• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_vlan.h>
42 #include <linux/mdio.h>
43 #include <linux/sockios.h>
44 #include <linux/workqueue.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/stringify.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/nospec.h>
54 
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60 
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64 
65 enum {
66 	MAX_TXQ_ENTRIES = 16384,
67 	MAX_CTRL_TXQ_ENTRIES = 1024,
68 	MAX_RSPQ_ENTRIES = 16384,
69 	MAX_RX_BUFFERS = 16384,
70 	MAX_RX_JUMBO_BUFFERS = 16384,
71 	MIN_TXQ_ENTRIES = 4,
72 	MIN_CTRL_TXQ_ENTRIES = 4,
73 	MIN_RSPQ_ENTRIES = 32,
74 	MIN_FL_ENTRIES = 32
75 };
76 
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78 
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82 
83 #define EEPROM_MAGIC 0x38E2F10C
84 
85 #define CH_DEVICE(devid, idx) \
86 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87 
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 	CH_DEVICE(0x20, 0),	/* PE9000 */
90 	CH_DEVICE(0x21, 1),	/* T302E */
91 	CH_DEVICE(0x22, 2),	/* T310E */
92 	CH_DEVICE(0x23, 3),	/* T320X */
93 	CH_DEVICE(0x24, 1),	/* T302X */
94 	CH_DEVICE(0x25, 3),	/* T320E */
95 	CH_DEVICE(0x26, 2),	/* T310X */
96 	CH_DEVICE(0x30, 2),	/* T3B10 */
97 	CH_DEVICE(0x31, 3),	/* T3B20 */
98 	CH_DEVICE(0x32, 1),	/* T3B02 */
99 	CH_DEVICE(0x35, 6),	/* T3C20-derived T3C10 */
100 	CH_DEVICE(0x36, 3),	/* S320E-CR */
101 	CH_DEVICE(0x37, 7),	/* N320E-G2 */
102 	{0,}
103 };
104 
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
109 
110 static int dflt_msg_enable = DFLT_MSG_ENABLE;
111 
112 module_param(dflt_msg_enable, int, 0644);
113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114 
115 /*
116  * The driver uses the best interrupt scheme available on a platform in the
117  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
118  * of these schemes the driver may consider as follows:
119  *
120  * msi = 2: choose from among all three options
121  * msi = 1: only consider MSI and pin interrupts
122  * msi = 0: force pin interrupts
123  */
124 static int msi = 2;
125 
126 module_param(msi, int, 0644);
127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128 
129 /*
130  * The driver enables offload as a default.
131  * To disable it, use ofld_disable = 1.
132  */
133 
134 static int ofld_disable = 0;
135 
136 module_param(ofld_disable, int, 0644);
137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138 
139 /*
140  * We have work elements that we need to cancel when an interface is taken
141  * down.  Normally the work elements would be executed by keventd but that
142  * can deadlock because of linkwatch.  If our close method takes the rtnl
143  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
144  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
145  * for our work to complete.  Get our own work queue to solve this.
146  */
147 struct workqueue_struct *cxgb3_wq;
148 
149 /**
150  *	link_report - show link status and link speed/duplex
151  *	@dev: the port whose settings are to be reported
152  *
153  *	Shows the link status, speed, and duplex of a port.
154  */
link_report(struct net_device * dev)155 static void link_report(struct net_device *dev)
156 {
157 	if (!netif_carrier_ok(dev))
158 		netdev_info(dev, "link down\n");
159 	else {
160 		const char *s = "10Mbps";
161 		const struct port_info *p = netdev_priv(dev);
162 
163 		switch (p->link_config.speed) {
164 		case SPEED_10000:
165 			s = "10Gbps";
166 			break;
167 		case SPEED_1000:
168 			s = "1000Mbps";
169 			break;
170 		case SPEED_100:
171 			s = "100Mbps";
172 			break;
173 		}
174 
175 		netdev_info(dev, "link up, %s, %s-duplex\n",
176 			    s, p->link_config.duplex == DUPLEX_FULL
177 			    ? "full" : "half");
178 	}
179 }
180 
enable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)181 static void enable_tx_fifo_drain(struct adapter *adapter,
182 				 struct port_info *pi)
183 {
184 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
185 			 F_ENDROPPKT);
186 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
187 	t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
188 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
189 }
190 
disable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)191 static void disable_tx_fifo_drain(struct adapter *adapter,
192 				  struct port_info *pi)
193 {
194 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
195 			 F_ENDROPPKT, 0);
196 }
197 
t3_os_link_fault(struct adapter * adap,int port_id,int state)198 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
199 {
200 	struct net_device *dev = adap->port[port_id];
201 	struct port_info *pi = netdev_priv(dev);
202 
203 	if (state == netif_carrier_ok(dev))
204 		return;
205 
206 	if (state) {
207 		struct cmac *mac = &pi->mac;
208 
209 		netif_carrier_on(dev);
210 
211 		disable_tx_fifo_drain(adap, pi);
212 
213 		/* Clear local faults */
214 		t3_xgm_intr_disable(adap, pi->port_id);
215 		t3_read_reg(adap, A_XGM_INT_STATUS +
216 				    pi->mac.offset);
217 		t3_write_reg(adap,
218 			     A_XGM_INT_CAUSE + pi->mac.offset,
219 			     F_XGM_INT);
220 
221 		t3_set_reg_field(adap,
222 				 A_XGM_INT_ENABLE +
223 				 pi->mac.offset,
224 				 F_XGM_INT, F_XGM_INT);
225 		t3_xgm_intr_enable(adap, pi->port_id);
226 
227 		t3_mac_enable(mac, MAC_DIRECTION_TX);
228 	} else {
229 		netif_carrier_off(dev);
230 
231 		/* Flush TX FIFO */
232 		enable_tx_fifo_drain(adap, pi);
233 	}
234 	link_report(dev);
235 }
236 
237 /**
238  *	t3_os_link_changed - handle link status changes
239  *	@adapter: the adapter associated with the link change
240  *	@port_id: the port index whose limk status has changed
241  *	@link_stat: the new status of the link
242  *	@speed: the new speed setting
243  *	@duplex: the new duplex setting
244  *	@pause: the new flow-control setting
245  *
246  *	This is the OS-dependent handler for link status changes.  The OS
247  *	neutral handler takes care of most of the processing for these events,
248  *	then calls this handler for any OS-specific processing.
249  */
t3_os_link_changed(struct adapter * adapter,int port_id,int link_stat,int speed,int duplex,int pause)250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
251 			int speed, int duplex, int pause)
252 {
253 	struct net_device *dev = adapter->port[port_id];
254 	struct port_info *pi = netdev_priv(dev);
255 	struct cmac *mac = &pi->mac;
256 
257 	/* Skip changes from disabled ports. */
258 	if (!netif_running(dev))
259 		return;
260 
261 	if (link_stat != netif_carrier_ok(dev)) {
262 		if (link_stat) {
263 			disable_tx_fifo_drain(adapter, pi);
264 
265 			t3_mac_enable(mac, MAC_DIRECTION_RX);
266 
267 			/* Clear local faults */
268 			t3_xgm_intr_disable(adapter, pi->port_id);
269 			t3_read_reg(adapter, A_XGM_INT_STATUS +
270 				    pi->mac.offset);
271 			t3_write_reg(adapter,
272 				     A_XGM_INT_CAUSE + pi->mac.offset,
273 				     F_XGM_INT);
274 
275 			t3_set_reg_field(adapter,
276 					 A_XGM_INT_ENABLE + pi->mac.offset,
277 					 F_XGM_INT, F_XGM_INT);
278 			t3_xgm_intr_enable(adapter, pi->port_id);
279 
280 			netif_carrier_on(dev);
281 		} else {
282 			netif_carrier_off(dev);
283 
284 			t3_xgm_intr_disable(adapter, pi->port_id);
285 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
286 			t3_set_reg_field(adapter,
287 					 A_XGM_INT_ENABLE + pi->mac.offset,
288 					 F_XGM_INT, 0);
289 
290 			if (is_10G(adapter))
291 				pi->phy.ops->power_down(&pi->phy, 1);
292 
293 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
294 			t3_mac_disable(mac, MAC_DIRECTION_RX);
295 			t3_link_start(&pi->phy, mac, &pi->link_config);
296 
297 			/* Flush TX FIFO */
298 			enable_tx_fifo_drain(adapter, pi);
299 		}
300 
301 		link_report(dev);
302 	}
303 }
304 
305 /**
306  *	t3_os_phymod_changed - handle PHY module changes
307  *	@adap: the adapter associated with the link change
308  *	@port_id: the port index whose limk status has changed
309  *
310  *	This is the OS-dependent handler for PHY module changes.  It is
311  *	invoked when a PHY module is removed or inserted for any OS-specific
312  *	processing.
313  */
t3_os_phymod_changed(struct adapter * adap,int port_id)314 void t3_os_phymod_changed(struct adapter *adap, int port_id)
315 {
316 	static const char *mod_str[] = {
317 		NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
318 	};
319 
320 	const struct net_device *dev = adap->port[port_id];
321 	const struct port_info *pi = netdev_priv(dev);
322 
323 	if (pi->phy.modtype == phy_modtype_none)
324 		netdev_info(dev, "PHY module unplugged\n");
325 	else
326 		netdev_info(dev, "%s PHY module inserted\n",
327 			    mod_str[pi->phy.modtype]);
328 }
329 
cxgb_set_rxmode(struct net_device * dev)330 static void cxgb_set_rxmode(struct net_device *dev)
331 {
332 	struct port_info *pi = netdev_priv(dev);
333 
334 	t3_mac_set_rx_mode(&pi->mac, dev);
335 }
336 
337 /**
338  *	link_start - enable a port
339  *	@dev: the device to enable
340  *
341  *	Performs the MAC and PHY actions needed to enable a port.
342  */
link_start(struct net_device * dev)343 static void link_start(struct net_device *dev)
344 {
345 	struct port_info *pi = netdev_priv(dev);
346 	struct cmac *mac = &pi->mac;
347 
348 	t3_mac_reset(mac);
349 	t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
350 	t3_mac_set_mtu(mac, dev->mtu);
351 	t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
352 	t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
353 	t3_mac_set_rx_mode(mac, dev);
354 	t3_link_start(&pi->phy, mac, &pi->link_config);
355 	t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
356 }
357 
cxgb_disable_msi(struct adapter * adapter)358 static inline void cxgb_disable_msi(struct adapter *adapter)
359 {
360 	if (adapter->flags & USING_MSIX) {
361 		pci_disable_msix(adapter->pdev);
362 		adapter->flags &= ~USING_MSIX;
363 	} else if (adapter->flags & USING_MSI) {
364 		pci_disable_msi(adapter->pdev);
365 		adapter->flags &= ~USING_MSI;
366 	}
367 }
368 
369 /*
370  * Interrupt handler for asynchronous events used with MSI-X.
371  */
t3_async_intr_handler(int irq,void * cookie)372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
373 {
374 	t3_slow_intr_handler(cookie);
375 	return IRQ_HANDLED;
376 }
377 
378 /*
379  * Name the MSI-X interrupts.
380  */
name_msix_vecs(struct adapter * adap)381 static void name_msix_vecs(struct adapter *adap)
382 {
383 	int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
384 
385 	snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
386 	adap->msix_info[0].desc[n] = 0;
387 
388 	for_each_port(adap, j) {
389 		struct net_device *d = adap->port[j];
390 		const struct port_info *pi = netdev_priv(d);
391 
392 		for (i = 0; i < pi->nqsets; i++, msi_idx++) {
393 			snprintf(adap->msix_info[msi_idx].desc, n,
394 				 "%s-%d", d->name, pi->first_qset + i);
395 			adap->msix_info[msi_idx].desc[n] = 0;
396 		}
397 	}
398 }
399 
request_msix_data_irqs(struct adapter * adap)400 static int request_msix_data_irqs(struct adapter *adap)
401 {
402 	int i, j, err, qidx = 0;
403 
404 	for_each_port(adap, i) {
405 		int nqsets = adap2pinfo(adap, i)->nqsets;
406 
407 		for (j = 0; j < nqsets; ++j) {
408 			err = request_irq(adap->msix_info[qidx + 1].vec,
409 					  t3_intr_handler(adap,
410 							  adap->sge.qs[qidx].
411 							  rspq.polling), 0,
412 					  adap->msix_info[qidx + 1].desc,
413 					  &adap->sge.qs[qidx]);
414 			if (err) {
415 				while (--qidx >= 0)
416 					free_irq(adap->msix_info[qidx + 1].vec,
417 						 &adap->sge.qs[qidx]);
418 				return err;
419 			}
420 			qidx++;
421 		}
422 	}
423 	return 0;
424 }
425 
free_irq_resources(struct adapter * adapter)426 static void free_irq_resources(struct adapter *adapter)
427 {
428 	if (adapter->flags & USING_MSIX) {
429 		int i, n = 0;
430 
431 		free_irq(adapter->msix_info[0].vec, adapter);
432 		for_each_port(adapter, i)
433 			n += adap2pinfo(adapter, i)->nqsets;
434 
435 		for (i = 0; i < n; ++i)
436 			free_irq(adapter->msix_info[i + 1].vec,
437 				 &adapter->sge.qs[i]);
438 	} else
439 		free_irq(adapter->pdev->irq, adapter);
440 }
441 
await_mgmt_replies(struct adapter * adap,unsigned long init_cnt,unsigned long n)442 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
443 			      unsigned long n)
444 {
445 	int attempts = 10;
446 
447 	while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
448 		if (!--attempts)
449 			return -ETIMEDOUT;
450 		msleep(10);
451 	}
452 	return 0;
453 }
454 
init_tp_parity(struct adapter * adap)455 static int init_tp_parity(struct adapter *adap)
456 {
457 	int i;
458 	struct sk_buff *skb;
459 	struct cpl_set_tcb_field *greq;
460 	unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
461 
462 	t3_tp_set_offload_mode(adap, 1);
463 
464 	for (i = 0; i < 16; i++) {
465 		struct cpl_smt_write_req *req;
466 
467 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
468 		if (!skb)
469 			skb = adap->nofail_skb;
470 		if (!skb)
471 			goto alloc_skb_fail;
472 
473 		req = __skb_put_zero(skb, sizeof(*req));
474 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
475 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
476 		req->mtu_idx = NMTUS - 1;
477 		req->iff = i;
478 		t3_mgmt_tx(adap, skb);
479 		if (skb == adap->nofail_skb) {
480 			await_mgmt_replies(adap, cnt, i + 1);
481 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
482 			if (!adap->nofail_skb)
483 				goto alloc_skb_fail;
484 		}
485 	}
486 
487 	for (i = 0; i < 2048; i++) {
488 		struct cpl_l2t_write_req *req;
489 
490 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
491 		if (!skb)
492 			skb = adap->nofail_skb;
493 		if (!skb)
494 			goto alloc_skb_fail;
495 
496 		req = __skb_put_zero(skb, sizeof(*req));
497 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
498 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
499 		req->params = htonl(V_L2T_W_IDX(i));
500 		t3_mgmt_tx(adap, skb);
501 		if (skb == adap->nofail_skb) {
502 			await_mgmt_replies(adap, cnt, 16 + i + 1);
503 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
504 			if (!adap->nofail_skb)
505 				goto alloc_skb_fail;
506 		}
507 	}
508 
509 	for (i = 0; i < 2048; i++) {
510 		struct cpl_rte_write_req *req;
511 
512 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
513 		if (!skb)
514 			skb = adap->nofail_skb;
515 		if (!skb)
516 			goto alloc_skb_fail;
517 
518 		req = __skb_put_zero(skb, sizeof(*req));
519 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 		req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 		t3_mgmt_tx(adap, skb);
523 		if (skb == adap->nofail_skb) {
524 			await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 			if (!adap->nofail_skb)
527 				goto alloc_skb_fail;
528 		}
529 	}
530 
531 	skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 	if (!skb)
533 		skb = adap->nofail_skb;
534 	if (!skb)
535 		goto alloc_skb_fail;
536 
537 	greq = __skb_put_zero(skb, sizeof(*greq));
538 	greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539 	OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540 	greq->mask = cpu_to_be64(1);
541 	t3_mgmt_tx(adap, skb);
542 
543 	i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544 	if (skb == adap->nofail_skb) {
545 		i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546 		adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547 	}
548 
549 	t3_tp_set_offload_mode(adap, 0);
550 	return i;
551 
552 alloc_skb_fail:
553 	t3_tp_set_offload_mode(adap, 0);
554 	return -ENOMEM;
555 }
556 
557 /**
558  *	setup_rss - configure RSS
559  *	@adap: the adapter
560  *
561  *	Sets up RSS to distribute packets to multiple receive queues.  We
562  *	configure the RSS CPU lookup table to distribute to the number of HW
563  *	receive queues, and the response queue lookup table to narrow that
564  *	down to the response queues actually configured for each port.
565  *	We always configure the RSS mapping for two ports since the mapping
566  *	table has plenty of entries.
567  */
setup_rss(struct adapter * adap)568 static void setup_rss(struct adapter *adap)
569 {
570 	int i;
571 	unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572 	unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573 	u8 cpus[SGE_QSETS + 1];
574 	u16 rspq_map[RSS_TABLE_SIZE + 1];
575 
576 	for (i = 0; i < SGE_QSETS; ++i)
577 		cpus[i] = i;
578 	cpus[SGE_QSETS] = 0xff;	/* terminator */
579 
580 	for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581 		rspq_map[i] = i % nq0;
582 		rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583 	}
584 	rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
585 
586 	t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 		      F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 		      V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590 
ring_dbs(struct adapter * adap)591 static void ring_dbs(struct adapter *adap)
592 {
593 	int i, j;
594 
595 	for (i = 0; i < SGE_QSETS; i++) {
596 		struct sge_qset *qs = &adap->sge.qs[i];
597 
598 		if (qs->adap)
599 			for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 				t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 	}
602 }
603 
init_napi(struct adapter * adap)604 static void init_napi(struct adapter *adap)
605 {
606 	int i;
607 
608 	for (i = 0; i < SGE_QSETS; i++) {
609 		struct sge_qset *qs = &adap->sge.qs[i];
610 
611 		if (qs->adap)
612 			netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 				       64);
614 	}
615 
616 	/*
617 	 * netif_napi_add() can be called only once per napi_struct because it
618 	 * adds each new napi_struct to a list.  Be careful not to call it a
619 	 * second time, e.g., during EEH recovery, by making a note of it.
620 	 */
621 	adap->flags |= NAPI_INIT;
622 }
623 
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
quiesce_rx(struct adapter * adap)629 static void quiesce_rx(struct adapter *adap)
630 {
631 	int i;
632 
633 	for (i = 0; i < SGE_QSETS; i++)
634 		if (adap->sge.qs[i].adap)
635 			napi_disable(&adap->sge.qs[i].napi);
636 }
637 
enable_all_napi(struct adapter * adap)638 static void enable_all_napi(struct adapter *adap)
639 {
640 	int i;
641 	for (i = 0; i < SGE_QSETS; i++)
642 		if (adap->sge.qs[i].adap)
643 			napi_enable(&adap->sge.qs[i].napi);
644 }
645 
646 /**
647  *	setup_sge_qsets - configure SGE Tx/Rx/response queues
648  *	@adap: the adapter
649  *
650  *	Determines how many sets of SGE queues to use and initializes them.
651  *	We support multiple queue sets per port if we have MSI-X, otherwise
652  *	just one queue set per port.
653  */
setup_sge_qsets(struct adapter * adap)654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 	int i, j, err, irq_idx = 0, qset_idx = 0;
657 	unsigned int ntxq = SGE_TXQ_PER_SET;
658 
659 	if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 		irq_idx = -1;
661 
662 	for_each_port(adap, i) {
663 		struct net_device *dev = adap->port[i];
664 		struct port_info *pi = netdev_priv(dev);
665 
666 		pi->qs = &adap->sge.qs[pi->first_qset];
667 		for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 			err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 				(adap->flags & USING_MSIX) ? qset_idx + 1 :
670 							     irq_idx,
671 				&adap->params.sge.qset[qset_idx], ntxq, dev,
672 				netdev_get_tx_queue(dev, j));
673 			if (err) {
674 				t3_free_sge_resources(adap);
675 				return err;
676 			}
677 		}
678 	}
679 
680 	return 0;
681 }
682 
attr_show(struct device * d,char * buf,ssize_t (* format)(struct net_device *,char *))683 static ssize_t attr_show(struct device *d, char *buf,
684 			 ssize_t(*format) (struct net_device *, char *))
685 {
686 	ssize_t len;
687 
688 	/* Synchronize with ioctls that may shut down the device */
689 	rtnl_lock();
690 	len = (*format) (to_net_dev(d), buf);
691 	rtnl_unlock();
692 	return len;
693 }
694 
attr_store(struct device * d,const char * buf,size_t len,ssize_t (* set)(struct net_device *,unsigned int),unsigned int min_val,unsigned int max_val)695 static ssize_t attr_store(struct device *d,
696 			  const char *buf, size_t len,
697 			  ssize_t(*set) (struct net_device *, unsigned int),
698 			  unsigned int min_val, unsigned int max_val)
699 {
700 	ssize_t ret;
701 	unsigned int val;
702 
703 	if (!capable(CAP_NET_ADMIN))
704 		return -EPERM;
705 
706 	ret = kstrtouint(buf, 0, &val);
707 	if (ret)
708 		return ret;
709 	if (val < min_val || val > max_val)
710 		return -EINVAL;
711 
712 	rtnl_lock();
713 	ret = (*set) (to_net_dev(d), val);
714 	if (!ret)
715 		ret = len;
716 	rtnl_unlock();
717 	return ret;
718 }
719 
720 #define CXGB3_SHOW(name, val_expr) \
721 static ssize_t format_##name(struct net_device *dev, char *buf) \
722 { \
723 	struct port_info *pi = netdev_priv(dev); \
724 	struct adapter *adap = pi->adapter; \
725 	return sprintf(buf, "%u\n", val_expr); \
726 } \
727 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
728 			   char *buf) \
729 { \
730 	return attr_show(d, buf, format_##name); \
731 }
732 
set_nfilters(struct net_device * dev,unsigned int val)733 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
734 {
735 	struct port_info *pi = netdev_priv(dev);
736 	struct adapter *adap = pi->adapter;
737 	int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
738 
739 	if (adap->flags & FULL_INIT_DONE)
740 		return -EBUSY;
741 	if (val && adap->params.rev == 0)
742 		return -EINVAL;
743 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
744 	    min_tids)
745 		return -EINVAL;
746 	adap->params.mc5.nfilters = val;
747 	return 0;
748 }
749 
store_nfilters(struct device * d,struct device_attribute * attr,const char * buf,size_t len)750 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
751 			      const char *buf, size_t len)
752 {
753 	return attr_store(d, buf, len, set_nfilters, 0, ~0);
754 }
755 
set_nservers(struct net_device * dev,unsigned int val)756 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
757 {
758 	struct port_info *pi = netdev_priv(dev);
759 	struct adapter *adap = pi->adapter;
760 
761 	if (adap->flags & FULL_INIT_DONE)
762 		return -EBUSY;
763 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
764 	    MC5_MIN_TIDS)
765 		return -EINVAL;
766 	adap->params.mc5.nservers = val;
767 	return 0;
768 }
769 
store_nservers(struct device * d,struct device_attribute * attr,const char * buf,size_t len)770 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
771 			      const char *buf, size_t len)
772 {
773 	return attr_store(d, buf, len, set_nservers, 0, ~0);
774 }
775 
776 #define CXGB3_ATTR_R(name, val_expr) \
777 CXGB3_SHOW(name, val_expr) \
778 static DEVICE_ATTR(name, 0444, show_##name, NULL)
779 
780 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
781 CXGB3_SHOW(name, val_expr) \
782 static DEVICE_ATTR(name, 0644, show_##name, store_method)
783 
784 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
785 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
786 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
787 
788 static struct attribute *cxgb3_attrs[] = {
789 	&dev_attr_cam_size.attr,
790 	&dev_attr_nfilters.attr,
791 	&dev_attr_nservers.attr,
792 	NULL
793 };
794 
795 static const struct attribute_group cxgb3_attr_group = {
796 	.attrs = cxgb3_attrs,
797 };
798 
tm_attr_show(struct device * d,char * buf,int sched)799 static ssize_t tm_attr_show(struct device *d,
800 			    char *buf, int sched)
801 {
802 	struct port_info *pi = netdev_priv(to_net_dev(d));
803 	struct adapter *adap = pi->adapter;
804 	unsigned int v, addr, bpt, cpt;
805 	ssize_t len;
806 
807 	addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
808 	rtnl_lock();
809 	t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
810 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
811 	if (sched & 1)
812 		v >>= 16;
813 	bpt = (v >> 8) & 0xff;
814 	cpt = v & 0xff;
815 	if (!cpt)
816 		len = sprintf(buf, "disabled\n");
817 	else {
818 		v = (adap->params.vpd.cclk * 1000) / cpt;
819 		len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
820 	}
821 	rtnl_unlock();
822 	return len;
823 }
824 
tm_attr_store(struct device * d,const char * buf,size_t len,int sched)825 static ssize_t tm_attr_store(struct device *d,
826 			     const char *buf, size_t len, int sched)
827 {
828 	struct port_info *pi = netdev_priv(to_net_dev(d));
829 	struct adapter *adap = pi->adapter;
830 	unsigned int val;
831 	ssize_t ret;
832 
833 	if (!capable(CAP_NET_ADMIN))
834 		return -EPERM;
835 
836 	ret = kstrtouint(buf, 0, &val);
837 	if (ret)
838 		return ret;
839 	if (val > 10000000)
840 		return -EINVAL;
841 
842 	rtnl_lock();
843 	ret = t3_config_sched(adap, val, sched);
844 	if (!ret)
845 		ret = len;
846 	rtnl_unlock();
847 	return ret;
848 }
849 
850 #define TM_ATTR(name, sched) \
851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
852 			   char *buf) \
853 { \
854 	return tm_attr_show(d, buf, sched); \
855 } \
856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
857 			    const char *buf, size_t len) \
858 { \
859 	return tm_attr_store(d, buf, len, sched); \
860 } \
861 static DEVICE_ATTR(name, 0644, show_##name, store_##name)
862 
863 TM_ATTR(sched0, 0);
864 TM_ATTR(sched1, 1);
865 TM_ATTR(sched2, 2);
866 TM_ATTR(sched3, 3);
867 TM_ATTR(sched4, 4);
868 TM_ATTR(sched5, 5);
869 TM_ATTR(sched6, 6);
870 TM_ATTR(sched7, 7);
871 
872 static struct attribute *offload_attrs[] = {
873 	&dev_attr_sched0.attr,
874 	&dev_attr_sched1.attr,
875 	&dev_attr_sched2.attr,
876 	&dev_attr_sched3.attr,
877 	&dev_attr_sched4.attr,
878 	&dev_attr_sched5.attr,
879 	&dev_attr_sched6.attr,
880 	&dev_attr_sched7.attr,
881 	NULL
882 };
883 
884 static const struct attribute_group offload_attr_group = {
885 	.attrs = offload_attrs,
886 };
887 
888 /*
889  * Sends an sk_buff to an offload queue driver
890  * after dealing with any active network taps.
891  */
offload_tx(struct t3cdev * tdev,struct sk_buff * skb)892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
893 {
894 	int ret;
895 
896 	local_bh_disable();
897 	ret = t3_offload_tx(tdev, skb);
898 	local_bh_enable();
899 	return ret;
900 }
901 
write_smt_entry(struct adapter * adapter,int idx)902 static int write_smt_entry(struct adapter *adapter, int idx)
903 {
904 	struct cpl_smt_write_req *req;
905 	struct port_info *pi = netdev_priv(adapter->port[idx]);
906 	struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907 
908 	if (!skb)
909 		return -ENOMEM;
910 
911 	req = __skb_put(skb, sizeof(*req));
912 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 	req->mtu_idx = NMTUS - 1;	/* should be 0 but there's a T3 bug */
915 	req->iff = idx;
916 	memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
917 	memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
918 	skb->priority = 1;
919 	offload_tx(&adapter->tdev, skb);
920 	return 0;
921 }
922 
init_smt(struct adapter * adapter)923 static int init_smt(struct adapter *adapter)
924 {
925 	int i;
926 
927 	for_each_port(adapter, i)
928 	    write_smt_entry(adapter, i);
929 	return 0;
930 }
931 
init_port_mtus(struct adapter * adapter)932 static void init_port_mtus(struct adapter *adapter)
933 {
934 	unsigned int mtus = adapter->port[0]->mtu;
935 
936 	if (adapter->port[1])
937 		mtus |= adapter->port[1]->mtu << 16;
938 	t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940 
send_pktsched_cmd(struct adapter * adap,int sched,int qidx,int lo,int hi,int port)941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 			      int hi, int port)
943 {
944 	struct sk_buff *skb;
945 	struct mngt_pktsched_wr *req;
946 	int ret;
947 
948 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 	if (!skb)
950 		skb = adap->nofail_skb;
951 	if (!skb)
952 		return -ENOMEM;
953 
954 	req = skb_put(skb, sizeof(*req));
955 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 	req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 	req->sched = sched;
958 	req->idx = qidx;
959 	req->min = lo;
960 	req->max = hi;
961 	req->binding = port;
962 	ret = t3_mgmt_tx(adap, skb);
963 	if (skb == adap->nofail_skb) {
964 		adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 					     GFP_KERNEL);
966 		if (!adap->nofail_skb)
967 			ret = -ENOMEM;
968 	}
969 
970 	return ret;
971 }
972 
bind_qsets(struct adapter * adap)973 static int bind_qsets(struct adapter *adap)
974 {
975 	int i, j, err = 0;
976 
977 	for_each_port(adap, i) {
978 		const struct port_info *pi = adap2pinfo(adap, i);
979 
980 		for (j = 0; j < pi->nqsets; ++j) {
981 			int ret = send_pktsched_cmd(adap, 1,
982 						    pi->first_qset + j, -1,
983 						    -1, i);
984 			if (ret)
985 				err = ret;
986 		}
987 	}
988 
989 	return err;
990 }
991 
992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."			\
993 	__stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."		\
996 	__stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1001 MODULE_FIRMWARE(FW_FNAME);
1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1007 
get_edc_fw_name(int edc_idx)1008 static inline const char *get_edc_fw_name(int edc_idx)
1009 {
1010 	const char *fw_name = NULL;
1011 
1012 	switch (edc_idx) {
1013 	case EDC_OPT_AEL2005:
1014 		fw_name = AEL2005_OPT_EDC_NAME;
1015 		break;
1016 	case EDC_TWX_AEL2005:
1017 		fw_name = AEL2005_TWX_EDC_NAME;
1018 		break;
1019 	case EDC_TWX_AEL2020:
1020 		fw_name = AEL2020_TWX_EDC_NAME;
1021 		break;
1022 	}
1023 	return fw_name;
1024 }
1025 
t3_get_edc_fw(struct cphy * phy,int edc_idx,int size)1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1027 {
1028 	struct adapter *adapter = phy->adapter;
1029 	const struct firmware *fw;
1030 	const char *fw_name;
1031 	u32 csum;
1032 	const __be32 *p;
1033 	u16 *cache = phy->phy_cache;
1034 	int i, ret = -EINVAL;
1035 
1036 	fw_name = get_edc_fw_name(edc_idx);
1037 	if (fw_name)
1038 		ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1039 	if (ret < 0) {
1040 		dev_err(&adapter->pdev->dev,
1041 			"could not upgrade firmware: unable to load %s\n",
1042 			fw_name);
1043 		return ret;
1044 	}
1045 
1046 	/* check size, take checksum in account */
1047 	if (fw->size > size + 4) {
1048 		CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1049 		       (unsigned int)fw->size, size + 4);
1050 		ret = -EINVAL;
1051 	}
1052 
1053 	/* compute checksum */
1054 	p = (const __be32 *)fw->data;
1055 	for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1056 		csum += ntohl(p[i]);
1057 
1058 	if (csum != 0xffffffff) {
1059 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1060 		       csum);
1061 		ret = -EINVAL;
1062 	}
1063 
1064 	for (i = 0; i < size / 4 ; i++) {
1065 		*cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1066 		*cache++ = be32_to_cpu(p[i]) & 0xffff;
1067 	}
1068 
1069 	release_firmware(fw);
1070 
1071 	return ret;
1072 }
1073 
upgrade_fw(struct adapter * adap)1074 static int upgrade_fw(struct adapter *adap)
1075 {
1076 	int ret;
1077 	const struct firmware *fw;
1078 	struct device *dev = &adap->pdev->dev;
1079 
1080 	ret = request_firmware(&fw, FW_FNAME, dev);
1081 	if (ret < 0) {
1082 		dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1083 			FW_FNAME);
1084 		return ret;
1085 	}
1086 	ret = t3_load_fw(adap, fw->data, fw->size);
1087 	release_firmware(fw);
1088 
1089 	if (ret == 0)
1090 		dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1091 			 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1092 	else
1093 		dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1094 			FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1095 
1096 	return ret;
1097 }
1098 
t3rev2char(struct adapter * adapter)1099 static inline char t3rev2char(struct adapter *adapter)
1100 {
1101 	char rev = 0;
1102 
1103 	switch(adapter->params.rev) {
1104 	case T3_REV_B:
1105 	case T3_REV_B2:
1106 		rev = 'b';
1107 		break;
1108 	case T3_REV_C:
1109 		rev = 'c';
1110 		break;
1111 	}
1112 	return rev;
1113 }
1114 
update_tpsram(struct adapter * adap)1115 static int update_tpsram(struct adapter *adap)
1116 {
1117 	const struct firmware *tpsram;
1118 	char buf[64];
1119 	struct device *dev = &adap->pdev->dev;
1120 	int ret;
1121 	char rev;
1122 
1123 	rev = t3rev2char(adap);
1124 	if (!rev)
1125 		return 0;
1126 
1127 	snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1128 
1129 	ret = request_firmware(&tpsram, buf, dev);
1130 	if (ret < 0) {
1131 		dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1132 			buf);
1133 		return ret;
1134 	}
1135 
1136 	ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1137 	if (ret)
1138 		goto release_tpsram;
1139 
1140 	ret = t3_set_proto_sram(adap, tpsram->data);
1141 	if (ret == 0)
1142 		dev_info(dev,
1143 			 "successful update of protocol engine "
1144 			 "to %d.%d.%d\n",
1145 			 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1146 	else
1147 		dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1148 			TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1149 	if (ret)
1150 		dev_err(dev, "loading protocol SRAM failed\n");
1151 
1152 release_tpsram:
1153 	release_firmware(tpsram);
1154 
1155 	return ret;
1156 }
1157 
1158 /**
1159  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1160  * @adap: the adapter
1161  * @p: the port
1162  *
1163  * Ensures that current Rx processing on any of the queues associated with
1164  * the given port completes before returning.  We do this by acquiring and
1165  * releasing the locks of the response queues associated with the port.
1166  */
t3_synchronize_rx(struct adapter * adap,const struct port_info * p)1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1168 {
1169 	int i;
1170 
1171 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1172 		struct sge_rspq *q = &adap->sge.qs[i].rspq;
1173 
1174 		spin_lock_irq(&q->lock);
1175 		spin_unlock_irq(&q->lock);
1176 	}
1177 }
1178 
cxgb_vlan_mode(struct net_device * dev,netdev_features_t features)1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1180 {
1181 	struct port_info *pi = netdev_priv(dev);
1182 	struct adapter *adapter = pi->adapter;
1183 
1184 	if (adapter->params.rev > 0) {
1185 		t3_set_vlan_accel(adapter, 1 << pi->port_id,
1186 				  features & NETIF_F_HW_VLAN_CTAG_RX);
1187 	} else {
1188 		/* single control for all ports */
1189 		unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1190 
1191 		for_each_port(adapter, i)
1192 			have_vlans |=
1193 				adapter->port[i]->features &
1194 				NETIF_F_HW_VLAN_CTAG_RX;
1195 
1196 		t3_set_vlan_accel(adapter, 1, have_vlans);
1197 	}
1198 	t3_synchronize_rx(adapter, pi);
1199 }
1200 
1201 /**
1202  *	cxgb_up - enable the adapter
1203  *	@adap: adapter being enabled
1204  *
1205  *	Called when the first port is enabled, this function performs the
1206  *	actions necessary to make an adapter operational, such as completing
1207  *	the initialization of HW modules, and enabling interrupts.
1208  *
1209  *	Must be called with the rtnl lock held.
1210  */
cxgb_up(struct adapter * adap)1211 static int cxgb_up(struct adapter *adap)
1212 {
1213 	int i, err;
1214 
1215 	if (!(adap->flags & FULL_INIT_DONE)) {
1216 		err = t3_check_fw_version(adap);
1217 		if (err == -EINVAL) {
1218 			err = upgrade_fw(adap);
1219 			CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1220 				FW_VERSION_MAJOR, FW_VERSION_MINOR,
1221 				FW_VERSION_MICRO, err ? "failed" : "succeeded");
1222 		}
1223 
1224 		err = t3_check_tpsram_version(adap);
1225 		if (err == -EINVAL) {
1226 			err = update_tpsram(adap);
1227 			CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1228 				TP_VERSION_MAJOR, TP_VERSION_MINOR,
1229 				TP_VERSION_MICRO, err ? "failed" : "succeeded");
1230 		}
1231 
1232 		/*
1233 		 * Clear interrupts now to catch errors if t3_init_hw fails.
1234 		 * We clear them again later as initialization may trigger
1235 		 * conditions that can interrupt.
1236 		 */
1237 		t3_intr_clear(adap);
1238 
1239 		err = t3_init_hw(adap, 0);
1240 		if (err)
1241 			goto out;
1242 
1243 		t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1244 		t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1245 
1246 		err = setup_sge_qsets(adap);
1247 		if (err)
1248 			goto out;
1249 
1250 		for_each_port(adap, i)
1251 			cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1252 
1253 		setup_rss(adap);
1254 		if (!(adap->flags & NAPI_INIT))
1255 			init_napi(adap);
1256 
1257 		t3_start_sge_timers(adap);
1258 		adap->flags |= FULL_INIT_DONE;
1259 	}
1260 
1261 	t3_intr_clear(adap);
1262 
1263 	if (adap->flags & USING_MSIX) {
1264 		name_msix_vecs(adap);
1265 		err = request_irq(adap->msix_info[0].vec,
1266 				  t3_async_intr_handler, 0,
1267 				  adap->msix_info[0].desc, adap);
1268 		if (err)
1269 			goto irq_err;
1270 
1271 		err = request_msix_data_irqs(adap);
1272 		if (err) {
1273 			free_irq(adap->msix_info[0].vec, adap);
1274 			goto irq_err;
1275 		}
1276 	} else if ((err = request_irq(adap->pdev->irq,
1277 				      t3_intr_handler(adap,
1278 						      adap->sge.qs[0].rspq.
1279 						      polling),
1280 				      (adap->flags & USING_MSI) ?
1281 				       0 : IRQF_SHARED,
1282 				      adap->name, adap)))
1283 		goto irq_err;
1284 
1285 	enable_all_napi(adap);
1286 	t3_sge_start(adap);
1287 	t3_intr_enable(adap);
1288 
1289 	if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1290 	    is_offload(adap) && init_tp_parity(adap) == 0)
1291 		adap->flags |= TP_PARITY_INIT;
1292 
1293 	if (adap->flags & TP_PARITY_INIT) {
1294 		t3_write_reg(adap, A_TP_INT_CAUSE,
1295 			     F_CMCACHEPERR | F_ARPLUTPERR);
1296 		t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1297 	}
1298 
1299 	if (!(adap->flags & QUEUES_BOUND)) {
1300 		int ret = bind_qsets(adap);
1301 
1302 		if (ret < 0) {
1303 			CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1304 			t3_intr_disable(adap);
1305 			quiesce_rx(adap);
1306 			free_irq_resources(adap);
1307 			err = ret;
1308 			goto out;
1309 		}
1310 		adap->flags |= QUEUES_BOUND;
1311 	}
1312 
1313 out:
1314 	return err;
1315 irq_err:
1316 	CH_ERR(adap, "request_irq failed, err %d\n", err);
1317 	goto out;
1318 }
1319 
1320 /*
1321  * Release resources when all the ports and offloading have been stopped.
1322  */
cxgb_down(struct adapter * adapter,int on_wq)1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325 	t3_sge_stop(adapter);
1326 	spin_lock_irq(&adapter->work_lock);	/* sync with PHY intr task */
1327 	t3_intr_disable(adapter);
1328 	spin_unlock_irq(&adapter->work_lock);
1329 
1330 	free_irq_resources(adapter);
1331 	quiesce_rx(adapter);
1332 	t3_sge_stop(adapter);
1333 	if (!on_wq)
1334 		flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336 
schedule_chk_task(struct adapter * adap)1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339 	unsigned int timeo;
1340 
1341 	timeo = adap->params.linkpoll_period ?
1342 	    (HZ * adap->params.linkpoll_period) / 10 :
1343 	    adap->params.stats_update_period * HZ;
1344 	if (timeo)
1345 		queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347 
offload_open(struct net_device * dev)1348 static int offload_open(struct net_device *dev)
1349 {
1350 	struct port_info *pi = netdev_priv(dev);
1351 	struct adapter *adapter = pi->adapter;
1352 	struct t3cdev *tdev = dev2t3cdev(dev);
1353 	int adap_up = adapter->open_device_map & PORT_MASK;
1354 	int err;
1355 
1356 	if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357 		return 0;
1358 
1359 	if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360 		goto out;
1361 
1362 	t3_tp_set_offload_mode(adapter, 1);
1363 	tdev->lldev = adapter->port[0];
1364 	err = cxgb3_offload_activate(adapter);
1365 	if (err)
1366 		goto out;
1367 
1368 	init_port_mtus(adapter);
1369 	t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370 		     adapter->params.b_wnd,
1371 		     adapter->params.rev == 0 ?
1372 		     adapter->port[0]->mtu : 0xffff);
1373 	init_smt(adapter);
1374 
1375 	if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376 		dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377 
1378 	/* Call back all registered clients */
1379 	cxgb3_add_clients(tdev);
1380 
1381 out:
1382 	/* restore them in case the offload module has changed them */
1383 	if (err) {
1384 		t3_tp_set_offload_mode(adapter, 0);
1385 		clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386 		cxgb3_set_dummy_ops(tdev);
1387 	}
1388 	return err;
1389 }
1390 
offload_close(struct t3cdev * tdev)1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393 	struct adapter *adapter = tdev2adap(tdev);
1394 	struct t3c_data *td = T3C_DATA(tdev);
1395 
1396 	if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397 		return 0;
1398 
1399 	/* Call back all registered clients */
1400 	cxgb3_remove_clients(tdev);
1401 
1402 	sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403 
1404 	/* Flush work scheduled while releasing TIDs */
1405 	flush_work(&td->tid_release_task);
1406 
1407 	tdev->lldev = NULL;
1408 	cxgb3_set_dummy_ops(tdev);
1409 	t3_tp_set_offload_mode(adapter, 0);
1410 	clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411 
1412 	if (!adapter->open_device_map)
1413 		cxgb_down(adapter, 0);
1414 
1415 	cxgb3_offload_deactivate(adapter);
1416 	return 0;
1417 }
1418 
cxgb_open(struct net_device * dev)1419 static int cxgb_open(struct net_device *dev)
1420 {
1421 	struct port_info *pi = netdev_priv(dev);
1422 	struct adapter *adapter = pi->adapter;
1423 	int other_ports = adapter->open_device_map & PORT_MASK;
1424 	int err;
1425 
1426 	if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427 		return err;
1428 
1429 	set_bit(pi->port_id, &adapter->open_device_map);
1430 	if (is_offload(adapter) && !ofld_disable) {
1431 		err = offload_open(dev);
1432 		if (err)
1433 			pr_warn("Could not initialize offload capabilities\n");
1434 	}
1435 
1436 	netif_set_real_num_tx_queues(dev, pi->nqsets);
1437 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438 	if (err)
1439 		return err;
1440 	link_start(dev);
1441 	t3_port_intr_enable(adapter, pi->port_id);
1442 	netif_tx_start_all_queues(dev);
1443 	if (!other_ports)
1444 		schedule_chk_task(adapter);
1445 
1446 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447 	return 0;
1448 }
1449 
__cxgb_close(struct net_device * dev,int on_wq)1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452 	struct port_info *pi = netdev_priv(dev);
1453 	struct adapter *adapter = pi->adapter;
1454 
1455 
1456 	if (!adapter->open_device_map)
1457 		return 0;
1458 
1459 	/* Stop link fault interrupts */
1460 	t3_xgm_intr_disable(adapter, pi->port_id);
1461 	t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462 
1463 	t3_port_intr_disable(adapter, pi->port_id);
1464 	netif_tx_stop_all_queues(dev);
1465 	pi->phy.ops->power_down(&pi->phy, 1);
1466 	netif_carrier_off(dev);
1467 	t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468 
1469 	spin_lock_irq(&adapter->work_lock);	/* sync with update task */
1470 	clear_bit(pi->port_id, &adapter->open_device_map);
1471 	spin_unlock_irq(&adapter->work_lock);
1472 
1473 	if (!(adapter->open_device_map & PORT_MASK))
1474 		cancel_delayed_work_sync(&adapter->adap_check_task);
1475 
1476 	if (!adapter->open_device_map)
1477 		cxgb_down(adapter, on_wq);
1478 
1479 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480 	return 0;
1481 }
1482 
cxgb_close(struct net_device * dev)1483 static int cxgb_close(struct net_device *dev)
1484 {
1485 	return __cxgb_close(dev, 0);
1486 }
1487 
cxgb_get_stats(struct net_device * dev)1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490 	struct port_info *pi = netdev_priv(dev);
1491 	struct adapter *adapter = pi->adapter;
1492 	struct net_device_stats *ns = &dev->stats;
1493 	const struct mac_stats *pstats;
1494 
1495 	spin_lock(&adapter->stats_lock);
1496 	pstats = t3_mac_update_stats(&pi->mac);
1497 	spin_unlock(&adapter->stats_lock);
1498 
1499 	ns->tx_bytes = pstats->tx_octets;
1500 	ns->tx_packets = pstats->tx_frames;
1501 	ns->rx_bytes = pstats->rx_octets;
1502 	ns->rx_packets = pstats->rx_frames;
1503 	ns->multicast = pstats->rx_mcast_frames;
1504 
1505 	ns->tx_errors = pstats->tx_underrun;
1506 	ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507 	    pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508 	    pstats->rx_fifo_ovfl;
1509 
1510 	/* detailed rx_errors */
1511 	ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512 	ns->rx_over_errors = 0;
1513 	ns->rx_crc_errors = pstats->rx_fcs_errs;
1514 	ns->rx_frame_errors = pstats->rx_symbol_errs;
1515 	ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516 	ns->rx_missed_errors = pstats->rx_cong_drops;
1517 
1518 	/* detailed tx_errors */
1519 	ns->tx_aborted_errors = 0;
1520 	ns->tx_carrier_errors = 0;
1521 	ns->tx_fifo_errors = pstats->tx_underrun;
1522 	ns->tx_heartbeat_errors = 0;
1523 	ns->tx_window_errors = 0;
1524 	return ns;
1525 }
1526 
get_msglevel(struct net_device * dev)1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529 	struct port_info *pi = netdev_priv(dev);
1530 	struct adapter *adapter = pi->adapter;
1531 
1532 	return adapter->msg_enable;
1533 }
1534 
set_msglevel(struct net_device * dev,u32 val)1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537 	struct port_info *pi = netdev_priv(dev);
1538 	struct adapter *adapter = pi->adapter;
1539 
1540 	adapter->msg_enable = val;
1541 }
1542 
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544 	"TxOctetsOK         ",
1545 	"TxFramesOK         ",
1546 	"TxMulticastFramesOK",
1547 	"TxBroadcastFramesOK",
1548 	"TxPauseFrames      ",
1549 	"TxUnderrun         ",
1550 	"TxExtUnderrun      ",
1551 
1552 	"TxFrames64         ",
1553 	"TxFrames65To127    ",
1554 	"TxFrames128To255   ",
1555 	"TxFrames256To511   ",
1556 	"TxFrames512To1023  ",
1557 	"TxFrames1024To1518 ",
1558 	"TxFrames1519ToMax  ",
1559 
1560 	"RxOctetsOK         ",
1561 	"RxFramesOK         ",
1562 	"RxMulticastFramesOK",
1563 	"RxBroadcastFramesOK",
1564 	"RxPauseFrames      ",
1565 	"RxFCSErrors        ",
1566 	"RxSymbolErrors     ",
1567 	"RxShortErrors      ",
1568 	"RxJabberErrors     ",
1569 	"RxLengthErrors     ",
1570 	"RxFIFOoverflow     ",
1571 
1572 	"RxFrames64         ",
1573 	"RxFrames65To127    ",
1574 	"RxFrames128To255   ",
1575 	"RxFrames256To511   ",
1576 	"RxFrames512To1023  ",
1577 	"RxFrames1024To1518 ",
1578 	"RxFrames1519ToMax  ",
1579 
1580 	"PhyFIFOErrors      ",
1581 	"TSO                ",
1582 	"VLANextractions    ",
1583 	"VLANinsertions     ",
1584 	"TxCsumOffload      ",
1585 	"RxCsumGood         ",
1586 	"LroAggregated      ",
1587 	"LroFlushed         ",
1588 	"LroNoDesc          ",
1589 	"RxDrops            ",
1590 
1591 	"CheckTXEnToggled   ",
1592 	"CheckResets        ",
1593 
1594 	"LinkFaults         ",
1595 };
1596 
get_sset_count(struct net_device * dev,int sset)1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599 	switch (sset) {
1600 	case ETH_SS_STATS:
1601 		return ARRAY_SIZE(stats_strings);
1602 	default:
1603 		return -EOPNOTSUPP;
1604 	}
1605 }
1606 
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608 
get_regs_len(struct net_device * dev)1609 static int get_regs_len(struct net_device *dev)
1610 {
1611 	return T3_REGMAP_SIZE;
1612 }
1613 
get_eeprom_len(struct net_device * dev)1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616 	return EEPROMSIZE;
1617 }
1618 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621 	struct port_info *pi = netdev_priv(dev);
1622 	struct adapter *adapter = pi->adapter;
1623 	u32 fw_vers = 0;
1624 	u32 tp_vers = 0;
1625 
1626 	spin_lock(&adapter->stats_lock);
1627 	t3_get_fw_version(adapter, &fw_vers);
1628 	t3_get_tp_version(adapter, &tp_vers);
1629 	spin_unlock(&adapter->stats_lock);
1630 
1631 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1633 		sizeof(info->bus_info));
1634 	if (fw_vers)
1635 		snprintf(info->fw_version, sizeof(info->fw_version),
1636 			 "%s %u.%u.%u TP %u.%u.%u",
1637 			 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1638 			 G_FW_VERSION_MAJOR(fw_vers),
1639 			 G_FW_VERSION_MINOR(fw_vers),
1640 			 G_FW_VERSION_MICRO(fw_vers),
1641 			 G_TP_VERSION_MAJOR(tp_vers),
1642 			 G_TP_VERSION_MINOR(tp_vers),
1643 			 G_TP_VERSION_MICRO(tp_vers));
1644 }
1645 
get_strings(struct net_device * dev,u32 stringset,u8 * data)1646 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1647 {
1648 	if (stringset == ETH_SS_STATS)
1649 		memcpy(data, stats_strings, sizeof(stats_strings));
1650 }
1651 
collect_sge_port_stats(struct adapter * adapter,struct port_info * p,int idx)1652 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1653 					    struct port_info *p, int idx)
1654 {
1655 	int i;
1656 	unsigned long tot = 0;
1657 
1658 	for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1659 		tot += adapter->sge.qs[i].port_stats[idx];
1660 	return tot;
1661 }
1662 
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1663 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1664 		      u64 *data)
1665 {
1666 	struct port_info *pi = netdev_priv(dev);
1667 	struct adapter *adapter = pi->adapter;
1668 	const struct mac_stats *s;
1669 
1670 	spin_lock(&adapter->stats_lock);
1671 	s = t3_mac_update_stats(&pi->mac);
1672 	spin_unlock(&adapter->stats_lock);
1673 
1674 	*data++ = s->tx_octets;
1675 	*data++ = s->tx_frames;
1676 	*data++ = s->tx_mcast_frames;
1677 	*data++ = s->tx_bcast_frames;
1678 	*data++ = s->tx_pause;
1679 	*data++ = s->tx_underrun;
1680 	*data++ = s->tx_fifo_urun;
1681 
1682 	*data++ = s->tx_frames_64;
1683 	*data++ = s->tx_frames_65_127;
1684 	*data++ = s->tx_frames_128_255;
1685 	*data++ = s->tx_frames_256_511;
1686 	*data++ = s->tx_frames_512_1023;
1687 	*data++ = s->tx_frames_1024_1518;
1688 	*data++ = s->tx_frames_1519_max;
1689 
1690 	*data++ = s->rx_octets;
1691 	*data++ = s->rx_frames;
1692 	*data++ = s->rx_mcast_frames;
1693 	*data++ = s->rx_bcast_frames;
1694 	*data++ = s->rx_pause;
1695 	*data++ = s->rx_fcs_errs;
1696 	*data++ = s->rx_symbol_errs;
1697 	*data++ = s->rx_short;
1698 	*data++ = s->rx_jabber;
1699 	*data++ = s->rx_too_long;
1700 	*data++ = s->rx_fifo_ovfl;
1701 
1702 	*data++ = s->rx_frames_64;
1703 	*data++ = s->rx_frames_65_127;
1704 	*data++ = s->rx_frames_128_255;
1705 	*data++ = s->rx_frames_256_511;
1706 	*data++ = s->rx_frames_512_1023;
1707 	*data++ = s->rx_frames_1024_1518;
1708 	*data++ = s->rx_frames_1519_max;
1709 
1710 	*data++ = pi->phy.fifo_errors;
1711 
1712 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1713 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1714 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1715 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1716 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1717 	*data++ = 0;
1718 	*data++ = 0;
1719 	*data++ = 0;
1720 	*data++ = s->rx_cong_drops;
1721 
1722 	*data++ = s->num_toggled;
1723 	*data++ = s->num_resets;
1724 
1725 	*data++ = s->link_faults;
1726 }
1727 
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1728 static inline void reg_block_dump(struct adapter *ap, void *buf,
1729 				  unsigned int start, unsigned int end)
1730 {
1731 	u32 *p = buf + start;
1732 
1733 	for (; start <= end; start += sizeof(u32))
1734 		*p++ = t3_read_reg(ap, start);
1735 }
1736 
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1737 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1738 		     void *buf)
1739 {
1740 	struct port_info *pi = netdev_priv(dev);
1741 	struct adapter *ap = pi->adapter;
1742 
1743 	/*
1744 	 * Version scheme:
1745 	 * bits 0..9: chip version
1746 	 * bits 10..15: chip revision
1747 	 * bit 31: set for PCIe cards
1748 	 */
1749 	regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1750 
1751 	/*
1752 	 * We skip the MAC statistics registers because they are clear-on-read.
1753 	 * Also reading multi-register stats would need to synchronize with the
1754 	 * periodic mac stats accumulation.  Hard to justify the complexity.
1755 	 */
1756 	memset(buf, 0, T3_REGMAP_SIZE);
1757 	reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1758 	reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1759 	reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1760 	reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1761 	reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1762 	reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1763 		       XGM_REG(A_XGM_SERDES_STAT3, 1));
1764 	reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1765 		       XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1766 }
1767 
restart_autoneg(struct net_device * dev)1768 static int restart_autoneg(struct net_device *dev)
1769 {
1770 	struct port_info *p = netdev_priv(dev);
1771 
1772 	if (!netif_running(dev))
1773 		return -EAGAIN;
1774 	if (p->link_config.autoneg != AUTONEG_ENABLE)
1775 		return -EINVAL;
1776 	p->phy.ops->autoneg_restart(&p->phy);
1777 	return 0;
1778 }
1779 
set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)1780 static int set_phys_id(struct net_device *dev,
1781 		       enum ethtool_phys_id_state state)
1782 {
1783 	struct port_info *pi = netdev_priv(dev);
1784 	struct adapter *adapter = pi->adapter;
1785 
1786 	switch (state) {
1787 	case ETHTOOL_ID_ACTIVE:
1788 		return 1;	/* cycle on/off once per second */
1789 
1790 	case ETHTOOL_ID_OFF:
1791 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1792 		break;
1793 
1794 	case ETHTOOL_ID_ON:
1795 	case ETHTOOL_ID_INACTIVE:
1796 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1797 			 F_GPIO0_OUT_VAL);
1798 	}
1799 
1800 	return 0;
1801 }
1802 
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1803 static int get_link_ksettings(struct net_device *dev,
1804 			      struct ethtool_link_ksettings *cmd)
1805 {
1806 	struct port_info *p = netdev_priv(dev);
1807 	u32 supported;
1808 
1809 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1810 						p->link_config.supported);
1811 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1812 						p->link_config.advertising);
1813 
1814 	if (netif_carrier_ok(dev)) {
1815 		cmd->base.speed = p->link_config.speed;
1816 		cmd->base.duplex = p->link_config.duplex;
1817 	} else {
1818 		cmd->base.speed = SPEED_UNKNOWN;
1819 		cmd->base.duplex = DUPLEX_UNKNOWN;
1820 	}
1821 
1822 	ethtool_convert_link_mode_to_legacy_u32(&supported,
1823 						cmd->link_modes.supported);
1824 
1825 	cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1826 	cmd->base.phy_address = p->phy.mdio.prtad;
1827 	cmd->base.autoneg = p->link_config.autoneg;
1828 	return 0;
1829 }
1830 
speed_duplex_to_caps(int speed,int duplex)1831 static int speed_duplex_to_caps(int speed, int duplex)
1832 {
1833 	int cap = 0;
1834 
1835 	switch (speed) {
1836 	case SPEED_10:
1837 		if (duplex == DUPLEX_FULL)
1838 			cap = SUPPORTED_10baseT_Full;
1839 		else
1840 			cap = SUPPORTED_10baseT_Half;
1841 		break;
1842 	case SPEED_100:
1843 		if (duplex == DUPLEX_FULL)
1844 			cap = SUPPORTED_100baseT_Full;
1845 		else
1846 			cap = SUPPORTED_100baseT_Half;
1847 		break;
1848 	case SPEED_1000:
1849 		if (duplex == DUPLEX_FULL)
1850 			cap = SUPPORTED_1000baseT_Full;
1851 		else
1852 			cap = SUPPORTED_1000baseT_Half;
1853 		break;
1854 	case SPEED_10000:
1855 		if (duplex == DUPLEX_FULL)
1856 			cap = SUPPORTED_10000baseT_Full;
1857 	}
1858 	return cap;
1859 }
1860 
1861 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1862 		      ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1863 		      ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1864 		      ADVERTISED_10000baseT_Full)
1865 
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1866 static int set_link_ksettings(struct net_device *dev,
1867 			      const struct ethtool_link_ksettings *cmd)
1868 {
1869 	struct port_info *p = netdev_priv(dev);
1870 	struct link_config *lc = &p->link_config;
1871 	u32 advertising;
1872 
1873 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1874 						cmd->link_modes.advertising);
1875 
1876 	if (!(lc->supported & SUPPORTED_Autoneg)) {
1877 		/*
1878 		 * PHY offers a single speed/duplex.  See if that's what's
1879 		 * being requested.
1880 		 */
1881 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
1882 			u32 speed = cmd->base.speed;
1883 			int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1884 			if (lc->supported & cap)
1885 				return 0;
1886 		}
1887 		return -EINVAL;
1888 	}
1889 
1890 	if (cmd->base.autoneg == AUTONEG_DISABLE) {
1891 		u32 speed = cmd->base.speed;
1892 		int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1893 
1894 		if (!(lc->supported & cap) || (speed == SPEED_1000))
1895 			return -EINVAL;
1896 		lc->requested_speed = speed;
1897 		lc->requested_duplex = cmd->base.duplex;
1898 		lc->advertising = 0;
1899 	} else {
1900 		advertising &= ADVERTISED_MASK;
1901 		advertising &= lc->supported;
1902 		if (!advertising)
1903 			return -EINVAL;
1904 		lc->requested_speed = SPEED_INVALID;
1905 		lc->requested_duplex = DUPLEX_INVALID;
1906 		lc->advertising = advertising | ADVERTISED_Autoneg;
1907 	}
1908 	lc->autoneg = cmd->base.autoneg;
1909 	if (netif_running(dev))
1910 		t3_link_start(&p->phy, &p->mac, lc);
1911 	return 0;
1912 }
1913 
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1914 static void get_pauseparam(struct net_device *dev,
1915 			   struct ethtool_pauseparam *epause)
1916 {
1917 	struct port_info *p = netdev_priv(dev);
1918 
1919 	epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1920 	epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1921 	epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1922 }
1923 
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1924 static int set_pauseparam(struct net_device *dev,
1925 			  struct ethtool_pauseparam *epause)
1926 {
1927 	struct port_info *p = netdev_priv(dev);
1928 	struct link_config *lc = &p->link_config;
1929 
1930 	if (epause->autoneg == AUTONEG_DISABLE)
1931 		lc->requested_fc = 0;
1932 	else if (lc->supported & SUPPORTED_Autoneg)
1933 		lc->requested_fc = PAUSE_AUTONEG;
1934 	else
1935 		return -EINVAL;
1936 
1937 	if (epause->rx_pause)
1938 		lc->requested_fc |= PAUSE_RX;
1939 	if (epause->tx_pause)
1940 		lc->requested_fc |= PAUSE_TX;
1941 	if (lc->autoneg == AUTONEG_ENABLE) {
1942 		if (netif_running(dev))
1943 			t3_link_start(&p->phy, &p->mac, lc);
1944 	} else {
1945 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1946 		if (netif_running(dev))
1947 			t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1948 	}
1949 	return 0;
1950 }
1951 
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1952 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1953 {
1954 	struct port_info *pi = netdev_priv(dev);
1955 	struct adapter *adapter = pi->adapter;
1956 	const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1957 
1958 	e->rx_max_pending = MAX_RX_BUFFERS;
1959 	e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1960 	e->tx_max_pending = MAX_TXQ_ENTRIES;
1961 
1962 	e->rx_pending = q->fl_size;
1963 	e->rx_mini_pending = q->rspq_size;
1964 	e->rx_jumbo_pending = q->jumbo_size;
1965 	e->tx_pending = q->txq_size[0];
1966 }
1967 
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1968 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1969 {
1970 	struct port_info *pi = netdev_priv(dev);
1971 	struct adapter *adapter = pi->adapter;
1972 	struct qset_params *q;
1973 	int i;
1974 
1975 	if (e->rx_pending > MAX_RX_BUFFERS ||
1976 	    e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1977 	    e->tx_pending > MAX_TXQ_ENTRIES ||
1978 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1979 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1980 	    e->rx_pending < MIN_FL_ENTRIES ||
1981 	    e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1982 	    e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1983 		return -EINVAL;
1984 
1985 	if (adapter->flags & FULL_INIT_DONE)
1986 		return -EBUSY;
1987 
1988 	q = &adapter->params.sge.qset[pi->first_qset];
1989 	for (i = 0; i < pi->nqsets; ++i, ++q) {
1990 		q->rspq_size = e->rx_mini_pending;
1991 		q->fl_size = e->rx_pending;
1992 		q->jumbo_size = e->rx_jumbo_pending;
1993 		q->txq_size[0] = e->tx_pending;
1994 		q->txq_size[1] = e->tx_pending;
1995 		q->txq_size[2] = e->tx_pending;
1996 	}
1997 	return 0;
1998 }
1999 
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2000 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2001 {
2002 	struct port_info *pi = netdev_priv(dev);
2003 	struct adapter *adapter = pi->adapter;
2004 	struct qset_params *qsp;
2005 	struct sge_qset *qs;
2006 	int i;
2007 
2008 	if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < pi->nqsets; i++) {
2012 		qsp = &adapter->params.sge.qset[i];
2013 		qs = &adapter->sge.qs[i];
2014 		qsp->coalesce_usecs = c->rx_coalesce_usecs;
2015 		t3_update_qset_coalesce(qs, qsp);
2016 	}
2017 
2018 	return 0;
2019 }
2020 
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2021 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2022 {
2023 	struct port_info *pi = netdev_priv(dev);
2024 	struct adapter *adapter = pi->adapter;
2025 	struct qset_params *q = adapter->params.sge.qset;
2026 
2027 	c->rx_coalesce_usecs = q->coalesce_usecs;
2028 	return 0;
2029 }
2030 
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2031 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2032 		      u8 * data)
2033 {
2034 	struct port_info *pi = netdev_priv(dev);
2035 	struct adapter *adapter = pi->adapter;
2036 	int i, err = 0;
2037 
2038 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2039 	if (!buf)
2040 		return -ENOMEM;
2041 
2042 	e->magic = EEPROM_MAGIC;
2043 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2044 		err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2045 
2046 	if (!err)
2047 		memcpy(data, buf + e->offset, e->len);
2048 	kfree(buf);
2049 	return err;
2050 }
2051 
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2052 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2053 		      u8 * data)
2054 {
2055 	struct port_info *pi = netdev_priv(dev);
2056 	struct adapter *adapter = pi->adapter;
2057 	u32 aligned_offset, aligned_len;
2058 	__le32 *p;
2059 	u8 *buf;
2060 	int err;
2061 
2062 	if (eeprom->magic != EEPROM_MAGIC)
2063 		return -EINVAL;
2064 
2065 	aligned_offset = eeprom->offset & ~3;
2066 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2067 
2068 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2069 		buf = kmalloc(aligned_len, GFP_KERNEL);
2070 		if (!buf)
2071 			return -ENOMEM;
2072 		err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2073 		if (!err && aligned_len > 4)
2074 			err = t3_seeprom_read(adapter,
2075 					      aligned_offset + aligned_len - 4,
2076 					      (__le32 *) & buf[aligned_len - 4]);
2077 		if (err)
2078 			goto out;
2079 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2080 	} else
2081 		buf = data;
2082 
2083 	err = t3_seeprom_wp(adapter, 0);
2084 	if (err)
2085 		goto out;
2086 
2087 	for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2088 		err = t3_seeprom_write(adapter, aligned_offset, *p);
2089 		aligned_offset += 4;
2090 	}
2091 
2092 	if (!err)
2093 		err = t3_seeprom_wp(adapter, 1);
2094 out:
2095 	if (buf != data)
2096 		kfree(buf);
2097 	return err;
2098 }
2099 
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2100 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2101 {
2102 	wol->supported = 0;
2103 	wol->wolopts = 0;
2104 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2105 }
2106 
2107 static const struct ethtool_ops cxgb_ethtool_ops = {
2108 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2109 	.get_drvinfo = get_drvinfo,
2110 	.get_msglevel = get_msglevel,
2111 	.set_msglevel = set_msglevel,
2112 	.get_ringparam = get_sge_param,
2113 	.set_ringparam = set_sge_param,
2114 	.get_coalesce = get_coalesce,
2115 	.set_coalesce = set_coalesce,
2116 	.get_eeprom_len = get_eeprom_len,
2117 	.get_eeprom = get_eeprom,
2118 	.set_eeprom = set_eeprom,
2119 	.get_pauseparam = get_pauseparam,
2120 	.set_pauseparam = set_pauseparam,
2121 	.get_link = ethtool_op_get_link,
2122 	.get_strings = get_strings,
2123 	.set_phys_id = set_phys_id,
2124 	.nway_reset = restart_autoneg,
2125 	.get_sset_count = get_sset_count,
2126 	.get_ethtool_stats = get_stats,
2127 	.get_regs_len = get_regs_len,
2128 	.get_regs = get_regs,
2129 	.get_wol = get_wol,
2130 	.get_link_ksettings = get_link_ksettings,
2131 	.set_link_ksettings = set_link_ksettings,
2132 };
2133 
in_range(int val,int lo,int hi)2134 static int in_range(int val, int lo, int hi)
2135 {
2136 	return val < 0 || (val <= hi && val >= lo);
2137 }
2138 
cxgb_extension_ioctl(struct net_device * dev,void __user * useraddr)2139 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2140 {
2141 	struct port_info *pi = netdev_priv(dev);
2142 	struct adapter *adapter = pi->adapter;
2143 	u32 cmd;
2144 	int ret;
2145 
2146 	if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2147 		return -EFAULT;
2148 
2149 	switch (cmd) {
2150 	case CHELSIO_SET_QSET_PARAMS:{
2151 		int i;
2152 		struct qset_params *q;
2153 		struct ch_qset_params t;
2154 		int q1 = pi->first_qset;
2155 		int nqsets = pi->nqsets;
2156 
2157 		if (!capable(CAP_NET_ADMIN))
2158 			return -EPERM;
2159 		if (copy_from_user(&t, useraddr, sizeof(t)))
2160 			return -EFAULT;
2161 		if (t.cmd != CHELSIO_SET_QSET_PARAMS)
2162 			return -EINVAL;
2163 		if (t.qset_idx >= SGE_QSETS)
2164 			return -EINVAL;
2165 		if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2166 		    !in_range(t.cong_thres, 0, 255) ||
2167 		    !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2168 			      MAX_TXQ_ENTRIES) ||
2169 		    !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2170 			      MAX_TXQ_ENTRIES) ||
2171 		    !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2172 			      MAX_CTRL_TXQ_ENTRIES) ||
2173 		    !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2174 			      MAX_RX_BUFFERS) ||
2175 		    !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2176 			      MAX_RX_JUMBO_BUFFERS) ||
2177 		    !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2178 			      MAX_RSPQ_ENTRIES))
2179 			return -EINVAL;
2180 
2181 		if ((adapter->flags & FULL_INIT_DONE) &&
2182 			(t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2183 			t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2184 			t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2185 			t.polling >= 0 || t.cong_thres >= 0))
2186 			return -EBUSY;
2187 
2188 		/* Allow setting of any available qset when offload enabled */
2189 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2190 			q1 = 0;
2191 			for_each_port(adapter, i) {
2192 				pi = adap2pinfo(adapter, i);
2193 				nqsets += pi->first_qset + pi->nqsets;
2194 			}
2195 		}
2196 
2197 		if (t.qset_idx < q1)
2198 			return -EINVAL;
2199 		if (t.qset_idx > q1 + nqsets - 1)
2200 			return -EINVAL;
2201 
2202 		q = &adapter->params.sge.qset[t.qset_idx];
2203 
2204 		if (t.rspq_size >= 0)
2205 			q->rspq_size = t.rspq_size;
2206 		if (t.fl_size[0] >= 0)
2207 			q->fl_size = t.fl_size[0];
2208 		if (t.fl_size[1] >= 0)
2209 			q->jumbo_size = t.fl_size[1];
2210 		if (t.txq_size[0] >= 0)
2211 			q->txq_size[0] = t.txq_size[0];
2212 		if (t.txq_size[1] >= 0)
2213 			q->txq_size[1] = t.txq_size[1];
2214 		if (t.txq_size[2] >= 0)
2215 			q->txq_size[2] = t.txq_size[2];
2216 		if (t.cong_thres >= 0)
2217 			q->cong_thres = t.cong_thres;
2218 		if (t.intr_lat >= 0) {
2219 			struct sge_qset *qs =
2220 				&adapter->sge.qs[t.qset_idx];
2221 
2222 			q->coalesce_usecs = t.intr_lat;
2223 			t3_update_qset_coalesce(qs, q);
2224 		}
2225 		if (t.polling >= 0) {
2226 			if (adapter->flags & USING_MSIX)
2227 				q->polling = t.polling;
2228 			else {
2229 				/* No polling with INTx for T3A */
2230 				if (adapter->params.rev == 0 &&
2231 					!(adapter->flags & USING_MSI))
2232 					t.polling = 0;
2233 
2234 				for (i = 0; i < SGE_QSETS; i++) {
2235 					q = &adapter->params.sge.
2236 						qset[i];
2237 					q->polling = t.polling;
2238 				}
2239 			}
2240 		}
2241 
2242 		if (t.lro >= 0) {
2243 			if (t.lro)
2244 				dev->wanted_features |= NETIF_F_GRO;
2245 			else
2246 				dev->wanted_features &= ~NETIF_F_GRO;
2247 			netdev_update_features(dev);
2248 		}
2249 
2250 		break;
2251 	}
2252 	case CHELSIO_GET_QSET_PARAMS:{
2253 		struct qset_params *q;
2254 		struct ch_qset_params t;
2255 		int q1 = pi->first_qset;
2256 		int nqsets = pi->nqsets;
2257 		int i;
2258 
2259 		if (copy_from_user(&t, useraddr, sizeof(t)))
2260 			return -EFAULT;
2261 
2262 		if (t.cmd != CHELSIO_GET_QSET_PARAMS)
2263 			return -EINVAL;
2264 
2265 		/* Display qsets for all ports when offload enabled */
2266 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2267 			q1 = 0;
2268 			for_each_port(adapter, i) {
2269 				pi = adap2pinfo(adapter, i);
2270 				nqsets = pi->first_qset + pi->nqsets;
2271 			}
2272 		}
2273 
2274 		if (t.qset_idx >= nqsets)
2275 			return -EINVAL;
2276 		t.qset_idx = array_index_nospec(t.qset_idx, nqsets);
2277 
2278 		q = &adapter->params.sge.qset[q1 + t.qset_idx];
2279 		t.rspq_size = q->rspq_size;
2280 		t.txq_size[0] = q->txq_size[0];
2281 		t.txq_size[1] = q->txq_size[1];
2282 		t.txq_size[2] = q->txq_size[2];
2283 		t.fl_size[0] = q->fl_size;
2284 		t.fl_size[1] = q->jumbo_size;
2285 		t.polling = q->polling;
2286 		t.lro = !!(dev->features & NETIF_F_GRO);
2287 		t.intr_lat = q->coalesce_usecs;
2288 		t.cong_thres = q->cong_thres;
2289 		t.qnum = q1;
2290 
2291 		if (adapter->flags & USING_MSIX)
2292 			t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2293 		else
2294 			t.vector = adapter->pdev->irq;
2295 
2296 		if (copy_to_user(useraddr, &t, sizeof(t)))
2297 			return -EFAULT;
2298 		break;
2299 	}
2300 	case CHELSIO_SET_QSET_NUM:{
2301 		struct ch_reg edata;
2302 		unsigned int i, first_qset = 0, other_qsets = 0;
2303 
2304 		if (!capable(CAP_NET_ADMIN))
2305 			return -EPERM;
2306 		if (adapter->flags & FULL_INIT_DONE)
2307 			return -EBUSY;
2308 		if (copy_from_user(&edata, useraddr, sizeof(edata)))
2309 			return -EFAULT;
2310 		if (edata.cmd != CHELSIO_SET_QSET_NUM)
2311 			return -EINVAL;
2312 		if (edata.val < 1 ||
2313 			(edata.val > 1 && !(adapter->flags & USING_MSIX)))
2314 			return -EINVAL;
2315 
2316 		for_each_port(adapter, i)
2317 			if (adapter->port[i] && adapter->port[i] != dev)
2318 				other_qsets += adap2pinfo(adapter, i)->nqsets;
2319 
2320 		if (edata.val + other_qsets > SGE_QSETS)
2321 			return -EINVAL;
2322 
2323 		pi->nqsets = edata.val;
2324 
2325 		for_each_port(adapter, i)
2326 			if (adapter->port[i]) {
2327 				pi = adap2pinfo(adapter, i);
2328 				pi->first_qset = first_qset;
2329 				first_qset += pi->nqsets;
2330 			}
2331 		break;
2332 	}
2333 	case CHELSIO_GET_QSET_NUM:{
2334 		struct ch_reg edata;
2335 
2336 		memset(&edata, 0, sizeof(struct ch_reg));
2337 
2338 		edata.cmd = CHELSIO_GET_QSET_NUM;
2339 		edata.val = pi->nqsets;
2340 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
2341 			return -EFAULT;
2342 		break;
2343 	}
2344 	case CHELSIO_LOAD_FW:{
2345 		u8 *fw_data;
2346 		struct ch_mem_range t;
2347 
2348 		if (!capable(CAP_SYS_RAWIO))
2349 			return -EPERM;
2350 		if (copy_from_user(&t, useraddr, sizeof(t)))
2351 			return -EFAULT;
2352 		if (t.cmd != CHELSIO_LOAD_FW)
2353 			return -EINVAL;
2354 		/* Check t.len sanity ? */
2355 		fw_data = memdup_user(useraddr + sizeof(t), t.len);
2356 		if (IS_ERR(fw_data))
2357 			return PTR_ERR(fw_data);
2358 
2359 		ret = t3_load_fw(adapter, fw_data, t.len);
2360 		kfree(fw_data);
2361 		if (ret)
2362 			return ret;
2363 		break;
2364 	}
2365 	case CHELSIO_SETMTUTAB:{
2366 		struct ch_mtus m;
2367 		int i;
2368 
2369 		if (!is_offload(adapter))
2370 			return -EOPNOTSUPP;
2371 		if (!capable(CAP_NET_ADMIN))
2372 			return -EPERM;
2373 		if (offload_running(adapter))
2374 			return -EBUSY;
2375 		if (copy_from_user(&m, useraddr, sizeof(m)))
2376 			return -EFAULT;
2377 		if (m.cmd != CHELSIO_SETMTUTAB)
2378 			return -EINVAL;
2379 		if (m.nmtus != NMTUS)
2380 			return -EINVAL;
2381 		if (m.mtus[0] < 81)	/* accommodate SACK */
2382 			return -EINVAL;
2383 
2384 		/* MTUs must be in ascending order */
2385 		for (i = 1; i < NMTUS; ++i)
2386 			if (m.mtus[i] < m.mtus[i - 1])
2387 				return -EINVAL;
2388 
2389 		memcpy(adapter->params.mtus, m.mtus,
2390 			sizeof(adapter->params.mtus));
2391 		break;
2392 	}
2393 	case CHELSIO_GET_PM:{
2394 		struct tp_params *p = &adapter->params.tp;
2395 		struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2396 
2397 		if (!is_offload(adapter))
2398 			return -EOPNOTSUPP;
2399 		m.tx_pg_sz = p->tx_pg_size;
2400 		m.tx_num_pg = p->tx_num_pgs;
2401 		m.rx_pg_sz = p->rx_pg_size;
2402 		m.rx_num_pg = p->rx_num_pgs;
2403 		m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2404 		if (copy_to_user(useraddr, &m, sizeof(m)))
2405 			return -EFAULT;
2406 		break;
2407 	}
2408 	case CHELSIO_SET_PM:{
2409 		struct ch_pm m;
2410 		struct tp_params *p = &adapter->params.tp;
2411 
2412 		if (!is_offload(adapter))
2413 			return -EOPNOTSUPP;
2414 		if (!capable(CAP_NET_ADMIN))
2415 			return -EPERM;
2416 		if (adapter->flags & FULL_INIT_DONE)
2417 			return -EBUSY;
2418 		if (copy_from_user(&m, useraddr, sizeof(m)))
2419 			return -EFAULT;
2420 		if (m.cmd != CHELSIO_SET_PM)
2421 			return -EINVAL;
2422 		if (!is_power_of_2(m.rx_pg_sz) ||
2423 			!is_power_of_2(m.tx_pg_sz))
2424 			return -EINVAL;	/* not power of 2 */
2425 		if (!(m.rx_pg_sz & 0x14000))
2426 			return -EINVAL;	/* not 16KB or 64KB */
2427 		if (!(m.tx_pg_sz & 0x1554000))
2428 			return -EINVAL;
2429 		if (m.tx_num_pg == -1)
2430 			m.tx_num_pg = p->tx_num_pgs;
2431 		if (m.rx_num_pg == -1)
2432 			m.rx_num_pg = p->rx_num_pgs;
2433 		if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2434 			return -EINVAL;
2435 		if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2436 			m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2437 			return -EINVAL;
2438 		p->rx_pg_size = m.rx_pg_sz;
2439 		p->tx_pg_size = m.tx_pg_sz;
2440 		p->rx_num_pgs = m.rx_num_pg;
2441 		p->tx_num_pgs = m.tx_num_pg;
2442 		break;
2443 	}
2444 	case CHELSIO_GET_MEM:{
2445 		struct ch_mem_range t;
2446 		struct mc7 *mem;
2447 		u64 buf[32];
2448 
2449 		if (!is_offload(adapter))
2450 			return -EOPNOTSUPP;
2451 		if (!capable(CAP_NET_ADMIN))
2452 			return -EPERM;
2453 		if (!(adapter->flags & FULL_INIT_DONE))
2454 			return -EIO;	/* need the memory controllers */
2455 		if (copy_from_user(&t, useraddr, sizeof(t)))
2456 			return -EFAULT;
2457 		if (t.cmd != CHELSIO_GET_MEM)
2458 			return -EINVAL;
2459 		if ((t.addr & 7) || (t.len & 7))
2460 			return -EINVAL;
2461 		if (t.mem_id == MEM_CM)
2462 			mem = &adapter->cm;
2463 		else if (t.mem_id == MEM_PMRX)
2464 			mem = &adapter->pmrx;
2465 		else if (t.mem_id == MEM_PMTX)
2466 			mem = &adapter->pmtx;
2467 		else
2468 			return -EINVAL;
2469 
2470 		/*
2471 		 * Version scheme:
2472 		 * bits 0..9: chip version
2473 		 * bits 10..15: chip revision
2474 		 */
2475 		t.version = 3 | (adapter->params.rev << 10);
2476 		if (copy_to_user(useraddr, &t, sizeof(t)))
2477 			return -EFAULT;
2478 
2479 		/*
2480 		 * Read 256 bytes at a time as len can be large and we don't
2481 		 * want to use huge intermediate buffers.
2482 		 */
2483 		useraddr += sizeof(t);	/* advance to start of buffer */
2484 		while (t.len) {
2485 			unsigned int chunk =
2486 				min_t(unsigned int, t.len, sizeof(buf));
2487 
2488 			ret =
2489 				t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2490 						buf);
2491 			if (ret)
2492 				return ret;
2493 			if (copy_to_user(useraddr, buf, chunk))
2494 				return -EFAULT;
2495 			useraddr += chunk;
2496 			t.addr += chunk;
2497 			t.len -= chunk;
2498 		}
2499 		break;
2500 	}
2501 	case CHELSIO_SET_TRACE_FILTER:{
2502 		struct ch_trace t;
2503 		const struct trace_params *tp;
2504 
2505 		if (!capable(CAP_NET_ADMIN))
2506 			return -EPERM;
2507 		if (!offload_running(adapter))
2508 			return -EAGAIN;
2509 		if (copy_from_user(&t, useraddr, sizeof(t)))
2510 			return -EFAULT;
2511 		if (t.cmd != CHELSIO_SET_TRACE_FILTER)
2512 			return -EINVAL;
2513 
2514 		tp = (const struct trace_params *)&t.sip;
2515 		if (t.config_tx)
2516 			t3_config_trace_filter(adapter, tp, 0,
2517 						t.invert_match,
2518 						t.trace_tx);
2519 		if (t.config_rx)
2520 			t3_config_trace_filter(adapter, tp, 1,
2521 						t.invert_match,
2522 						t.trace_rx);
2523 		break;
2524 	}
2525 	default:
2526 		return -EOPNOTSUPP;
2527 	}
2528 	return 0;
2529 }
2530 
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2531 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2532 {
2533 	struct mii_ioctl_data *data = if_mii(req);
2534 	struct port_info *pi = netdev_priv(dev);
2535 	struct adapter *adapter = pi->adapter;
2536 
2537 	switch (cmd) {
2538 	case SIOCGMIIREG:
2539 	case SIOCSMIIREG:
2540 		/* Convert phy_id from older PRTAD/DEVAD format */
2541 		if (is_10G(adapter) &&
2542 		    !mdio_phy_id_is_c45(data->phy_id) &&
2543 		    (data->phy_id & 0x1f00) &&
2544 		    !(data->phy_id & 0xe0e0))
2545 			data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2546 						       data->phy_id & 0x1f);
2547 		fallthrough;
2548 	case SIOCGMIIPHY:
2549 		return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2550 	case SIOCCHIOCTL:
2551 		return cxgb_extension_ioctl(dev, req->ifr_data);
2552 	default:
2553 		return -EOPNOTSUPP;
2554 	}
2555 }
2556 
cxgb_change_mtu(struct net_device * dev,int new_mtu)2557 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2558 {
2559 	struct port_info *pi = netdev_priv(dev);
2560 	struct adapter *adapter = pi->adapter;
2561 	int ret;
2562 
2563 	if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2564 		return ret;
2565 	dev->mtu = new_mtu;
2566 	init_port_mtus(adapter);
2567 	if (adapter->params.rev == 0 && offload_running(adapter))
2568 		t3_load_mtus(adapter, adapter->params.mtus,
2569 			     adapter->params.a_wnd, adapter->params.b_wnd,
2570 			     adapter->port[0]->mtu);
2571 	return 0;
2572 }
2573 
cxgb_set_mac_addr(struct net_device * dev,void * p)2574 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2575 {
2576 	struct port_info *pi = netdev_priv(dev);
2577 	struct adapter *adapter = pi->adapter;
2578 	struct sockaddr *addr = p;
2579 
2580 	if (!is_valid_ether_addr(addr->sa_data))
2581 		return -EADDRNOTAVAIL;
2582 
2583 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2584 	t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2585 	if (offload_running(adapter))
2586 		write_smt_entry(adapter, pi->port_id);
2587 	return 0;
2588 }
2589 
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2590 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2591 	netdev_features_t features)
2592 {
2593 	/*
2594 	 * Since there is no support for separate rx/tx vlan accel
2595 	 * enable/disable make sure tx flag is always in same state as rx.
2596 	 */
2597 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2598 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2599 	else
2600 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2601 
2602 	return features;
2603 }
2604 
cxgb_set_features(struct net_device * dev,netdev_features_t features)2605 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2606 {
2607 	netdev_features_t changed = dev->features ^ features;
2608 
2609 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2610 		cxgb_vlan_mode(dev, features);
2611 
2612 	return 0;
2613 }
2614 
2615 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2616 static void cxgb_netpoll(struct net_device *dev)
2617 {
2618 	struct port_info *pi = netdev_priv(dev);
2619 	struct adapter *adapter = pi->adapter;
2620 	int qidx;
2621 
2622 	for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2623 		struct sge_qset *qs = &adapter->sge.qs[qidx];
2624 		void *source;
2625 
2626 		if (adapter->flags & USING_MSIX)
2627 			source = qs;
2628 		else
2629 			source = adapter;
2630 
2631 		t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2632 	}
2633 }
2634 #endif
2635 
2636 /*
2637  * Periodic accumulation of MAC statistics.
2638  */
mac_stats_update(struct adapter * adapter)2639 static void mac_stats_update(struct adapter *adapter)
2640 {
2641 	int i;
2642 
2643 	for_each_port(adapter, i) {
2644 		struct net_device *dev = adapter->port[i];
2645 		struct port_info *p = netdev_priv(dev);
2646 
2647 		if (netif_running(dev)) {
2648 			spin_lock(&adapter->stats_lock);
2649 			t3_mac_update_stats(&p->mac);
2650 			spin_unlock(&adapter->stats_lock);
2651 		}
2652 	}
2653 }
2654 
check_link_status(struct adapter * adapter)2655 static void check_link_status(struct adapter *adapter)
2656 {
2657 	int i;
2658 
2659 	for_each_port(adapter, i) {
2660 		struct net_device *dev = adapter->port[i];
2661 		struct port_info *p = netdev_priv(dev);
2662 		int link_fault;
2663 
2664 		spin_lock_irq(&adapter->work_lock);
2665 		link_fault = p->link_fault;
2666 		spin_unlock_irq(&adapter->work_lock);
2667 
2668 		if (link_fault) {
2669 			t3_link_fault(adapter, i);
2670 			continue;
2671 		}
2672 
2673 		if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2674 			t3_xgm_intr_disable(adapter, i);
2675 			t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2676 
2677 			t3_link_changed(adapter, i);
2678 			t3_xgm_intr_enable(adapter, i);
2679 		}
2680 	}
2681 }
2682 
check_t3b2_mac(struct adapter * adapter)2683 static void check_t3b2_mac(struct adapter *adapter)
2684 {
2685 	int i;
2686 
2687 	if (!rtnl_trylock())	/* synchronize with ifdown */
2688 		return;
2689 
2690 	for_each_port(adapter, i) {
2691 		struct net_device *dev = adapter->port[i];
2692 		struct port_info *p = netdev_priv(dev);
2693 		int status;
2694 
2695 		if (!netif_running(dev))
2696 			continue;
2697 
2698 		status = 0;
2699 		if (netif_running(dev) && netif_carrier_ok(dev))
2700 			status = t3b2_mac_watchdog_task(&p->mac);
2701 		if (status == 1)
2702 			p->mac.stats.num_toggled++;
2703 		else if (status == 2) {
2704 			struct cmac *mac = &p->mac;
2705 
2706 			t3_mac_set_mtu(mac, dev->mtu);
2707 			t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2708 			cxgb_set_rxmode(dev);
2709 			t3_link_start(&p->phy, mac, &p->link_config);
2710 			t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2711 			t3_port_intr_enable(adapter, p->port_id);
2712 			p->mac.stats.num_resets++;
2713 		}
2714 	}
2715 	rtnl_unlock();
2716 }
2717 
2718 
t3_adap_check_task(struct work_struct * work)2719 static void t3_adap_check_task(struct work_struct *work)
2720 {
2721 	struct adapter *adapter = container_of(work, struct adapter,
2722 					       adap_check_task.work);
2723 	const struct adapter_params *p = &adapter->params;
2724 	int port;
2725 	unsigned int v, status, reset;
2726 
2727 	adapter->check_task_cnt++;
2728 
2729 	check_link_status(adapter);
2730 
2731 	/* Accumulate MAC stats if needed */
2732 	if (!p->linkpoll_period ||
2733 	    (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2734 	    p->stats_update_period) {
2735 		mac_stats_update(adapter);
2736 		adapter->check_task_cnt = 0;
2737 	}
2738 
2739 	if (p->rev == T3_REV_B2)
2740 		check_t3b2_mac(adapter);
2741 
2742 	/*
2743 	 * Scan the XGMAC's to check for various conditions which we want to
2744 	 * monitor in a periodic polling manner rather than via an interrupt
2745 	 * condition.  This is used for conditions which would otherwise flood
2746 	 * the system with interrupts and we only really need to know that the
2747 	 * conditions are "happening" ...  For each condition we count the
2748 	 * detection of the condition and reset it for the next polling loop.
2749 	 */
2750 	for_each_port(adapter, port) {
2751 		struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2752 		u32 cause;
2753 
2754 		cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2755 		reset = 0;
2756 		if (cause & F_RXFIFO_OVERFLOW) {
2757 			mac->stats.rx_fifo_ovfl++;
2758 			reset |= F_RXFIFO_OVERFLOW;
2759 		}
2760 
2761 		t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2762 	}
2763 
2764 	/*
2765 	 * We do the same as above for FL_EMPTY interrupts.
2766 	 */
2767 	status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2768 	reset = 0;
2769 
2770 	if (status & F_FLEMPTY) {
2771 		struct sge_qset *qs = &adapter->sge.qs[0];
2772 		int i = 0;
2773 
2774 		reset |= F_FLEMPTY;
2775 
2776 		v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2777 		    0xffff;
2778 
2779 		while (v) {
2780 			qs->fl[i].empty += (v & 1);
2781 			if (i)
2782 				qs++;
2783 			i ^= 1;
2784 			v >>= 1;
2785 		}
2786 	}
2787 
2788 	t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2789 
2790 	/* Schedule the next check update if any port is active. */
2791 	spin_lock_irq(&adapter->work_lock);
2792 	if (adapter->open_device_map & PORT_MASK)
2793 		schedule_chk_task(adapter);
2794 	spin_unlock_irq(&adapter->work_lock);
2795 }
2796 
db_full_task(struct work_struct * work)2797 static void db_full_task(struct work_struct *work)
2798 {
2799 	struct adapter *adapter = container_of(work, struct adapter,
2800 					       db_full_task);
2801 
2802 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2803 }
2804 
db_empty_task(struct work_struct * work)2805 static void db_empty_task(struct work_struct *work)
2806 {
2807 	struct adapter *adapter = container_of(work, struct adapter,
2808 					       db_empty_task);
2809 
2810 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2811 }
2812 
db_drop_task(struct work_struct * work)2813 static void db_drop_task(struct work_struct *work)
2814 {
2815 	struct adapter *adapter = container_of(work, struct adapter,
2816 					       db_drop_task);
2817 	unsigned long delay = 1000;
2818 	unsigned short r;
2819 
2820 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2821 
2822 	/*
2823 	 * Sleep a while before ringing the driver qset dbs.
2824 	 * The delay is between 1000-2023 usecs.
2825 	 */
2826 	get_random_bytes(&r, 2);
2827 	delay += r & 1023;
2828 	set_current_state(TASK_UNINTERRUPTIBLE);
2829 	schedule_timeout(usecs_to_jiffies(delay));
2830 	ring_dbs(adapter);
2831 }
2832 
2833 /*
2834  * Processes external (PHY) interrupts in process context.
2835  */
ext_intr_task(struct work_struct * work)2836 static void ext_intr_task(struct work_struct *work)
2837 {
2838 	struct adapter *adapter = container_of(work, struct adapter,
2839 					       ext_intr_handler_task);
2840 	int i;
2841 
2842 	/* Disable link fault interrupts */
2843 	for_each_port(adapter, i) {
2844 		struct net_device *dev = adapter->port[i];
2845 		struct port_info *p = netdev_priv(dev);
2846 
2847 		t3_xgm_intr_disable(adapter, i);
2848 		t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2849 	}
2850 
2851 	/* Re-enable link fault interrupts */
2852 	t3_phy_intr_handler(adapter);
2853 
2854 	for_each_port(adapter, i)
2855 		t3_xgm_intr_enable(adapter, i);
2856 
2857 	/* Now reenable external interrupts */
2858 	spin_lock_irq(&adapter->work_lock);
2859 	if (adapter->slow_intr_mask) {
2860 		adapter->slow_intr_mask |= F_T3DBG;
2861 		t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2862 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2863 			     adapter->slow_intr_mask);
2864 	}
2865 	spin_unlock_irq(&adapter->work_lock);
2866 }
2867 
2868 /*
2869  * Interrupt-context handler for external (PHY) interrupts.
2870  */
t3_os_ext_intr_handler(struct adapter * adapter)2871 void t3_os_ext_intr_handler(struct adapter *adapter)
2872 {
2873 	/*
2874 	 * Schedule a task to handle external interrupts as they may be slow
2875 	 * and we use a mutex to protect MDIO registers.  We disable PHY
2876 	 * interrupts in the meantime and let the task reenable them when
2877 	 * it's done.
2878 	 */
2879 	spin_lock(&adapter->work_lock);
2880 	if (adapter->slow_intr_mask) {
2881 		adapter->slow_intr_mask &= ~F_T3DBG;
2882 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2883 			     adapter->slow_intr_mask);
2884 		queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2885 	}
2886 	spin_unlock(&adapter->work_lock);
2887 }
2888 
t3_os_link_fault_handler(struct adapter * adapter,int port_id)2889 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2890 {
2891 	struct net_device *netdev = adapter->port[port_id];
2892 	struct port_info *pi = netdev_priv(netdev);
2893 
2894 	spin_lock(&adapter->work_lock);
2895 	pi->link_fault = 1;
2896 	spin_unlock(&adapter->work_lock);
2897 }
2898 
t3_adapter_error(struct adapter * adapter,int reset,int on_wq)2899 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2900 {
2901 	int i, ret = 0;
2902 
2903 	if (is_offload(adapter) &&
2904 	    test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2905 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2906 		offload_close(&adapter->tdev);
2907 	}
2908 
2909 	/* Stop all ports */
2910 	for_each_port(adapter, i) {
2911 		struct net_device *netdev = adapter->port[i];
2912 
2913 		if (netif_running(netdev))
2914 			__cxgb_close(netdev, on_wq);
2915 	}
2916 
2917 	/* Stop SGE timers */
2918 	t3_stop_sge_timers(adapter);
2919 
2920 	adapter->flags &= ~FULL_INIT_DONE;
2921 
2922 	if (reset)
2923 		ret = t3_reset_adapter(adapter);
2924 
2925 	pci_disable_device(adapter->pdev);
2926 
2927 	return ret;
2928 }
2929 
t3_reenable_adapter(struct adapter * adapter)2930 static int t3_reenable_adapter(struct adapter *adapter)
2931 {
2932 	if (pci_enable_device(adapter->pdev)) {
2933 		dev_err(&adapter->pdev->dev,
2934 			"Cannot re-enable PCI device after reset.\n");
2935 		goto err;
2936 	}
2937 	pci_set_master(adapter->pdev);
2938 	pci_restore_state(adapter->pdev);
2939 	pci_save_state(adapter->pdev);
2940 
2941 	/* Free sge resources */
2942 	t3_free_sge_resources(adapter);
2943 
2944 	if (t3_replay_prep_adapter(adapter))
2945 		goto err;
2946 
2947 	return 0;
2948 err:
2949 	return -1;
2950 }
2951 
t3_resume_ports(struct adapter * adapter)2952 static void t3_resume_ports(struct adapter *adapter)
2953 {
2954 	int i;
2955 
2956 	/* Restart the ports */
2957 	for_each_port(adapter, i) {
2958 		struct net_device *netdev = adapter->port[i];
2959 
2960 		if (netif_running(netdev)) {
2961 			if (cxgb_open(netdev)) {
2962 				dev_err(&adapter->pdev->dev,
2963 					"can't bring device back up"
2964 					" after reset\n");
2965 				continue;
2966 			}
2967 		}
2968 	}
2969 
2970 	if (is_offload(adapter) && !ofld_disable)
2971 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2972 }
2973 
2974 /*
2975  * processes a fatal error.
2976  * Bring the ports down, reset the chip, bring the ports back up.
2977  */
fatal_error_task(struct work_struct * work)2978 static void fatal_error_task(struct work_struct *work)
2979 {
2980 	struct adapter *adapter = container_of(work, struct adapter,
2981 					       fatal_error_handler_task);
2982 	int err = 0;
2983 
2984 	rtnl_lock();
2985 	err = t3_adapter_error(adapter, 1, 1);
2986 	if (!err)
2987 		err = t3_reenable_adapter(adapter);
2988 	if (!err)
2989 		t3_resume_ports(adapter);
2990 
2991 	CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2992 	rtnl_unlock();
2993 }
2994 
t3_fatal_err(struct adapter * adapter)2995 void t3_fatal_err(struct adapter *adapter)
2996 {
2997 	unsigned int fw_status[4];
2998 
2999 	if (adapter->flags & FULL_INIT_DONE) {
3000 		t3_sge_stop_dma(adapter);
3001 		t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
3002 		t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
3003 		t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
3004 		t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
3005 
3006 		spin_lock(&adapter->work_lock);
3007 		t3_intr_disable(adapter);
3008 		queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
3009 		spin_unlock(&adapter->work_lock);
3010 	}
3011 	CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
3012 	if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
3013 		CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3014 			 fw_status[0], fw_status[1],
3015 			 fw_status[2], fw_status[3]);
3016 }
3017 
3018 /**
3019  * t3_io_error_detected - called when PCI error is detected
3020  * @pdev: Pointer to PCI device
3021  * @state: The current pci connection state
3022  *
3023  * This function is called after a PCI bus error affecting
3024  * this device has been detected.
3025  */
t3_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3026 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3027 					     pci_channel_state_t state)
3028 {
3029 	struct adapter *adapter = pci_get_drvdata(pdev);
3030 
3031 	if (state == pci_channel_io_perm_failure)
3032 		return PCI_ERS_RESULT_DISCONNECT;
3033 
3034 	t3_adapter_error(adapter, 0, 0);
3035 
3036 	/* Request a slot reset. */
3037 	return PCI_ERS_RESULT_NEED_RESET;
3038 }
3039 
3040 /**
3041  * t3_io_slot_reset - called after the pci bus has been reset.
3042  * @pdev: Pointer to PCI device
3043  *
3044  * Restart the card from scratch, as if from a cold-boot.
3045  */
t3_io_slot_reset(struct pci_dev * pdev)3046 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3047 {
3048 	struct adapter *adapter = pci_get_drvdata(pdev);
3049 
3050 	if (!t3_reenable_adapter(adapter))
3051 		return PCI_ERS_RESULT_RECOVERED;
3052 
3053 	return PCI_ERS_RESULT_DISCONNECT;
3054 }
3055 
3056 /**
3057  * t3_io_resume - called when traffic can start flowing again.
3058  * @pdev: Pointer to PCI device
3059  *
3060  * This callback is called when the error recovery driver tells us that
3061  * its OK to resume normal operation.
3062  */
t3_io_resume(struct pci_dev * pdev)3063 static void t3_io_resume(struct pci_dev *pdev)
3064 {
3065 	struct adapter *adapter = pci_get_drvdata(pdev);
3066 
3067 	CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3068 		 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3069 
3070 	rtnl_lock();
3071 	t3_resume_ports(adapter);
3072 	rtnl_unlock();
3073 }
3074 
3075 static const struct pci_error_handlers t3_err_handler = {
3076 	.error_detected = t3_io_error_detected,
3077 	.slot_reset = t3_io_slot_reset,
3078 	.resume = t3_io_resume,
3079 };
3080 
3081 /*
3082  * Set the number of qsets based on the number of CPUs and the number of ports,
3083  * not to exceed the number of available qsets, assuming there are enough qsets
3084  * per port in HW.
3085  */
set_nqsets(struct adapter * adap)3086 static void set_nqsets(struct adapter *adap)
3087 {
3088 	int i, j = 0;
3089 	int num_cpus = netif_get_num_default_rss_queues();
3090 	int hwports = adap->params.nports;
3091 	int nqsets = adap->msix_nvectors - 1;
3092 
3093 	if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3094 		if (hwports == 2 &&
3095 		    (hwports * nqsets > SGE_QSETS ||
3096 		     num_cpus >= nqsets / hwports))
3097 			nqsets /= hwports;
3098 		if (nqsets > num_cpus)
3099 			nqsets = num_cpus;
3100 		if (nqsets < 1 || hwports == 4)
3101 			nqsets = 1;
3102 	} else
3103 		nqsets = 1;
3104 
3105 	for_each_port(adap, i) {
3106 		struct port_info *pi = adap2pinfo(adap, i);
3107 
3108 		pi->first_qset = j;
3109 		pi->nqsets = nqsets;
3110 		j = pi->first_qset + nqsets;
3111 
3112 		dev_info(&adap->pdev->dev,
3113 			 "Port %d using %d queue sets.\n", i, nqsets);
3114 	}
3115 }
3116 
cxgb_enable_msix(struct adapter * adap)3117 static int cxgb_enable_msix(struct adapter *adap)
3118 {
3119 	struct msix_entry entries[SGE_QSETS + 1];
3120 	int vectors;
3121 	int i;
3122 
3123 	vectors = ARRAY_SIZE(entries);
3124 	for (i = 0; i < vectors; ++i)
3125 		entries[i].entry = i;
3126 
3127 	vectors = pci_enable_msix_range(adap->pdev, entries,
3128 					adap->params.nports + 1, vectors);
3129 	if (vectors < 0)
3130 		return vectors;
3131 
3132 	for (i = 0; i < vectors; ++i)
3133 		adap->msix_info[i].vec = entries[i].vector;
3134 	adap->msix_nvectors = vectors;
3135 
3136 	return 0;
3137 }
3138 
print_port_info(struct adapter * adap,const struct adapter_info * ai)3139 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3140 {
3141 	static const char *pci_variant[] = {
3142 		"PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3143 	};
3144 
3145 	int i;
3146 	char buf[80];
3147 
3148 	if (is_pcie(adap))
3149 		snprintf(buf, sizeof(buf), "%s x%d",
3150 			 pci_variant[adap->params.pci.variant],
3151 			 adap->params.pci.width);
3152 	else
3153 		snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3154 			 pci_variant[adap->params.pci.variant],
3155 			 adap->params.pci.speed, adap->params.pci.width);
3156 
3157 	for_each_port(adap, i) {
3158 		struct net_device *dev = adap->port[i];
3159 		const struct port_info *pi = netdev_priv(dev);
3160 
3161 		if (!test_bit(i, &adap->registered_device_map))
3162 			continue;
3163 		netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3164 			    ai->desc, pi->phy.desc,
3165 			    is_offload(adap) ? "R" : "", adap->params.rev, buf,
3166 			    (adap->flags & USING_MSIX) ? " MSI-X" :
3167 			    (adap->flags & USING_MSI) ? " MSI" : "");
3168 		if (adap->name == dev->name && adap->params.vpd.mclk)
3169 			pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3170 			       adap->name, t3_mc7_size(&adap->cm) >> 20,
3171 			       t3_mc7_size(&adap->pmtx) >> 20,
3172 			       t3_mc7_size(&adap->pmrx) >> 20,
3173 			       adap->params.vpd.sn);
3174 	}
3175 }
3176 
3177 static const struct net_device_ops cxgb_netdev_ops = {
3178 	.ndo_open		= cxgb_open,
3179 	.ndo_stop		= cxgb_close,
3180 	.ndo_start_xmit		= t3_eth_xmit,
3181 	.ndo_get_stats		= cxgb_get_stats,
3182 	.ndo_validate_addr	= eth_validate_addr,
3183 	.ndo_set_rx_mode	= cxgb_set_rxmode,
3184 	.ndo_do_ioctl		= cxgb_ioctl,
3185 	.ndo_change_mtu		= cxgb_change_mtu,
3186 	.ndo_set_mac_address	= cxgb_set_mac_addr,
3187 	.ndo_fix_features	= cxgb_fix_features,
3188 	.ndo_set_features	= cxgb_set_features,
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
3190 	.ndo_poll_controller	= cxgb_netpoll,
3191 #endif
3192 };
3193 
cxgb3_init_iscsi_mac(struct net_device * dev)3194 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3195 {
3196 	struct port_info *pi = netdev_priv(dev);
3197 
3198 	memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3199 	pi->iscsic.mac_addr[3] |= 0x80;
3200 }
3201 
3202 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3203 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3204 			NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3205 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3206 {
3207 	int i, err, pci_using_dac = 0;
3208 	resource_size_t mmio_start, mmio_len;
3209 	const struct adapter_info *ai;
3210 	struct adapter *adapter = NULL;
3211 	struct port_info *pi;
3212 
3213 	if (!cxgb3_wq) {
3214 		cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3215 		if (!cxgb3_wq) {
3216 			pr_err("cannot initialize work queue\n");
3217 			return -ENOMEM;
3218 		}
3219 	}
3220 
3221 	err = pci_enable_device(pdev);
3222 	if (err) {
3223 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3224 		goto out;
3225 	}
3226 
3227 	err = pci_request_regions(pdev, DRV_NAME);
3228 	if (err) {
3229 		/* Just info, some other driver may have claimed the device. */
3230 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3231 		goto out_disable_device;
3232 	}
3233 
3234 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3235 		pci_using_dac = 1;
3236 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3237 		if (err) {
3238 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3239 			       "coherent allocations\n");
3240 			goto out_release_regions;
3241 		}
3242 	} else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3243 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3244 		goto out_release_regions;
3245 	}
3246 
3247 	pci_set_master(pdev);
3248 	pci_save_state(pdev);
3249 
3250 	mmio_start = pci_resource_start(pdev, 0);
3251 	mmio_len = pci_resource_len(pdev, 0);
3252 	ai = t3_get_adapter_info(ent->driver_data);
3253 
3254 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3255 	if (!adapter) {
3256 		err = -ENOMEM;
3257 		goto out_release_regions;
3258 	}
3259 
3260 	adapter->nofail_skb =
3261 		alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3262 	if (!adapter->nofail_skb) {
3263 		dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3264 		err = -ENOMEM;
3265 		goto out_free_adapter;
3266 	}
3267 
3268 	adapter->regs = ioremap(mmio_start, mmio_len);
3269 	if (!adapter->regs) {
3270 		dev_err(&pdev->dev, "cannot map device registers\n");
3271 		err = -ENOMEM;
3272 		goto out_free_adapter_nofail;
3273 	}
3274 
3275 	adapter->pdev = pdev;
3276 	adapter->name = pci_name(pdev);
3277 	adapter->msg_enable = dflt_msg_enable;
3278 	adapter->mmio_len = mmio_len;
3279 
3280 	mutex_init(&adapter->mdio_lock);
3281 	spin_lock_init(&adapter->work_lock);
3282 	spin_lock_init(&adapter->stats_lock);
3283 
3284 	INIT_LIST_HEAD(&adapter->adapter_list);
3285 	INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3286 	INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3287 
3288 	INIT_WORK(&adapter->db_full_task, db_full_task);
3289 	INIT_WORK(&adapter->db_empty_task, db_empty_task);
3290 	INIT_WORK(&adapter->db_drop_task, db_drop_task);
3291 
3292 	INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3293 
3294 	for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3295 		struct net_device *netdev;
3296 
3297 		netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3298 		if (!netdev) {
3299 			err = -ENOMEM;
3300 			goto out_free_dev;
3301 		}
3302 
3303 		SET_NETDEV_DEV(netdev, &pdev->dev);
3304 
3305 		adapter->port[i] = netdev;
3306 		pi = netdev_priv(netdev);
3307 		pi->adapter = adapter;
3308 		pi->port_id = i;
3309 		netif_carrier_off(netdev);
3310 		netdev->irq = pdev->irq;
3311 		netdev->mem_start = mmio_start;
3312 		netdev->mem_end = mmio_start + mmio_len - 1;
3313 		netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3314 			NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3315 		netdev->features |= netdev->hw_features |
3316 				    NETIF_F_HW_VLAN_CTAG_TX;
3317 		netdev->vlan_features |= netdev->features & VLAN_FEAT;
3318 		if (pci_using_dac)
3319 			netdev->features |= NETIF_F_HIGHDMA;
3320 
3321 		netdev->netdev_ops = &cxgb_netdev_ops;
3322 		netdev->ethtool_ops = &cxgb_ethtool_ops;
3323 		netdev->min_mtu = 81;
3324 		netdev->max_mtu = ETH_MAX_MTU;
3325 		netdev->dev_port = pi->port_id;
3326 	}
3327 
3328 	pci_set_drvdata(pdev, adapter);
3329 	if (t3_prep_adapter(adapter, ai, 1) < 0) {
3330 		err = -ENODEV;
3331 		goto out_free_dev;
3332 	}
3333 
3334 	/*
3335 	 * The card is now ready to go.  If any errors occur during device
3336 	 * registration we do not fail the whole card but rather proceed only
3337 	 * with the ports we manage to register successfully.  However we must
3338 	 * register at least one net device.
3339 	 */
3340 	for_each_port(adapter, i) {
3341 		err = register_netdev(adapter->port[i]);
3342 		if (err)
3343 			dev_warn(&pdev->dev,
3344 				 "cannot register net device %s, skipping\n",
3345 				 adapter->port[i]->name);
3346 		else {
3347 			/*
3348 			 * Change the name we use for messages to the name of
3349 			 * the first successfully registered interface.
3350 			 */
3351 			if (!adapter->registered_device_map)
3352 				adapter->name = adapter->port[i]->name;
3353 
3354 			__set_bit(i, &adapter->registered_device_map);
3355 		}
3356 	}
3357 	if (!adapter->registered_device_map) {
3358 		dev_err(&pdev->dev, "could not register any net devices\n");
3359 		goto out_free_dev;
3360 	}
3361 
3362 	for_each_port(adapter, i)
3363 		cxgb3_init_iscsi_mac(adapter->port[i]);
3364 
3365 	/* Driver's ready. Reflect it on LEDs */
3366 	t3_led_ready(adapter);
3367 
3368 	if (is_offload(adapter)) {
3369 		__set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3370 		cxgb3_adapter_ofld(adapter);
3371 	}
3372 
3373 	/* See what interrupts we'll be using */
3374 	if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3375 		adapter->flags |= USING_MSIX;
3376 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
3377 		adapter->flags |= USING_MSI;
3378 
3379 	set_nqsets(adapter);
3380 
3381 	err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3382 				 &cxgb3_attr_group);
3383 	if (err) {
3384 		dev_err(&pdev->dev, "cannot create sysfs group\n");
3385 		goto out_close_led;
3386 	}
3387 
3388 	print_port_info(adapter, ai);
3389 	return 0;
3390 
3391 out_close_led:
3392 	t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
3393 
3394 out_free_dev:
3395 	iounmap(adapter->regs);
3396 	for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3397 		if (adapter->port[i])
3398 			free_netdev(adapter->port[i]);
3399 
3400 out_free_adapter_nofail:
3401 	kfree_skb(adapter->nofail_skb);
3402 
3403 out_free_adapter:
3404 	kfree(adapter);
3405 
3406 out_release_regions:
3407 	pci_release_regions(pdev);
3408 out_disable_device:
3409 	pci_disable_device(pdev);
3410 out:
3411 	return err;
3412 }
3413 
remove_one(struct pci_dev * pdev)3414 static void remove_one(struct pci_dev *pdev)
3415 {
3416 	struct adapter *adapter = pci_get_drvdata(pdev);
3417 
3418 	if (adapter) {
3419 		int i;
3420 
3421 		t3_sge_stop(adapter);
3422 		sysfs_remove_group(&adapter->port[0]->dev.kobj,
3423 				   &cxgb3_attr_group);
3424 
3425 		if (is_offload(adapter)) {
3426 			cxgb3_adapter_unofld(adapter);
3427 			if (test_bit(OFFLOAD_DEVMAP_BIT,
3428 				     &adapter->open_device_map))
3429 				offload_close(&adapter->tdev);
3430 		}
3431 
3432 		for_each_port(adapter, i)
3433 		    if (test_bit(i, &adapter->registered_device_map))
3434 			unregister_netdev(adapter->port[i]);
3435 
3436 		t3_stop_sge_timers(adapter);
3437 		t3_free_sge_resources(adapter);
3438 		cxgb_disable_msi(adapter);
3439 
3440 		for_each_port(adapter, i)
3441 			if (adapter->port[i])
3442 				free_netdev(adapter->port[i]);
3443 
3444 		iounmap(adapter->regs);
3445 		kfree_skb(adapter->nofail_skb);
3446 		kfree(adapter);
3447 		pci_release_regions(pdev);
3448 		pci_disable_device(pdev);
3449 	}
3450 }
3451 
3452 static struct pci_driver driver = {
3453 	.name = DRV_NAME,
3454 	.id_table = cxgb3_pci_tbl,
3455 	.probe = init_one,
3456 	.remove = remove_one,
3457 	.err_handler = &t3_err_handler,
3458 };
3459 
cxgb3_init_module(void)3460 static int __init cxgb3_init_module(void)
3461 {
3462 	int ret;
3463 
3464 	cxgb3_offload_init();
3465 
3466 	ret = pci_register_driver(&driver);
3467 	return ret;
3468 }
3469 
cxgb3_cleanup_module(void)3470 static void __exit cxgb3_cleanup_module(void)
3471 {
3472 	pci_unregister_driver(&driver);
3473 	if (cxgb3_wq)
3474 		destroy_workqueue(cxgb3_wq);
3475 }
3476 
3477 module_init(cxgb3_init_module);
3478 module_exit(cxgb3_cleanup_module);
3479