1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_vlan.h>
42 #include <linux/mdio.h>
43 #include <linux/sockios.h>
44 #include <linux/workqueue.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/stringify.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/nospec.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66 MAX_TXQ_ENTRIES = 16384,
67 MAX_CTRL_TXQ_ENTRIES = 1024,
68 MAX_RSPQ_ENTRIES = 16384,
69 MAX_RX_BUFFERS = 16384,
70 MAX_RX_JUMBO_BUFFERS = 16384,
71 MIN_TXQ_ENTRIES = 4,
72 MIN_CTRL_TXQ_ENTRIES = 4,
73 MIN_RSPQ_ENTRIES = 32,
74 MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 CH_DEVICE(0x20, 0), /* PE9000 */
90 CH_DEVICE(0x21, 1), /* T302E */
91 CH_DEVICE(0x22, 2), /* T310E */
92 CH_DEVICE(0x23, 3), /* T320X */
93 CH_DEVICE(0x24, 1), /* T302X */
94 CH_DEVICE(0x25, 3), /* T320E */
95 CH_DEVICE(0x26, 2), /* T310X */
96 CH_DEVICE(0x30, 2), /* T3B10 */
97 CH_DEVICE(0x31, 3), /* T3B20 */
98 CH_DEVICE(0x32, 1), /* T3B02 */
99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
100 CH_DEVICE(0x36, 3), /* S320E-CR */
101 CH_DEVICE(0x37, 7), /* N320E-G2 */
102 {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
109
110 static int dflt_msg_enable = DFLT_MSG_ENABLE;
111
112 module_param(dflt_msg_enable, int, 0644);
113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114
115 /*
116 * The driver uses the best interrupt scheme available on a platform in the
117 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
118 * of these schemes the driver may consider as follows:
119 *
120 * msi = 2: choose from among all three options
121 * msi = 1: only consider MSI and pin interrupts
122 * msi = 0: force pin interrupts
123 */
124 static int msi = 2;
125
126 module_param(msi, int, 0644);
127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128
129 /*
130 * The driver enables offload as a default.
131 * To disable it, use ofld_disable = 1.
132 */
133
134 static int ofld_disable = 0;
135
136 module_param(ofld_disable, int, 0644);
137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138
139 /*
140 * We have work elements that we need to cancel when an interface is taken
141 * down. Normally the work elements would be executed by keventd but that
142 * can deadlock because of linkwatch. If our close method takes the rtnl
143 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
144 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
145 * for our work to complete. Get our own work queue to solve this.
146 */
147 struct workqueue_struct *cxgb3_wq;
148
149 /**
150 * link_report - show link status and link speed/duplex
151 * @dev: the port whose settings are to be reported
152 *
153 * Shows the link status, speed, and duplex of a port.
154 */
link_report(struct net_device * dev)155 static void link_report(struct net_device *dev)
156 {
157 if (!netif_carrier_ok(dev))
158 netdev_info(dev, "link down\n");
159 else {
160 const char *s = "10Mbps";
161 const struct port_info *p = netdev_priv(dev);
162
163 switch (p->link_config.speed) {
164 case SPEED_10000:
165 s = "10Gbps";
166 break;
167 case SPEED_1000:
168 s = "1000Mbps";
169 break;
170 case SPEED_100:
171 s = "100Mbps";
172 break;
173 }
174
175 netdev_info(dev, "link up, %s, %s-duplex\n",
176 s, p->link_config.duplex == DUPLEX_FULL
177 ? "full" : "half");
178 }
179 }
180
enable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)181 static void enable_tx_fifo_drain(struct adapter *adapter,
182 struct port_info *pi)
183 {
184 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
185 F_ENDROPPKT);
186 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
187 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
188 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
189 }
190
disable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)191 static void disable_tx_fifo_drain(struct adapter *adapter,
192 struct port_info *pi)
193 {
194 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
195 F_ENDROPPKT, 0);
196 }
197
t3_os_link_fault(struct adapter * adap,int port_id,int state)198 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
199 {
200 struct net_device *dev = adap->port[port_id];
201 struct port_info *pi = netdev_priv(dev);
202
203 if (state == netif_carrier_ok(dev))
204 return;
205
206 if (state) {
207 struct cmac *mac = &pi->mac;
208
209 netif_carrier_on(dev);
210
211 disable_tx_fifo_drain(adap, pi);
212
213 /* Clear local faults */
214 t3_xgm_intr_disable(adap, pi->port_id);
215 t3_read_reg(adap, A_XGM_INT_STATUS +
216 pi->mac.offset);
217 t3_write_reg(adap,
218 A_XGM_INT_CAUSE + pi->mac.offset,
219 F_XGM_INT);
220
221 t3_set_reg_field(adap,
222 A_XGM_INT_ENABLE +
223 pi->mac.offset,
224 F_XGM_INT, F_XGM_INT);
225 t3_xgm_intr_enable(adap, pi->port_id);
226
227 t3_mac_enable(mac, MAC_DIRECTION_TX);
228 } else {
229 netif_carrier_off(dev);
230
231 /* Flush TX FIFO */
232 enable_tx_fifo_drain(adap, pi);
233 }
234 link_report(dev);
235 }
236
237 /**
238 * t3_os_link_changed - handle link status changes
239 * @adapter: the adapter associated with the link change
240 * @port_id: the port index whose limk status has changed
241 * @link_stat: the new status of the link
242 * @speed: the new speed setting
243 * @duplex: the new duplex setting
244 * @pause: the new flow-control setting
245 *
246 * This is the OS-dependent handler for link status changes. The OS
247 * neutral handler takes care of most of the processing for these events,
248 * then calls this handler for any OS-specific processing.
249 */
t3_os_link_changed(struct adapter * adapter,int port_id,int link_stat,int speed,int duplex,int pause)250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
251 int speed, int duplex, int pause)
252 {
253 struct net_device *dev = adapter->port[port_id];
254 struct port_info *pi = netdev_priv(dev);
255 struct cmac *mac = &pi->mac;
256
257 /* Skip changes from disabled ports. */
258 if (!netif_running(dev))
259 return;
260
261 if (link_stat != netif_carrier_ok(dev)) {
262 if (link_stat) {
263 disable_tx_fifo_drain(adapter, pi);
264
265 t3_mac_enable(mac, MAC_DIRECTION_RX);
266
267 /* Clear local faults */
268 t3_xgm_intr_disable(adapter, pi->port_id);
269 t3_read_reg(adapter, A_XGM_INT_STATUS +
270 pi->mac.offset);
271 t3_write_reg(adapter,
272 A_XGM_INT_CAUSE + pi->mac.offset,
273 F_XGM_INT);
274
275 t3_set_reg_field(adapter,
276 A_XGM_INT_ENABLE + pi->mac.offset,
277 F_XGM_INT, F_XGM_INT);
278 t3_xgm_intr_enable(adapter, pi->port_id);
279
280 netif_carrier_on(dev);
281 } else {
282 netif_carrier_off(dev);
283
284 t3_xgm_intr_disable(adapter, pi->port_id);
285 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
286 t3_set_reg_field(adapter,
287 A_XGM_INT_ENABLE + pi->mac.offset,
288 F_XGM_INT, 0);
289
290 if (is_10G(adapter))
291 pi->phy.ops->power_down(&pi->phy, 1);
292
293 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
294 t3_mac_disable(mac, MAC_DIRECTION_RX);
295 t3_link_start(&pi->phy, mac, &pi->link_config);
296
297 /* Flush TX FIFO */
298 enable_tx_fifo_drain(adapter, pi);
299 }
300
301 link_report(dev);
302 }
303 }
304
305 /**
306 * t3_os_phymod_changed - handle PHY module changes
307 * @adap: the adapter associated with the link change
308 * @port_id: the port index whose limk status has changed
309 *
310 * This is the OS-dependent handler for PHY module changes. It is
311 * invoked when a PHY module is removed or inserted for any OS-specific
312 * processing.
313 */
t3_os_phymod_changed(struct adapter * adap,int port_id)314 void t3_os_phymod_changed(struct adapter *adap, int port_id)
315 {
316 static const char *mod_str[] = {
317 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
318 };
319
320 const struct net_device *dev = adap->port[port_id];
321 const struct port_info *pi = netdev_priv(dev);
322
323 if (pi->phy.modtype == phy_modtype_none)
324 netdev_info(dev, "PHY module unplugged\n");
325 else
326 netdev_info(dev, "%s PHY module inserted\n",
327 mod_str[pi->phy.modtype]);
328 }
329
cxgb_set_rxmode(struct net_device * dev)330 static void cxgb_set_rxmode(struct net_device *dev)
331 {
332 struct port_info *pi = netdev_priv(dev);
333
334 t3_mac_set_rx_mode(&pi->mac, dev);
335 }
336
337 /**
338 * link_start - enable a port
339 * @dev: the device to enable
340 *
341 * Performs the MAC and PHY actions needed to enable a port.
342 */
link_start(struct net_device * dev)343 static void link_start(struct net_device *dev)
344 {
345 struct port_info *pi = netdev_priv(dev);
346 struct cmac *mac = &pi->mac;
347
348 t3_mac_reset(mac);
349 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
350 t3_mac_set_mtu(mac, dev->mtu);
351 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
352 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
353 t3_mac_set_rx_mode(mac, dev);
354 t3_link_start(&pi->phy, mac, &pi->link_config);
355 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
356 }
357
cxgb_disable_msi(struct adapter * adapter)358 static inline void cxgb_disable_msi(struct adapter *adapter)
359 {
360 if (adapter->flags & USING_MSIX) {
361 pci_disable_msix(adapter->pdev);
362 adapter->flags &= ~USING_MSIX;
363 } else if (adapter->flags & USING_MSI) {
364 pci_disable_msi(adapter->pdev);
365 adapter->flags &= ~USING_MSI;
366 }
367 }
368
369 /*
370 * Interrupt handler for asynchronous events used with MSI-X.
371 */
t3_async_intr_handler(int irq,void * cookie)372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
373 {
374 t3_slow_intr_handler(cookie);
375 return IRQ_HANDLED;
376 }
377
378 /*
379 * Name the MSI-X interrupts.
380 */
name_msix_vecs(struct adapter * adap)381 static void name_msix_vecs(struct adapter *adap)
382 {
383 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
384
385 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
386 adap->msix_info[0].desc[n] = 0;
387
388 for_each_port(adap, j) {
389 struct net_device *d = adap->port[j];
390 const struct port_info *pi = netdev_priv(d);
391
392 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
393 snprintf(adap->msix_info[msi_idx].desc, n,
394 "%s-%d", d->name, pi->first_qset + i);
395 adap->msix_info[msi_idx].desc[n] = 0;
396 }
397 }
398 }
399
request_msix_data_irqs(struct adapter * adap)400 static int request_msix_data_irqs(struct adapter *adap)
401 {
402 int i, j, err, qidx = 0;
403
404 for_each_port(adap, i) {
405 int nqsets = adap2pinfo(adap, i)->nqsets;
406
407 for (j = 0; j < nqsets; ++j) {
408 err = request_irq(adap->msix_info[qidx + 1].vec,
409 t3_intr_handler(adap,
410 adap->sge.qs[qidx].
411 rspq.polling), 0,
412 adap->msix_info[qidx + 1].desc,
413 &adap->sge.qs[qidx]);
414 if (err) {
415 while (--qidx >= 0)
416 free_irq(adap->msix_info[qidx + 1].vec,
417 &adap->sge.qs[qidx]);
418 return err;
419 }
420 qidx++;
421 }
422 }
423 return 0;
424 }
425
free_irq_resources(struct adapter * adapter)426 static void free_irq_resources(struct adapter *adapter)
427 {
428 if (adapter->flags & USING_MSIX) {
429 int i, n = 0;
430
431 free_irq(adapter->msix_info[0].vec, adapter);
432 for_each_port(adapter, i)
433 n += adap2pinfo(adapter, i)->nqsets;
434
435 for (i = 0; i < n; ++i)
436 free_irq(adapter->msix_info[i + 1].vec,
437 &adapter->sge.qs[i]);
438 } else
439 free_irq(adapter->pdev->irq, adapter);
440 }
441
await_mgmt_replies(struct adapter * adap,unsigned long init_cnt,unsigned long n)442 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
443 unsigned long n)
444 {
445 int attempts = 10;
446
447 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
448 if (!--attempts)
449 return -ETIMEDOUT;
450 msleep(10);
451 }
452 return 0;
453 }
454
init_tp_parity(struct adapter * adap)455 static int init_tp_parity(struct adapter *adap)
456 {
457 int i;
458 struct sk_buff *skb;
459 struct cpl_set_tcb_field *greq;
460 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
461
462 t3_tp_set_offload_mode(adap, 1);
463
464 for (i = 0; i < 16; i++) {
465 struct cpl_smt_write_req *req;
466
467 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
468 if (!skb)
469 skb = adap->nofail_skb;
470 if (!skb)
471 goto alloc_skb_fail;
472
473 req = __skb_put_zero(skb, sizeof(*req));
474 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
475 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
476 req->mtu_idx = NMTUS - 1;
477 req->iff = i;
478 t3_mgmt_tx(adap, skb);
479 if (skb == adap->nofail_skb) {
480 await_mgmt_replies(adap, cnt, i + 1);
481 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
482 if (!adap->nofail_skb)
483 goto alloc_skb_fail;
484 }
485 }
486
487 for (i = 0; i < 2048; i++) {
488 struct cpl_l2t_write_req *req;
489
490 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
491 if (!skb)
492 skb = adap->nofail_skb;
493 if (!skb)
494 goto alloc_skb_fail;
495
496 req = __skb_put_zero(skb, sizeof(*req));
497 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
498 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
499 req->params = htonl(V_L2T_W_IDX(i));
500 t3_mgmt_tx(adap, skb);
501 if (skb == adap->nofail_skb) {
502 await_mgmt_replies(adap, cnt, 16 + i + 1);
503 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
504 if (!adap->nofail_skb)
505 goto alloc_skb_fail;
506 }
507 }
508
509 for (i = 0; i < 2048; i++) {
510 struct cpl_rte_write_req *req;
511
512 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
513 if (!skb)
514 skb = adap->nofail_skb;
515 if (!skb)
516 goto alloc_skb_fail;
517
518 req = __skb_put_zero(skb, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
528 }
529 }
530
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
536
537 greq = __skb_put_zero(skb, sizeof(*greq));
538 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540 greq->mask = cpu_to_be64(1);
541 t3_mgmt_tx(adap, skb);
542
543 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544 if (skb == adap->nofail_skb) {
545 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547 }
548
549 t3_tp_set_offload_mode(adap, 0);
550 return i;
551
552 alloc_skb_fail:
553 t3_tp_set_offload_mode(adap, 0);
554 return -ENOMEM;
555 }
556
557 /**
558 * setup_rss - configure RSS
559 * @adap: the adapter
560 *
561 * Sets up RSS to distribute packets to multiple receive queues. We
562 * configure the RSS CPU lookup table to distribute to the number of HW
563 * receive queues, and the response queue lookup table to narrow that
564 * down to the response queues actually configured for each port.
565 * We always configure the RSS mapping for two ports since the mapping
566 * table has plenty of entries.
567 */
setup_rss(struct adapter * adap)568 static void setup_rss(struct adapter *adap)
569 {
570 int i;
571 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573 u8 cpus[SGE_QSETS + 1];
574 u16 rspq_map[RSS_TABLE_SIZE + 1];
575
576 for (i = 0; i < SGE_QSETS; ++i)
577 cpus[i] = i;
578 cpus[SGE_QSETS] = 0xff; /* terminator */
579
580 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581 rspq_map[i] = i % nq0;
582 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583 }
584 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
585
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
ring_dbs(struct adapter * adap)591 static void ring_dbs(struct adapter *adap)
592 {
593 int i, j;
594
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
597
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 }
602 }
603
init_napi(struct adapter * adap)604 static void init_napi(struct adapter *adap)
605 {
606 int i;
607
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
610
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
614 }
615
616 /*
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
620 */
621 adap->flags |= NAPI_INIT;
622 }
623
624 /*
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
628 */
quiesce_rx(struct adapter * adap)629 static void quiesce_rx(struct adapter *adap)
630 {
631 int i;
632
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
636 }
637
enable_all_napi(struct adapter * adap)638 static void enable_all_napi(struct adapter *adap)
639 {
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647 * setup_sge_qsets - configure SGE Tx/Rx/response queues
648 * @adap: the adapter
649 *
650 * Determines how many sets of SGE queues to use and initializes them.
651 * We support multiple queue sets per port if we have MSI-X, otherwise
652 * just one queue set per port.
653 */
setup_sge_qsets(struct adapter * adap)654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 int i, j, err, irq_idx = 0, qset_idx = 0;
657 unsigned int ntxq = SGE_TXQ_PER_SET;
658
659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 irq_idx = -1;
661
662 for_each_port(adap, i) {
663 struct net_device *dev = adap->port[i];
664 struct port_info *pi = netdev_priv(dev);
665
666 pi->qs = &adap->sge.qs[pi->first_qset];
667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670 irq_idx,
671 &adap->params.sge.qset[qset_idx], ntxq, dev,
672 netdev_get_tx_queue(dev, j));
673 if (err) {
674 t3_free_sge_resources(adap);
675 return err;
676 }
677 }
678 }
679
680 return 0;
681 }
682
attr_show(struct device * d,char * buf,ssize_t (* format)(struct net_device *,char *))683 static ssize_t attr_show(struct device *d, char *buf,
684 ssize_t(*format) (struct net_device *, char *))
685 {
686 ssize_t len;
687
688 /* Synchronize with ioctls that may shut down the device */
689 rtnl_lock();
690 len = (*format) (to_net_dev(d), buf);
691 rtnl_unlock();
692 return len;
693 }
694
attr_store(struct device * d,const char * buf,size_t len,ssize_t (* set)(struct net_device *,unsigned int),unsigned int min_val,unsigned int max_val)695 static ssize_t attr_store(struct device *d,
696 const char *buf, size_t len,
697 ssize_t(*set) (struct net_device *, unsigned int),
698 unsigned int min_val, unsigned int max_val)
699 {
700 ssize_t ret;
701 unsigned int val;
702
703 if (!capable(CAP_NET_ADMIN))
704 return -EPERM;
705
706 ret = kstrtouint(buf, 0, &val);
707 if (ret)
708 return ret;
709 if (val < min_val || val > max_val)
710 return -EINVAL;
711
712 rtnl_lock();
713 ret = (*set) (to_net_dev(d), val);
714 if (!ret)
715 ret = len;
716 rtnl_unlock();
717 return ret;
718 }
719
720 #define CXGB3_SHOW(name, val_expr) \
721 static ssize_t format_##name(struct net_device *dev, char *buf) \
722 { \
723 struct port_info *pi = netdev_priv(dev); \
724 struct adapter *adap = pi->adapter; \
725 return sprintf(buf, "%u\n", val_expr); \
726 } \
727 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
728 char *buf) \
729 { \
730 return attr_show(d, buf, format_##name); \
731 }
732
set_nfilters(struct net_device * dev,unsigned int val)733 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
734 {
735 struct port_info *pi = netdev_priv(dev);
736 struct adapter *adap = pi->adapter;
737 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
738
739 if (adap->flags & FULL_INIT_DONE)
740 return -EBUSY;
741 if (val && adap->params.rev == 0)
742 return -EINVAL;
743 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
744 min_tids)
745 return -EINVAL;
746 adap->params.mc5.nfilters = val;
747 return 0;
748 }
749
store_nfilters(struct device * d,struct device_attribute * attr,const char * buf,size_t len)750 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
751 const char *buf, size_t len)
752 {
753 return attr_store(d, buf, len, set_nfilters, 0, ~0);
754 }
755
set_nservers(struct net_device * dev,unsigned int val)756 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
757 {
758 struct port_info *pi = netdev_priv(dev);
759 struct adapter *adap = pi->adapter;
760
761 if (adap->flags & FULL_INIT_DONE)
762 return -EBUSY;
763 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
764 MC5_MIN_TIDS)
765 return -EINVAL;
766 adap->params.mc5.nservers = val;
767 return 0;
768 }
769
store_nservers(struct device * d,struct device_attribute * attr,const char * buf,size_t len)770 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
771 const char *buf, size_t len)
772 {
773 return attr_store(d, buf, len, set_nservers, 0, ~0);
774 }
775
776 #define CXGB3_ATTR_R(name, val_expr) \
777 CXGB3_SHOW(name, val_expr) \
778 static DEVICE_ATTR(name, 0444, show_##name, NULL)
779
780 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
781 CXGB3_SHOW(name, val_expr) \
782 static DEVICE_ATTR(name, 0644, show_##name, store_method)
783
784 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
785 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
786 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
787
788 static struct attribute *cxgb3_attrs[] = {
789 &dev_attr_cam_size.attr,
790 &dev_attr_nfilters.attr,
791 &dev_attr_nservers.attr,
792 NULL
793 };
794
795 static const struct attribute_group cxgb3_attr_group = {
796 .attrs = cxgb3_attrs,
797 };
798
tm_attr_show(struct device * d,char * buf,int sched)799 static ssize_t tm_attr_show(struct device *d,
800 char *buf, int sched)
801 {
802 struct port_info *pi = netdev_priv(to_net_dev(d));
803 struct adapter *adap = pi->adapter;
804 unsigned int v, addr, bpt, cpt;
805 ssize_t len;
806
807 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
808 rtnl_lock();
809 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
810 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
811 if (sched & 1)
812 v >>= 16;
813 bpt = (v >> 8) & 0xff;
814 cpt = v & 0xff;
815 if (!cpt)
816 len = sprintf(buf, "disabled\n");
817 else {
818 v = (adap->params.vpd.cclk * 1000) / cpt;
819 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
820 }
821 rtnl_unlock();
822 return len;
823 }
824
tm_attr_store(struct device * d,const char * buf,size_t len,int sched)825 static ssize_t tm_attr_store(struct device *d,
826 const char *buf, size_t len, int sched)
827 {
828 struct port_info *pi = netdev_priv(to_net_dev(d));
829 struct adapter *adap = pi->adapter;
830 unsigned int val;
831 ssize_t ret;
832
833 if (!capable(CAP_NET_ADMIN))
834 return -EPERM;
835
836 ret = kstrtouint(buf, 0, &val);
837 if (ret)
838 return ret;
839 if (val > 10000000)
840 return -EINVAL;
841
842 rtnl_lock();
843 ret = t3_config_sched(adap, val, sched);
844 if (!ret)
845 ret = len;
846 rtnl_unlock();
847 return ret;
848 }
849
850 #define TM_ATTR(name, sched) \
851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
852 char *buf) \
853 { \
854 return tm_attr_show(d, buf, sched); \
855 } \
856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
857 const char *buf, size_t len) \
858 { \
859 return tm_attr_store(d, buf, len, sched); \
860 } \
861 static DEVICE_ATTR(name, 0644, show_##name, store_##name)
862
863 TM_ATTR(sched0, 0);
864 TM_ATTR(sched1, 1);
865 TM_ATTR(sched2, 2);
866 TM_ATTR(sched3, 3);
867 TM_ATTR(sched4, 4);
868 TM_ATTR(sched5, 5);
869 TM_ATTR(sched6, 6);
870 TM_ATTR(sched7, 7);
871
872 static struct attribute *offload_attrs[] = {
873 &dev_attr_sched0.attr,
874 &dev_attr_sched1.attr,
875 &dev_attr_sched2.attr,
876 &dev_attr_sched3.attr,
877 &dev_attr_sched4.attr,
878 &dev_attr_sched5.attr,
879 &dev_attr_sched6.attr,
880 &dev_attr_sched7.attr,
881 NULL
882 };
883
884 static const struct attribute_group offload_attr_group = {
885 .attrs = offload_attrs,
886 };
887
888 /*
889 * Sends an sk_buff to an offload queue driver
890 * after dealing with any active network taps.
891 */
offload_tx(struct t3cdev * tdev,struct sk_buff * skb)892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
893 {
894 int ret;
895
896 local_bh_disable();
897 ret = t3_offload_tx(tdev, skb);
898 local_bh_enable();
899 return ret;
900 }
901
write_smt_entry(struct adapter * adapter,int idx)902 static int write_smt_entry(struct adapter *adapter, int idx)
903 {
904 struct cpl_smt_write_req *req;
905 struct port_info *pi = netdev_priv(adapter->port[idx]);
906 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907
908 if (!skb)
909 return -ENOMEM;
910
911 req = __skb_put(skb, sizeof(*req));
912 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
915 req->iff = idx;
916 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
917 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
918 skb->priority = 1;
919 offload_tx(&adapter->tdev, skb);
920 return 0;
921 }
922
init_smt(struct adapter * adapter)923 static int init_smt(struct adapter *adapter)
924 {
925 int i;
926
927 for_each_port(adapter, i)
928 write_smt_entry(adapter, i);
929 return 0;
930 }
931
init_port_mtus(struct adapter * adapter)932 static void init_port_mtus(struct adapter *adapter)
933 {
934 unsigned int mtus = adapter->port[0]->mtu;
935
936 if (adapter->port[1])
937 mtus |= adapter->port[1]->mtu << 16;
938 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940
send_pktsched_cmd(struct adapter * adap,int sched,int qidx,int lo,int hi,int port)941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 int hi, int port)
943 {
944 struct sk_buff *skb;
945 struct mngt_pktsched_wr *req;
946 int ret;
947
948 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 if (!skb)
950 skb = adap->nofail_skb;
951 if (!skb)
952 return -ENOMEM;
953
954 req = skb_put(skb, sizeof(*req));
955 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 req->sched = sched;
958 req->idx = qidx;
959 req->min = lo;
960 req->max = hi;
961 req->binding = port;
962 ret = t3_mgmt_tx(adap, skb);
963 if (skb == adap->nofail_skb) {
964 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 GFP_KERNEL);
966 if (!adap->nofail_skb)
967 ret = -ENOMEM;
968 }
969
970 return ret;
971 }
972
bind_qsets(struct adapter * adap)973 static int bind_qsets(struct adapter *adap)
974 {
975 int i, j, err = 0;
976
977 for_each_port(adap, i) {
978 const struct port_info *pi = adap2pinfo(adap, i);
979
980 for (j = 0; j < pi->nqsets; ++j) {
981 int ret = send_pktsched_cmd(adap, 1,
982 pi->first_qset + j, -1,
983 -1, i);
984 if (ret)
985 err = ret;
986 }
987 }
988
989 return err;
990 }
991
992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
993 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
996 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1001 MODULE_FIRMWARE(FW_FNAME);
1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1007
get_edc_fw_name(int edc_idx)1008 static inline const char *get_edc_fw_name(int edc_idx)
1009 {
1010 const char *fw_name = NULL;
1011
1012 switch (edc_idx) {
1013 case EDC_OPT_AEL2005:
1014 fw_name = AEL2005_OPT_EDC_NAME;
1015 break;
1016 case EDC_TWX_AEL2005:
1017 fw_name = AEL2005_TWX_EDC_NAME;
1018 break;
1019 case EDC_TWX_AEL2020:
1020 fw_name = AEL2020_TWX_EDC_NAME;
1021 break;
1022 }
1023 return fw_name;
1024 }
1025
t3_get_edc_fw(struct cphy * phy,int edc_idx,int size)1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1027 {
1028 struct adapter *adapter = phy->adapter;
1029 const struct firmware *fw;
1030 const char *fw_name;
1031 u32 csum;
1032 const __be32 *p;
1033 u16 *cache = phy->phy_cache;
1034 int i, ret = -EINVAL;
1035
1036 fw_name = get_edc_fw_name(edc_idx);
1037 if (fw_name)
1038 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1039 if (ret < 0) {
1040 dev_err(&adapter->pdev->dev,
1041 "could not upgrade firmware: unable to load %s\n",
1042 fw_name);
1043 return ret;
1044 }
1045
1046 /* check size, take checksum in account */
1047 if (fw->size > size + 4) {
1048 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1049 (unsigned int)fw->size, size + 4);
1050 ret = -EINVAL;
1051 }
1052
1053 /* compute checksum */
1054 p = (const __be32 *)fw->data;
1055 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1056 csum += ntohl(p[i]);
1057
1058 if (csum != 0xffffffff) {
1059 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1060 csum);
1061 ret = -EINVAL;
1062 }
1063
1064 for (i = 0; i < size / 4 ; i++) {
1065 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1066 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1067 }
1068
1069 release_firmware(fw);
1070
1071 return ret;
1072 }
1073
upgrade_fw(struct adapter * adap)1074 static int upgrade_fw(struct adapter *adap)
1075 {
1076 int ret;
1077 const struct firmware *fw;
1078 struct device *dev = &adap->pdev->dev;
1079
1080 ret = request_firmware(&fw, FW_FNAME, dev);
1081 if (ret < 0) {
1082 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1083 FW_FNAME);
1084 return ret;
1085 }
1086 ret = t3_load_fw(adap, fw->data, fw->size);
1087 release_firmware(fw);
1088
1089 if (ret == 0)
1090 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1091 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1092 else
1093 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1094 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1095
1096 return ret;
1097 }
1098
t3rev2char(struct adapter * adapter)1099 static inline char t3rev2char(struct adapter *adapter)
1100 {
1101 char rev = 0;
1102
1103 switch(adapter->params.rev) {
1104 case T3_REV_B:
1105 case T3_REV_B2:
1106 rev = 'b';
1107 break;
1108 case T3_REV_C:
1109 rev = 'c';
1110 break;
1111 }
1112 return rev;
1113 }
1114
update_tpsram(struct adapter * adap)1115 static int update_tpsram(struct adapter *adap)
1116 {
1117 const struct firmware *tpsram;
1118 char buf[64];
1119 struct device *dev = &adap->pdev->dev;
1120 int ret;
1121 char rev;
1122
1123 rev = t3rev2char(adap);
1124 if (!rev)
1125 return 0;
1126
1127 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1128
1129 ret = request_firmware(&tpsram, buf, dev);
1130 if (ret < 0) {
1131 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1132 buf);
1133 return ret;
1134 }
1135
1136 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1137 if (ret)
1138 goto release_tpsram;
1139
1140 ret = t3_set_proto_sram(adap, tpsram->data);
1141 if (ret == 0)
1142 dev_info(dev,
1143 "successful update of protocol engine "
1144 "to %d.%d.%d\n",
1145 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1146 else
1147 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1148 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1149 if (ret)
1150 dev_err(dev, "loading protocol SRAM failed\n");
1151
1152 release_tpsram:
1153 release_firmware(tpsram);
1154
1155 return ret;
1156 }
1157
1158 /**
1159 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1160 * @adap: the adapter
1161 * @p: the port
1162 *
1163 * Ensures that current Rx processing on any of the queues associated with
1164 * the given port completes before returning. We do this by acquiring and
1165 * releasing the locks of the response queues associated with the port.
1166 */
t3_synchronize_rx(struct adapter * adap,const struct port_info * p)1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1168 {
1169 int i;
1170
1171 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1172 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1173
1174 spin_lock_irq(&q->lock);
1175 spin_unlock_irq(&q->lock);
1176 }
1177 }
1178
cxgb_vlan_mode(struct net_device * dev,netdev_features_t features)1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1180 {
1181 struct port_info *pi = netdev_priv(dev);
1182 struct adapter *adapter = pi->adapter;
1183
1184 if (adapter->params.rev > 0) {
1185 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1186 features & NETIF_F_HW_VLAN_CTAG_RX);
1187 } else {
1188 /* single control for all ports */
1189 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1190
1191 for_each_port(adapter, i)
1192 have_vlans |=
1193 adapter->port[i]->features &
1194 NETIF_F_HW_VLAN_CTAG_RX;
1195
1196 t3_set_vlan_accel(adapter, 1, have_vlans);
1197 }
1198 t3_synchronize_rx(adapter, pi);
1199 }
1200
1201 /**
1202 * cxgb_up - enable the adapter
1203 * @adap: adapter being enabled
1204 *
1205 * Called when the first port is enabled, this function performs the
1206 * actions necessary to make an adapter operational, such as completing
1207 * the initialization of HW modules, and enabling interrupts.
1208 *
1209 * Must be called with the rtnl lock held.
1210 */
cxgb_up(struct adapter * adap)1211 static int cxgb_up(struct adapter *adap)
1212 {
1213 int i, err;
1214
1215 if (!(adap->flags & FULL_INIT_DONE)) {
1216 err = t3_check_fw_version(adap);
1217 if (err == -EINVAL) {
1218 err = upgrade_fw(adap);
1219 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1220 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1221 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1222 }
1223
1224 err = t3_check_tpsram_version(adap);
1225 if (err == -EINVAL) {
1226 err = update_tpsram(adap);
1227 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1228 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1229 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1230 }
1231
1232 /*
1233 * Clear interrupts now to catch errors if t3_init_hw fails.
1234 * We clear them again later as initialization may trigger
1235 * conditions that can interrupt.
1236 */
1237 t3_intr_clear(adap);
1238
1239 err = t3_init_hw(adap, 0);
1240 if (err)
1241 goto out;
1242
1243 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1244 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1245
1246 err = setup_sge_qsets(adap);
1247 if (err)
1248 goto out;
1249
1250 for_each_port(adap, i)
1251 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1252
1253 setup_rss(adap);
1254 if (!(adap->flags & NAPI_INIT))
1255 init_napi(adap);
1256
1257 t3_start_sge_timers(adap);
1258 adap->flags |= FULL_INIT_DONE;
1259 }
1260
1261 t3_intr_clear(adap);
1262
1263 if (adap->flags & USING_MSIX) {
1264 name_msix_vecs(adap);
1265 err = request_irq(adap->msix_info[0].vec,
1266 t3_async_intr_handler, 0,
1267 adap->msix_info[0].desc, adap);
1268 if (err)
1269 goto irq_err;
1270
1271 err = request_msix_data_irqs(adap);
1272 if (err) {
1273 free_irq(adap->msix_info[0].vec, adap);
1274 goto irq_err;
1275 }
1276 } else if ((err = request_irq(adap->pdev->irq,
1277 t3_intr_handler(adap,
1278 adap->sge.qs[0].rspq.
1279 polling),
1280 (adap->flags & USING_MSI) ?
1281 0 : IRQF_SHARED,
1282 adap->name, adap)))
1283 goto irq_err;
1284
1285 enable_all_napi(adap);
1286 t3_sge_start(adap);
1287 t3_intr_enable(adap);
1288
1289 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1290 is_offload(adap) && init_tp_parity(adap) == 0)
1291 adap->flags |= TP_PARITY_INIT;
1292
1293 if (adap->flags & TP_PARITY_INIT) {
1294 t3_write_reg(adap, A_TP_INT_CAUSE,
1295 F_CMCACHEPERR | F_ARPLUTPERR);
1296 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1297 }
1298
1299 if (!(adap->flags & QUEUES_BOUND)) {
1300 int ret = bind_qsets(adap);
1301
1302 if (ret < 0) {
1303 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1304 t3_intr_disable(adap);
1305 quiesce_rx(adap);
1306 free_irq_resources(adap);
1307 err = ret;
1308 goto out;
1309 }
1310 adap->flags |= QUEUES_BOUND;
1311 }
1312
1313 out:
1314 return err;
1315 irq_err:
1316 CH_ERR(adap, "request_irq failed, err %d\n", err);
1317 goto out;
1318 }
1319
1320 /*
1321 * Release resources when all the ports and offloading have been stopped.
1322 */
cxgb_down(struct adapter * adapter,int on_wq)1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325 t3_sge_stop(adapter);
1326 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1327 t3_intr_disable(adapter);
1328 spin_unlock_irq(&adapter->work_lock);
1329
1330 free_irq_resources(adapter);
1331 quiesce_rx(adapter);
1332 t3_sge_stop(adapter);
1333 if (!on_wq)
1334 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336
schedule_chk_task(struct adapter * adap)1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339 unsigned int timeo;
1340
1341 timeo = adap->params.linkpoll_period ?
1342 (HZ * adap->params.linkpoll_period) / 10 :
1343 adap->params.stats_update_period * HZ;
1344 if (timeo)
1345 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347
offload_open(struct net_device * dev)1348 static int offload_open(struct net_device *dev)
1349 {
1350 struct port_info *pi = netdev_priv(dev);
1351 struct adapter *adapter = pi->adapter;
1352 struct t3cdev *tdev = dev2t3cdev(dev);
1353 int adap_up = adapter->open_device_map & PORT_MASK;
1354 int err;
1355
1356 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357 return 0;
1358
1359 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360 goto out;
1361
1362 t3_tp_set_offload_mode(adapter, 1);
1363 tdev->lldev = adapter->port[0];
1364 err = cxgb3_offload_activate(adapter);
1365 if (err)
1366 goto out;
1367
1368 init_port_mtus(adapter);
1369 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370 adapter->params.b_wnd,
1371 adapter->params.rev == 0 ?
1372 adapter->port[0]->mtu : 0xffff);
1373 init_smt(adapter);
1374
1375 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377
1378 /* Call back all registered clients */
1379 cxgb3_add_clients(tdev);
1380
1381 out:
1382 /* restore them in case the offload module has changed them */
1383 if (err) {
1384 t3_tp_set_offload_mode(adapter, 0);
1385 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386 cxgb3_set_dummy_ops(tdev);
1387 }
1388 return err;
1389 }
1390
offload_close(struct t3cdev * tdev)1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393 struct adapter *adapter = tdev2adap(tdev);
1394 struct t3c_data *td = T3C_DATA(tdev);
1395
1396 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397 return 0;
1398
1399 /* Call back all registered clients */
1400 cxgb3_remove_clients(tdev);
1401
1402 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403
1404 /* Flush work scheduled while releasing TIDs */
1405 flush_work(&td->tid_release_task);
1406
1407 tdev->lldev = NULL;
1408 cxgb3_set_dummy_ops(tdev);
1409 t3_tp_set_offload_mode(adapter, 0);
1410 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411
1412 if (!adapter->open_device_map)
1413 cxgb_down(adapter, 0);
1414
1415 cxgb3_offload_deactivate(adapter);
1416 return 0;
1417 }
1418
cxgb_open(struct net_device * dev)1419 static int cxgb_open(struct net_device *dev)
1420 {
1421 struct port_info *pi = netdev_priv(dev);
1422 struct adapter *adapter = pi->adapter;
1423 int other_ports = adapter->open_device_map & PORT_MASK;
1424 int err;
1425
1426 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427 return err;
1428
1429 set_bit(pi->port_id, &adapter->open_device_map);
1430 if (is_offload(adapter) && !ofld_disable) {
1431 err = offload_open(dev);
1432 if (err)
1433 pr_warn("Could not initialize offload capabilities\n");
1434 }
1435
1436 netif_set_real_num_tx_queues(dev, pi->nqsets);
1437 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438 if (err)
1439 return err;
1440 link_start(dev);
1441 t3_port_intr_enable(adapter, pi->port_id);
1442 netif_tx_start_all_queues(dev);
1443 if (!other_ports)
1444 schedule_chk_task(adapter);
1445
1446 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447 return 0;
1448 }
1449
__cxgb_close(struct net_device * dev,int on_wq)1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452 struct port_info *pi = netdev_priv(dev);
1453 struct adapter *adapter = pi->adapter;
1454
1455
1456 if (!adapter->open_device_map)
1457 return 0;
1458
1459 /* Stop link fault interrupts */
1460 t3_xgm_intr_disable(adapter, pi->port_id);
1461 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462
1463 t3_port_intr_disable(adapter, pi->port_id);
1464 netif_tx_stop_all_queues(dev);
1465 pi->phy.ops->power_down(&pi->phy, 1);
1466 netif_carrier_off(dev);
1467 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468
1469 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1470 clear_bit(pi->port_id, &adapter->open_device_map);
1471 spin_unlock_irq(&adapter->work_lock);
1472
1473 if (!(adapter->open_device_map & PORT_MASK))
1474 cancel_delayed_work_sync(&adapter->adap_check_task);
1475
1476 if (!adapter->open_device_map)
1477 cxgb_down(adapter, on_wq);
1478
1479 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480 return 0;
1481 }
1482
cxgb_close(struct net_device * dev)1483 static int cxgb_close(struct net_device *dev)
1484 {
1485 return __cxgb_close(dev, 0);
1486 }
1487
cxgb_get_stats(struct net_device * dev)1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490 struct port_info *pi = netdev_priv(dev);
1491 struct adapter *adapter = pi->adapter;
1492 struct net_device_stats *ns = &dev->stats;
1493 const struct mac_stats *pstats;
1494
1495 spin_lock(&adapter->stats_lock);
1496 pstats = t3_mac_update_stats(&pi->mac);
1497 spin_unlock(&adapter->stats_lock);
1498
1499 ns->tx_bytes = pstats->tx_octets;
1500 ns->tx_packets = pstats->tx_frames;
1501 ns->rx_bytes = pstats->rx_octets;
1502 ns->rx_packets = pstats->rx_frames;
1503 ns->multicast = pstats->rx_mcast_frames;
1504
1505 ns->tx_errors = pstats->tx_underrun;
1506 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508 pstats->rx_fifo_ovfl;
1509
1510 /* detailed rx_errors */
1511 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512 ns->rx_over_errors = 0;
1513 ns->rx_crc_errors = pstats->rx_fcs_errs;
1514 ns->rx_frame_errors = pstats->rx_symbol_errs;
1515 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516 ns->rx_missed_errors = pstats->rx_cong_drops;
1517
1518 /* detailed tx_errors */
1519 ns->tx_aborted_errors = 0;
1520 ns->tx_carrier_errors = 0;
1521 ns->tx_fifo_errors = pstats->tx_underrun;
1522 ns->tx_heartbeat_errors = 0;
1523 ns->tx_window_errors = 0;
1524 return ns;
1525 }
1526
get_msglevel(struct net_device * dev)1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529 struct port_info *pi = netdev_priv(dev);
1530 struct adapter *adapter = pi->adapter;
1531
1532 return adapter->msg_enable;
1533 }
1534
set_msglevel(struct net_device * dev,u32 val)1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537 struct port_info *pi = netdev_priv(dev);
1538 struct adapter *adapter = pi->adapter;
1539
1540 adapter->msg_enable = val;
1541 }
1542
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544 "TxOctetsOK ",
1545 "TxFramesOK ",
1546 "TxMulticastFramesOK",
1547 "TxBroadcastFramesOK",
1548 "TxPauseFrames ",
1549 "TxUnderrun ",
1550 "TxExtUnderrun ",
1551
1552 "TxFrames64 ",
1553 "TxFrames65To127 ",
1554 "TxFrames128To255 ",
1555 "TxFrames256To511 ",
1556 "TxFrames512To1023 ",
1557 "TxFrames1024To1518 ",
1558 "TxFrames1519ToMax ",
1559
1560 "RxOctetsOK ",
1561 "RxFramesOK ",
1562 "RxMulticastFramesOK",
1563 "RxBroadcastFramesOK",
1564 "RxPauseFrames ",
1565 "RxFCSErrors ",
1566 "RxSymbolErrors ",
1567 "RxShortErrors ",
1568 "RxJabberErrors ",
1569 "RxLengthErrors ",
1570 "RxFIFOoverflow ",
1571
1572 "RxFrames64 ",
1573 "RxFrames65To127 ",
1574 "RxFrames128To255 ",
1575 "RxFrames256To511 ",
1576 "RxFrames512To1023 ",
1577 "RxFrames1024To1518 ",
1578 "RxFrames1519ToMax ",
1579
1580 "PhyFIFOErrors ",
1581 "TSO ",
1582 "VLANextractions ",
1583 "VLANinsertions ",
1584 "TxCsumOffload ",
1585 "RxCsumGood ",
1586 "LroAggregated ",
1587 "LroFlushed ",
1588 "LroNoDesc ",
1589 "RxDrops ",
1590
1591 "CheckTXEnToggled ",
1592 "CheckResets ",
1593
1594 "LinkFaults ",
1595 };
1596
get_sset_count(struct net_device * dev,int sset)1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599 switch (sset) {
1600 case ETH_SS_STATS:
1601 return ARRAY_SIZE(stats_strings);
1602 default:
1603 return -EOPNOTSUPP;
1604 }
1605 }
1606
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608
get_regs_len(struct net_device * dev)1609 static int get_regs_len(struct net_device *dev)
1610 {
1611 return T3_REGMAP_SIZE;
1612 }
1613
get_eeprom_len(struct net_device * dev)1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616 return EEPROMSIZE;
1617 }
1618
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621 struct port_info *pi = netdev_priv(dev);
1622 struct adapter *adapter = pi->adapter;
1623 u32 fw_vers = 0;
1624 u32 tp_vers = 0;
1625
1626 spin_lock(&adapter->stats_lock);
1627 t3_get_fw_version(adapter, &fw_vers);
1628 t3_get_tp_version(adapter, &tp_vers);
1629 spin_unlock(&adapter->stats_lock);
1630
1631 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632 strlcpy(info->bus_info, pci_name(adapter->pdev),
1633 sizeof(info->bus_info));
1634 if (fw_vers)
1635 snprintf(info->fw_version, sizeof(info->fw_version),
1636 "%s %u.%u.%u TP %u.%u.%u",
1637 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1638 G_FW_VERSION_MAJOR(fw_vers),
1639 G_FW_VERSION_MINOR(fw_vers),
1640 G_FW_VERSION_MICRO(fw_vers),
1641 G_TP_VERSION_MAJOR(tp_vers),
1642 G_TP_VERSION_MINOR(tp_vers),
1643 G_TP_VERSION_MICRO(tp_vers));
1644 }
1645
get_strings(struct net_device * dev,u32 stringset,u8 * data)1646 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1647 {
1648 if (stringset == ETH_SS_STATS)
1649 memcpy(data, stats_strings, sizeof(stats_strings));
1650 }
1651
collect_sge_port_stats(struct adapter * adapter,struct port_info * p,int idx)1652 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1653 struct port_info *p, int idx)
1654 {
1655 int i;
1656 unsigned long tot = 0;
1657
1658 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1659 tot += adapter->sge.qs[i].port_stats[idx];
1660 return tot;
1661 }
1662
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1663 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1664 u64 *data)
1665 {
1666 struct port_info *pi = netdev_priv(dev);
1667 struct adapter *adapter = pi->adapter;
1668 const struct mac_stats *s;
1669
1670 spin_lock(&adapter->stats_lock);
1671 s = t3_mac_update_stats(&pi->mac);
1672 spin_unlock(&adapter->stats_lock);
1673
1674 *data++ = s->tx_octets;
1675 *data++ = s->tx_frames;
1676 *data++ = s->tx_mcast_frames;
1677 *data++ = s->tx_bcast_frames;
1678 *data++ = s->tx_pause;
1679 *data++ = s->tx_underrun;
1680 *data++ = s->tx_fifo_urun;
1681
1682 *data++ = s->tx_frames_64;
1683 *data++ = s->tx_frames_65_127;
1684 *data++ = s->tx_frames_128_255;
1685 *data++ = s->tx_frames_256_511;
1686 *data++ = s->tx_frames_512_1023;
1687 *data++ = s->tx_frames_1024_1518;
1688 *data++ = s->tx_frames_1519_max;
1689
1690 *data++ = s->rx_octets;
1691 *data++ = s->rx_frames;
1692 *data++ = s->rx_mcast_frames;
1693 *data++ = s->rx_bcast_frames;
1694 *data++ = s->rx_pause;
1695 *data++ = s->rx_fcs_errs;
1696 *data++ = s->rx_symbol_errs;
1697 *data++ = s->rx_short;
1698 *data++ = s->rx_jabber;
1699 *data++ = s->rx_too_long;
1700 *data++ = s->rx_fifo_ovfl;
1701
1702 *data++ = s->rx_frames_64;
1703 *data++ = s->rx_frames_65_127;
1704 *data++ = s->rx_frames_128_255;
1705 *data++ = s->rx_frames_256_511;
1706 *data++ = s->rx_frames_512_1023;
1707 *data++ = s->rx_frames_1024_1518;
1708 *data++ = s->rx_frames_1519_max;
1709
1710 *data++ = pi->phy.fifo_errors;
1711
1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1716 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1717 *data++ = 0;
1718 *data++ = 0;
1719 *data++ = 0;
1720 *data++ = s->rx_cong_drops;
1721
1722 *data++ = s->num_toggled;
1723 *data++ = s->num_resets;
1724
1725 *data++ = s->link_faults;
1726 }
1727
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1728 static inline void reg_block_dump(struct adapter *ap, void *buf,
1729 unsigned int start, unsigned int end)
1730 {
1731 u32 *p = buf + start;
1732
1733 for (; start <= end; start += sizeof(u32))
1734 *p++ = t3_read_reg(ap, start);
1735 }
1736
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1737 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1738 void *buf)
1739 {
1740 struct port_info *pi = netdev_priv(dev);
1741 struct adapter *ap = pi->adapter;
1742
1743 /*
1744 * Version scheme:
1745 * bits 0..9: chip version
1746 * bits 10..15: chip revision
1747 * bit 31: set for PCIe cards
1748 */
1749 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1750
1751 /*
1752 * We skip the MAC statistics registers because they are clear-on-read.
1753 * Also reading multi-register stats would need to synchronize with the
1754 * periodic mac stats accumulation. Hard to justify the complexity.
1755 */
1756 memset(buf, 0, T3_REGMAP_SIZE);
1757 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1758 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1759 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1760 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1761 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1762 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1763 XGM_REG(A_XGM_SERDES_STAT3, 1));
1764 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1765 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1766 }
1767
restart_autoneg(struct net_device * dev)1768 static int restart_autoneg(struct net_device *dev)
1769 {
1770 struct port_info *p = netdev_priv(dev);
1771
1772 if (!netif_running(dev))
1773 return -EAGAIN;
1774 if (p->link_config.autoneg != AUTONEG_ENABLE)
1775 return -EINVAL;
1776 p->phy.ops->autoneg_restart(&p->phy);
1777 return 0;
1778 }
1779
set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)1780 static int set_phys_id(struct net_device *dev,
1781 enum ethtool_phys_id_state state)
1782 {
1783 struct port_info *pi = netdev_priv(dev);
1784 struct adapter *adapter = pi->adapter;
1785
1786 switch (state) {
1787 case ETHTOOL_ID_ACTIVE:
1788 return 1; /* cycle on/off once per second */
1789
1790 case ETHTOOL_ID_OFF:
1791 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1792 break;
1793
1794 case ETHTOOL_ID_ON:
1795 case ETHTOOL_ID_INACTIVE:
1796 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1797 F_GPIO0_OUT_VAL);
1798 }
1799
1800 return 0;
1801 }
1802
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1803 static int get_link_ksettings(struct net_device *dev,
1804 struct ethtool_link_ksettings *cmd)
1805 {
1806 struct port_info *p = netdev_priv(dev);
1807 u32 supported;
1808
1809 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1810 p->link_config.supported);
1811 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1812 p->link_config.advertising);
1813
1814 if (netif_carrier_ok(dev)) {
1815 cmd->base.speed = p->link_config.speed;
1816 cmd->base.duplex = p->link_config.duplex;
1817 } else {
1818 cmd->base.speed = SPEED_UNKNOWN;
1819 cmd->base.duplex = DUPLEX_UNKNOWN;
1820 }
1821
1822 ethtool_convert_link_mode_to_legacy_u32(&supported,
1823 cmd->link_modes.supported);
1824
1825 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1826 cmd->base.phy_address = p->phy.mdio.prtad;
1827 cmd->base.autoneg = p->link_config.autoneg;
1828 return 0;
1829 }
1830
speed_duplex_to_caps(int speed,int duplex)1831 static int speed_duplex_to_caps(int speed, int duplex)
1832 {
1833 int cap = 0;
1834
1835 switch (speed) {
1836 case SPEED_10:
1837 if (duplex == DUPLEX_FULL)
1838 cap = SUPPORTED_10baseT_Full;
1839 else
1840 cap = SUPPORTED_10baseT_Half;
1841 break;
1842 case SPEED_100:
1843 if (duplex == DUPLEX_FULL)
1844 cap = SUPPORTED_100baseT_Full;
1845 else
1846 cap = SUPPORTED_100baseT_Half;
1847 break;
1848 case SPEED_1000:
1849 if (duplex == DUPLEX_FULL)
1850 cap = SUPPORTED_1000baseT_Full;
1851 else
1852 cap = SUPPORTED_1000baseT_Half;
1853 break;
1854 case SPEED_10000:
1855 if (duplex == DUPLEX_FULL)
1856 cap = SUPPORTED_10000baseT_Full;
1857 }
1858 return cap;
1859 }
1860
1861 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1862 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1863 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1864 ADVERTISED_10000baseT_Full)
1865
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1866 static int set_link_ksettings(struct net_device *dev,
1867 const struct ethtool_link_ksettings *cmd)
1868 {
1869 struct port_info *p = netdev_priv(dev);
1870 struct link_config *lc = &p->link_config;
1871 u32 advertising;
1872
1873 ethtool_convert_link_mode_to_legacy_u32(&advertising,
1874 cmd->link_modes.advertising);
1875
1876 if (!(lc->supported & SUPPORTED_Autoneg)) {
1877 /*
1878 * PHY offers a single speed/duplex. See if that's what's
1879 * being requested.
1880 */
1881 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1882 u32 speed = cmd->base.speed;
1883 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1884 if (lc->supported & cap)
1885 return 0;
1886 }
1887 return -EINVAL;
1888 }
1889
1890 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1891 u32 speed = cmd->base.speed;
1892 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1893
1894 if (!(lc->supported & cap) || (speed == SPEED_1000))
1895 return -EINVAL;
1896 lc->requested_speed = speed;
1897 lc->requested_duplex = cmd->base.duplex;
1898 lc->advertising = 0;
1899 } else {
1900 advertising &= ADVERTISED_MASK;
1901 advertising &= lc->supported;
1902 if (!advertising)
1903 return -EINVAL;
1904 lc->requested_speed = SPEED_INVALID;
1905 lc->requested_duplex = DUPLEX_INVALID;
1906 lc->advertising = advertising | ADVERTISED_Autoneg;
1907 }
1908 lc->autoneg = cmd->base.autoneg;
1909 if (netif_running(dev))
1910 t3_link_start(&p->phy, &p->mac, lc);
1911 return 0;
1912 }
1913
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1914 static void get_pauseparam(struct net_device *dev,
1915 struct ethtool_pauseparam *epause)
1916 {
1917 struct port_info *p = netdev_priv(dev);
1918
1919 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1920 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1921 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1922 }
1923
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1924 static int set_pauseparam(struct net_device *dev,
1925 struct ethtool_pauseparam *epause)
1926 {
1927 struct port_info *p = netdev_priv(dev);
1928 struct link_config *lc = &p->link_config;
1929
1930 if (epause->autoneg == AUTONEG_DISABLE)
1931 lc->requested_fc = 0;
1932 else if (lc->supported & SUPPORTED_Autoneg)
1933 lc->requested_fc = PAUSE_AUTONEG;
1934 else
1935 return -EINVAL;
1936
1937 if (epause->rx_pause)
1938 lc->requested_fc |= PAUSE_RX;
1939 if (epause->tx_pause)
1940 lc->requested_fc |= PAUSE_TX;
1941 if (lc->autoneg == AUTONEG_ENABLE) {
1942 if (netif_running(dev))
1943 t3_link_start(&p->phy, &p->mac, lc);
1944 } else {
1945 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1946 if (netif_running(dev))
1947 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1948 }
1949 return 0;
1950 }
1951
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1952 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1953 {
1954 struct port_info *pi = netdev_priv(dev);
1955 struct adapter *adapter = pi->adapter;
1956 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1957
1958 e->rx_max_pending = MAX_RX_BUFFERS;
1959 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1960 e->tx_max_pending = MAX_TXQ_ENTRIES;
1961
1962 e->rx_pending = q->fl_size;
1963 e->rx_mini_pending = q->rspq_size;
1964 e->rx_jumbo_pending = q->jumbo_size;
1965 e->tx_pending = q->txq_size[0];
1966 }
1967
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1968 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1969 {
1970 struct port_info *pi = netdev_priv(dev);
1971 struct adapter *adapter = pi->adapter;
1972 struct qset_params *q;
1973 int i;
1974
1975 if (e->rx_pending > MAX_RX_BUFFERS ||
1976 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1977 e->tx_pending > MAX_TXQ_ENTRIES ||
1978 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1979 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1980 e->rx_pending < MIN_FL_ENTRIES ||
1981 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1982 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1983 return -EINVAL;
1984
1985 if (adapter->flags & FULL_INIT_DONE)
1986 return -EBUSY;
1987
1988 q = &adapter->params.sge.qset[pi->first_qset];
1989 for (i = 0; i < pi->nqsets; ++i, ++q) {
1990 q->rspq_size = e->rx_mini_pending;
1991 q->fl_size = e->rx_pending;
1992 q->jumbo_size = e->rx_jumbo_pending;
1993 q->txq_size[0] = e->tx_pending;
1994 q->txq_size[1] = e->tx_pending;
1995 q->txq_size[2] = e->tx_pending;
1996 }
1997 return 0;
1998 }
1999
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2000 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2001 {
2002 struct port_info *pi = netdev_priv(dev);
2003 struct adapter *adapter = pi->adapter;
2004 struct qset_params *qsp;
2005 struct sge_qset *qs;
2006 int i;
2007
2008 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2009 return -EINVAL;
2010
2011 for (i = 0; i < pi->nqsets; i++) {
2012 qsp = &adapter->params.sge.qset[i];
2013 qs = &adapter->sge.qs[i];
2014 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2015 t3_update_qset_coalesce(qs, qsp);
2016 }
2017
2018 return 0;
2019 }
2020
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2021 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2022 {
2023 struct port_info *pi = netdev_priv(dev);
2024 struct adapter *adapter = pi->adapter;
2025 struct qset_params *q = adapter->params.sge.qset;
2026
2027 c->rx_coalesce_usecs = q->coalesce_usecs;
2028 return 0;
2029 }
2030
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2031 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2032 u8 * data)
2033 {
2034 struct port_info *pi = netdev_priv(dev);
2035 struct adapter *adapter = pi->adapter;
2036 int i, err = 0;
2037
2038 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2039 if (!buf)
2040 return -ENOMEM;
2041
2042 e->magic = EEPROM_MAGIC;
2043 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2044 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2045
2046 if (!err)
2047 memcpy(data, buf + e->offset, e->len);
2048 kfree(buf);
2049 return err;
2050 }
2051
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2052 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2053 u8 * data)
2054 {
2055 struct port_info *pi = netdev_priv(dev);
2056 struct adapter *adapter = pi->adapter;
2057 u32 aligned_offset, aligned_len;
2058 __le32 *p;
2059 u8 *buf;
2060 int err;
2061
2062 if (eeprom->magic != EEPROM_MAGIC)
2063 return -EINVAL;
2064
2065 aligned_offset = eeprom->offset & ~3;
2066 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2067
2068 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2069 buf = kmalloc(aligned_len, GFP_KERNEL);
2070 if (!buf)
2071 return -ENOMEM;
2072 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2073 if (!err && aligned_len > 4)
2074 err = t3_seeprom_read(adapter,
2075 aligned_offset + aligned_len - 4,
2076 (__le32 *) & buf[aligned_len - 4]);
2077 if (err)
2078 goto out;
2079 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2080 } else
2081 buf = data;
2082
2083 err = t3_seeprom_wp(adapter, 0);
2084 if (err)
2085 goto out;
2086
2087 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2088 err = t3_seeprom_write(adapter, aligned_offset, *p);
2089 aligned_offset += 4;
2090 }
2091
2092 if (!err)
2093 err = t3_seeprom_wp(adapter, 1);
2094 out:
2095 if (buf != data)
2096 kfree(buf);
2097 return err;
2098 }
2099
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2100 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2101 {
2102 wol->supported = 0;
2103 wol->wolopts = 0;
2104 memset(&wol->sopass, 0, sizeof(wol->sopass));
2105 }
2106
2107 static const struct ethtool_ops cxgb_ethtool_ops = {
2108 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2109 .get_drvinfo = get_drvinfo,
2110 .get_msglevel = get_msglevel,
2111 .set_msglevel = set_msglevel,
2112 .get_ringparam = get_sge_param,
2113 .set_ringparam = set_sge_param,
2114 .get_coalesce = get_coalesce,
2115 .set_coalesce = set_coalesce,
2116 .get_eeprom_len = get_eeprom_len,
2117 .get_eeprom = get_eeprom,
2118 .set_eeprom = set_eeprom,
2119 .get_pauseparam = get_pauseparam,
2120 .set_pauseparam = set_pauseparam,
2121 .get_link = ethtool_op_get_link,
2122 .get_strings = get_strings,
2123 .set_phys_id = set_phys_id,
2124 .nway_reset = restart_autoneg,
2125 .get_sset_count = get_sset_count,
2126 .get_ethtool_stats = get_stats,
2127 .get_regs_len = get_regs_len,
2128 .get_regs = get_regs,
2129 .get_wol = get_wol,
2130 .get_link_ksettings = get_link_ksettings,
2131 .set_link_ksettings = set_link_ksettings,
2132 };
2133
in_range(int val,int lo,int hi)2134 static int in_range(int val, int lo, int hi)
2135 {
2136 return val < 0 || (val <= hi && val >= lo);
2137 }
2138
cxgb_extension_ioctl(struct net_device * dev,void __user * useraddr)2139 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2140 {
2141 struct port_info *pi = netdev_priv(dev);
2142 struct adapter *adapter = pi->adapter;
2143 u32 cmd;
2144 int ret;
2145
2146 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2147 return -EFAULT;
2148
2149 switch (cmd) {
2150 case CHELSIO_SET_QSET_PARAMS:{
2151 int i;
2152 struct qset_params *q;
2153 struct ch_qset_params t;
2154 int q1 = pi->first_qset;
2155 int nqsets = pi->nqsets;
2156
2157 if (!capable(CAP_NET_ADMIN))
2158 return -EPERM;
2159 if (copy_from_user(&t, useraddr, sizeof(t)))
2160 return -EFAULT;
2161 if (t.cmd != CHELSIO_SET_QSET_PARAMS)
2162 return -EINVAL;
2163 if (t.qset_idx >= SGE_QSETS)
2164 return -EINVAL;
2165 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2166 !in_range(t.cong_thres, 0, 255) ||
2167 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2168 MAX_TXQ_ENTRIES) ||
2169 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2170 MAX_TXQ_ENTRIES) ||
2171 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2172 MAX_CTRL_TXQ_ENTRIES) ||
2173 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2174 MAX_RX_BUFFERS) ||
2175 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2176 MAX_RX_JUMBO_BUFFERS) ||
2177 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2178 MAX_RSPQ_ENTRIES))
2179 return -EINVAL;
2180
2181 if ((adapter->flags & FULL_INIT_DONE) &&
2182 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2183 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2184 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2185 t.polling >= 0 || t.cong_thres >= 0))
2186 return -EBUSY;
2187
2188 /* Allow setting of any available qset when offload enabled */
2189 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2190 q1 = 0;
2191 for_each_port(adapter, i) {
2192 pi = adap2pinfo(adapter, i);
2193 nqsets += pi->first_qset + pi->nqsets;
2194 }
2195 }
2196
2197 if (t.qset_idx < q1)
2198 return -EINVAL;
2199 if (t.qset_idx > q1 + nqsets - 1)
2200 return -EINVAL;
2201
2202 q = &adapter->params.sge.qset[t.qset_idx];
2203
2204 if (t.rspq_size >= 0)
2205 q->rspq_size = t.rspq_size;
2206 if (t.fl_size[0] >= 0)
2207 q->fl_size = t.fl_size[0];
2208 if (t.fl_size[1] >= 0)
2209 q->jumbo_size = t.fl_size[1];
2210 if (t.txq_size[0] >= 0)
2211 q->txq_size[0] = t.txq_size[0];
2212 if (t.txq_size[1] >= 0)
2213 q->txq_size[1] = t.txq_size[1];
2214 if (t.txq_size[2] >= 0)
2215 q->txq_size[2] = t.txq_size[2];
2216 if (t.cong_thres >= 0)
2217 q->cong_thres = t.cong_thres;
2218 if (t.intr_lat >= 0) {
2219 struct sge_qset *qs =
2220 &adapter->sge.qs[t.qset_idx];
2221
2222 q->coalesce_usecs = t.intr_lat;
2223 t3_update_qset_coalesce(qs, q);
2224 }
2225 if (t.polling >= 0) {
2226 if (adapter->flags & USING_MSIX)
2227 q->polling = t.polling;
2228 else {
2229 /* No polling with INTx for T3A */
2230 if (adapter->params.rev == 0 &&
2231 !(adapter->flags & USING_MSI))
2232 t.polling = 0;
2233
2234 for (i = 0; i < SGE_QSETS; i++) {
2235 q = &adapter->params.sge.
2236 qset[i];
2237 q->polling = t.polling;
2238 }
2239 }
2240 }
2241
2242 if (t.lro >= 0) {
2243 if (t.lro)
2244 dev->wanted_features |= NETIF_F_GRO;
2245 else
2246 dev->wanted_features &= ~NETIF_F_GRO;
2247 netdev_update_features(dev);
2248 }
2249
2250 break;
2251 }
2252 case CHELSIO_GET_QSET_PARAMS:{
2253 struct qset_params *q;
2254 struct ch_qset_params t;
2255 int q1 = pi->first_qset;
2256 int nqsets = pi->nqsets;
2257 int i;
2258
2259 if (copy_from_user(&t, useraddr, sizeof(t)))
2260 return -EFAULT;
2261
2262 if (t.cmd != CHELSIO_GET_QSET_PARAMS)
2263 return -EINVAL;
2264
2265 /* Display qsets for all ports when offload enabled */
2266 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2267 q1 = 0;
2268 for_each_port(adapter, i) {
2269 pi = adap2pinfo(adapter, i);
2270 nqsets = pi->first_qset + pi->nqsets;
2271 }
2272 }
2273
2274 if (t.qset_idx >= nqsets)
2275 return -EINVAL;
2276 t.qset_idx = array_index_nospec(t.qset_idx, nqsets);
2277
2278 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2279 t.rspq_size = q->rspq_size;
2280 t.txq_size[0] = q->txq_size[0];
2281 t.txq_size[1] = q->txq_size[1];
2282 t.txq_size[2] = q->txq_size[2];
2283 t.fl_size[0] = q->fl_size;
2284 t.fl_size[1] = q->jumbo_size;
2285 t.polling = q->polling;
2286 t.lro = !!(dev->features & NETIF_F_GRO);
2287 t.intr_lat = q->coalesce_usecs;
2288 t.cong_thres = q->cong_thres;
2289 t.qnum = q1;
2290
2291 if (adapter->flags & USING_MSIX)
2292 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2293 else
2294 t.vector = adapter->pdev->irq;
2295
2296 if (copy_to_user(useraddr, &t, sizeof(t)))
2297 return -EFAULT;
2298 break;
2299 }
2300 case CHELSIO_SET_QSET_NUM:{
2301 struct ch_reg edata;
2302 unsigned int i, first_qset = 0, other_qsets = 0;
2303
2304 if (!capable(CAP_NET_ADMIN))
2305 return -EPERM;
2306 if (adapter->flags & FULL_INIT_DONE)
2307 return -EBUSY;
2308 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2309 return -EFAULT;
2310 if (edata.cmd != CHELSIO_SET_QSET_NUM)
2311 return -EINVAL;
2312 if (edata.val < 1 ||
2313 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2314 return -EINVAL;
2315
2316 for_each_port(adapter, i)
2317 if (adapter->port[i] && adapter->port[i] != dev)
2318 other_qsets += adap2pinfo(adapter, i)->nqsets;
2319
2320 if (edata.val + other_qsets > SGE_QSETS)
2321 return -EINVAL;
2322
2323 pi->nqsets = edata.val;
2324
2325 for_each_port(adapter, i)
2326 if (adapter->port[i]) {
2327 pi = adap2pinfo(adapter, i);
2328 pi->first_qset = first_qset;
2329 first_qset += pi->nqsets;
2330 }
2331 break;
2332 }
2333 case CHELSIO_GET_QSET_NUM:{
2334 struct ch_reg edata;
2335
2336 memset(&edata, 0, sizeof(struct ch_reg));
2337
2338 edata.cmd = CHELSIO_GET_QSET_NUM;
2339 edata.val = pi->nqsets;
2340 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2341 return -EFAULT;
2342 break;
2343 }
2344 case CHELSIO_LOAD_FW:{
2345 u8 *fw_data;
2346 struct ch_mem_range t;
2347
2348 if (!capable(CAP_SYS_RAWIO))
2349 return -EPERM;
2350 if (copy_from_user(&t, useraddr, sizeof(t)))
2351 return -EFAULT;
2352 if (t.cmd != CHELSIO_LOAD_FW)
2353 return -EINVAL;
2354 /* Check t.len sanity ? */
2355 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2356 if (IS_ERR(fw_data))
2357 return PTR_ERR(fw_data);
2358
2359 ret = t3_load_fw(adapter, fw_data, t.len);
2360 kfree(fw_data);
2361 if (ret)
2362 return ret;
2363 break;
2364 }
2365 case CHELSIO_SETMTUTAB:{
2366 struct ch_mtus m;
2367 int i;
2368
2369 if (!is_offload(adapter))
2370 return -EOPNOTSUPP;
2371 if (!capable(CAP_NET_ADMIN))
2372 return -EPERM;
2373 if (offload_running(adapter))
2374 return -EBUSY;
2375 if (copy_from_user(&m, useraddr, sizeof(m)))
2376 return -EFAULT;
2377 if (m.cmd != CHELSIO_SETMTUTAB)
2378 return -EINVAL;
2379 if (m.nmtus != NMTUS)
2380 return -EINVAL;
2381 if (m.mtus[0] < 81) /* accommodate SACK */
2382 return -EINVAL;
2383
2384 /* MTUs must be in ascending order */
2385 for (i = 1; i < NMTUS; ++i)
2386 if (m.mtus[i] < m.mtus[i - 1])
2387 return -EINVAL;
2388
2389 memcpy(adapter->params.mtus, m.mtus,
2390 sizeof(adapter->params.mtus));
2391 break;
2392 }
2393 case CHELSIO_GET_PM:{
2394 struct tp_params *p = &adapter->params.tp;
2395 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2396
2397 if (!is_offload(adapter))
2398 return -EOPNOTSUPP;
2399 m.tx_pg_sz = p->tx_pg_size;
2400 m.tx_num_pg = p->tx_num_pgs;
2401 m.rx_pg_sz = p->rx_pg_size;
2402 m.rx_num_pg = p->rx_num_pgs;
2403 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2404 if (copy_to_user(useraddr, &m, sizeof(m)))
2405 return -EFAULT;
2406 break;
2407 }
2408 case CHELSIO_SET_PM:{
2409 struct ch_pm m;
2410 struct tp_params *p = &adapter->params.tp;
2411
2412 if (!is_offload(adapter))
2413 return -EOPNOTSUPP;
2414 if (!capable(CAP_NET_ADMIN))
2415 return -EPERM;
2416 if (adapter->flags & FULL_INIT_DONE)
2417 return -EBUSY;
2418 if (copy_from_user(&m, useraddr, sizeof(m)))
2419 return -EFAULT;
2420 if (m.cmd != CHELSIO_SET_PM)
2421 return -EINVAL;
2422 if (!is_power_of_2(m.rx_pg_sz) ||
2423 !is_power_of_2(m.tx_pg_sz))
2424 return -EINVAL; /* not power of 2 */
2425 if (!(m.rx_pg_sz & 0x14000))
2426 return -EINVAL; /* not 16KB or 64KB */
2427 if (!(m.tx_pg_sz & 0x1554000))
2428 return -EINVAL;
2429 if (m.tx_num_pg == -1)
2430 m.tx_num_pg = p->tx_num_pgs;
2431 if (m.rx_num_pg == -1)
2432 m.rx_num_pg = p->rx_num_pgs;
2433 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2434 return -EINVAL;
2435 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2436 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2437 return -EINVAL;
2438 p->rx_pg_size = m.rx_pg_sz;
2439 p->tx_pg_size = m.tx_pg_sz;
2440 p->rx_num_pgs = m.rx_num_pg;
2441 p->tx_num_pgs = m.tx_num_pg;
2442 break;
2443 }
2444 case CHELSIO_GET_MEM:{
2445 struct ch_mem_range t;
2446 struct mc7 *mem;
2447 u64 buf[32];
2448
2449 if (!is_offload(adapter))
2450 return -EOPNOTSUPP;
2451 if (!capable(CAP_NET_ADMIN))
2452 return -EPERM;
2453 if (!(adapter->flags & FULL_INIT_DONE))
2454 return -EIO; /* need the memory controllers */
2455 if (copy_from_user(&t, useraddr, sizeof(t)))
2456 return -EFAULT;
2457 if (t.cmd != CHELSIO_GET_MEM)
2458 return -EINVAL;
2459 if ((t.addr & 7) || (t.len & 7))
2460 return -EINVAL;
2461 if (t.mem_id == MEM_CM)
2462 mem = &adapter->cm;
2463 else if (t.mem_id == MEM_PMRX)
2464 mem = &adapter->pmrx;
2465 else if (t.mem_id == MEM_PMTX)
2466 mem = &adapter->pmtx;
2467 else
2468 return -EINVAL;
2469
2470 /*
2471 * Version scheme:
2472 * bits 0..9: chip version
2473 * bits 10..15: chip revision
2474 */
2475 t.version = 3 | (adapter->params.rev << 10);
2476 if (copy_to_user(useraddr, &t, sizeof(t)))
2477 return -EFAULT;
2478
2479 /*
2480 * Read 256 bytes at a time as len can be large and we don't
2481 * want to use huge intermediate buffers.
2482 */
2483 useraddr += sizeof(t); /* advance to start of buffer */
2484 while (t.len) {
2485 unsigned int chunk =
2486 min_t(unsigned int, t.len, sizeof(buf));
2487
2488 ret =
2489 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2490 buf);
2491 if (ret)
2492 return ret;
2493 if (copy_to_user(useraddr, buf, chunk))
2494 return -EFAULT;
2495 useraddr += chunk;
2496 t.addr += chunk;
2497 t.len -= chunk;
2498 }
2499 break;
2500 }
2501 case CHELSIO_SET_TRACE_FILTER:{
2502 struct ch_trace t;
2503 const struct trace_params *tp;
2504
2505 if (!capable(CAP_NET_ADMIN))
2506 return -EPERM;
2507 if (!offload_running(adapter))
2508 return -EAGAIN;
2509 if (copy_from_user(&t, useraddr, sizeof(t)))
2510 return -EFAULT;
2511 if (t.cmd != CHELSIO_SET_TRACE_FILTER)
2512 return -EINVAL;
2513
2514 tp = (const struct trace_params *)&t.sip;
2515 if (t.config_tx)
2516 t3_config_trace_filter(adapter, tp, 0,
2517 t.invert_match,
2518 t.trace_tx);
2519 if (t.config_rx)
2520 t3_config_trace_filter(adapter, tp, 1,
2521 t.invert_match,
2522 t.trace_rx);
2523 break;
2524 }
2525 default:
2526 return -EOPNOTSUPP;
2527 }
2528 return 0;
2529 }
2530
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2531 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2532 {
2533 struct mii_ioctl_data *data = if_mii(req);
2534 struct port_info *pi = netdev_priv(dev);
2535 struct adapter *adapter = pi->adapter;
2536
2537 switch (cmd) {
2538 case SIOCGMIIREG:
2539 case SIOCSMIIREG:
2540 /* Convert phy_id from older PRTAD/DEVAD format */
2541 if (is_10G(adapter) &&
2542 !mdio_phy_id_is_c45(data->phy_id) &&
2543 (data->phy_id & 0x1f00) &&
2544 !(data->phy_id & 0xe0e0))
2545 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2546 data->phy_id & 0x1f);
2547 fallthrough;
2548 case SIOCGMIIPHY:
2549 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2550 case SIOCCHIOCTL:
2551 return cxgb_extension_ioctl(dev, req->ifr_data);
2552 default:
2553 return -EOPNOTSUPP;
2554 }
2555 }
2556
cxgb_change_mtu(struct net_device * dev,int new_mtu)2557 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2558 {
2559 struct port_info *pi = netdev_priv(dev);
2560 struct adapter *adapter = pi->adapter;
2561 int ret;
2562
2563 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2564 return ret;
2565 dev->mtu = new_mtu;
2566 init_port_mtus(adapter);
2567 if (adapter->params.rev == 0 && offload_running(adapter))
2568 t3_load_mtus(adapter, adapter->params.mtus,
2569 adapter->params.a_wnd, adapter->params.b_wnd,
2570 adapter->port[0]->mtu);
2571 return 0;
2572 }
2573
cxgb_set_mac_addr(struct net_device * dev,void * p)2574 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2575 {
2576 struct port_info *pi = netdev_priv(dev);
2577 struct adapter *adapter = pi->adapter;
2578 struct sockaddr *addr = p;
2579
2580 if (!is_valid_ether_addr(addr->sa_data))
2581 return -EADDRNOTAVAIL;
2582
2583 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2584 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2585 if (offload_running(adapter))
2586 write_smt_entry(adapter, pi->port_id);
2587 return 0;
2588 }
2589
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2590 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2591 netdev_features_t features)
2592 {
2593 /*
2594 * Since there is no support for separate rx/tx vlan accel
2595 * enable/disable make sure tx flag is always in same state as rx.
2596 */
2597 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2598 features |= NETIF_F_HW_VLAN_CTAG_TX;
2599 else
2600 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2601
2602 return features;
2603 }
2604
cxgb_set_features(struct net_device * dev,netdev_features_t features)2605 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2606 {
2607 netdev_features_t changed = dev->features ^ features;
2608
2609 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2610 cxgb_vlan_mode(dev, features);
2611
2612 return 0;
2613 }
2614
2615 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2616 static void cxgb_netpoll(struct net_device *dev)
2617 {
2618 struct port_info *pi = netdev_priv(dev);
2619 struct adapter *adapter = pi->adapter;
2620 int qidx;
2621
2622 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2623 struct sge_qset *qs = &adapter->sge.qs[qidx];
2624 void *source;
2625
2626 if (adapter->flags & USING_MSIX)
2627 source = qs;
2628 else
2629 source = adapter;
2630
2631 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2632 }
2633 }
2634 #endif
2635
2636 /*
2637 * Periodic accumulation of MAC statistics.
2638 */
mac_stats_update(struct adapter * adapter)2639 static void mac_stats_update(struct adapter *adapter)
2640 {
2641 int i;
2642
2643 for_each_port(adapter, i) {
2644 struct net_device *dev = adapter->port[i];
2645 struct port_info *p = netdev_priv(dev);
2646
2647 if (netif_running(dev)) {
2648 spin_lock(&adapter->stats_lock);
2649 t3_mac_update_stats(&p->mac);
2650 spin_unlock(&adapter->stats_lock);
2651 }
2652 }
2653 }
2654
check_link_status(struct adapter * adapter)2655 static void check_link_status(struct adapter *adapter)
2656 {
2657 int i;
2658
2659 for_each_port(adapter, i) {
2660 struct net_device *dev = adapter->port[i];
2661 struct port_info *p = netdev_priv(dev);
2662 int link_fault;
2663
2664 spin_lock_irq(&adapter->work_lock);
2665 link_fault = p->link_fault;
2666 spin_unlock_irq(&adapter->work_lock);
2667
2668 if (link_fault) {
2669 t3_link_fault(adapter, i);
2670 continue;
2671 }
2672
2673 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2674 t3_xgm_intr_disable(adapter, i);
2675 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2676
2677 t3_link_changed(adapter, i);
2678 t3_xgm_intr_enable(adapter, i);
2679 }
2680 }
2681 }
2682
check_t3b2_mac(struct adapter * adapter)2683 static void check_t3b2_mac(struct adapter *adapter)
2684 {
2685 int i;
2686
2687 if (!rtnl_trylock()) /* synchronize with ifdown */
2688 return;
2689
2690 for_each_port(adapter, i) {
2691 struct net_device *dev = adapter->port[i];
2692 struct port_info *p = netdev_priv(dev);
2693 int status;
2694
2695 if (!netif_running(dev))
2696 continue;
2697
2698 status = 0;
2699 if (netif_running(dev) && netif_carrier_ok(dev))
2700 status = t3b2_mac_watchdog_task(&p->mac);
2701 if (status == 1)
2702 p->mac.stats.num_toggled++;
2703 else if (status == 2) {
2704 struct cmac *mac = &p->mac;
2705
2706 t3_mac_set_mtu(mac, dev->mtu);
2707 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2708 cxgb_set_rxmode(dev);
2709 t3_link_start(&p->phy, mac, &p->link_config);
2710 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2711 t3_port_intr_enable(adapter, p->port_id);
2712 p->mac.stats.num_resets++;
2713 }
2714 }
2715 rtnl_unlock();
2716 }
2717
2718
t3_adap_check_task(struct work_struct * work)2719 static void t3_adap_check_task(struct work_struct *work)
2720 {
2721 struct adapter *adapter = container_of(work, struct adapter,
2722 adap_check_task.work);
2723 const struct adapter_params *p = &adapter->params;
2724 int port;
2725 unsigned int v, status, reset;
2726
2727 adapter->check_task_cnt++;
2728
2729 check_link_status(adapter);
2730
2731 /* Accumulate MAC stats if needed */
2732 if (!p->linkpoll_period ||
2733 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2734 p->stats_update_period) {
2735 mac_stats_update(adapter);
2736 adapter->check_task_cnt = 0;
2737 }
2738
2739 if (p->rev == T3_REV_B2)
2740 check_t3b2_mac(adapter);
2741
2742 /*
2743 * Scan the XGMAC's to check for various conditions which we want to
2744 * monitor in a periodic polling manner rather than via an interrupt
2745 * condition. This is used for conditions which would otherwise flood
2746 * the system with interrupts and we only really need to know that the
2747 * conditions are "happening" ... For each condition we count the
2748 * detection of the condition and reset it for the next polling loop.
2749 */
2750 for_each_port(adapter, port) {
2751 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2752 u32 cause;
2753
2754 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2755 reset = 0;
2756 if (cause & F_RXFIFO_OVERFLOW) {
2757 mac->stats.rx_fifo_ovfl++;
2758 reset |= F_RXFIFO_OVERFLOW;
2759 }
2760
2761 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2762 }
2763
2764 /*
2765 * We do the same as above for FL_EMPTY interrupts.
2766 */
2767 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2768 reset = 0;
2769
2770 if (status & F_FLEMPTY) {
2771 struct sge_qset *qs = &adapter->sge.qs[0];
2772 int i = 0;
2773
2774 reset |= F_FLEMPTY;
2775
2776 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2777 0xffff;
2778
2779 while (v) {
2780 qs->fl[i].empty += (v & 1);
2781 if (i)
2782 qs++;
2783 i ^= 1;
2784 v >>= 1;
2785 }
2786 }
2787
2788 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2789
2790 /* Schedule the next check update if any port is active. */
2791 spin_lock_irq(&adapter->work_lock);
2792 if (adapter->open_device_map & PORT_MASK)
2793 schedule_chk_task(adapter);
2794 spin_unlock_irq(&adapter->work_lock);
2795 }
2796
db_full_task(struct work_struct * work)2797 static void db_full_task(struct work_struct *work)
2798 {
2799 struct adapter *adapter = container_of(work, struct adapter,
2800 db_full_task);
2801
2802 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2803 }
2804
db_empty_task(struct work_struct * work)2805 static void db_empty_task(struct work_struct *work)
2806 {
2807 struct adapter *adapter = container_of(work, struct adapter,
2808 db_empty_task);
2809
2810 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2811 }
2812
db_drop_task(struct work_struct * work)2813 static void db_drop_task(struct work_struct *work)
2814 {
2815 struct adapter *adapter = container_of(work, struct adapter,
2816 db_drop_task);
2817 unsigned long delay = 1000;
2818 unsigned short r;
2819
2820 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2821
2822 /*
2823 * Sleep a while before ringing the driver qset dbs.
2824 * The delay is between 1000-2023 usecs.
2825 */
2826 get_random_bytes(&r, 2);
2827 delay += r & 1023;
2828 set_current_state(TASK_UNINTERRUPTIBLE);
2829 schedule_timeout(usecs_to_jiffies(delay));
2830 ring_dbs(adapter);
2831 }
2832
2833 /*
2834 * Processes external (PHY) interrupts in process context.
2835 */
ext_intr_task(struct work_struct * work)2836 static void ext_intr_task(struct work_struct *work)
2837 {
2838 struct adapter *adapter = container_of(work, struct adapter,
2839 ext_intr_handler_task);
2840 int i;
2841
2842 /* Disable link fault interrupts */
2843 for_each_port(adapter, i) {
2844 struct net_device *dev = adapter->port[i];
2845 struct port_info *p = netdev_priv(dev);
2846
2847 t3_xgm_intr_disable(adapter, i);
2848 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2849 }
2850
2851 /* Re-enable link fault interrupts */
2852 t3_phy_intr_handler(adapter);
2853
2854 for_each_port(adapter, i)
2855 t3_xgm_intr_enable(adapter, i);
2856
2857 /* Now reenable external interrupts */
2858 spin_lock_irq(&adapter->work_lock);
2859 if (adapter->slow_intr_mask) {
2860 adapter->slow_intr_mask |= F_T3DBG;
2861 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2862 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2863 adapter->slow_intr_mask);
2864 }
2865 spin_unlock_irq(&adapter->work_lock);
2866 }
2867
2868 /*
2869 * Interrupt-context handler for external (PHY) interrupts.
2870 */
t3_os_ext_intr_handler(struct adapter * adapter)2871 void t3_os_ext_intr_handler(struct adapter *adapter)
2872 {
2873 /*
2874 * Schedule a task to handle external interrupts as they may be slow
2875 * and we use a mutex to protect MDIO registers. We disable PHY
2876 * interrupts in the meantime and let the task reenable them when
2877 * it's done.
2878 */
2879 spin_lock(&adapter->work_lock);
2880 if (adapter->slow_intr_mask) {
2881 adapter->slow_intr_mask &= ~F_T3DBG;
2882 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2883 adapter->slow_intr_mask);
2884 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2885 }
2886 spin_unlock(&adapter->work_lock);
2887 }
2888
t3_os_link_fault_handler(struct adapter * adapter,int port_id)2889 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2890 {
2891 struct net_device *netdev = adapter->port[port_id];
2892 struct port_info *pi = netdev_priv(netdev);
2893
2894 spin_lock(&adapter->work_lock);
2895 pi->link_fault = 1;
2896 spin_unlock(&adapter->work_lock);
2897 }
2898
t3_adapter_error(struct adapter * adapter,int reset,int on_wq)2899 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2900 {
2901 int i, ret = 0;
2902
2903 if (is_offload(adapter) &&
2904 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2905 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2906 offload_close(&adapter->tdev);
2907 }
2908
2909 /* Stop all ports */
2910 for_each_port(adapter, i) {
2911 struct net_device *netdev = adapter->port[i];
2912
2913 if (netif_running(netdev))
2914 __cxgb_close(netdev, on_wq);
2915 }
2916
2917 /* Stop SGE timers */
2918 t3_stop_sge_timers(adapter);
2919
2920 adapter->flags &= ~FULL_INIT_DONE;
2921
2922 if (reset)
2923 ret = t3_reset_adapter(adapter);
2924
2925 pci_disable_device(adapter->pdev);
2926
2927 return ret;
2928 }
2929
t3_reenable_adapter(struct adapter * adapter)2930 static int t3_reenable_adapter(struct adapter *adapter)
2931 {
2932 if (pci_enable_device(adapter->pdev)) {
2933 dev_err(&adapter->pdev->dev,
2934 "Cannot re-enable PCI device after reset.\n");
2935 goto err;
2936 }
2937 pci_set_master(adapter->pdev);
2938 pci_restore_state(adapter->pdev);
2939 pci_save_state(adapter->pdev);
2940
2941 /* Free sge resources */
2942 t3_free_sge_resources(adapter);
2943
2944 if (t3_replay_prep_adapter(adapter))
2945 goto err;
2946
2947 return 0;
2948 err:
2949 return -1;
2950 }
2951
t3_resume_ports(struct adapter * adapter)2952 static void t3_resume_ports(struct adapter *adapter)
2953 {
2954 int i;
2955
2956 /* Restart the ports */
2957 for_each_port(adapter, i) {
2958 struct net_device *netdev = adapter->port[i];
2959
2960 if (netif_running(netdev)) {
2961 if (cxgb_open(netdev)) {
2962 dev_err(&adapter->pdev->dev,
2963 "can't bring device back up"
2964 " after reset\n");
2965 continue;
2966 }
2967 }
2968 }
2969
2970 if (is_offload(adapter) && !ofld_disable)
2971 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2972 }
2973
2974 /*
2975 * processes a fatal error.
2976 * Bring the ports down, reset the chip, bring the ports back up.
2977 */
fatal_error_task(struct work_struct * work)2978 static void fatal_error_task(struct work_struct *work)
2979 {
2980 struct adapter *adapter = container_of(work, struct adapter,
2981 fatal_error_handler_task);
2982 int err = 0;
2983
2984 rtnl_lock();
2985 err = t3_adapter_error(adapter, 1, 1);
2986 if (!err)
2987 err = t3_reenable_adapter(adapter);
2988 if (!err)
2989 t3_resume_ports(adapter);
2990
2991 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2992 rtnl_unlock();
2993 }
2994
t3_fatal_err(struct adapter * adapter)2995 void t3_fatal_err(struct adapter *adapter)
2996 {
2997 unsigned int fw_status[4];
2998
2999 if (adapter->flags & FULL_INIT_DONE) {
3000 t3_sge_stop_dma(adapter);
3001 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
3002 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
3003 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
3004 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
3005
3006 spin_lock(&adapter->work_lock);
3007 t3_intr_disable(adapter);
3008 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
3009 spin_unlock(&adapter->work_lock);
3010 }
3011 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
3012 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
3013 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3014 fw_status[0], fw_status[1],
3015 fw_status[2], fw_status[3]);
3016 }
3017
3018 /**
3019 * t3_io_error_detected - called when PCI error is detected
3020 * @pdev: Pointer to PCI device
3021 * @state: The current pci connection state
3022 *
3023 * This function is called after a PCI bus error affecting
3024 * this device has been detected.
3025 */
t3_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3026 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3027 pci_channel_state_t state)
3028 {
3029 struct adapter *adapter = pci_get_drvdata(pdev);
3030
3031 if (state == pci_channel_io_perm_failure)
3032 return PCI_ERS_RESULT_DISCONNECT;
3033
3034 t3_adapter_error(adapter, 0, 0);
3035
3036 /* Request a slot reset. */
3037 return PCI_ERS_RESULT_NEED_RESET;
3038 }
3039
3040 /**
3041 * t3_io_slot_reset - called after the pci bus has been reset.
3042 * @pdev: Pointer to PCI device
3043 *
3044 * Restart the card from scratch, as if from a cold-boot.
3045 */
t3_io_slot_reset(struct pci_dev * pdev)3046 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3047 {
3048 struct adapter *adapter = pci_get_drvdata(pdev);
3049
3050 if (!t3_reenable_adapter(adapter))
3051 return PCI_ERS_RESULT_RECOVERED;
3052
3053 return PCI_ERS_RESULT_DISCONNECT;
3054 }
3055
3056 /**
3057 * t3_io_resume - called when traffic can start flowing again.
3058 * @pdev: Pointer to PCI device
3059 *
3060 * This callback is called when the error recovery driver tells us that
3061 * its OK to resume normal operation.
3062 */
t3_io_resume(struct pci_dev * pdev)3063 static void t3_io_resume(struct pci_dev *pdev)
3064 {
3065 struct adapter *adapter = pci_get_drvdata(pdev);
3066
3067 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3068 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3069
3070 rtnl_lock();
3071 t3_resume_ports(adapter);
3072 rtnl_unlock();
3073 }
3074
3075 static const struct pci_error_handlers t3_err_handler = {
3076 .error_detected = t3_io_error_detected,
3077 .slot_reset = t3_io_slot_reset,
3078 .resume = t3_io_resume,
3079 };
3080
3081 /*
3082 * Set the number of qsets based on the number of CPUs and the number of ports,
3083 * not to exceed the number of available qsets, assuming there are enough qsets
3084 * per port in HW.
3085 */
set_nqsets(struct adapter * adap)3086 static void set_nqsets(struct adapter *adap)
3087 {
3088 int i, j = 0;
3089 int num_cpus = netif_get_num_default_rss_queues();
3090 int hwports = adap->params.nports;
3091 int nqsets = adap->msix_nvectors - 1;
3092
3093 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3094 if (hwports == 2 &&
3095 (hwports * nqsets > SGE_QSETS ||
3096 num_cpus >= nqsets / hwports))
3097 nqsets /= hwports;
3098 if (nqsets > num_cpus)
3099 nqsets = num_cpus;
3100 if (nqsets < 1 || hwports == 4)
3101 nqsets = 1;
3102 } else
3103 nqsets = 1;
3104
3105 for_each_port(adap, i) {
3106 struct port_info *pi = adap2pinfo(adap, i);
3107
3108 pi->first_qset = j;
3109 pi->nqsets = nqsets;
3110 j = pi->first_qset + nqsets;
3111
3112 dev_info(&adap->pdev->dev,
3113 "Port %d using %d queue sets.\n", i, nqsets);
3114 }
3115 }
3116
cxgb_enable_msix(struct adapter * adap)3117 static int cxgb_enable_msix(struct adapter *adap)
3118 {
3119 struct msix_entry entries[SGE_QSETS + 1];
3120 int vectors;
3121 int i;
3122
3123 vectors = ARRAY_SIZE(entries);
3124 for (i = 0; i < vectors; ++i)
3125 entries[i].entry = i;
3126
3127 vectors = pci_enable_msix_range(adap->pdev, entries,
3128 adap->params.nports + 1, vectors);
3129 if (vectors < 0)
3130 return vectors;
3131
3132 for (i = 0; i < vectors; ++i)
3133 adap->msix_info[i].vec = entries[i].vector;
3134 adap->msix_nvectors = vectors;
3135
3136 return 0;
3137 }
3138
print_port_info(struct adapter * adap,const struct adapter_info * ai)3139 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3140 {
3141 static const char *pci_variant[] = {
3142 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3143 };
3144
3145 int i;
3146 char buf[80];
3147
3148 if (is_pcie(adap))
3149 snprintf(buf, sizeof(buf), "%s x%d",
3150 pci_variant[adap->params.pci.variant],
3151 adap->params.pci.width);
3152 else
3153 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3154 pci_variant[adap->params.pci.variant],
3155 adap->params.pci.speed, adap->params.pci.width);
3156
3157 for_each_port(adap, i) {
3158 struct net_device *dev = adap->port[i];
3159 const struct port_info *pi = netdev_priv(dev);
3160
3161 if (!test_bit(i, &adap->registered_device_map))
3162 continue;
3163 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3164 ai->desc, pi->phy.desc,
3165 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3166 (adap->flags & USING_MSIX) ? " MSI-X" :
3167 (adap->flags & USING_MSI) ? " MSI" : "");
3168 if (adap->name == dev->name && adap->params.vpd.mclk)
3169 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3170 adap->name, t3_mc7_size(&adap->cm) >> 20,
3171 t3_mc7_size(&adap->pmtx) >> 20,
3172 t3_mc7_size(&adap->pmrx) >> 20,
3173 adap->params.vpd.sn);
3174 }
3175 }
3176
3177 static const struct net_device_ops cxgb_netdev_ops = {
3178 .ndo_open = cxgb_open,
3179 .ndo_stop = cxgb_close,
3180 .ndo_start_xmit = t3_eth_xmit,
3181 .ndo_get_stats = cxgb_get_stats,
3182 .ndo_validate_addr = eth_validate_addr,
3183 .ndo_set_rx_mode = cxgb_set_rxmode,
3184 .ndo_do_ioctl = cxgb_ioctl,
3185 .ndo_change_mtu = cxgb_change_mtu,
3186 .ndo_set_mac_address = cxgb_set_mac_addr,
3187 .ndo_fix_features = cxgb_fix_features,
3188 .ndo_set_features = cxgb_set_features,
3189 #ifdef CONFIG_NET_POLL_CONTROLLER
3190 .ndo_poll_controller = cxgb_netpoll,
3191 #endif
3192 };
3193
cxgb3_init_iscsi_mac(struct net_device * dev)3194 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3195 {
3196 struct port_info *pi = netdev_priv(dev);
3197
3198 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3199 pi->iscsic.mac_addr[3] |= 0x80;
3200 }
3201
3202 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3203 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3204 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3205 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3206 {
3207 int i, err, pci_using_dac = 0;
3208 resource_size_t mmio_start, mmio_len;
3209 const struct adapter_info *ai;
3210 struct adapter *adapter = NULL;
3211 struct port_info *pi;
3212
3213 if (!cxgb3_wq) {
3214 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3215 if (!cxgb3_wq) {
3216 pr_err("cannot initialize work queue\n");
3217 return -ENOMEM;
3218 }
3219 }
3220
3221 err = pci_enable_device(pdev);
3222 if (err) {
3223 dev_err(&pdev->dev, "cannot enable PCI device\n");
3224 goto out;
3225 }
3226
3227 err = pci_request_regions(pdev, DRV_NAME);
3228 if (err) {
3229 /* Just info, some other driver may have claimed the device. */
3230 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3231 goto out_disable_device;
3232 }
3233
3234 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3235 pci_using_dac = 1;
3236 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3237 if (err) {
3238 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3239 "coherent allocations\n");
3240 goto out_release_regions;
3241 }
3242 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3243 dev_err(&pdev->dev, "no usable DMA configuration\n");
3244 goto out_release_regions;
3245 }
3246
3247 pci_set_master(pdev);
3248 pci_save_state(pdev);
3249
3250 mmio_start = pci_resource_start(pdev, 0);
3251 mmio_len = pci_resource_len(pdev, 0);
3252 ai = t3_get_adapter_info(ent->driver_data);
3253
3254 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3255 if (!adapter) {
3256 err = -ENOMEM;
3257 goto out_release_regions;
3258 }
3259
3260 adapter->nofail_skb =
3261 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3262 if (!adapter->nofail_skb) {
3263 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3264 err = -ENOMEM;
3265 goto out_free_adapter;
3266 }
3267
3268 adapter->regs = ioremap(mmio_start, mmio_len);
3269 if (!adapter->regs) {
3270 dev_err(&pdev->dev, "cannot map device registers\n");
3271 err = -ENOMEM;
3272 goto out_free_adapter_nofail;
3273 }
3274
3275 adapter->pdev = pdev;
3276 adapter->name = pci_name(pdev);
3277 adapter->msg_enable = dflt_msg_enable;
3278 adapter->mmio_len = mmio_len;
3279
3280 mutex_init(&adapter->mdio_lock);
3281 spin_lock_init(&adapter->work_lock);
3282 spin_lock_init(&adapter->stats_lock);
3283
3284 INIT_LIST_HEAD(&adapter->adapter_list);
3285 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3286 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3287
3288 INIT_WORK(&adapter->db_full_task, db_full_task);
3289 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3290 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3291
3292 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3293
3294 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3295 struct net_device *netdev;
3296
3297 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3298 if (!netdev) {
3299 err = -ENOMEM;
3300 goto out_free_dev;
3301 }
3302
3303 SET_NETDEV_DEV(netdev, &pdev->dev);
3304
3305 adapter->port[i] = netdev;
3306 pi = netdev_priv(netdev);
3307 pi->adapter = adapter;
3308 pi->port_id = i;
3309 netif_carrier_off(netdev);
3310 netdev->irq = pdev->irq;
3311 netdev->mem_start = mmio_start;
3312 netdev->mem_end = mmio_start + mmio_len - 1;
3313 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3314 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3315 netdev->features |= netdev->hw_features |
3316 NETIF_F_HW_VLAN_CTAG_TX;
3317 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3318 if (pci_using_dac)
3319 netdev->features |= NETIF_F_HIGHDMA;
3320
3321 netdev->netdev_ops = &cxgb_netdev_ops;
3322 netdev->ethtool_ops = &cxgb_ethtool_ops;
3323 netdev->min_mtu = 81;
3324 netdev->max_mtu = ETH_MAX_MTU;
3325 netdev->dev_port = pi->port_id;
3326 }
3327
3328 pci_set_drvdata(pdev, adapter);
3329 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3330 err = -ENODEV;
3331 goto out_free_dev;
3332 }
3333
3334 /*
3335 * The card is now ready to go. If any errors occur during device
3336 * registration we do not fail the whole card but rather proceed only
3337 * with the ports we manage to register successfully. However we must
3338 * register at least one net device.
3339 */
3340 for_each_port(adapter, i) {
3341 err = register_netdev(adapter->port[i]);
3342 if (err)
3343 dev_warn(&pdev->dev,
3344 "cannot register net device %s, skipping\n",
3345 adapter->port[i]->name);
3346 else {
3347 /*
3348 * Change the name we use for messages to the name of
3349 * the first successfully registered interface.
3350 */
3351 if (!adapter->registered_device_map)
3352 adapter->name = adapter->port[i]->name;
3353
3354 __set_bit(i, &adapter->registered_device_map);
3355 }
3356 }
3357 if (!adapter->registered_device_map) {
3358 dev_err(&pdev->dev, "could not register any net devices\n");
3359 goto out_free_dev;
3360 }
3361
3362 for_each_port(adapter, i)
3363 cxgb3_init_iscsi_mac(adapter->port[i]);
3364
3365 /* Driver's ready. Reflect it on LEDs */
3366 t3_led_ready(adapter);
3367
3368 if (is_offload(adapter)) {
3369 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3370 cxgb3_adapter_ofld(adapter);
3371 }
3372
3373 /* See what interrupts we'll be using */
3374 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3375 adapter->flags |= USING_MSIX;
3376 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3377 adapter->flags |= USING_MSI;
3378
3379 set_nqsets(adapter);
3380
3381 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3382 &cxgb3_attr_group);
3383 if (err) {
3384 dev_err(&pdev->dev, "cannot create sysfs group\n");
3385 goto out_close_led;
3386 }
3387
3388 print_port_info(adapter, ai);
3389 return 0;
3390
3391 out_close_led:
3392 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
3393
3394 out_free_dev:
3395 iounmap(adapter->regs);
3396 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3397 if (adapter->port[i])
3398 free_netdev(adapter->port[i]);
3399
3400 out_free_adapter_nofail:
3401 kfree_skb(adapter->nofail_skb);
3402
3403 out_free_adapter:
3404 kfree(adapter);
3405
3406 out_release_regions:
3407 pci_release_regions(pdev);
3408 out_disable_device:
3409 pci_disable_device(pdev);
3410 out:
3411 return err;
3412 }
3413
remove_one(struct pci_dev * pdev)3414 static void remove_one(struct pci_dev *pdev)
3415 {
3416 struct adapter *adapter = pci_get_drvdata(pdev);
3417
3418 if (adapter) {
3419 int i;
3420
3421 t3_sge_stop(adapter);
3422 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3423 &cxgb3_attr_group);
3424
3425 if (is_offload(adapter)) {
3426 cxgb3_adapter_unofld(adapter);
3427 if (test_bit(OFFLOAD_DEVMAP_BIT,
3428 &adapter->open_device_map))
3429 offload_close(&adapter->tdev);
3430 }
3431
3432 for_each_port(adapter, i)
3433 if (test_bit(i, &adapter->registered_device_map))
3434 unregister_netdev(adapter->port[i]);
3435
3436 t3_stop_sge_timers(adapter);
3437 t3_free_sge_resources(adapter);
3438 cxgb_disable_msi(adapter);
3439
3440 for_each_port(adapter, i)
3441 if (adapter->port[i])
3442 free_netdev(adapter->port[i]);
3443
3444 iounmap(adapter->regs);
3445 kfree_skb(adapter->nofail_skb);
3446 kfree(adapter);
3447 pci_release_regions(pdev);
3448 pci_disable_device(pdev);
3449 }
3450 }
3451
3452 static struct pci_driver driver = {
3453 .name = DRV_NAME,
3454 .id_table = cxgb3_pci_tbl,
3455 .probe = init_one,
3456 .remove = remove_one,
3457 .err_handler = &t3_err_handler,
3458 };
3459
cxgb3_init_module(void)3460 static int __init cxgb3_init_module(void)
3461 {
3462 int ret;
3463
3464 cxgb3_offload_init();
3465
3466 ret = pci_register_driver(&driver);
3467 return ret;
3468 }
3469
cxgb3_cleanup_module(void)3470 static void __exit cxgb3_cleanup_module(void)
3471 {
3472 pci_unregister_driver(&driver);
3473 if (cxgb3_wq)
3474 destroy_workqueue(cxgb3_wq);
3475 }
3476
3477 module_init(cxgb3_init_module);
3478 module_exit(cxgb3_cleanup_module);
3479