195  * If (one and only one) matching operation is found, it is accepted (
1196  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1197  * zeroed).
1198  *
1199  * If there are several matches, the current state is pushed to the
1200  * ns->pstates.
1201  *
1202  * The operation can be unknown only while commands are input to the chip.
1203  * As soon as address command is accepted, the operation must be known.
1204  * In such situation the function is called with 'flag' != 0, and the
1205  * operation is searched using the following pattern:
1206  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1207  *
1208  * It is supposed that this pattern must either match one operation or
1209  * none. There can't be ambiguity in that case.
1210  *
1211  * If no matches found, the function does the following:
1212  *   1. if there are saved states present, try to ignore them and search
1213  *      again only using the last command. If nothing was found, switch
1214  *      to the STATE_READY state.
1215  *   2. if there are no saved states, switch to the STATE_READY state.
1216  *
1217  * RETURNS: -2 - no matched operations found.
1218  *          -1 - several matches.
1219  *           0 - operation is found.
1220  */
ns_find_operation(struct nandsim * ns,uint32_t flag)1221 static int ns_find_operation(struct nandsim *ns, uint32_t flag)
1222 {
1223 	int opsfound = 0;
1224 	int i, j, idx = 0;
1225 
1226 	for (i = 0; i < NS_OPER_NUM; i++) {
1227 
1228 		int found = 1;
1229 
1230 		if (!(ns->options & ops[i].reqopts))
1231 			/* Ignore operations we can't perform */
1232 			continue;
1233 
1234 		if (flag) {
1235 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1236 				continue;
1237 		} else {
1238 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1239 				continue;
1240 		}
1241 
1242 		for (j = 0; j < ns->npstates; j++)
1243 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1244 				&& (ns->options & ops[idx].reqopts)) {
1245 				found = 0;
1246 				break;
1247 			}
1248 
1249 		if (found) {
1250 			idx = i;
1251 			opsfound += 1;
1252 		}
1253 	}
1254 
1255 	if (opsfound == 1) {
1256 		/* Exact match */
1257 		ns->op = &ops[idx].states[0];
1258 		if (flag) {
1259 			/*
1260 			 * In this case the find_operation function was
1261 			 * called when address has just began input. But it isn't
1262 			 * yet fully input and the current state must
1263 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1264 			 * state must be the next state (ns->nxstate).
1265 			 */
1266 			ns->stateidx = ns->npstates - 1;
1267 		} else {
1268 			ns->stateidx = ns->npstates;
1269 		}
1270 		ns->npstates = 0;
1271 		ns->state = ns->op[ns->stateidx];
1272 		ns->nxstate = ns->op[ns->stateidx + 1];
1273 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1274 		       idx, ns_get_state_name(ns->state),
1275 		       ns_get_state_name(ns->nxstate));
1276 		return 0;
1277 	}
1278 
1279 	if (opsfound == 0) {
1280 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1281 		if (ns->npstates != 0) {
1282 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1283 			       ns_get_state_name(ns->state));
1284 			ns->npstates = 0;
1285 			return ns_find_operation(ns, 0);
1286 
1287 		}
1288 		NS_DBG("find_operation: no operations found\n");
1289 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1290 		return -2;
1291 	}
1292 
1293 	if (flag) {
1294 		/* This shouldn't happen */
1295 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1296 		return -2;
1297 	}
1298 
1299 	NS_DBG("find_operation: there is still ambiguity\n");
1300 
1301 	ns->pstates[ns->npstates++] = ns->state;
1302 
1303 	return -1;
1304 }
1305 
ns_put_pages(struct nandsim * ns)1306 static void ns_put_pages(struct nandsim *ns)
1307 {
1308 	int i;
1309 
1310 	for (i = 0; i < ns->held_cnt; i++)
1311 		put_page(ns->held_pages[i]);
1312 }
1313 
1314 /* Get page cache pages in advance to provide NOFS memory allocation */
ns_get_pages(struct nandsim * ns,struct file * file,size_t count,loff_t pos)1315 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count,
1316 			loff_t pos)
1317 {
1318 	pgoff_t index, start_index, end_index;
1319 	struct page *page;
1320 	struct address_space *mapping = file->f_mapping;
1321 
1322 	start_index = pos >> PAGE_SHIFT;
1323 	end_index = (pos + count - 1) >> PAGE_SHIFT;
1324 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1325 		return -EINVAL;
1326 	ns->held_cnt = 0;
1327 	for (index = start_index; index <= end_index; index++) {
1328 		page = find_get_page(mapping, index);
1329 		if (page == NULL) {
1330 			page = find_or_create_page(mapping, index, GFP_NOFS);
1331 			if (page == NULL) {
1332 				write_inode_now(mapping->host, 1);
1333 				page = find_or_create_page(mapping, index, GFP_NOFS);
1334 			}
1335 			if (page == NULL) {
1336 				ns_put_pages(ns);
1337 				return -ENOMEM;
1338 			}
1339 			unlock_page(page);
1340 		}
1341 		ns->held_pages[ns->held_cnt++] = page;
1342 	}
1343 	return 0;
1344 }
1345 
ns_read_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1346 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf,
1347 			    size_t count, loff_t pos)
1348 {
1349 	ssize_t tx;
1350 	int err;
1351 	unsigned int noreclaim_flag;
1352 
1353 	err = ns_get_pages(ns, file, count, pos);
1354 	if (err)
1355 		return err;
1356 	noreclaim_flag = memalloc_noreclaim_save();
1357 	tx = kernel_read(file, buf, count, &pos);
1358 	memalloc_noreclaim_restore(noreclaim_flag);
1359 	ns_put_pages(ns);
1360 	return tx;
1361 }
1362 
ns_write_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1363 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf,
1364 			     size_t count, loff_t pos)
1365 {
1366 	ssize_t tx;
1367 	int err;
1368 	unsigned int noreclaim_flag;
1369 
1370 	err = ns_get_pages(ns, file, count, pos);
1371 	if (err)
1372 		return err;
1373 	noreclaim_flag = memalloc_noreclaim_save();
1374 	tx = kernel_write(file, buf, count, &pos);
1375 	memalloc_noreclaim_restore(noreclaim_flag);
1376 	ns_put_pages(ns);
1377 	return tx;
1378 }
1379 
1380 /*
1381  * Returns a pointer to the current page.
1382  */
NS_GET_PAGE(struct nandsim * ns)1383 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1384 {
1385 	return &(ns->pages[ns->regs.row]);
1386 }
1387 
1388 /*
1389  * Retuns a pointer to the current byte, within the current page.
1390  */
NS_PAGE_BYTE_OFF(struct nandsim * ns)1391 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1392 {
1393 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1394 }
1395 
ns_do_read_error(struct nandsim * ns,int num)1396 static int ns_do_read_error(struct nandsim *ns, int num)
1397 {
1398 	unsigned int page_no = ns->regs.row;
1399 
1400 	if (ns_read_error(page_no)) {
1401 		prandom_bytes(ns->buf.byte, num);
1402 		NS_WARN("simulating read error in page %u\n", page_no);
1403 		return 1;
1404 	}
1405 	return 0;
1406 }
1407 
ns_do_bit_flips(struct nandsim * ns,int num)1408 static void ns_do_bit_flips(struct nandsim *ns, int num)
1409 {
1410 	if (bitflips && prandom_u32() < (1 << 22)) {
1411 		int flips = 1;
1412 		if (bitflips > 1)
1413 			flips = (prandom_u32() % (int) bitflips) + 1;
1414 		while (flips--) {
1415 			int pos = prandom_u32() % (num * 8);
1416 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1417 			NS_WARN("read_page: flipping bit %d in page %d "
1418 				"reading from %d ecc: corrected=%u failed=%u\n",
1419 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1420 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1421 		}
1422 	}
1423 }
1424 
1425 /*
1426  * Fill the NAND buffer with data read from the specified page.
1427  */
ns_read_page(struct nandsim * ns,int num)1428 static void ns_read_page(struct nandsim *ns, int num)
1429 {
1430 	union ns_mem *mypage;
1431 
1432 	if (ns->cfile) {
1433 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1434 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1435 			memset(ns->buf.byte, 0xFF, num);
1436 		} else {
1437 			loff_t pos;
1438 			ssize_t tx;
1439 
1440 			NS_DBG("read_page: page %d written, reading from %d\n",
1441 				ns->regs.row, ns->regs.column + ns->regs.off);
1442 			if (ns_do_read_error(ns, num))
1443 				return;
1444 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1445 			tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num,
1446 					  pos);
1447 			if (tx != num) {
1448 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1449 				return;
1450 			}
1451 			ns_do_bit_flips(ns, num);
1452 		}
1453 		return;
1454 	}
1455 
1456 	mypage = NS_GET_PAGE(ns);
1457 	if (mypage->byte == NULL) {
1458 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1459 		memset(ns->buf.byte, 0xFF, num);
1460 	} else {
1461 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1462 			ns->regs.row, ns->regs.column + ns->regs.off);
1463 		if (ns_do_read_error(ns, num))
1464 			return;
1465 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1466 		ns_do_bit_flips(ns, num);
1467 	}
1468 }
1469 
1470 /*
1471  * Erase all pages in the specified sector.
1472  */
ns_erase_sector(struct nandsim * ns)1473 static void ns_erase_sector(struct nandsim *ns)
1474 {
1475 	union ns_mem *mypage;
1476 	int i;
1477 
1478 	if (ns->cfile) {
1479 		for (i = 0; i < ns->geom.pgsec; i++)
1480 			if (__test_and_clear_bit(ns->regs.row + i,
1481 						 ns->pages_written)) {
1482 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1483 			}
1484 		return;
1485 	}
1486 
1487 	mypage = NS_GET_PAGE(ns);
1488 	for (i = 0; i < ns->geom.pgsec; i++) {
1489 		if (mypage->byte != NULL) {
1490 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1491 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1492 			mypage->byte = NULL;
1493 		}
1494 		mypage++;
1495 	}
1496 }
1497 
1498 /*
1499  * Program the specified page with the contents from the NAND buffer.
1500  */
ns_prog_page(struct nandsim * ns,int num)1501 static int ns_prog_page(struct nandsim *ns, int num)
1502 {
1503 	int i;
1504 	union ns_mem *mypage;
1505 	u_char *pg_off;
1506 
1507 	if (ns->cfile) {
1508 		loff_t off;
1509 		ssize_t tx;
1510 		int all;
1511 
1512 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1513 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1514 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1515 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1516 			all = 1;
1517 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1518 		} else {
1519 			all = 0;
1520 			tx = ns_read_file(ns, ns->cfile, pg_off, num, off);
1521 			if (tx != num) {
1522 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1523 				return -1;
1524 			}
1525 		}
1526 		for (i = 0; i < num; i++)
1527 			pg_off[i] &= ns->buf.byte[i];
1528 		if (all) {
1529 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1530 			tx = ns_write_file(ns, ns->cfile, ns->file_buf,
1531 					   ns->geom.pgszoob, pos);
1532 			if (tx != ns->geom.pgszoob) {
1533 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1534 				return -1;
1535 			}
1536 			__set_bit(ns->regs.row, ns->pages_written);
1537 		} else {
1538 			tx = ns_write_file(ns, ns->cfile, pg_off, num, off);
1539 			if (tx != num) {
1540 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1541 				return -1;
1542 			}
1543 		}
1544 		return 0;
1545 	}
1546 
1547 	mypage = NS_GET_PAGE(ns);
1548 	if (mypage->byte == NULL) {
1549 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1550 		/*
1551 		 * We allocate memory with GFP_NOFS because a flash FS may
1552 		 * utilize this. If it is holding an FS lock, then gets here,
1553 		 * then kernel memory alloc runs writeback which goes to the FS
1554 		 * again and deadlocks. This was seen in practice.
1555 		 */
1556 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1557 		if (mypage->byte == NULL) {
1558 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1559 			return -1;
1560 		}
1561 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1562 	}
1563 
1564 	pg_off = NS_PAGE_BYTE_OFF(ns);
1565 	for (i = 0; i < num; i++)
1566 		pg_off[i] &= ns->buf.byte[i];
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * If state has any action bit, perform this action.
1573  *
1574  * RETURNS: 0 if success, -1 if error.
1575  */
ns_do_state_action(struct nandsim * ns,uint32_t action)1576 static int ns_do_state_action(struct nandsim *ns, uint32_t action)
1577 {
1578 	int num;
1579 	int busdiv = ns->busw == 8 ? 1 : 2;
1580 	unsigned int erase_block_no, page_no;
1581 
1582 	action &= ACTION_MASK;
1583 
1584 	/* Check that page address input is correct */
1585 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1586 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1587 		return -1;
1588 	}
1589 
1590 	switch (action) {
1591 
1592 	case ACTION_CPY:
1593 		/*
1594 		 * Copy page data to the internal buffer.
1595 		 */
1596 
1597 		/* Column shouldn't be very large */
1598 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1599 			NS_ERR("do_state_action: column number is too large\n");
1600 			break;
1601 		}
1602 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1603 		ns_read_page(ns, num);
1604 
1605 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1606 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1607 
1608 		if (ns->regs.off == 0)
1609 			NS_LOG("read page %d\n", ns->regs.row);
1610 		else if (ns->regs.off < ns->geom.pgsz)
1611 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1612 		else
1613 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1614 
1615 		NS_UDELAY(access_delay);
1616 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1617 
1618 		break;
1619 
1620 	case ACTION_SECERASE:
1621 		/*
1622 		 * Erase sector.
1623 		 */
1624 
1625 		if (ns->lines.wp) {
1626 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1627 			return -1;
1628 		}
1629 
1630 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1631 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1632 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1633 			return -1;
1634 		}
1635 
1636 		ns->regs.row = (ns->regs.row <<
1637 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1638 		ns->regs.column = 0;
1639 
1640 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1641 
1642 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1643 				ns->regs.row, NS_RAW_OFFSET(ns));
1644 		NS_LOG("erase sector %u\n", erase_block_no);
1645 
1646 		ns_erase_sector(ns);
1647 
1648 		NS_MDELAY(erase_delay);
1649 
1650 		if (erase_block_wear)
1651 			ns_update_wear(erase_block_no);
1652 
1653 		if (ns_erase_error(erase_block_no)) {
1654 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1655 			return -1;
1656 		}
1657 
1658 		break;
1659 
1660 	case ACTION_PRGPAGE:
1661 		/*
1662 		 * Program page - move internal buffer data to the page.
1663 		 */
1664 
1665 		if (ns->lines.wp) {
1666 			NS_WARN("do_state_action: device is write-protected, programm\n");
1667 			return -1;
1668 		}
1669 
1670 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1671 		if (num != ns->regs.count) {
1672 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1673 					ns->regs.count, num);
1674 			return -1;
1675 		}
1676 
1677 		if (ns_prog_page(ns, num) == -1)
1678 			return -1;
1679 
1680 		page_no = ns->regs.row;
1681 
1682 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1683 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1684 		NS_LOG("programm page %d\n", ns->regs.row);
1685 
1686 		NS_UDELAY(programm_delay);
1687 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1688 
1689 		if (ns_write_error(page_no)) {
1690 			NS_WARN("simulating write failure in page %u\n", page_no);
1691 			return -1;
1692 		}
1693 
1694 		break;
1695 
1696 	case ACTION_ZEROOFF:
1697 		NS_DBG("do_state_action: set internal offset to 0\n");
1698 		ns->regs.off = 0;
1699 		break;
1700 
1701 	case ACTION_HALFOFF:
1702 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1703 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1704 				"byte page size 8x chips\n");
1705 			return -1;
1706 		}
1707 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1708 		ns->regs.off = ns->geom.pgsz/2;
1709 		break;
1710 
1711 	case ACTION_OOBOFF:
1712 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1713 		ns->regs.off = ns->geom.pgsz;
1714 		break;
1715 
1716 	default:
1717 		NS_DBG("do_state_action: BUG! unknown action\n");
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Switch simulator's state.
1725  */
ns_switch_state(struct nandsim * ns)1726 static void ns_switch_state(struct nandsim *ns)
1727 {
1728 	if (ns->op) {
1729 		/*
1730 		 * The current operation have already been identified.
1731 		 * Just follow the states chain.
1732 		 */
1733 
1734 		ns->stateidx += 1;
1735 		ns->state = ns->nxstate;
1736 		ns->nxstate = ns->op[ns->stateidx + 1];
1737 
1738 		NS_DBG("switch_state: operation is known, switch to the next state, "
1739 			"state: %s, nxstate: %s\n",
1740 		       ns_get_state_name(ns->state),
1741 		       ns_get_state_name(ns->nxstate));
1742 
1743 		/* See, whether we need to do some action */
1744 		if ((ns->state & ACTION_MASK) &&
1745 		    ns_do_state_action(ns, ns->state) < 0) {
1746 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1747 			return;
1748 		}
1749 
1750 	} else {
1751 		/*
1752 		 * We don't yet know which operation we perform.
1753 		 * Try to identify it.
1754 		 */
1755 
1756 		/*
1757 		 *  The only event causing the switch_state function to
1758 		 *  be called with yet unknown operation is new command.
1759 		 */
1760 		ns->state = ns_get_state_by_command(ns->regs.command);
1761 
1762 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1763 
1764 		if (ns_find_operation(ns, 0))
1765 			return;
1766 
1767 		if ((ns->state & ACTION_MASK) &&
1768 		    ns_do_state_action(ns, ns->state) < 0) {
1769 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1770 			return;
1771 		}
1772 	}
1773 
1774 	/* For 16x devices column means the page offset in words */
1775 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1776 		NS_DBG("switch_state: double the column number for 16x device\n");
1777 		ns->regs.column <<= 1;
1778 	}
1779 
1780 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1781 		/*
1782 		 * The current state is the last. Return to STATE_READY
1783 		 */
1784 
1785 		u_char status = NS_STATUS_OK(ns);
1786 
1787 		/* In case of data states, see if all bytes were input/output */
1788 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1789 			&& ns->regs.count != ns->regs.num) {
1790 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1791 					ns->regs.num - ns->regs.count);
1792 			status = NS_STATUS_FAILED(ns);
1793 		}
1794 
1795 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1796 
1797 		ns_switch_to_ready_state(ns, status);
1798 
1799 		return;
1800 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1801 		/*
1802 		 * If the next state is data input/output, switch to it now
1803 		 */
1804 
1805 		ns->state      = ns->nxstate;
1806 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1807 		ns->regs.num   = ns->regs.count = 0;
1808 
1809 		NS_DBG("switch_state: the next state is data I/O, switch, "
1810 			"state: %s, nxstate: %s\n",
1811 		       ns_get_state_name(ns->state),
1812 		       ns_get_state_name(ns->nxstate));
1813 
1814 		/*
1815 		 * Set the internal register to the count of bytes which
1816 		 * are expected to be input or output
1817 		 */
1818 		switch (NS_STATE(ns->state)) {
1819 			case STATE_DATAIN:
1820 			case STATE_DATAOUT:
1821 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1822 				break;
1823 
1824 			case STATE_DATAOUT_ID:
1825 				ns->regs.num = ns->geom.idbytes;
1826 				break;
1827 
1828 			case STATE_DATAOUT_STATUS:
1829 				ns->regs.count = ns->regs.num = 0;
1830 				break;
1831 
1832 			default:
1833 				NS_ERR("switch_state: BUG! unknown data state\n");
1834 		}
1835 
1836 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1837 		/*
1838 		 * If the next state is address input, set the internal
1839 		 * register to the number of expected address bytes
1840 		 */
1841 
1842 		ns->regs.count = 0;
1843 
1844 		switch (NS_STATE(ns->nxstate)) {
1845 			case STATE_ADDR_PAGE:
1846 				ns->regs.num = ns->geom.pgaddrbytes;
1847 
1848 				break;
1849 			case STATE_ADDR_SEC:
1850 				ns->regs.num = ns->geom.secaddrbytes;
1851 				break;
1852 
1853 			case STATE_ADDR_ZERO:
1854 				ns->regs.num = 1;
1855 				break;
1856 
1857 			case STATE_ADDR_COLUMN:
1858 				/* Column address is always 2 bytes */
1859 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1860 				break;
1861 
1862 			default:
1863 				NS_ERR("switch_state: BUG! unknown address state\n");
1864 		}
1865 	} else {
1866 		/*
1867 		 * Just reset internal counters.
1868 		 */
1869 
1870 		ns->regs.num = 0;
1871 		ns->regs.count = 0;
1872 	}
1873 }
1874 
ns_nand_read_byte(struct nand_chip * chip)1875 static u_char ns_nand_read_byte(struct nand_chip *chip)
1876 {
1877 	struct nandsim *ns = nand_get_controller_data(chip);
1878 	u_char outb = 0x00;
1879 
1880 	/* Sanity and correctness checks */
1881 	if (!ns->lines.ce) {
1882 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1883 		return outb;
1884 	}
1885 	if (ns->lines.ale || ns->lines.cle) {
1886 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1887 		return outb;
1888 	}
1889 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1890 		NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n",
1891 			ns_get_state_name(ns->state), (uint)outb);
1892 		return outb;
1893 	}
1894 
1895 	/* Status register may be read as many times as it is wanted */
1896 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1897 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1898 		return ns->regs.status;
1899 	}
1900 
1901 	/* Check if there is any data in the internal buffer which may be read */
1902 	if (ns->regs.count == ns->regs.num) {
1903 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1904 		return outb;
1905 	}
1906 
1907 	switch (NS_STATE(ns->state)) {
1908 		case STATE_DATAOUT:
1909 			if (ns->busw == 8) {
1910 				outb = ns->buf.byte[ns->regs.count];
1911 				ns->regs.count += 1;
1912 			} else {
1913 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1914 				ns->regs.count += 2;
1915 			}
1916 			break;
1917 		case STATE_DATAOUT_ID:
1918 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1919 			outb = ns->ids[ns->regs.count];
1920 			ns->regs.count += 1;
1921 			break;
1922 		default:
1923 			BUG();
1924 	}
1925 
1926 	if (ns->regs.count == ns->regs.num) {
1927 		NS_DBG("read_byte: all bytes were read\n");
1928 
1929 		if (NS_STATE(ns->nxstate) == STATE_READY)
1930 			ns_switch_state(ns);
1931 	}
1932 
1933 	return outb;
1934 }
1935 
ns_nand_write_byte(struct nand_chip * chip,u_char byte)1936 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1937 {
1938 	struct nandsim *ns = nand_get_controller_data(chip);
1939 
1940 	/* Sanity and correctness checks */
1941 	if (!ns->lines.ce) {
1942 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1943 		return;
1944 	}
1945 	if (ns->lines.ale && ns->lines.cle) {
1946 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1947 		return;
1948 	}
1949 
1950 	if (ns->lines.cle == 1) {
1951 		/*
1952 		 * The byte written is a command.
1953 		 */
1954 
1955 		if (byte == NAND_CMD_RESET) {
1956 			NS_LOG("reset chip\n");
1957 			ns_switch_to_ready_state(ns, NS_STATUS_OK(ns));
1958 			return;
1959 		}
1960 
1961 		/* Check that the command byte is correct */
1962 		if (ns_check_command(byte)) {
1963 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1964 			return;
1965 		}
1966 
1967 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1968 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1969 			int row = ns->regs.row;
1970 
1971 			ns_switch_state(ns);
1972 			if (byte == NAND_CMD_RNDOUT)
1973 				ns->regs.row = row;
1974 		}
1975 
1976 		/* Check if chip is expecting command */
1977 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1978 			/* Do not warn if only 2 id bytes are read */
1979 			if (!(ns->regs.command == NAND_CMD_READID &&
1980 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1981 				/*
1982 				 * We are in situation when something else (not command)
1983 				 * was expected but command was input. In this case ignore
1984 				 * previous command(s)/state(s) and accept the last one.
1985 				 */
1986 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n",
1987 					(uint)byte,
1988 					ns_get_state_name(ns->nxstate));
1989 			}
1990 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1991 		}
1992 
1993 		NS_DBG("command byte corresponding to %s state accepted\n",
1994 			ns_get_state_name(ns_get_state_by_command(byte)));
1995 		ns->regs.command = byte;
1996 		ns_switch_state(ns);
1997 
1998 	} else if (ns->lines.ale == 1) {
1999 		/*
2000 		 * The byte written is an address.
2001 		 */
2002 
2003 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2004 
2005 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2006 
2007 			if (ns_find_operation(ns, 1) < 0)
2008 				return;
2009 
2010 			if ((ns->state & ACTION_MASK) &&
2011 			    ns_do_state_action(ns, ns->state) < 0) {
2012 				ns_switch_to_ready_state(ns,
2013 							 NS_STATUS_FAILED(ns));
2014 				return;
2015 			}
2016 
2017 			ns->regs.count = 0;
2018 			switch (NS_STATE(ns->nxstate)) {
2019 				case STATE_ADDR_PAGE:
2020 					ns->regs.num = ns->geom.pgaddrbytes;
2021 					break;
2022 				case STATE_ADDR_SEC:
2023 					ns->regs.num = ns->geom.secaddrbytes;
2024 					break;
2025 				case STATE_ADDR_ZERO:
2026 					ns->regs.num = 1;
2027 					break;
2028 				default:
2029 					BUG();
2030 			}
2031 		}
2032 
2033 		/* Check that chip is expecting address */
2034 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2035 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n",
2036 			       (uint)byte, ns_get_state_name(ns->nxstate));
2037 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2038 			return;
2039 		}
2040 
2041 		/* Check if this is expected byte */
2042 		if (ns->regs.count == ns->regs.num) {
2043 			NS_ERR("write_byte: no more address bytes expected\n");
2044 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2045 			return;
2046 		}
2047 
2048 		ns_accept_addr_byte(ns, byte);
2049 
2050 		ns->regs.count += 1;
2051 
2052 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2053 				(uint)byte, ns->regs.count, ns->regs.num);
2054 
2055 		if (ns->regs.count == ns->regs.num) {
2056 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2057 			ns_switch_state(ns);
2058 		}
2059 
2060 	} else {
2061 		/*
2062 		 * The byte written is an input data.
2063 		 */
2064 
2065 		/* Check that chip is expecting data input */
2066 		if (!(ns->state & STATE_DATAIN_MASK)) {
2067 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n",
2068 			       (uint)byte, ns_get_state_name(ns->state),
2069 			       ns_get_state_name(STATE_READY));
2070 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2071 			return;
2072 		}
2073 
2074 		/* Check if this is expected byte */
2075 		if (ns->regs.count == ns->regs.num) {
2076 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2077 					ns->regs.num);
2078 			return;
2079 		}
2080 
2081 		if (ns->busw == 8) {
2082 			ns->buf.byte[ns->regs.count] = byte;
2083 			ns->regs.count += 1;
2084 		} else {
2085 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2086 			ns->regs.count += 2;
2087 		}
2088 	}
2089 
2090 	return;
2091 }
2092 
ns_nand_write_buf(struct nand_chip * chip,const u_char * buf,int len)2093 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2094 			      int len)
2095 {
2096 	struct nandsim *ns = nand_get_controller_data(chip);
2097 
2098 	/* Check that chip is expecting data input */
2099 	if (!(ns->state & STATE_DATAIN_MASK)) {
2100 		NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n",
2101 		       ns_get_state_name(ns->state));
2102 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2103 		return;
2104 	}
2105 
2106 	/* Check if these are expected bytes */
2107 	if (ns->regs.count + len > ns->regs.num) {
2108 		NS_ERR("write_buf: too many input bytes\n");
2109 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2110 		return;
2111 	}
2112 
2113 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2114 	ns->regs.count += len;
2115 
2116 	if (ns->regs.count == ns->regs.num) {
2117 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2118 	}
2119 }
2120 
ns_nand_read_buf(struct nand_chip * chip,u_char * buf,int len)2121 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
2122 {
2123 	struct nandsim *ns = nand_get_controller_data(chip);
2124 
2125 	/* Sanity and correctness checks */
2126 	if (!ns->lines.ce) {
2127 		NS_ERR("read_buf: chip is disabled\n");
2128 		return;
2129 	}
2130 	if (ns->lines.ale || ns->lines.cle) {
2131 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2132 		return;
2133 	}
2134 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2135 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2136 			ns_get_state_name(ns->state));
2137 		return;
2138 	}
2139 
2140 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2141 		int i;
2142 
2143 		for (i = 0; i < len; i++)
2144 			buf[i] = ns_nand_read_byte(chip);
2145 
2146 		return;
2147 	}
2148 
2149 	/* Check if these are expected bytes */
2150 	if (ns->regs.count + len > ns->regs.num) {
2151 		NS_ERR("read_buf: too many bytes to read\n");
2152 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2153 		return;
2154 	}
2155 
2156 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2157 	ns->regs.count += len;
2158 
2159 	if (ns->regs.count == ns->regs.num) {
2160 		if (NS_STATE(ns->nxstate) == STATE_READY)
2161 			ns_switch_state(ns);
2162 	}
2163 
2164 	return;
2165 }
2166 
ns_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2167 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
2168 		      bool check_only)
2169 {
2170 	int i;
2171 	unsigned int op_id;
2172 	const struct nand_op_instr *instr = NULL;
2173 	struct nandsim *ns = nand_get_controller_data(chip);
2174 
2175 	if (check_only)
2176 		return 0;
2177 
2178 	ns->lines.ce = 1;
2179 
2180 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
2181 		instr = &op->instrs[op_id];
2182 		ns->lines.cle = 0;
2183 		ns->lines.ale = 0;
2184 
2185 		switch (instr->type) {
2186 		case NAND_OP_CMD_INSTR:
2187 			ns->lines.cle = 1;
2188 			ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
2189 			break;
2190 		case NAND_OP_ADDR_INSTR:
2191 			ns->lines.ale = 1;
2192 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
2193 				ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
2194 			break;
2195 		case NAND_OP_DATA_IN_INSTR:
2196 			ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
2197 			break;
2198 		case NAND_OP_DATA_OUT_INSTR:
2199 			ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
2200 			break;
2201 		case NAND_OP_WAITRDY_INSTR:
2202 			/* we are always ready */
2203 			break;
2204 		}
2205 	}
2206 
2207 	return 0;
2208 }
2209 
ns_attach_chip(struct nand_chip * chip)2210 static int ns_attach_chip(struct nand_chip *chip)
2211 {
2212 	unsigned int eccsteps, eccbytes;
2213 
2214 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2215 	chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING;
2216 
2217 	if (!bch)
2218 		return 0;
2219 
2220 	if (!mtd_nand_has_bch()) {
2221 		NS_ERR("BCH ECC support is disabled\n");
2222 		return -EINVAL;
2223 	}
2224 
2225 	/* Use 512-byte ecc blocks */
2226 	eccsteps = nsmtd->writesize / 512;
2227 	eccbytes = ((bch * 13) + 7) / 8;
2228 
2229 	/* Do not bother supporting small page devices */
2230 	if (nsmtd->oobsize < 64 || !eccsteps) {
2231 		NS_ERR("BCH not available on small page devices\n");
2232 		return -EINVAL;
2233 	}
2234 
2235 	if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2236 		NS_ERR("Invalid BCH value %u\n", bch);
2237 		return -EINVAL;
2238 	}
2239 
2240 	chip->ecc.size = 512;
2241 	chip->ecc.strength = bch;
2242 	chip->ecc.bytes = eccbytes;
2243 
2244 	NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2245 
2246 	return 0;
2247 }
2248 
2249 static const struct nand_controller_ops ns_controller_ops = {
2250 	.attach_chip = ns_attach_chip,
2251 	.exec_op = ns_exec_op,
2252 };
2253 
2254 /*
2255  * Module initialization function
2256  */
ns_init_module(void)2257 static int __init ns_init_module(void)
2258 {
2259 	struct list_head *pos, *n;
2260 	struct nand_chip *chip;
2261 	struct nandsim *ns;
2262 	int ret;
2263 
2264 	if (bus_width != 8 && bus_width != 16) {
2265 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2266 		return -EINVAL;
2267 	}
2268 
2269 	ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
2270 	if (!ns) {
2271 		NS_ERR("unable to allocate core structures.\n");
2272 		return -ENOMEM;
2273 	}
2274 	chip	    = &ns->chip;
2275 	nsmtd       = nand_to_mtd(chip);
2276 	nand_set_controller_data(chip, (void *)ns);
2277 
2278 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2279 	/* and 'badblocks' parameters to work */
2280 	chip->options   |= NAND_SKIP_BBTSCAN;
2281 
2282 	switch (bbt) {
2283 	case 2:
2284 		chip->bbt_options |= NAND_BBT_NO_OOB;
2285 		fallthrough;
2286 	case 1:
2287 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2288 		fallthrough;
2289 	case 0:
2290 		break;
2291 	default:
2292 		NS_ERR("bbt has to be 0..2\n");
2293 		ret = -EINVAL;
2294 		goto free_ns_struct;
2295 	}
2296 	/*
2297 	 * Perform minimum nandsim structure initialization to handle
2298 	 * the initial ID read command correctly
2299 	 */
2300 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2301 		ns->geom.idbytes = 8;
2302 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2303 		ns->geom.idbytes = 6;
2304 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2305 		ns->geom.idbytes = 4;
2306 	else
2307 		ns->geom.idbytes = 2;
2308 	ns->regs.status = NS_STATUS_OK(ns);
2309 	ns->nxstate = STATE_UNKNOWN;
2310 	ns->options |= OPT_PAGE512; /* temporary value */
2311 	memcpy(ns->ids, id_bytes, sizeof(ns->ids));
2312 	if (bus_width == 16) {
2313 		ns->busw = 16;
2314 		chip->options |= NAND_BUSWIDTH_16;
2315 	}
2316 
2317 	nsmtd->owner = THIS_MODULE;
2318 
2319 	ret = ns_parse_weakblocks();
2320 	if (ret)
2321 		goto free_ns_struct;
2322 
2323 	ret = ns_parse_weakpages();
2324 	if (ret)
2325 		goto free_wb_list;
2326 
2327 	ret = ns_parse_gravepages();
2328 	if (ret)
2329 		goto free_wp_list;
2330 
2331 	nand_controller_init(&ns->base);
2332 	ns->base.ops = &ns_controller_ops;
2333 	chip->controller = &ns->base;
2334 
2335 	ret = nand_scan(chip, 1);
2336 	if (ret) {
2337 		NS_ERR("Could not scan NAND Simulator device\n");
2338 		goto free_gp_list;
2339 	}
2340 
2341 	if (overridesize) {
2342 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2343 		struct nand_memory_organization *memorg;
2344 		u64 targetsize;
2345 
2346 		memorg = nanddev_get_memorg(&chip->base);
2347 
2348 		if (new_size >> overridesize != nsmtd->erasesize) {
2349 			NS_ERR("overridesize is too big\n");
2350 			ret = -EINVAL;
2351 			goto cleanup_nand;
2352 		}
2353 
2354 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2355 		nsmtd->size = new_size;
2356 		memorg->eraseblocks_per_lun = 1 << overridesize;
2357 		targetsize = nanddev_target_size(&chip->base);
2358 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2359 		chip->pagemask = (targetsize >> chip->page_shift) - 1;
2360 	}
2361 
2362 	ret = ns_setup_wear_reporting(nsmtd);
2363 	if (ret)
2364 		goto cleanup_nand;
2365 
2366 	ret = ns_init(nsmtd);
2367 	if (ret)
2368 		goto free_ebw;
2369 
2370 	ret = nand_create_bbt(chip);
2371 	if (ret)
2372 		goto free_ns_object;
2373 
2374 	ret = ns_parse_badblocks(ns, nsmtd);
2375 	if (ret)
2376 		goto free_ns_object;
2377 
2378 	/* Register NAND partitions */
2379 	ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts);
2380 	if (ret)
2381 		goto free_ns_object;
2382 
2383 	ret = ns_debugfs_create(ns);
2384 	if (ret)
2385 		goto unregister_mtd;
2386 
2387         return 0;
2388 
2389 unregister_mtd:
2390 	WARN_ON(mtd_device_unregister(nsmtd));
2391 free_ns_object:
2392 	ns_free(ns);
2393 free_ebw:
2394 	kfree(erase_block_wear);
2395 cleanup_nand:
2396 	nand_cleanup(chip);
2397 free_gp_list:
2398 	list_for_each_safe(pos, n, &grave_pages) {
2399 		list_del(pos);
2400 		kfree(list_entry(pos, struct grave_page, list));
2401 	}
2402 free_wp_list:
2403 	list_for_each_safe(pos, n, &weak_pages) {
2404 		list_del(pos);
2405 		kfree(list_entry(pos, struct weak_page, list));
2406 	}
2407 free_wb_list:
2408 	list_for_each_safe(pos, n, &weak_blocks) {
2409 		list_del(pos);
2410 		kfree(list_entry(pos, struct weak_block, list));
2411 	}
2412 free_ns_struct:
2413 	kfree(ns);
2414 
2415 	return ret;
2416 }
2417 
2418 module_init(ns_init_module);
2419 
2420 /*
2421  * Module clean-up function
2422  */
ns_cleanup_module(void)2423 static void __exit ns_cleanup_module(void)
2424 {
2425 	struct nand_chip *chip = mtd_to_nand(nsmtd);
2426 	struct nandsim *ns = nand_get_controller_data(chip);
2427 	struct list_head *pos, *n;
2428 
2429 	ns_debugfs_remove(ns);
2430 	WARN_ON(mtd_device_unregister(nsmtd));
2431 	ns_free(ns);
2432 	kfree(erase_block_wear);
2433 	nand_cleanup(chip);
2434 
2435 	list_for_each_safe(pos, n, &grave_pages) {
2436 		list_del(pos);
2437 		kfree(list_entry(pos, struct grave_page, list));
2438 	}
2439 
2440 	list_for_each_safe(pos, n, &weak_pages) {
2441 		list_del(pos);
2442 		kfree(list_entry(pos, struct weak_page, list));
2443 	}
2444 
2445 	list_for_each_safe(pos, n, &weak_blocks) {
2446 		list_del(pos);
2447 		kfree(list_entry(pos, struct weak_block, list));
2448 	}
2449 
2450 	kfree(ns);
2451 }
2452 
2453 module_exit(ns_cleanup_module);
2454 
2455 MODULE_LICENSE ("GPL");
2456 MODULE_IMPORT_NS(VFS_internal_I_am_really_a_filesystem_and_am_NOT_a_driver);
2457 MODULE_AUTHOR ("Artem B. Bityuckiy");
2458 MODULE_DESCRIPTION ("The NAND flash simulator");
2459