1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Huawei HiNIC PCI Express Linux driver
4 * Copyright(c) 2017 Huawei Technologies Co., Ltd
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/atomic.h>
14 #include <linux/semaphore.h>
15 #include <linux/errno.h>
16 #include <linux/vmalloc.h>
17 #include <linux/err.h>
18 #include <asm/byteorder.h>
19
20 #include "hinic_hw_if.h"
21 #include "hinic_hw_wqe.h"
22 #include "hinic_hw_wq.h"
23 #include "hinic_hw_cmdq.h"
24
25 #define WQS_BLOCKS_PER_PAGE 4
26
27 #define WQ_BLOCK_SIZE 4096
28 #define WQS_PAGE_SIZE (WQS_BLOCKS_PER_PAGE * WQ_BLOCK_SIZE)
29
30 #define WQS_MAX_NUM_BLOCKS 128
31 #define WQS_FREE_BLOCKS_SIZE(wqs) (WQS_MAX_NUM_BLOCKS * \
32 sizeof((wqs)->free_blocks[0]))
33
34 #define WQ_SIZE(wq) ((wq)->q_depth * (wq)->wqebb_size)
35
36 #define WQ_PAGE_ADDR_SIZE sizeof(u64)
37 #define WQ_MAX_PAGES (WQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
38
39 #define CMDQ_BLOCK_SIZE 512
40 #define CMDQ_PAGE_SIZE 4096
41
42 #define CMDQ_WQ_MAX_PAGES (CMDQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
43
44 #define WQ_BASE_VADDR(wqs, wq) \
45 ((void *)((wqs)->page_vaddr[(wq)->page_idx]) \
46 + (wq)->block_idx * WQ_BLOCK_SIZE)
47
48 #define WQ_BASE_PADDR(wqs, wq) \
49 ((wqs)->page_paddr[(wq)->page_idx] \
50 + (wq)->block_idx * WQ_BLOCK_SIZE)
51
52 #define WQ_BASE_ADDR(wqs, wq) \
53 ((void *)((wqs)->shadow_page_vaddr[(wq)->page_idx]) \
54 + (wq)->block_idx * WQ_BLOCK_SIZE)
55
56 #define CMDQ_BASE_VADDR(cmdq_pages, wq) \
57 ((void *)((cmdq_pages)->page_vaddr) \
58 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
59
60 #define CMDQ_BASE_PADDR(cmdq_pages, wq) \
61 ((cmdq_pages)->page_paddr \
62 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
63
64 #define CMDQ_BASE_ADDR(cmdq_pages, wq) \
65 ((void *)((cmdq_pages)->shadow_page_vaddr) \
66 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
67
68 #define WQ_PAGE_ADDR(wq, idx) \
69 ((wq)->shadow_block_vaddr[WQE_PAGE_NUM(wq, idx)])
70
71 #define MASKED_WQE_IDX(wq, idx) ((idx) & (wq)->mask)
72
73 #define WQE_IN_RANGE(wqe, start, end) \
74 (((unsigned long)(wqe) >= (unsigned long)(start)) && \
75 ((unsigned long)(wqe) < (unsigned long)(end)))
76
77 #define WQE_SHADOW_PAGE(wq, wqe) \
78 (((unsigned long)(wqe) - (unsigned long)(wq)->shadow_wqe) \
79 / (wq)->max_wqe_size)
80
WQE_PAGE_OFF(struct hinic_wq * wq,u16 idx)81 static inline int WQE_PAGE_OFF(struct hinic_wq *wq, u16 idx)
82 {
83 return (((idx) & ((wq)->num_wqebbs_per_page - 1))
84 << (wq)->wqebb_size_shift);
85 }
86
WQE_PAGE_NUM(struct hinic_wq * wq,u16 idx)87 static inline int WQE_PAGE_NUM(struct hinic_wq *wq, u16 idx)
88 {
89 return (((idx) >> ((wq)->wqebbs_per_page_shift))
90 & ((wq)->num_q_pages - 1));
91 }
92 /**
93 * queue_alloc_page - allocate page for Queue
94 * @hwif: HW interface for allocating DMA
95 * @vaddr: virtual address will be returned in this address
96 * @paddr: physical address will be returned in this address
97 * @shadow_vaddr: VM area will be return here for holding WQ page addresses
98 * @page_sz: page size of each WQ page
99 *
100 * Return 0 - Success, negative - Failure
101 **/
queue_alloc_page(struct hinic_hwif * hwif,u64 ** vaddr,u64 * paddr,void *** shadow_vaddr,size_t page_sz)102 static int queue_alloc_page(struct hinic_hwif *hwif, u64 **vaddr, u64 *paddr,
103 void ***shadow_vaddr, size_t page_sz)
104 {
105 struct pci_dev *pdev = hwif->pdev;
106 dma_addr_t dma_addr;
107
108 *vaddr = dma_alloc_coherent(&pdev->dev, page_sz, &dma_addr,
109 GFP_KERNEL);
110 if (!*vaddr) {
111 dev_err(&pdev->dev, "Failed to allocate dma for wqs page\n");
112 return -ENOMEM;
113 }
114
115 *paddr = (u64)dma_addr;
116
117 /* use vzalloc for big mem */
118 *shadow_vaddr = vzalloc(page_sz);
119 if (!*shadow_vaddr)
120 goto err_shadow_vaddr;
121
122 return 0;
123
124 err_shadow_vaddr:
125 dma_free_coherent(&pdev->dev, page_sz, *vaddr, dma_addr);
126 return -ENOMEM;
127 }
128
129 /**
130 * wqs_allocate_page - allocate page for WQ set
131 * @wqs: Work Queue Set
132 * @page_idx: the page index of the page will be allocated
133 *
134 * Return 0 - Success, negative - Failure
135 **/
wqs_allocate_page(struct hinic_wqs * wqs,int page_idx)136 static int wqs_allocate_page(struct hinic_wqs *wqs, int page_idx)
137 {
138 return queue_alloc_page(wqs->hwif, &wqs->page_vaddr[page_idx],
139 &wqs->page_paddr[page_idx],
140 &wqs->shadow_page_vaddr[page_idx],
141 WQS_PAGE_SIZE);
142 }
143
144 /**
145 * wqs_free_page - free page of WQ set
146 * @wqs: Work Queue Set
147 * @page_idx: the page index of the page will be freed
148 **/
wqs_free_page(struct hinic_wqs * wqs,int page_idx)149 static void wqs_free_page(struct hinic_wqs *wqs, int page_idx)
150 {
151 struct hinic_hwif *hwif = wqs->hwif;
152 struct pci_dev *pdev = hwif->pdev;
153
154 dma_free_coherent(&pdev->dev, WQS_PAGE_SIZE,
155 wqs->page_vaddr[page_idx],
156 (dma_addr_t)wqs->page_paddr[page_idx]);
157 vfree(wqs->shadow_page_vaddr[page_idx]);
158 }
159
160 /**
161 * cmdq_allocate_page - allocate page for cmdq
162 * @cmdq_pages: the pages of the cmdq queue struct to hold the page
163 *
164 * Return 0 - Success, negative - Failure
165 **/
cmdq_allocate_page(struct hinic_cmdq_pages * cmdq_pages)166 static int cmdq_allocate_page(struct hinic_cmdq_pages *cmdq_pages)
167 {
168 return queue_alloc_page(cmdq_pages->hwif, &cmdq_pages->page_vaddr,
169 &cmdq_pages->page_paddr,
170 &cmdq_pages->shadow_page_vaddr,
171 CMDQ_PAGE_SIZE);
172 }
173
174 /**
175 * cmdq_free_page - free page from cmdq
176 * @cmdq_pages: the pages of the cmdq queue struct that hold the page
177 *
178 * Return 0 - Success, negative - Failure
179 **/
cmdq_free_page(struct hinic_cmdq_pages * cmdq_pages)180 static void cmdq_free_page(struct hinic_cmdq_pages *cmdq_pages)
181 {
182 struct hinic_hwif *hwif = cmdq_pages->hwif;
183 struct pci_dev *pdev = hwif->pdev;
184
185 dma_free_coherent(&pdev->dev, CMDQ_PAGE_SIZE,
186 cmdq_pages->page_vaddr,
187 (dma_addr_t)cmdq_pages->page_paddr);
188 vfree(cmdq_pages->shadow_page_vaddr);
189 }
190
alloc_page_arrays(struct hinic_wqs * wqs)191 static int alloc_page_arrays(struct hinic_wqs *wqs)
192 {
193 struct hinic_hwif *hwif = wqs->hwif;
194 struct pci_dev *pdev = hwif->pdev;
195
196 wqs->page_paddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
197 sizeof(*wqs->page_paddr), GFP_KERNEL);
198 if (!wqs->page_paddr)
199 return -ENOMEM;
200
201 wqs->page_vaddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
202 sizeof(*wqs->page_vaddr), GFP_KERNEL);
203 if (!wqs->page_vaddr)
204 goto err_page_vaddr;
205
206 wqs->shadow_page_vaddr = devm_kcalloc(&pdev->dev, wqs->num_pages,
207 sizeof(*wqs->shadow_page_vaddr),
208 GFP_KERNEL);
209 if (!wqs->shadow_page_vaddr)
210 goto err_page_shadow_vaddr;
211
212 return 0;
213
214 err_page_shadow_vaddr:
215 devm_kfree(&pdev->dev, wqs->page_vaddr);
216
217 err_page_vaddr:
218 devm_kfree(&pdev->dev, wqs->page_paddr);
219 return -ENOMEM;
220 }
221
free_page_arrays(struct hinic_wqs * wqs)222 static void free_page_arrays(struct hinic_wqs *wqs)
223 {
224 struct hinic_hwif *hwif = wqs->hwif;
225 struct pci_dev *pdev = hwif->pdev;
226
227 devm_kfree(&pdev->dev, wqs->shadow_page_vaddr);
228 devm_kfree(&pdev->dev, wqs->page_vaddr);
229 devm_kfree(&pdev->dev, wqs->page_paddr);
230 }
231
wqs_next_block(struct hinic_wqs * wqs,int * page_idx,int * block_idx)232 static int wqs_next_block(struct hinic_wqs *wqs, int *page_idx,
233 int *block_idx)
234 {
235 int pos;
236
237 down(&wqs->alloc_blocks_lock);
238
239 wqs->num_free_blks--;
240
241 if (wqs->num_free_blks < 0) {
242 wqs->num_free_blks++;
243 up(&wqs->alloc_blocks_lock);
244 return -ENOMEM;
245 }
246
247 pos = wqs->alloc_blk_pos++;
248 pos &= WQS_MAX_NUM_BLOCKS - 1;
249
250 *page_idx = wqs->free_blocks[pos].page_idx;
251 *block_idx = wqs->free_blocks[pos].block_idx;
252
253 wqs->free_blocks[pos].page_idx = -1;
254 wqs->free_blocks[pos].block_idx = -1;
255
256 up(&wqs->alloc_blocks_lock);
257 return 0;
258 }
259
wqs_return_block(struct hinic_wqs * wqs,int page_idx,int block_idx)260 static void wqs_return_block(struct hinic_wqs *wqs, int page_idx,
261 int block_idx)
262 {
263 int pos;
264
265 down(&wqs->alloc_blocks_lock);
266
267 pos = wqs->return_blk_pos++;
268 pos &= WQS_MAX_NUM_BLOCKS - 1;
269
270 wqs->free_blocks[pos].page_idx = page_idx;
271 wqs->free_blocks[pos].block_idx = block_idx;
272
273 wqs->num_free_blks++;
274
275 up(&wqs->alloc_blocks_lock);
276 }
277
init_wqs_blocks_arr(struct hinic_wqs * wqs)278 static void init_wqs_blocks_arr(struct hinic_wqs *wqs)
279 {
280 int page_idx, blk_idx, pos = 0;
281
282 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
283 for (blk_idx = 0; blk_idx < WQS_BLOCKS_PER_PAGE; blk_idx++) {
284 wqs->free_blocks[pos].page_idx = page_idx;
285 wqs->free_blocks[pos].block_idx = blk_idx;
286 pos++;
287 }
288 }
289
290 wqs->alloc_blk_pos = 0;
291 wqs->return_blk_pos = pos;
292 wqs->num_free_blks = pos;
293
294 sema_init(&wqs->alloc_blocks_lock, 1);
295 }
296
297 /**
298 * hinic_wqs_alloc - allocate Work Queues set
299 * @wqs: Work Queue Set
300 * @max_wqs: maximum wqs to allocate
301 * @hwif: HW interface for use for the allocation
302 *
303 * Return 0 - Success, negative - Failure
304 **/
hinic_wqs_alloc(struct hinic_wqs * wqs,int max_wqs,struct hinic_hwif * hwif)305 int hinic_wqs_alloc(struct hinic_wqs *wqs, int max_wqs,
306 struct hinic_hwif *hwif)
307 {
308 struct pci_dev *pdev = hwif->pdev;
309 int err, i, page_idx;
310
311 max_wqs = ALIGN(max_wqs, WQS_BLOCKS_PER_PAGE);
312 if (max_wqs > WQS_MAX_NUM_BLOCKS) {
313 dev_err(&pdev->dev, "Invalid max_wqs = %d\n", max_wqs);
314 return -EINVAL;
315 }
316
317 wqs->hwif = hwif;
318 wqs->num_pages = max_wqs / WQS_BLOCKS_PER_PAGE;
319
320 if (alloc_page_arrays(wqs)) {
321 dev_err(&pdev->dev,
322 "Failed to allocate mem for page addresses\n");
323 return -ENOMEM;
324 }
325
326 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
327 err = wqs_allocate_page(wqs, page_idx);
328 if (err) {
329 dev_err(&pdev->dev, "Failed wq page allocation\n");
330 goto err_wq_allocate_page;
331 }
332 }
333
334 wqs->free_blocks = devm_kzalloc(&pdev->dev, WQS_FREE_BLOCKS_SIZE(wqs),
335 GFP_KERNEL);
336 if (!wqs->free_blocks) {
337 err = -ENOMEM;
338 goto err_alloc_blocks;
339 }
340
341 init_wqs_blocks_arr(wqs);
342 return 0;
343
344 err_alloc_blocks:
345 err_wq_allocate_page:
346 for (i = 0; i < page_idx; i++)
347 wqs_free_page(wqs, i);
348
349 free_page_arrays(wqs);
350 return err;
351 }
352
353 /**
354 * hinic_wqs_free - free Work Queues set
355 * @wqs: Work Queue Set
356 **/
hinic_wqs_free(struct hinic_wqs * wqs)357 void hinic_wqs_free(struct hinic_wqs *wqs)
358 {
359 struct hinic_hwif *hwif = wqs->hwif;
360 struct pci_dev *pdev = hwif->pdev;
361 int page_idx;
362
363 devm_kfree(&pdev->dev, wqs->free_blocks);
364
365 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++)
366 wqs_free_page(wqs, page_idx);
367
368 free_page_arrays(wqs);
369 }
370
371 /**
372 * alloc_wqes_shadow - allocate WQE shadows for WQ
373 * @wq: WQ to allocate shadows for
374 *
375 * Return 0 - Success, negative - Failure
376 **/
alloc_wqes_shadow(struct hinic_wq * wq)377 static int alloc_wqes_shadow(struct hinic_wq *wq)
378 {
379 struct hinic_hwif *hwif = wq->hwif;
380 struct pci_dev *pdev = hwif->pdev;
381
382 wq->shadow_wqe = devm_kcalloc(&pdev->dev, wq->num_q_pages,
383 wq->max_wqe_size, GFP_KERNEL);
384 if (!wq->shadow_wqe)
385 return -ENOMEM;
386
387 wq->shadow_idx = devm_kcalloc(&pdev->dev, wq->num_q_pages,
388 sizeof(*wq->shadow_idx), GFP_KERNEL);
389 if (!wq->shadow_idx)
390 goto err_shadow_idx;
391
392 return 0;
393
394 err_shadow_idx:
395 devm_kfree(&pdev->dev, wq->shadow_wqe);
396 return -ENOMEM;
397 }
398
399 /**
400 * free_wqes_shadow - free WQE shadows of WQ
401 * @wq: WQ to free shadows from
402 **/
free_wqes_shadow(struct hinic_wq * wq)403 static void free_wqes_shadow(struct hinic_wq *wq)
404 {
405 struct hinic_hwif *hwif = wq->hwif;
406 struct pci_dev *pdev = hwif->pdev;
407
408 devm_kfree(&pdev->dev, wq->shadow_idx);
409 devm_kfree(&pdev->dev, wq->shadow_wqe);
410 }
411
412 /**
413 * free_wq_pages - free pages of WQ
414 * @hwif: HW interface for releasing dma addresses
415 * @wq: WQ to free pages from
416 * @num_q_pages: number pages to free
417 **/
free_wq_pages(struct hinic_wq * wq,struct hinic_hwif * hwif,int num_q_pages)418 static void free_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
419 int num_q_pages)
420 {
421 struct pci_dev *pdev = hwif->pdev;
422 int i;
423
424 for (i = 0; i < num_q_pages; i++) {
425 void **vaddr = &wq->shadow_block_vaddr[i];
426 u64 *paddr = &wq->block_vaddr[i];
427 dma_addr_t dma_addr;
428
429 dma_addr = (dma_addr_t)be64_to_cpu(*paddr);
430 dma_free_coherent(&pdev->dev, wq->wq_page_size, *vaddr,
431 dma_addr);
432 }
433
434 free_wqes_shadow(wq);
435 }
436
437 /**
438 * alloc_wq_pages - alloc pages for WQ
439 * @hwif: HW interface for allocating dma addresses
440 * @wq: WQ to allocate pages for
441 * @max_pages: maximum pages allowed
442 *
443 * Return 0 - Success, negative - Failure
444 **/
alloc_wq_pages(struct hinic_wq * wq,struct hinic_hwif * hwif,int max_pages)445 static int alloc_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
446 int max_pages)
447 {
448 struct pci_dev *pdev = hwif->pdev;
449 int i, err, num_q_pages;
450
451 num_q_pages = ALIGN(WQ_SIZE(wq), wq->wq_page_size) / wq->wq_page_size;
452 if (num_q_pages > max_pages) {
453 dev_err(&pdev->dev, "Number wq pages exceeds the limit\n");
454 return -EINVAL;
455 }
456
457 if (num_q_pages & (num_q_pages - 1)) {
458 dev_err(&pdev->dev, "Number wq pages must be power of 2\n");
459 return -EINVAL;
460 }
461
462 wq->num_q_pages = num_q_pages;
463
464 err = alloc_wqes_shadow(wq);
465 if (err) {
466 dev_err(&pdev->dev, "Failed to allocate wqe shadow\n");
467 return err;
468 }
469
470 for (i = 0; i < num_q_pages; i++) {
471 void **vaddr = &wq->shadow_block_vaddr[i];
472 u64 *paddr = &wq->block_vaddr[i];
473 dma_addr_t dma_addr;
474
475 *vaddr = dma_alloc_coherent(&pdev->dev, wq->wq_page_size,
476 &dma_addr, GFP_KERNEL);
477 if (!*vaddr) {
478 dev_err(&pdev->dev, "Failed to allocate wq page\n");
479 goto err_alloc_wq_pages;
480 }
481
482 /* HW uses Big Endian Format */
483 *paddr = cpu_to_be64(dma_addr);
484 }
485
486 return 0;
487
488 err_alloc_wq_pages:
489 free_wq_pages(wq, hwif, i);
490 return -ENOMEM;
491 }
492
493 /**
494 * hinic_wq_allocate - Allocate the WQ resources from the WQS
495 * @wqs: WQ set from which to allocate the WQ resources
496 * @wq: WQ to allocate resources for it from the WQ set
497 * @wqebb_size: Work Queue Block Byte Size
498 * @wq_page_size: the page size in the Work Queue
499 * @q_depth: number of wqebbs in WQ
500 * @max_wqe_size: maximum WQE size that will be used in the WQ
501 *
502 * Return 0 - Success, negative - Failure
503 **/
hinic_wq_allocate(struct hinic_wqs * wqs,struct hinic_wq * wq,u16 wqebb_size,u32 wq_page_size,u16 q_depth,u16 max_wqe_size)504 int hinic_wq_allocate(struct hinic_wqs *wqs, struct hinic_wq *wq,
505 u16 wqebb_size, u32 wq_page_size, u16 q_depth,
506 u16 max_wqe_size)
507 {
508 struct hinic_hwif *hwif = wqs->hwif;
509 struct pci_dev *pdev = hwif->pdev;
510 u16 num_wqebbs_per_page;
511 u16 wqebb_size_shift;
512 int err;
513
514 if (!is_power_of_2(wqebb_size)) {
515 dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
516 return -EINVAL;
517 }
518
519 if (wq_page_size == 0) {
520 dev_err(&pdev->dev, "wq_page_size must be > 0\n");
521 return -EINVAL;
522 }
523
524 if (q_depth & (q_depth - 1)) {
525 dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
526 return -EINVAL;
527 }
528
529 wqebb_size_shift = ilog2(wqebb_size);
530 num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
531 >> wqebb_size_shift;
532
533 if (!is_power_of_2(num_wqebbs_per_page)) {
534 dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
535 return -EINVAL;
536 }
537
538 wq->hwif = hwif;
539
540 err = wqs_next_block(wqs, &wq->page_idx, &wq->block_idx);
541 if (err) {
542 dev_err(&pdev->dev, "Failed to get free wqs next block\n");
543 return err;
544 }
545
546 wq->wqebb_size = wqebb_size;
547 wq->wq_page_size = wq_page_size;
548 wq->q_depth = q_depth;
549 wq->max_wqe_size = max_wqe_size;
550 wq->num_wqebbs_per_page = num_wqebbs_per_page;
551 wq->wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
552 wq->wqebb_size_shift = wqebb_size_shift;
553 wq->block_vaddr = WQ_BASE_VADDR(wqs, wq);
554 wq->shadow_block_vaddr = WQ_BASE_ADDR(wqs, wq);
555 wq->block_paddr = WQ_BASE_PADDR(wqs, wq);
556
557 err = alloc_wq_pages(wq, wqs->hwif, WQ_MAX_PAGES);
558 if (err) {
559 dev_err(&pdev->dev, "Failed to allocate wq pages\n");
560 goto err_alloc_wq_pages;
561 }
562
563 atomic_set(&wq->cons_idx, 0);
564 atomic_set(&wq->prod_idx, 0);
565 atomic_set(&wq->delta, q_depth);
566 wq->mask = q_depth - 1;
567
568 return 0;
569
570 err_alloc_wq_pages:
571 wqs_return_block(wqs, wq->page_idx, wq->block_idx);
572 return err;
573 }
574
575 /**
576 * hinic_wq_free - Free the WQ resources to the WQS
577 * @wqs: WQ set to free the WQ resources to it
578 * @wq: WQ to free its resources to the WQ set resources
579 **/
hinic_wq_free(struct hinic_wqs * wqs,struct hinic_wq * wq)580 void hinic_wq_free(struct hinic_wqs *wqs, struct hinic_wq *wq)
581 {
582 free_wq_pages(wq, wqs->hwif, wq->num_q_pages);
583
584 wqs_return_block(wqs, wq->page_idx, wq->block_idx);
585 }
586
587 /**
588 * hinic_wqs_cmdq_alloc - Allocate wqs for cmdqs
589 * @cmdq_pages: will hold the pages of the cmdq
590 * @wq: returned wqs
591 * @hwif: HW interface
592 * @cmdq_blocks: number of cmdq blocks/wq to allocate
593 * @wqebb_size: Work Queue Block Byte Size
594 * @wq_page_size: the page size in the Work Queue
595 * @q_depth: number of wqebbs in WQ
596 * @max_wqe_size: maximum WQE size that will be used in the WQ
597 *
598 * Return 0 - Success, negative - Failure
599 **/
hinic_wqs_cmdq_alloc(struct hinic_cmdq_pages * cmdq_pages,struct hinic_wq * wq,struct hinic_hwif * hwif,int cmdq_blocks,u16 wqebb_size,u32 wq_page_size,u16 q_depth,u16 max_wqe_size)600 int hinic_wqs_cmdq_alloc(struct hinic_cmdq_pages *cmdq_pages,
601 struct hinic_wq *wq, struct hinic_hwif *hwif,
602 int cmdq_blocks, u16 wqebb_size, u32 wq_page_size,
603 u16 q_depth, u16 max_wqe_size)
604 {
605 struct pci_dev *pdev = hwif->pdev;
606 u16 num_wqebbs_per_page_shift;
607 u16 num_wqebbs_per_page;
608 u16 wqebb_size_shift;
609 int i, j, err = -ENOMEM;
610
611 if (!is_power_of_2(wqebb_size)) {
612 dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
613 return -EINVAL;
614 }
615
616 if (wq_page_size == 0) {
617 dev_err(&pdev->dev, "wq_page_size must be > 0\n");
618 return -EINVAL;
619 }
620
621 if (q_depth & (q_depth - 1)) {
622 dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
623 return -EINVAL;
624 }
625
626 wqebb_size_shift = ilog2(wqebb_size);
627 num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
628 >> wqebb_size_shift;
629
630 if (!is_power_of_2(num_wqebbs_per_page)) {
631 dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
632 return -EINVAL;
633 }
634
635 cmdq_pages->hwif = hwif;
636
637 err = cmdq_allocate_page(cmdq_pages);
638 if (err) {
639 dev_err(&pdev->dev, "Failed to allocate CMDQ page\n");
640 return err;
641 }
642 num_wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
643
644 for (i = 0; i < cmdq_blocks; i++) {
645 wq[i].hwif = hwif;
646 wq[i].page_idx = 0;
647 wq[i].block_idx = i;
648
649 wq[i].wqebb_size = wqebb_size;
650 wq[i].wq_page_size = wq_page_size;
651 wq[i].q_depth = q_depth;
652 wq[i].max_wqe_size = max_wqe_size;
653 wq[i].num_wqebbs_per_page = num_wqebbs_per_page;
654 wq[i].wqebbs_per_page_shift = num_wqebbs_per_page_shift;
655 wq[i].wqebb_size_shift = wqebb_size_shift;
656 wq[i].block_vaddr = CMDQ_BASE_VADDR(cmdq_pages, &wq[i]);
657 wq[i].shadow_block_vaddr = CMDQ_BASE_ADDR(cmdq_pages, &wq[i]);
658 wq[i].block_paddr = CMDQ_BASE_PADDR(cmdq_pages, &wq[i]);
659
660 err = alloc_wq_pages(&wq[i], cmdq_pages->hwif,
661 CMDQ_WQ_MAX_PAGES);
662 if (err) {
663 dev_err(&pdev->dev, "Failed to alloc CMDQ blocks\n");
664 goto err_cmdq_block;
665 }
666
667 atomic_set(&wq[i].cons_idx, 0);
668 atomic_set(&wq[i].prod_idx, 0);
669 atomic_set(&wq[i].delta, q_depth);
670 wq[i].mask = q_depth - 1;
671 }
672
673 return 0;
674
675 err_cmdq_block:
676 for (j = 0; j < i; j++)
677 free_wq_pages(&wq[j], cmdq_pages->hwif, wq[j].num_q_pages);
678
679 cmdq_free_page(cmdq_pages);
680 return err;
681 }
682
683 /**
684 * hinic_wqs_cmdq_free - Free wqs from cmdqs
685 * @cmdq_pages: hold the pages of the cmdq
686 * @wq: wqs to free
687 * @cmdq_blocks: number of wqs to free
688 **/
hinic_wqs_cmdq_free(struct hinic_cmdq_pages * cmdq_pages,struct hinic_wq * wq,int cmdq_blocks)689 void hinic_wqs_cmdq_free(struct hinic_cmdq_pages *cmdq_pages,
690 struct hinic_wq *wq, int cmdq_blocks)
691 {
692 int i;
693
694 for (i = 0; i < cmdq_blocks; i++)
695 free_wq_pages(&wq[i], cmdq_pages->hwif, wq[i].num_q_pages);
696
697 cmdq_free_page(cmdq_pages);
698 }
699
copy_wqe_to_shadow(struct hinic_wq * wq,void * shadow_addr,int num_wqebbs,u16 idx)700 static void copy_wqe_to_shadow(struct hinic_wq *wq, void *shadow_addr,
701 int num_wqebbs, u16 idx)
702 {
703 void *wqebb_addr;
704 int i;
705
706 for (i = 0; i < num_wqebbs; i++, idx++) {
707 idx = MASKED_WQE_IDX(wq, idx);
708 wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
709 WQE_PAGE_OFF(wq, idx);
710
711 memcpy(shadow_addr, wqebb_addr, wq->wqebb_size);
712
713 shadow_addr += wq->wqebb_size;
714 }
715 }
716
copy_wqe_from_shadow(struct hinic_wq * wq,void * shadow_addr,int num_wqebbs,u16 idx)717 static void copy_wqe_from_shadow(struct hinic_wq *wq, void *shadow_addr,
718 int num_wqebbs, u16 idx)
719 {
720 void *wqebb_addr;
721 int i;
722
723 for (i = 0; i < num_wqebbs; i++, idx++) {
724 idx = MASKED_WQE_IDX(wq, idx);
725 wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
726 WQE_PAGE_OFF(wq, idx);
727
728 memcpy(wqebb_addr, shadow_addr, wq->wqebb_size);
729 shadow_addr += wq->wqebb_size;
730 }
731 }
732
733 /**
734 * hinic_get_wqe - get wqe ptr in the current pi and update the pi
735 * @wq: wq to get wqe from
736 * @wqe_size: wqe size
737 * @prod_idx: returned pi
738 *
739 * Return wqe pointer
740 **/
hinic_get_wqe(struct hinic_wq * wq,unsigned int wqe_size,u16 * prod_idx)741 struct hinic_hw_wqe *hinic_get_wqe(struct hinic_wq *wq, unsigned int wqe_size,
742 u16 *prod_idx)
743 {
744 int curr_pg, end_pg, num_wqebbs;
745 u16 curr_prod_idx, end_prod_idx;
746
747 *prod_idx = MASKED_WQE_IDX(wq, atomic_read(&wq->prod_idx));
748
749 num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) >> wq->wqebb_size_shift;
750
751 if (atomic_sub_return(num_wqebbs, &wq->delta) <= 0) {
752 atomic_add(num_wqebbs, &wq->delta);
753 return ERR_PTR(-EBUSY);
754 }
755
756 end_prod_idx = atomic_add_return(num_wqebbs, &wq->prod_idx);
757
758 end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx);
759 curr_prod_idx = end_prod_idx - num_wqebbs;
760 curr_prod_idx = MASKED_WQE_IDX(wq, curr_prod_idx);
761
762 /* end prod index points to the next wqebb, therefore minus 1 */
763 end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx - 1);
764
765 curr_pg = WQE_PAGE_NUM(wq, curr_prod_idx);
766 end_pg = WQE_PAGE_NUM(wq, end_prod_idx);
767
768 *prod_idx = curr_prod_idx;
769
770 /* If we only have one page, still need to get shadown wqe when
771 * wqe rolling-over page
772 */
773 if (curr_pg != end_pg || end_prod_idx < *prod_idx) {
774 void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
775
776 copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *prod_idx);
777
778 wq->shadow_idx[curr_pg] = *prod_idx;
779 return shadow_addr;
780 }
781
782 return WQ_PAGE_ADDR(wq, *prod_idx) + WQE_PAGE_OFF(wq, *prod_idx);
783 }
784
785 /**
786 * hinic_return_wqe - return the wqe when transmit failed
787 * @wq: wq to return wqe
788 * @wqe_size: wqe size
789 **/
hinic_return_wqe(struct hinic_wq * wq,unsigned int wqe_size)790 void hinic_return_wqe(struct hinic_wq *wq, unsigned int wqe_size)
791 {
792 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
793
794 atomic_sub(num_wqebbs, &wq->prod_idx);
795
796 atomic_add(num_wqebbs, &wq->delta);
797 }
798
799 /**
800 * hinic_put_wqe - return the wqe place to use for a new wqe
801 * @wq: wq to return wqe
802 * @wqe_size: wqe size
803 **/
hinic_put_wqe(struct hinic_wq * wq,unsigned int wqe_size)804 void hinic_put_wqe(struct hinic_wq *wq, unsigned int wqe_size)
805 {
806 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
807 >> wq->wqebb_size_shift;
808
809 atomic_add(num_wqebbs, &wq->cons_idx);
810
811 atomic_add(num_wqebbs, &wq->delta);
812 }
813
814 /**
815 * hinic_read_wqe - read wqe ptr in the current ci
816 * @wq: wq to get read from
817 * @wqe_size: wqe size
818 * @cons_idx: returned ci
819 *
820 * Return wqe pointer
821 **/
hinic_read_wqe(struct hinic_wq * wq,unsigned int wqe_size,u16 * cons_idx)822 struct hinic_hw_wqe *hinic_read_wqe(struct hinic_wq *wq, unsigned int wqe_size,
823 u16 *cons_idx)
824 {
825 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
826 >> wq->wqebb_size_shift;
827 u16 curr_cons_idx, end_cons_idx;
828 int curr_pg, end_pg;
829
830 if ((atomic_read(&wq->delta) + num_wqebbs) > wq->q_depth)
831 return ERR_PTR(-EBUSY);
832
833 curr_cons_idx = atomic_read(&wq->cons_idx);
834
835 curr_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx);
836 end_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx + num_wqebbs - 1);
837
838 curr_pg = WQE_PAGE_NUM(wq, curr_cons_idx);
839 end_pg = WQE_PAGE_NUM(wq, end_cons_idx);
840
841 *cons_idx = curr_cons_idx;
842
843 /* If we only have one page, still need to get shadown wqe when
844 * wqe rolling-over page
845 */
846 if (curr_pg != end_pg || end_cons_idx < curr_cons_idx) {
847 void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
848
849 copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *cons_idx);
850 return shadow_addr;
851 }
852
853 return WQ_PAGE_ADDR(wq, *cons_idx) + WQE_PAGE_OFF(wq, *cons_idx);
854 }
855
856 /**
857 * hinic_read_wqe_direct - read wqe directly from ci position
858 * @wq: wq
859 * @cons_idx: ci position
860 *
861 * Return wqe
862 **/
hinic_read_wqe_direct(struct hinic_wq * wq,u16 cons_idx)863 struct hinic_hw_wqe *hinic_read_wqe_direct(struct hinic_wq *wq, u16 cons_idx)
864 {
865 return WQ_PAGE_ADDR(wq, cons_idx) + WQE_PAGE_OFF(wq, cons_idx);
866 }
867
868 /**
869 * wqe_shadow - check if a wqe is shadow
870 * @wq: wq of the wqe
871 * @wqe: the wqe for shadow checking
872 *
873 * Return true - shadow, false - Not shadow
874 **/
wqe_shadow(struct hinic_wq * wq,struct hinic_hw_wqe * wqe)875 static inline bool wqe_shadow(struct hinic_wq *wq, struct hinic_hw_wqe *wqe)
876 {
877 size_t wqe_shadow_size = wq->num_q_pages * wq->max_wqe_size;
878
879 return WQE_IN_RANGE(wqe, wq->shadow_wqe,
880 &wq->shadow_wqe[wqe_shadow_size]);
881 }
882
883 /**
884 * hinic_write_wqe - write the wqe to the wq
885 * @wq: wq to write wqe to
886 * @wqe: wqe to write
887 * @wqe_size: wqe size
888 **/
hinic_write_wqe(struct hinic_wq * wq,struct hinic_hw_wqe * wqe,unsigned int wqe_size)889 void hinic_write_wqe(struct hinic_wq *wq, struct hinic_hw_wqe *wqe,
890 unsigned int wqe_size)
891 {
892 int curr_pg, num_wqebbs;
893 void *shadow_addr;
894 u16 prod_idx;
895
896 if (wqe_shadow(wq, wqe)) {
897 curr_pg = WQE_SHADOW_PAGE(wq, wqe);
898
899 prod_idx = wq->shadow_idx[curr_pg];
900 num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
901 shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
902
903 copy_wqe_from_shadow(wq, shadow_addr, num_wqebbs, prod_idx);
904 }
905 }
906