• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * The UBI Eraseblock Association (EBA) sub-system.
10  *
11  * This sub-system is responsible for I/O to/from logical eraseblock.
12  *
13  * Although in this implementation the EBA table is fully kept and managed in
14  * RAM, which assumes poor scalability, it might be (partially) maintained on
15  * flash in future implementations.
16  *
17  * The EBA sub-system implements per-logical eraseblock locking. Before
18  * accessing a logical eraseblock it is locked for reading or writing. The
19  * per-logical eraseblock locking is implemented by means of the lock tree. The
20  * lock tree is an RB-tree which refers all the currently locked logical
21  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22  * They are indexed by (@vol_id, @lnum) pairs.
23  *
24  * EBA also maintains the global sequence counter which is incremented each
25  * time a logical eraseblock is mapped to a physical eraseblock and it is
26  * stored in the volume identifier header. This means that each VID header has
27  * a unique sequence number. The sequence number is only increased an we assume
28  * 64 bits is enough to never overflow.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/crc32.h>
33 #include <linux/err.h>
34 #include "ubi.h"
35 
36 /* Number of physical eraseblocks reserved for atomic LEB change operation */
37 #define EBA_RESERVED_PEBS 1
38 
39 /**
40  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
41  * @pnum: the physical eraseblock number attached to the LEB
42  *
43  * This structure is encoding a LEB -> PEB association. Note that the LEB
44  * number is not stored here, because it is the index used to access the
45  * entries table.
46  */
47 struct ubi_eba_entry {
48 	int pnum;
49 };
50 
51 /**
52  * struct ubi_eba_table - LEB -> PEB association information
53  * @entries: the LEB to PEB mapping (one entry per LEB).
54  *
55  * This structure is private to the EBA logic and should be kept here.
56  * It is encoding the LEB to PEB association table, and is subject to
57  * changes.
58  */
59 struct ubi_eba_table {
60 	struct ubi_eba_entry *entries;
61 };
62 
63 /**
64  * next_sqnum - get next sequence number.
65  * @ubi: UBI device description object
66  *
67  * This function returns next sequence number to use, which is just the current
68  * global sequence counter value. It also increases the global sequence
69  * counter.
70  */
ubi_next_sqnum(struct ubi_device * ubi)71 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
72 {
73 	unsigned long long sqnum;
74 
75 	spin_lock(&ubi->ltree_lock);
76 	sqnum = ubi->global_sqnum++;
77 	spin_unlock(&ubi->ltree_lock);
78 
79 	return sqnum;
80 }
81 
82 /**
83  * ubi_get_compat - get compatibility flags of a volume.
84  * @ubi: UBI device description object
85  * @vol_id: volume ID
86  *
87  * This function returns compatibility flags for an internal volume. User
88  * volumes have no compatibility flags, so %0 is returned.
89  */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)90 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
91 {
92 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
93 		return UBI_LAYOUT_VOLUME_COMPAT;
94 	return 0;
95 }
96 
97 /**
98  * ubi_eba_get_ldesc - get information about a LEB
99  * @vol: volume description object
100  * @lnum: logical eraseblock number
101  * @ldesc: the LEB descriptor to fill
102  *
103  * Used to query information about a specific LEB.
104  * It is currently only returning the physical position of the LEB, but will be
105  * extended to provide more information.
106  */
ubi_eba_get_ldesc(struct ubi_volume * vol,int lnum,struct ubi_eba_leb_desc * ldesc)107 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
108 		       struct ubi_eba_leb_desc *ldesc)
109 {
110 	ldesc->lnum = lnum;
111 	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
112 }
113 
114 /**
115  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
116  *			  LEBs unmapped
117  * @vol: volume containing the EBA table to copy
118  * @nentries: number of entries in the table
119  *
120  * Allocate a new EBA table and initialize it with all LEBs unmapped.
121  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
122  */
ubi_eba_create_table(struct ubi_volume * vol,int nentries)123 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
124 					   int nentries)
125 {
126 	struct ubi_eba_table *tbl;
127 	int err = -ENOMEM;
128 	int i;
129 
130 	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
131 	if (!tbl)
132 		return ERR_PTR(-ENOMEM);
133 
134 	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
135 				     GFP_KERNEL);
136 	if (!tbl->entries)
137 		goto err;
138 
139 	for (i = 0; i < nentries; i++)
140 		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
141 
142 	return tbl;
143 
144 err:
145 	kfree(tbl->entries);
146 	kfree(tbl);
147 
148 	return ERR_PTR(err);
149 }
150 
151 /**
152  * ubi_eba_destroy_table - destroy an EBA table
153  * @tbl: the table to destroy
154  *
155  * Destroy an EBA table.
156  */
ubi_eba_destroy_table(struct ubi_eba_table * tbl)157 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
158 {
159 	if (!tbl)
160 		return;
161 
162 	kfree(tbl->entries);
163 	kfree(tbl);
164 }
165 
166 /**
167  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
168  * @vol: volume containing the EBA table to copy
169  * @dst: destination
170  * @nentries: number of entries to copy
171  *
172  * Copy the EBA table stored in vol into the one pointed by dst.
173  */
ubi_eba_copy_table(struct ubi_volume * vol,struct ubi_eba_table * dst,int nentries)174 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
175 			int nentries)
176 {
177 	struct ubi_eba_table *src;
178 	int i;
179 
180 	ubi_assert(dst && vol && vol->eba_tbl);
181 
182 	src = vol->eba_tbl;
183 
184 	for (i = 0; i < nentries; i++)
185 		dst->entries[i].pnum = src->entries[i].pnum;
186 }
187 
188 /**
189  * ubi_eba_replace_table - assign a new EBA table to a volume
190  * @vol: volume containing the EBA table to copy
191  * @tbl: new EBA table
192  *
193  * Assign a new EBA table to the volume and release the old one.
194  */
ubi_eba_replace_table(struct ubi_volume * vol,struct ubi_eba_table * tbl)195 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
196 {
197 	ubi_eba_destroy_table(vol->eba_tbl);
198 	vol->eba_tbl = tbl;
199 }
200 
201 /**
202  * ltree_lookup - look up the lock tree.
203  * @ubi: UBI device description object
204  * @vol_id: volume ID
205  * @lnum: logical eraseblock number
206  *
207  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
208  * object if the logical eraseblock is locked and %NULL if it is not.
209  * @ubi->ltree_lock has to be locked.
210  */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)211 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
212 					    int lnum)
213 {
214 	struct rb_node *p;
215 
216 	p = ubi->ltree.rb_node;
217 	while (p) {
218 		struct ubi_ltree_entry *le;
219 
220 		le = rb_entry(p, struct ubi_ltree_entry, rb);
221 
222 		if (vol_id < le->vol_id)
223 			p = p->rb_left;
224 		else if (vol_id > le->vol_id)
225 			p = p->rb_right;
226 		else {
227 			if (lnum < le->lnum)
228 				p = p->rb_left;
229 			else if (lnum > le->lnum)
230 				p = p->rb_right;
231 			else
232 				return le;
233 		}
234 	}
235 
236 	return NULL;
237 }
238 
239 /**
240  * ltree_add_entry - add new entry to the lock tree.
241  * @ubi: UBI device description object
242  * @vol_id: volume ID
243  * @lnum: logical eraseblock number
244  *
245  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
246  * lock tree. If such entry is already there, its usage counter is increased.
247  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
248  * failed.
249  */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)250 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
251 					       int vol_id, int lnum)
252 {
253 	struct ubi_ltree_entry *le, *le1, *le_free;
254 
255 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
256 	if (!le)
257 		return ERR_PTR(-ENOMEM);
258 
259 	le->users = 0;
260 	init_rwsem(&le->mutex);
261 	le->vol_id = vol_id;
262 	le->lnum = lnum;
263 
264 	spin_lock(&ubi->ltree_lock);
265 	le1 = ltree_lookup(ubi, vol_id, lnum);
266 
267 	if (le1) {
268 		/*
269 		 * This logical eraseblock is already locked. The newly
270 		 * allocated lock entry is not needed.
271 		 */
272 		le_free = le;
273 		le = le1;
274 	} else {
275 		struct rb_node **p, *parent = NULL;
276 
277 		/*
278 		 * No lock entry, add the newly allocated one to the
279 		 * @ubi->ltree RB-tree.
280 		 */
281 		le_free = NULL;
282 
283 		p = &ubi->ltree.rb_node;
284 		while (*p) {
285 			parent = *p;
286 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
287 
288 			if (vol_id < le1->vol_id)
289 				p = &(*p)->rb_left;
290 			else if (vol_id > le1->vol_id)
291 				p = &(*p)->rb_right;
292 			else {
293 				ubi_assert(lnum != le1->lnum);
294 				if (lnum < le1->lnum)
295 					p = &(*p)->rb_left;
296 				else
297 					p = &(*p)->rb_right;
298 			}
299 		}
300 
301 		rb_link_node(&le->rb, parent, p);
302 		rb_insert_color(&le->rb, &ubi->ltree);
303 	}
304 	le->users += 1;
305 	spin_unlock(&ubi->ltree_lock);
306 
307 	kfree(le_free);
308 	return le;
309 }
310 
311 /**
312  * leb_read_lock - lock logical eraseblock for reading.
313  * @ubi: UBI device description object
314  * @vol_id: volume ID
315  * @lnum: logical eraseblock number
316  *
317  * This function locks a logical eraseblock for reading. Returns zero in case
318  * of success and a negative error code in case of failure.
319  */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)320 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
321 {
322 	struct ubi_ltree_entry *le;
323 
324 	le = ltree_add_entry(ubi, vol_id, lnum);
325 	if (IS_ERR(le))
326 		return PTR_ERR(le);
327 	down_read(&le->mutex);
328 	return 0;
329 }
330 
331 /**
332  * leb_read_unlock - unlock logical eraseblock.
333  * @ubi: UBI device description object
334  * @vol_id: volume ID
335  * @lnum: logical eraseblock number
336  */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)337 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
338 {
339 	struct ubi_ltree_entry *le;
340 
341 	spin_lock(&ubi->ltree_lock);
342 	le = ltree_lookup(ubi, vol_id, lnum);
343 	le->users -= 1;
344 	ubi_assert(le->users >= 0);
345 	up_read(&le->mutex);
346 	if (le->users == 0) {
347 		rb_erase(&le->rb, &ubi->ltree);
348 		kfree(le);
349 	}
350 	spin_unlock(&ubi->ltree_lock);
351 }
352 
353 /**
354  * leb_write_lock - lock logical eraseblock for writing.
355  * @ubi: UBI device description object
356  * @vol_id: volume ID
357  * @lnum: logical eraseblock number
358  *
359  * This function locks a logical eraseblock for writing. Returns zero in case
360  * of success and a negative error code in case of failure.
361  */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)362 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
363 {
364 	struct ubi_ltree_entry *le;
365 
366 	le = ltree_add_entry(ubi, vol_id, lnum);
367 	if (IS_ERR(le))
368 		return PTR_ERR(le);
369 	down_write(&le->mutex);
370 	return 0;
371 }
372 
373 /**
374  * leb_write_trylock - try to lock logical eraseblock for writing.
375  * @ubi: UBI device description object
376  * @vol_id: volume ID
377  * @lnum: logical eraseblock number
378  *
379  * This function locks a logical eraseblock for writing if there is no
380  * contention and does nothing if there is contention. Returns %0 in case of
381  * success, %1 in case of contention, and and a negative error code in case of
382  * failure.
383  */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)384 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
385 {
386 	struct ubi_ltree_entry *le;
387 
388 	le = ltree_add_entry(ubi, vol_id, lnum);
389 	if (IS_ERR(le))
390 		return PTR_ERR(le);
391 	if (down_write_trylock(&le->mutex))
392 		return 0;
393 
394 	/* Contention, cancel */
395 	spin_lock(&ubi->ltree_lock);
396 	le->users -= 1;
397 	ubi_assert(le->users >= 0);
398 	if (le->users == 0) {
399 		rb_erase(&le->rb, &ubi->ltree);
400 		kfree(le);
401 	}
402 	spin_unlock(&ubi->ltree_lock);
403 
404 	return 1;
405 }
406 
407 /**
408  * leb_write_unlock - unlock logical eraseblock.
409  * @ubi: UBI device description object
410  * @vol_id: volume ID
411  * @lnum: logical eraseblock number
412  */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)413 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
414 {
415 	struct ubi_ltree_entry *le;
416 
417 	spin_lock(&ubi->ltree_lock);
418 	le = ltree_lookup(ubi, vol_id, lnum);
419 	le->users -= 1;
420 	ubi_assert(le->users >= 0);
421 	up_write(&le->mutex);
422 	if (le->users == 0) {
423 		rb_erase(&le->rb, &ubi->ltree);
424 		kfree(le);
425 	}
426 	spin_unlock(&ubi->ltree_lock);
427 }
428 
429 /**
430  * ubi_eba_is_mapped - check if a LEB is mapped.
431  * @vol: volume description object
432  * @lnum: logical eraseblock number
433  *
434  * This function returns true if the LEB is mapped, false otherwise.
435  */
ubi_eba_is_mapped(struct ubi_volume * vol,int lnum)436 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
437 {
438 	return vol->eba_tbl->entries[lnum].pnum >= 0;
439 }
440 
441 /**
442  * ubi_eba_unmap_leb - un-map logical eraseblock.
443  * @ubi: UBI device description object
444  * @vol: volume description object
445  * @lnum: logical eraseblock number
446  *
447  * This function un-maps logical eraseblock @lnum and schedules corresponding
448  * physical eraseblock for erasure. Returns zero in case of success and a
449  * negative error code in case of failure.
450  */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)451 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
452 		      int lnum)
453 {
454 	int err, pnum, vol_id = vol->vol_id;
455 
456 	if (ubi->ro_mode)
457 		return -EROFS;
458 
459 	err = leb_write_lock(ubi, vol_id, lnum);
460 	if (err)
461 		return err;
462 
463 	pnum = vol->eba_tbl->entries[lnum].pnum;
464 	if (pnum < 0)
465 		/* This logical eraseblock is already unmapped */
466 		goto out_unlock;
467 
468 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
469 
470 	down_read(&ubi->fm_eba_sem);
471 	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
472 	up_read(&ubi->fm_eba_sem);
473 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
474 
475 out_unlock:
476 	leb_write_unlock(ubi, vol_id, lnum);
477 	return err;
478 }
479 
480 #ifdef CONFIG_MTD_UBI_FASTMAP
481 /**
482  * check_mapping - check and fixup a mapping
483  * @ubi: UBI device description object
484  * @vol: volume description object
485  * @lnum: logical eraseblock number
486  * @pnum: physical eraseblock number
487  *
488  * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
489  * operations, if such an operation is interrupted the mapping still looks
490  * good, but upon first read an ECC is reported to the upper layer.
491  * Normaly during the full-scan at attach time this is fixed, for Fastmap
492  * we have to deal with it while reading.
493  * If the PEB behind a LEB shows this symthom we change the mapping to
494  * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
495  *
496  * Returns 0 on success, negative error code in case of failure.
497  */
check_mapping(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,int * pnum)498 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
499 			 int *pnum)
500 {
501 	int err;
502 	struct ubi_vid_io_buf *vidb;
503 	struct ubi_vid_hdr *vid_hdr;
504 
505 	if (!ubi->fast_attach)
506 		return 0;
507 
508 	if (!vol->checkmap || test_bit(lnum, vol->checkmap))
509 		return 0;
510 
511 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
512 	if (!vidb)
513 		return -ENOMEM;
514 
515 	err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
516 	if (err > 0 && err != UBI_IO_BITFLIPS) {
517 		int torture = 0;
518 
519 		switch (err) {
520 			case UBI_IO_FF:
521 			case UBI_IO_FF_BITFLIPS:
522 			case UBI_IO_BAD_HDR:
523 			case UBI_IO_BAD_HDR_EBADMSG:
524 				break;
525 			default:
526 				ubi_assert(0);
527 		}
528 
529 		if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
530 			torture = 1;
531 
532 		down_read(&ubi->fm_eba_sem);
533 		vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
534 		up_read(&ubi->fm_eba_sem);
535 		ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
536 
537 		*pnum = UBI_LEB_UNMAPPED;
538 	} else if (err < 0) {
539 		ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
540 			*pnum, err);
541 
542 		goto out_free;
543 	} else {
544 		int found_vol_id, found_lnum;
545 
546 		ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
547 
548 		vid_hdr = ubi_get_vid_hdr(vidb);
549 		found_vol_id = be32_to_cpu(vid_hdr->vol_id);
550 		found_lnum = be32_to_cpu(vid_hdr->lnum);
551 
552 		if (found_lnum != lnum || found_vol_id != vol->vol_id) {
553 			ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
554 				*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
555 			ubi_ro_mode(ubi);
556 			err = -EINVAL;
557 			goto out_free;
558 		}
559 	}
560 
561 	set_bit(lnum, vol->checkmap);
562 	err = 0;
563 
564 out_free:
565 	ubi_free_vid_buf(vidb);
566 
567 	return err;
568 }
569 #else
check_mapping(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,int * pnum)570 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
571 		  int *pnum)
572 {
573 	return 0;
574 }
575 #endif
576 
577 /**
578  * ubi_eba_read_leb - read data.
579  * @ubi: UBI device description object
580  * @vol: volume description object
581  * @lnum: logical eraseblock number
582  * @buf: buffer to store the read data
583  * @offset: offset from where to read
584  * @len: how many bytes to read
585  * @check: data CRC check flag
586  *
587  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
588  * bytes. The @check flag only makes sense for static volumes and forces
589  * eraseblock data CRC checking.
590  *
591  * In case of success this function returns zero. In case of a static volume,
592  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
593  * returned for any volume type if an ECC error was detected by the MTD device
594  * driver. Other negative error cored may be returned in case of other errors.
595  */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)596 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
597 		     void *buf, int offset, int len, int check)
598 {
599 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
600 	struct ubi_vid_io_buf *vidb;
601 	struct ubi_vid_hdr *vid_hdr;
602 	uint32_t crc;
603 
604 	err = leb_read_lock(ubi, vol_id, lnum);
605 	if (err)
606 		return err;
607 
608 	pnum = vol->eba_tbl->entries[lnum].pnum;
609 	if (pnum >= 0) {
610 		err = check_mapping(ubi, vol, lnum, &pnum);
611 		if (err < 0)
612 			goto out_unlock;
613 	}
614 
615 	if (pnum == UBI_LEB_UNMAPPED) {
616 		/*
617 		 * The logical eraseblock is not mapped, fill the whole buffer
618 		 * with 0xFF bytes. The exception is static volumes for which
619 		 * it is an error to read unmapped logical eraseblocks.
620 		 */
621 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
622 			len, offset, vol_id, lnum);
623 		leb_read_unlock(ubi, vol_id, lnum);
624 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
625 		memset(buf, 0xFF, len);
626 		return 0;
627 	}
628 
629 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
630 		len, offset, vol_id, lnum, pnum);
631 
632 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
633 		check = 0;
634 
635 retry:
636 	if (check) {
637 		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
638 		if (!vidb) {
639 			err = -ENOMEM;
640 			goto out_unlock;
641 		}
642 
643 		vid_hdr = ubi_get_vid_hdr(vidb);
644 
645 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
646 		if (err && err != UBI_IO_BITFLIPS) {
647 			if (err > 0) {
648 				/*
649 				 * The header is either absent or corrupted.
650 				 * The former case means there is a bug -
651 				 * switch to read-only mode just in case.
652 				 * The latter case means a real corruption - we
653 				 * may try to recover data. FIXME: but this is
654 				 * not implemented.
655 				 */
656 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
657 				    err == UBI_IO_BAD_HDR) {
658 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
659 						 pnum, vol_id, lnum);
660 					err = -EBADMSG;
661 				} else {
662 					/*
663 					 * Ending up here in the non-Fastmap case
664 					 * is a clear bug as the VID header had to
665 					 * be present at scan time to have it referenced.
666 					 * With fastmap the story is more complicated.
667 					 * Fastmap has the mapping info without the need
668 					 * of a full scan. So the LEB could have been
669 					 * unmapped, Fastmap cannot know this and keeps
670 					 * the LEB referenced.
671 					 * This is valid and works as the layer above UBI
672 					 * has to do bookkeeping about used/referenced
673 					 * LEBs in any case.
674 					 */
675 					if (ubi->fast_attach) {
676 						err = -EBADMSG;
677 					} else {
678 						err = -EINVAL;
679 						ubi_ro_mode(ubi);
680 					}
681 				}
682 			}
683 			goto out_free;
684 		} else if (err == UBI_IO_BITFLIPS)
685 			scrub = 1;
686 
687 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
688 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
689 
690 		crc = be32_to_cpu(vid_hdr->data_crc);
691 		ubi_free_vid_buf(vidb);
692 	}
693 
694 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
695 	if (err) {
696 		if (err == UBI_IO_BITFLIPS)
697 			scrub = 1;
698 		else if (mtd_is_eccerr(err)) {
699 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
700 				goto out_unlock;
701 			scrub = 1;
702 			if (!check) {
703 				ubi_msg(ubi, "force data checking");
704 				check = 1;
705 				goto retry;
706 			}
707 		} else
708 			goto out_unlock;
709 	}
710 
711 	if (check) {
712 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
713 		if (crc1 != crc) {
714 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
715 				 crc1, crc);
716 			err = -EBADMSG;
717 			goto out_unlock;
718 		}
719 	}
720 
721 	if (scrub)
722 		err = ubi_wl_scrub_peb(ubi, pnum);
723 
724 	leb_read_unlock(ubi, vol_id, lnum);
725 	return err;
726 
727 out_free:
728 	ubi_free_vid_buf(vidb);
729 out_unlock:
730 	leb_read_unlock(ubi, vol_id, lnum);
731 	return err;
732 }
733 
734 /**
735  * ubi_eba_read_leb_sg - read data into a scatter gather list.
736  * @ubi: UBI device description object
737  * @vol: volume description object
738  * @lnum: logical eraseblock number
739  * @sgl: UBI scatter gather list to store the read data
740  * @offset: offset from where to read
741  * @len: how many bytes to read
742  * @check: data CRC check flag
743  *
744  * This function works exactly like ubi_eba_read_leb(). But instead of
745  * storing the read data into a buffer it writes to an UBI scatter gather
746  * list.
747  */
ubi_eba_read_leb_sg(struct ubi_device * ubi,struct ubi_volume * vol,struct ubi_sgl * sgl,int lnum,int offset,int len,int check)748 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
749 			struct ubi_sgl *sgl, int lnum, int offset, int len,
750 			int check)
751 {
752 	int to_read;
753 	int ret;
754 	struct scatterlist *sg;
755 
756 	for (;;) {
757 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
758 		sg = &sgl->sg[sgl->list_pos];
759 		if (len < sg->length - sgl->page_pos)
760 			to_read = len;
761 		else
762 			to_read = sg->length - sgl->page_pos;
763 
764 		ret = ubi_eba_read_leb(ubi, vol, lnum,
765 				       sg_virt(sg) + sgl->page_pos, offset,
766 				       to_read, check);
767 		if (ret < 0)
768 			return ret;
769 
770 		offset += to_read;
771 		len -= to_read;
772 		if (!len) {
773 			sgl->page_pos += to_read;
774 			if (sgl->page_pos == sg->length) {
775 				sgl->list_pos++;
776 				sgl->page_pos = 0;
777 			}
778 
779 			break;
780 		}
781 
782 		sgl->list_pos++;
783 		sgl->page_pos = 0;
784 	}
785 
786 	return ret;
787 }
788 
789 /**
790  * try_recover_peb - try to recover from write failure.
791  * @vol: volume description object
792  * @pnum: the physical eraseblock to recover
793  * @lnum: logical eraseblock number
794  * @buf: data which was not written because of the write failure
795  * @offset: offset of the failed write
796  * @len: how many bytes should have been written
797  * @vidb: VID buffer
798  * @retry: whether the caller should retry in case of failure
799  *
800  * This function is called in case of a write failure and moves all good data
801  * from the potentially bad physical eraseblock to a good physical eraseblock.
802  * This function also writes the data which was not written due to the failure.
803  * Returns 0 in case of success, and a negative error code in case of failure.
804  * In case of failure, the %retry parameter is set to false if this is a fatal
805  * error (retrying won't help), and true otherwise.
806  */
try_recover_peb(struct ubi_volume * vol,int pnum,int lnum,const void * buf,int offset,int len,struct ubi_vid_io_buf * vidb,bool * retry)807 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
808 			   const void *buf, int offset, int len,
809 			   struct ubi_vid_io_buf *vidb, bool *retry)
810 {
811 	struct ubi_device *ubi = vol->ubi;
812 	struct ubi_vid_hdr *vid_hdr;
813 	int new_pnum, err, vol_id = vol->vol_id, data_size;
814 	uint32_t crc;
815 
816 	*retry = false;
817 
818 	new_pnum = ubi_wl_get_peb(ubi);
819 	if (new_pnum < 0) {
820 		err = new_pnum;
821 		goto out_put;
822 	}
823 
824 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
825 		pnum, new_pnum);
826 
827 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
828 	if (err && err != UBI_IO_BITFLIPS) {
829 		if (err > 0)
830 			err = -EIO;
831 		goto out_put;
832 	}
833 
834 	vid_hdr = ubi_get_vid_hdr(vidb);
835 	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
836 
837 	mutex_lock(&ubi->buf_mutex);
838 	memset(ubi->peb_buf + offset, 0xFF, len);
839 
840 	/* Read everything before the area where the write failure happened */
841 	if (offset > 0) {
842 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
843 		if (err && err != UBI_IO_BITFLIPS)
844 			goto out_unlock;
845 	}
846 
847 	*retry = true;
848 
849 	memcpy(ubi->peb_buf + offset, buf, len);
850 
851 	data_size = offset + len;
852 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
853 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
854 	vid_hdr->copy_flag = 1;
855 	vid_hdr->data_size = cpu_to_be32(data_size);
856 	vid_hdr->data_crc = cpu_to_be32(crc);
857 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
858 	if (err)
859 		goto out_unlock;
860 
861 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
862 
863 out_unlock:
864 	mutex_unlock(&ubi->buf_mutex);
865 
866 	if (!err)
867 		vol->eba_tbl->entries[lnum].pnum = new_pnum;
868 
869 out_put:
870 	up_read(&ubi->fm_eba_sem);
871 
872 	if (!err) {
873 		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
874 		ubi_msg(ubi, "data was successfully recovered");
875 	} else if (new_pnum >= 0) {
876 		/*
877 		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
878 		 * try to get another one.
879 		 */
880 		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
881 		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
882 	}
883 
884 	return err;
885 }
886 
887 /**
888  * recover_peb - recover from write failure.
889  * @ubi: UBI device description object
890  * @pnum: the physical eraseblock to recover
891  * @vol_id: volume ID
892  * @lnum: logical eraseblock number
893  * @buf: data which was not written because of the write failure
894  * @offset: offset of the failed write
895  * @len: how many bytes should have been written
896  *
897  * This function is called in case of a write failure and moves all good data
898  * from the potentially bad physical eraseblock to a good physical eraseblock.
899  * This function also writes the data which was not written due to the failure.
900  * Returns 0 in case of success, and a negative error code in case of failure.
901  * This function tries %UBI_IO_RETRIES before giving up.
902  */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)903 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
904 		       const void *buf, int offset, int len)
905 {
906 	int err, idx = vol_id2idx(ubi, vol_id), tries;
907 	struct ubi_volume *vol = ubi->volumes[idx];
908 	struct ubi_vid_io_buf *vidb;
909 
910 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
911 	if (!vidb)
912 		return -ENOMEM;
913 
914 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
915 		bool retry;
916 
917 		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
918 				      &retry);
919 		if (!err || !retry)
920 			break;
921 
922 		ubi_msg(ubi, "try again");
923 	}
924 
925 	ubi_free_vid_buf(vidb);
926 
927 	return err;
928 }
929 
930 /**
931  * try_write_vid_and_data - try to write VID header and data to a new PEB.
932  * @vol: volume description object
933  * @lnum: logical eraseblock number
934  * @vidb: the VID buffer to write
935  * @buf: buffer containing the data
936  * @offset: where to start writing data
937  * @len: how many bytes should be written
938  *
939  * This function tries to write VID header and data belonging to logical
940  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
941  * in case of success and a negative error code in case of failure.
942  * In case of error, it is possible that something was still written to the
943  * flash media, but may be some garbage.
944  */
try_write_vid_and_data(struct ubi_volume * vol,int lnum,struct ubi_vid_io_buf * vidb,const void * buf,int offset,int len)945 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
946 				  struct ubi_vid_io_buf *vidb, const void *buf,
947 				  int offset, int len)
948 {
949 	struct ubi_device *ubi = vol->ubi;
950 	int pnum, opnum, err, err2, vol_id = vol->vol_id;
951 
952 	pnum = ubi_wl_get_peb(ubi);
953 	if (pnum < 0) {
954 		err = pnum;
955 		goto out_put;
956 	}
957 
958 	opnum = vol->eba_tbl->entries[lnum].pnum;
959 
960 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
961 		len, offset, vol_id, lnum, pnum);
962 
963 	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
964 	if (err) {
965 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
966 			 vol_id, lnum, pnum);
967 		goto out_put;
968 	}
969 
970 	if (len) {
971 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
972 		if (err) {
973 			ubi_warn(ubi,
974 				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
975 				 len, offset, vol_id, lnum, pnum);
976 			goto out_put;
977 		}
978 	}
979 
980 	vol->eba_tbl->entries[lnum].pnum = pnum;
981 
982 out_put:
983 	up_read(&ubi->fm_eba_sem);
984 
985 	if (err && pnum >= 0) {
986 		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
987 		if (err2) {
988 			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
989 				 pnum, err2);
990 		}
991 	} else if (!err && opnum >= 0) {
992 		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
993 		if (err2) {
994 			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
995 				 opnum, err2);
996 		}
997 	}
998 
999 	return err;
1000 }
1001 
1002 /**
1003  * ubi_eba_write_leb - write data to dynamic volume.
1004  * @ubi: UBI device description object
1005  * @vol: volume description object
1006  * @lnum: logical eraseblock number
1007  * @buf: the data to write
1008  * @offset: offset within the logical eraseblock where to write
1009  * @len: how many bytes to write
1010  *
1011  * This function writes data to logical eraseblock @lnum of a dynamic volume
1012  * @vol. Returns zero in case of success and a negative error code in case
1013  * of failure. In case of error, it is possible that something was still
1014  * written to the flash media, but may be some garbage.
1015  * This function retries %UBI_IO_RETRIES times before giving up.
1016  */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)1017 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1018 		      const void *buf, int offset, int len)
1019 {
1020 	int err, pnum, tries, vol_id = vol->vol_id;
1021 	struct ubi_vid_io_buf *vidb;
1022 	struct ubi_vid_hdr *vid_hdr;
1023 
1024 	if (ubi->ro_mode)
1025 		return -EROFS;
1026 
1027 	err = leb_write_lock(ubi, vol_id, lnum);
1028 	if (err)
1029 		return err;
1030 
1031 	pnum = vol->eba_tbl->entries[lnum].pnum;
1032 	if (pnum >= 0) {
1033 		err = check_mapping(ubi, vol, lnum, &pnum);
1034 		if (err < 0)
1035 			goto out;
1036 	}
1037 
1038 	if (pnum >= 0) {
1039 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1040 			len, offset, vol_id, lnum, pnum);
1041 
1042 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1043 		if (err) {
1044 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1045 			if (err == -EIO && ubi->bad_allowed)
1046 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1047 						  offset, len);
1048 		}
1049 
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * The logical eraseblock is not mapped. We have to get a free physical
1055 	 * eraseblock and write the volume identifier header there first.
1056 	 */
1057 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1058 	if (!vidb) {
1059 		leb_write_unlock(ubi, vol_id, lnum);
1060 		return -ENOMEM;
1061 	}
1062 
1063 	vid_hdr = ubi_get_vid_hdr(vidb);
1064 
1065 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1066 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1067 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1068 	vid_hdr->lnum = cpu_to_be32(lnum);
1069 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1070 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1071 
1072 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1073 		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1074 		if (err != -EIO || !ubi->bad_allowed)
1075 			break;
1076 
1077 		/*
1078 		 * Fortunately, this is the first write operation to this
1079 		 * physical eraseblock, so just put it and request a new one.
1080 		 * We assume that if this physical eraseblock went bad, the
1081 		 * erase code will handle that.
1082 		 */
1083 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1084 		ubi_msg(ubi, "try another PEB");
1085 	}
1086 
1087 	ubi_free_vid_buf(vidb);
1088 
1089 out:
1090 	if (err)
1091 		ubi_ro_mode(ubi);
1092 
1093 	leb_write_unlock(ubi, vol_id, lnum);
1094 
1095 	return err;
1096 }
1097 
1098 /**
1099  * ubi_eba_write_leb_st - write data to static volume.
1100  * @ubi: UBI device description object
1101  * @vol: volume description object
1102  * @lnum: logical eraseblock number
1103  * @buf: data to write
1104  * @len: how many bytes to write
1105  * @used_ebs: how many logical eraseblocks will this volume contain
1106  *
1107  * This function writes data to logical eraseblock @lnum of static volume
1108  * @vol. The @used_ebs argument should contain total number of logical
1109  * eraseblock in this static volume.
1110  *
1111  * When writing to the last logical eraseblock, the @len argument doesn't have
1112  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1113  * to the real data size, although the @buf buffer has to contain the
1114  * alignment. In all other cases, @len has to be aligned.
1115  *
1116  * It is prohibited to write more than once to logical eraseblocks of static
1117  * volumes. This function returns zero in case of success and a negative error
1118  * code in case of failure.
1119  */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)1120 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1121 			 int lnum, const void *buf, int len, int used_ebs)
1122 {
1123 	int err, tries, data_size = len, vol_id = vol->vol_id;
1124 	struct ubi_vid_io_buf *vidb;
1125 	struct ubi_vid_hdr *vid_hdr;
1126 	uint32_t crc;
1127 
1128 	if (ubi->ro_mode)
1129 		return -EROFS;
1130 
1131 	if (lnum == used_ebs - 1)
1132 		/* If this is the last LEB @len may be unaligned */
1133 		len = ALIGN(data_size, ubi->min_io_size);
1134 	else
1135 		ubi_assert(!(len & (ubi->min_io_size - 1)));
1136 
1137 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1138 	if (!vidb)
1139 		return -ENOMEM;
1140 
1141 	vid_hdr = ubi_get_vid_hdr(vidb);
1142 
1143 	err = leb_write_lock(ubi, vol_id, lnum);
1144 	if (err)
1145 		goto out;
1146 
1147 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1148 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1149 	vid_hdr->lnum = cpu_to_be32(lnum);
1150 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1151 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1152 
1153 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1154 	vid_hdr->vol_type = UBI_VID_STATIC;
1155 	vid_hdr->data_size = cpu_to_be32(data_size);
1156 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1157 	vid_hdr->data_crc = cpu_to_be32(crc);
1158 
1159 	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1160 
1161 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1162 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1163 		if (err != -EIO || !ubi->bad_allowed)
1164 			break;
1165 
1166 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1167 		ubi_msg(ubi, "try another PEB");
1168 	}
1169 
1170 	if (err)
1171 		ubi_ro_mode(ubi);
1172 
1173 	leb_write_unlock(ubi, vol_id, lnum);
1174 
1175 out:
1176 	ubi_free_vid_buf(vidb);
1177 
1178 	return err;
1179 }
1180 
1181 /*
1182  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1183  * @ubi: UBI device description object
1184  * @vol: volume description object
1185  * @lnum: logical eraseblock number
1186  * @buf: data to write
1187  * @len: how many bytes to write
1188  *
1189  * This function changes the contents of a logical eraseblock atomically. @buf
1190  * has to contain new logical eraseblock data, and @len - the length of the
1191  * data, which has to be aligned. This function guarantees that in case of an
1192  * unclean reboot the old contents is preserved. Returns zero in case of
1193  * success and a negative error code in case of failure.
1194  *
1195  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1196  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1197  */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)1198 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1199 			      int lnum, const void *buf, int len)
1200 {
1201 	int err, tries, vol_id = vol->vol_id;
1202 	struct ubi_vid_io_buf *vidb;
1203 	struct ubi_vid_hdr *vid_hdr;
1204 	uint32_t crc;
1205 
1206 	if (ubi->ro_mode)
1207 		return -EROFS;
1208 
1209 	if (len == 0) {
1210 		/*
1211 		 * Special case when data length is zero. In this case the LEB
1212 		 * has to be unmapped and mapped somewhere else.
1213 		 */
1214 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1215 		if (err)
1216 			return err;
1217 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1218 	}
1219 
1220 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1221 	if (!vidb)
1222 		return -ENOMEM;
1223 
1224 	vid_hdr = ubi_get_vid_hdr(vidb);
1225 
1226 	mutex_lock(&ubi->alc_mutex);
1227 	err = leb_write_lock(ubi, vol_id, lnum);
1228 	if (err)
1229 		goto out_mutex;
1230 
1231 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1232 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1233 	vid_hdr->lnum = cpu_to_be32(lnum);
1234 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1235 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1236 
1237 	crc = crc32(UBI_CRC32_INIT, buf, len);
1238 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1239 	vid_hdr->data_size = cpu_to_be32(len);
1240 	vid_hdr->copy_flag = 1;
1241 	vid_hdr->data_crc = cpu_to_be32(crc);
1242 
1243 	dbg_eba("change LEB %d:%d", vol_id, lnum);
1244 
1245 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1246 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1247 		if (err != -EIO || !ubi->bad_allowed)
1248 			break;
1249 
1250 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1251 		ubi_msg(ubi, "try another PEB");
1252 	}
1253 
1254 	/*
1255 	 * This flash device does not admit of bad eraseblocks or
1256 	 * something nasty and unexpected happened. Switch to read-only
1257 	 * mode just in case.
1258 	 */
1259 	if (err)
1260 		ubi_ro_mode(ubi);
1261 
1262 	leb_write_unlock(ubi, vol_id, lnum);
1263 
1264 out_mutex:
1265 	mutex_unlock(&ubi->alc_mutex);
1266 	ubi_free_vid_buf(vidb);
1267 	return err;
1268 }
1269 
1270 /**
1271  * is_error_sane - check whether a read error is sane.
1272  * @err: code of the error happened during reading
1273  *
1274  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1275  * cannot read data from the target PEB (an error @err happened). If the error
1276  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1277  * fatal and UBI will be switched to R/O mode later.
1278  *
1279  * The idea is that we try not to switch to R/O mode if the read error is
1280  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1281  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1282  * mode, simply because we do not know what happened at the MTD level, and we
1283  * cannot handle this. E.g., the underlying driver may have become crazy, and
1284  * it is safer to switch to R/O mode to preserve the data.
1285  *
1286  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1287  * which we have just written.
1288  */
is_error_sane(int err)1289 static int is_error_sane(int err)
1290 {
1291 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1292 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1293 		return 0;
1294 	return 1;
1295 }
1296 
1297 /**
1298  * ubi_eba_copy_leb - copy logical eraseblock.
1299  * @ubi: UBI device description object
1300  * @from: physical eraseblock number from where to copy
1301  * @to: physical eraseblock number where to copy
1302  * @vid_hdr: VID header of the @from physical eraseblock
1303  *
1304  * This function copies logical eraseblock from physical eraseblock @from to
1305  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1306  * function. Returns:
1307  *   o %0 in case of success;
1308  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1309  *   o a negative error code in case of failure.
1310  */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_io_buf * vidb)1311 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1312 		     struct ubi_vid_io_buf *vidb)
1313 {
1314 	int err, vol_id, lnum, data_size, aldata_size, idx;
1315 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1316 	struct ubi_volume *vol;
1317 	uint32_t crc;
1318 
1319 	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1320 
1321 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1322 	lnum = be32_to_cpu(vid_hdr->lnum);
1323 
1324 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1325 
1326 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1327 		data_size = be32_to_cpu(vid_hdr->data_size);
1328 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1329 	} else
1330 		data_size = aldata_size =
1331 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1332 
1333 	idx = vol_id2idx(ubi, vol_id);
1334 	spin_lock(&ubi->volumes_lock);
1335 	/*
1336 	 * Note, we may race with volume deletion, which means that the volume
1337 	 * this logical eraseblock belongs to might be being deleted. Since the
1338 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1339 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1340 	 */
1341 	vol = ubi->volumes[idx];
1342 	spin_unlock(&ubi->volumes_lock);
1343 	if (!vol) {
1344 		/* No need to do further work, cancel */
1345 		dbg_wl("volume %d is being removed, cancel", vol_id);
1346 		return MOVE_CANCEL_RACE;
1347 	}
1348 
1349 	/*
1350 	 * We do not want anybody to write to this logical eraseblock while we
1351 	 * are moving it, so lock it.
1352 	 *
1353 	 * Note, we are using non-waiting locking here, because we cannot sleep
1354 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1355 	 * unmapping the LEB which is mapped to the PEB we are going to move
1356 	 * (@from). This task locks the LEB and goes sleep in the
1357 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1358 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1359 	 * LEB is already locked, we just do not move it and return
1360 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1361 	 * we do not know the reasons of the contention - it may be just a
1362 	 * normal I/O on this LEB, so we want to re-try.
1363 	 */
1364 	err = leb_write_trylock(ubi, vol_id, lnum);
1365 	if (err) {
1366 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1367 		return MOVE_RETRY;
1368 	}
1369 
1370 	/*
1371 	 * The LEB might have been put meanwhile, and the task which put it is
1372 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1373 	 * cancel it.
1374 	 */
1375 	if (vol->eba_tbl->entries[lnum].pnum != from) {
1376 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1377 		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1378 		err = MOVE_CANCEL_RACE;
1379 		goto out_unlock_leb;
1380 	}
1381 
1382 	/*
1383 	 * OK, now the LEB is locked and we can safely start moving it. Since
1384 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1385 	 * with some other functions - we lock the buffer by taking the
1386 	 * @ubi->buf_mutex.
1387 	 */
1388 	mutex_lock(&ubi->buf_mutex);
1389 	dbg_wl("read %d bytes of data", aldata_size);
1390 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1391 	if (err && err != UBI_IO_BITFLIPS) {
1392 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1393 			 err, from);
1394 		err = MOVE_SOURCE_RD_ERR;
1395 		goto out_unlock_buf;
1396 	}
1397 
1398 	/*
1399 	 * Now we have got to calculate how much data we have to copy. In
1400 	 * case of a static volume it is fairly easy - the VID header contains
1401 	 * the data size. In case of a dynamic volume it is more difficult - we
1402 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1403 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1404 	 * may have some side-effects. And not only this. It is important not
1405 	 * to include those 0xFFs to CRC because later the they may be filled
1406 	 * by data.
1407 	 */
1408 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1409 		aldata_size = data_size =
1410 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1411 
1412 	cond_resched();
1413 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1414 	cond_resched();
1415 
1416 	/*
1417 	 * It may turn out to be that the whole @from physical eraseblock
1418 	 * contains only 0xFF bytes. Then we have to only write the VID header
1419 	 * and do not write any data. This also means we should not set
1420 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1421 	 */
1422 	if (data_size > 0) {
1423 		vid_hdr->copy_flag = 1;
1424 		vid_hdr->data_size = cpu_to_be32(data_size);
1425 		vid_hdr->data_crc = cpu_to_be32(crc);
1426 	}
1427 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1428 
1429 	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1430 	if (err) {
1431 		if (err == -EIO)
1432 			err = MOVE_TARGET_WR_ERR;
1433 		goto out_unlock_buf;
1434 	}
1435 
1436 	cond_resched();
1437 
1438 	/* Read the VID header back and check if it was written correctly */
1439 	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1440 	if (err) {
1441 		if (err != UBI_IO_BITFLIPS) {
1442 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1443 				 err, to);
1444 			if (is_error_sane(err))
1445 				err = MOVE_TARGET_RD_ERR;
1446 		} else
1447 			err = MOVE_TARGET_BITFLIPS;
1448 		goto out_unlock_buf;
1449 	}
1450 
1451 	if (data_size > 0) {
1452 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1453 		if (err) {
1454 			if (err == -EIO)
1455 				err = MOVE_TARGET_WR_ERR;
1456 			goto out_unlock_buf;
1457 		}
1458 
1459 		cond_resched();
1460 	}
1461 
1462 	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1463 	vol->eba_tbl->entries[lnum].pnum = to;
1464 
1465 out_unlock_buf:
1466 	mutex_unlock(&ubi->buf_mutex);
1467 out_unlock_leb:
1468 	leb_write_unlock(ubi, vol_id, lnum);
1469 	return err;
1470 }
1471 
1472 /**
1473  * print_rsvd_warning - warn about not having enough reserved PEBs.
1474  * @ubi: UBI device description object
1475  *
1476  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1477  * cannot reserve enough PEBs for bad block handling. This function makes a
1478  * decision whether we have to print a warning or not. The algorithm is as
1479  * follows:
1480  *   o if this is a new UBI image, then just print the warning
1481  *   o if this is an UBI image which has already been used for some time, print
1482  *     a warning only if we can reserve less than 10% of the expected amount of
1483  *     the reserved PEB.
1484  *
1485  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1486  * of PEBs becomes smaller, which is normal and we do not want to scare users
1487  * with a warning every time they attach the MTD device. This was an issue
1488  * reported by real users.
1489  */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1490 static void print_rsvd_warning(struct ubi_device *ubi,
1491 			       struct ubi_attach_info *ai)
1492 {
1493 	/*
1494 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1495 	 * large number to distinguish between newly flashed and used images.
1496 	 */
1497 	if (ai->max_sqnum > (1 << 18)) {
1498 		int min = ubi->beb_rsvd_level / 10;
1499 
1500 		if (!min)
1501 			min = 1;
1502 		if (ubi->beb_rsvd_pebs > min)
1503 			return;
1504 	}
1505 
1506 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1507 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1508 	if (ubi->corr_peb_count)
1509 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1510 			 ubi->corr_peb_count);
1511 }
1512 
1513 /**
1514  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1515  * @ubi: UBI device description object
1516  * @ai_fastmap: UBI attach info object created by fastmap
1517  * @ai_scan: UBI attach info object created by scanning
1518  *
1519  * Returns < 0 in case of an internal error, 0 otherwise.
1520  * If a bad EBA table entry was found it will be printed out and
1521  * ubi_assert() triggers.
1522  */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1523 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1524 		   struct ubi_attach_info *ai_scan)
1525 {
1526 	int i, j, num_volumes, ret = 0;
1527 	int **scan_eba, **fm_eba;
1528 	struct ubi_ainf_volume *av;
1529 	struct ubi_volume *vol;
1530 	struct ubi_ainf_peb *aeb;
1531 	struct rb_node *rb;
1532 
1533 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1534 
1535 	scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1536 	if (!scan_eba)
1537 		return -ENOMEM;
1538 
1539 	fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1540 	if (!fm_eba) {
1541 		kfree(scan_eba);
1542 		return -ENOMEM;
1543 	}
1544 
1545 	for (i = 0; i < num_volumes; i++) {
1546 		vol = ubi->volumes[i];
1547 		if (!vol)
1548 			continue;
1549 
1550 		scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1551 					    sizeof(**scan_eba),
1552 					    GFP_KERNEL);
1553 		if (!scan_eba[i]) {
1554 			ret = -ENOMEM;
1555 			goto out_free;
1556 		}
1557 
1558 		fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1559 					  sizeof(**fm_eba),
1560 					  GFP_KERNEL);
1561 		if (!fm_eba[i]) {
1562 			ret = -ENOMEM;
1563 			goto out_free;
1564 		}
1565 
1566 		for (j = 0; j < vol->reserved_pebs; j++)
1567 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1568 
1569 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1570 		if (!av)
1571 			continue;
1572 
1573 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1574 			scan_eba[i][aeb->lnum] = aeb->pnum;
1575 
1576 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1577 		if (!av)
1578 			continue;
1579 
1580 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1581 			fm_eba[i][aeb->lnum] = aeb->pnum;
1582 
1583 		for (j = 0; j < vol->reserved_pebs; j++) {
1584 			if (scan_eba[i][j] != fm_eba[i][j]) {
1585 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1586 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1587 					continue;
1588 
1589 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1590 					vol->vol_id, j, fm_eba[i][j],
1591 					scan_eba[i][j]);
1592 				ubi_assert(0);
1593 			}
1594 		}
1595 	}
1596 
1597 out_free:
1598 	for (i = 0; i < num_volumes; i++) {
1599 		if (!ubi->volumes[i])
1600 			continue;
1601 
1602 		kfree(scan_eba[i]);
1603 		kfree(fm_eba[i]);
1604 	}
1605 
1606 	kfree(scan_eba);
1607 	kfree(fm_eba);
1608 	return ret;
1609 }
1610 
1611 /**
1612  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1613  * @ubi: UBI device description object
1614  * @ai: attaching information
1615  *
1616  * This function returns zero in case of success and a negative error code in
1617  * case of failure.
1618  */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1619 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1620 {
1621 	int i, err, num_volumes;
1622 	struct ubi_ainf_volume *av;
1623 	struct ubi_volume *vol;
1624 	struct ubi_ainf_peb *aeb;
1625 	struct rb_node *rb;
1626 
1627 	dbg_eba("initialize EBA sub-system");
1628 
1629 	spin_lock_init(&ubi->ltree_lock);
1630 	mutex_init(&ubi->alc_mutex);
1631 	ubi->ltree = RB_ROOT;
1632 
1633 	ubi->global_sqnum = ai->max_sqnum + 1;
1634 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1635 
1636 	for (i = 0; i < num_volumes; i++) {
1637 		struct ubi_eba_table *tbl;
1638 
1639 		vol = ubi->volumes[i];
1640 		if (!vol)
1641 			continue;
1642 
1643 		cond_resched();
1644 
1645 		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1646 		if (IS_ERR(tbl)) {
1647 			err = PTR_ERR(tbl);
1648 			goto out_free;
1649 		}
1650 
1651 		ubi_eba_replace_table(vol, tbl);
1652 
1653 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1654 		if (!av)
1655 			continue;
1656 
1657 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1658 			if (aeb->lnum >= vol->reserved_pebs) {
1659 				/*
1660 				 * This may happen in case of an unclean reboot
1661 				 * during re-size.
1662 				 */
1663 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1664 			} else {
1665 				struct ubi_eba_entry *entry;
1666 
1667 				entry = &vol->eba_tbl->entries[aeb->lnum];
1668 				entry->pnum = aeb->pnum;
1669 			}
1670 		}
1671 	}
1672 
1673 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1674 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1675 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1676 		if (ubi->corr_peb_count)
1677 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1678 				ubi->corr_peb_count);
1679 		err = -ENOSPC;
1680 		goto out_free;
1681 	}
1682 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1683 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1684 
1685 	if (ubi->bad_allowed) {
1686 		ubi_calculate_reserved(ubi);
1687 
1688 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1689 			/* No enough free physical eraseblocks */
1690 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1691 			print_rsvd_warning(ubi, ai);
1692 		} else
1693 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1694 
1695 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1696 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1697 	}
1698 
1699 	dbg_eba("EBA sub-system is initialized");
1700 	return 0;
1701 
1702 out_free:
1703 	for (i = 0; i < num_volumes; i++) {
1704 		if (!ubi->volumes[i])
1705 			continue;
1706 		ubi_eba_replace_table(ubi->volumes[i], NULL);
1707 	}
1708 	return err;
1709 }
1710