1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { u64 a; u64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state)
581 i2cctl |= E1000_I2C_DATA_OUT;
582 else
583 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585 i2cctl &= ~E1000_I2C_DATA_OE_N;
586 i2cctl |= E1000_I2C_CLK_OE_N;
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589
590 }
591
592 /**
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
596 *
597 * Sets the I2C clock line to state
598 **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 struct igb_adapter *adapter = (struct igb_adapter *)data;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605 if (state) {
606 i2cctl |= E1000_I2C_CLK_OUT;
607 i2cctl &= ~E1000_I2C_CLK_OE_N;
608 } else {
609 i2cctl &= ~E1000_I2C_CLK_OUT;
610 i2cctl &= ~E1000_I2C_CLK_OE_N;
611 }
612 wr32(E1000_I2CPARAMS, i2cctl);
613 wrfl();
614 }
615
616 /**
617 * igb_get_i2c_clk - Gets the I2C SCL clock state
618 * @data: pointer to hardware structure
619 *
620 * Gets the I2C clock state
621 **/
igb_get_i2c_clk(void * data)622 static int igb_get_i2c_clk(void *data)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 .setsda = igb_set_i2c_data,
633 .setscl = igb_set_i2c_clk,
634 .getsda = igb_get_i2c_data,
635 .getscl = igb_get_i2c_clk,
636 .udelay = 5,
637 .timeout = 20,
638 };
639
640 /**
641 * igb_get_hw_dev - return device
642 * @hw: pointer to hardware structure
643 *
644 * used by hardware layer to print debugging information
645 **/
igb_get_hw_dev(struct e1000_hw * hw)646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 struct igb_adapter *adapter = hw->back;
649 return adapter->netdev;
650 }
651
652 /**
653 * igb_init_module - Driver Registration Routine
654 *
655 * igb_init_module is the first routine called when the driver is
656 * loaded. All it does is register with the PCI subsystem.
657 **/
igb_init_module(void)658 static int __init igb_init_module(void)
659 {
660 int ret;
661
662 pr_info("%s\n", igb_driver_string);
663 pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666 dca_register_notify(&dca_notifier);
667 #endif
668 ret = pci_register_driver(&igb_driver);
669 return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675 * igb_exit_module - Driver Exit Cleanup Routine
676 *
677 * igb_exit_module is called just before the driver is removed
678 * from memory.
679 **/
igb_exit_module(void)680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 dca_unregister_notify(&dca_notifier);
684 #endif
685 pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692 * igb_cache_ring_register - Descriptor ring to register mapping
693 * @adapter: board private structure to initialize
694 *
695 * Once we know the feature-set enabled for the device, we'll cache
696 * the register offset the descriptor ring is assigned to.
697 **/
igb_cache_ring_register(struct igb_adapter * adapter)698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 int i = 0, j = 0;
701 u32 rbase_offset = adapter->vfs_allocated_count;
702
703 switch (adapter->hw.mac.type) {
704 case e1000_82576:
705 /* The queues are allocated for virtualization such that VF 0
706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 * In order to avoid collision we start at the first free queue
708 * and continue consuming queues in the same sequence
709 */
710 if (adapter->vfs_allocated_count) {
711 for (; i < adapter->rss_queues; i++)
712 adapter->rx_ring[i]->reg_idx = rbase_offset +
713 Q_IDX_82576(i);
714 }
715 fallthrough;
716 case e1000_82575:
717 case e1000_82580:
718 case e1000_i350:
719 case e1000_i354:
720 case e1000_i210:
721 case e1000_i211:
722 default:
723 for (; i < adapter->num_rx_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 for (; j < adapter->num_tx_queues; j++)
726 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 break;
728 }
729 }
730
igb_rd32(struct e1000_hw * hw,u32 reg)731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 u32 value = 0;
736
737 if (E1000_REMOVED(hw_addr))
738 return ~value;
739
740 value = readl(&hw_addr[reg]);
741
742 /* reads should not return all F's */
743 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 struct net_device *netdev = igb->netdev;
745 hw->hw_addr = NULL;
746 netdev_err(netdev, "PCIe link lost\n");
747 WARN(pci_device_is_present(igb->pdev),
748 "igb: Failed to read reg 0x%x!\n", reg);
749 }
750
751 return value;
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = BIT(msix_vector);
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = BIT(msix_vector);
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
igb_configure_msix(struct igb_adapter * adapter)866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = BIT(vector);
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
igb_request_msix(struct igb_adapter * adapter)932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 unsigned int num_q_vectors = adapter->num_q_vectors;
935 struct net_device *netdev = adapter->netdev;
936 int i, err = 0, vector = 0, free_vector = 0;
937
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_other, 0, netdev->name, adapter);
940 if (err)
941 goto err_out;
942
943 if (num_q_vectors > MAX_Q_VECTORS) {
944 num_q_vectors = MAX_Q_VECTORS;
945 dev_warn(&adapter->pdev->dev,
946 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947 adapter->num_q_vectors, MAX_Q_VECTORS);
948 }
949 for (i = 0; i < num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count;
1193 size_t size;
1194
1195 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 if (txr_count > 1 || rxr_count > 1)
1197 return -ENOMEM;
1198
1199 ring_count = txr_count + rxr_count;
1200 size = struct_size(q_vector, ring, ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 struct igb_q_vector *new_q_vector;
1208
1209 new_q_vector = kzalloc(size, GFP_KERNEL);
1210 if (new_q_vector)
1211 kfree_rcu(q_vector, rcu);
1212 q_vector = new_q_vector;
1213 } else {
1214 memset(q_vector, 0, size);
1215 }
1216 if (!q_vector)
1217 return -ENOMEM;
1218
1219 /* initialize NAPI */
1220 netif_napi_add(adapter->netdev, &q_vector->napi,
1221 igb_poll, 64);
1222
1223 /* tie q_vector and adapter together */
1224 adapter->q_vector[v_idx] = q_vector;
1225 q_vector->adapter = adapter;
1226
1227 /* initialize work limits */
1228 q_vector->tx.work_limit = adapter->tx_work_limit;
1229
1230 /* initialize ITR configuration */
1231 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1232 q_vector->itr_val = IGB_START_ITR;
1233
1234 /* initialize pointer to rings */
1235 ring = q_vector->ring;
1236
1237 /* intialize ITR */
1238 if (rxr_count) {
1239 /* rx or rx/tx vector */
1240 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241 q_vector->itr_val = adapter->rx_itr_setting;
1242 } else {
1243 /* tx only vector */
1244 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245 q_vector->itr_val = adapter->tx_itr_setting;
1246 }
1247
1248 if (txr_count) {
1249 /* assign generic ring traits */
1250 ring->dev = &adapter->pdev->dev;
1251 ring->netdev = adapter->netdev;
1252
1253 /* configure backlink on ring */
1254 ring->q_vector = q_vector;
1255
1256 /* update q_vector Tx values */
1257 igb_add_ring(ring, &q_vector->tx);
1258
1259 /* For 82575, context index must be unique per ring. */
1260 if (adapter->hw.mac.type == e1000_82575)
1261 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262
1263 /* apply Tx specific ring traits */
1264 ring->count = adapter->tx_ring_count;
1265 ring->queue_index = txr_idx;
1266
1267 ring->cbs_enable = false;
1268 ring->idleslope = 0;
1269 ring->sendslope = 0;
1270 ring->hicredit = 0;
1271 ring->locredit = 0;
1272
1273 u64_stats_init(&ring->tx_syncp);
1274 u64_stats_init(&ring->tx_syncp2);
1275
1276 /* assign ring to adapter */
1277 adapter->tx_ring[txr_idx] = ring;
1278
1279 /* push pointer to next ring */
1280 ring++;
1281 }
1282
1283 if (rxr_count) {
1284 /* assign generic ring traits */
1285 ring->dev = &adapter->pdev->dev;
1286 ring->netdev = adapter->netdev;
1287
1288 /* configure backlink on ring */
1289 ring->q_vector = q_vector;
1290
1291 /* update q_vector Rx values */
1292 igb_add_ring(ring, &q_vector->rx);
1293
1294 /* set flag indicating ring supports SCTP checksum offload */
1295 if (adapter->hw.mac.type >= e1000_82576)
1296 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1297
1298 /* On i350, i354, i210, and i211, loopback VLAN packets
1299 * have the tag byte-swapped.
1300 */
1301 if (adapter->hw.mac.type >= e1000_i350)
1302 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1303
1304 /* apply Rx specific ring traits */
1305 ring->count = adapter->rx_ring_count;
1306 ring->queue_index = rxr_idx;
1307
1308 u64_stats_init(&ring->rx_syncp);
1309
1310 /* assign ring to adapter */
1311 adapter->rx_ring[rxr_idx] = ring;
1312 }
1313
1314 return 0;
1315 }
1316
1317
1318 /**
1319 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one q_vector per queue interrupt. If allocation fails we
1323 * return -ENOMEM.
1324 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1325 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1326 {
1327 int q_vectors = adapter->num_q_vectors;
1328 int rxr_remaining = adapter->num_rx_queues;
1329 int txr_remaining = adapter->num_tx_queues;
1330 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331 int err;
1332
1333 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1334 for (; rxr_remaining; v_idx++) {
1335 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1336 0, 0, 1, rxr_idx);
1337
1338 if (err)
1339 goto err_out;
1340
1341 /* update counts and index */
1342 rxr_remaining--;
1343 rxr_idx++;
1344 }
1345 }
1346
1347 for (; v_idx < q_vectors; v_idx++) {
1348 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1349 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1350
1351 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1352 tqpv, txr_idx, rqpv, rxr_idx);
1353
1354 if (err)
1355 goto err_out;
1356
1357 /* update counts and index */
1358 rxr_remaining -= rqpv;
1359 txr_remaining -= tqpv;
1360 rxr_idx++;
1361 txr_idx++;
1362 }
1363
1364 return 0;
1365
1366 err_out:
1367 adapter->num_tx_queues = 0;
1368 adapter->num_rx_queues = 0;
1369 adapter->num_q_vectors = 0;
1370
1371 while (v_idx--)
1372 igb_free_q_vector(adapter, v_idx);
1373
1374 return -ENOMEM;
1375 }
1376
1377 /**
1378 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1379 * @adapter: board private structure to initialize
1380 * @msix: boolean value of MSIX capability
1381 *
1382 * This function initializes the interrupts and allocates all of the queues.
1383 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1384 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1385 {
1386 struct pci_dev *pdev = adapter->pdev;
1387 int err;
1388
1389 igb_set_interrupt_capability(adapter, msix);
1390
1391 err = igb_alloc_q_vectors(adapter);
1392 if (err) {
1393 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1394 goto err_alloc_q_vectors;
1395 }
1396
1397 igb_cache_ring_register(adapter);
1398
1399 return 0;
1400
1401 err_alloc_q_vectors:
1402 igb_reset_interrupt_capability(adapter);
1403 return err;
1404 }
1405
1406 /**
1407 * igb_request_irq - initialize interrupts
1408 * @adapter: board private structure to initialize
1409 *
1410 * Attempts to configure interrupts using the best available
1411 * capabilities of the hardware and kernel.
1412 **/
igb_request_irq(struct igb_adapter * adapter)1413 static int igb_request_irq(struct igb_adapter *adapter)
1414 {
1415 struct net_device *netdev = adapter->netdev;
1416 struct pci_dev *pdev = adapter->pdev;
1417 int err = 0;
1418
1419 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1420 err = igb_request_msix(adapter);
1421 if (!err)
1422 goto request_done;
1423 /* fall back to MSI */
1424 igb_free_all_tx_resources(adapter);
1425 igb_free_all_rx_resources(adapter);
1426
1427 igb_clear_interrupt_scheme(adapter);
1428 err = igb_init_interrupt_scheme(adapter, false);
1429 if (err)
1430 goto request_done;
1431
1432 igb_setup_all_tx_resources(adapter);
1433 igb_setup_all_rx_resources(adapter);
1434 igb_configure(adapter);
1435 }
1436
1437 igb_assign_vector(adapter->q_vector[0], 0);
1438
1439 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1440 err = request_irq(pdev->irq, igb_intr_msi, 0,
1441 netdev->name, adapter);
1442 if (!err)
1443 goto request_done;
1444
1445 /* fall back to legacy interrupts */
1446 igb_reset_interrupt_capability(adapter);
1447 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1448 }
1449
1450 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1451 netdev->name, adapter);
1452
1453 if (err)
1454 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1455 err);
1456
1457 request_done:
1458 return err;
1459 }
1460
igb_free_irq(struct igb_adapter * adapter)1461 static void igb_free_irq(struct igb_adapter *adapter)
1462 {
1463 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464 int vector = 0, i;
1465
1466 free_irq(adapter->msix_entries[vector++].vector, adapter);
1467
1468 for (i = 0; i < adapter->num_q_vectors; i++)
1469 free_irq(adapter->msix_entries[vector++].vector,
1470 adapter->q_vector[i]);
1471 } else {
1472 free_irq(adapter->pdev->irq, adapter);
1473 }
1474 }
1475
1476 /**
1477 * igb_irq_disable - Mask off interrupt generation on the NIC
1478 * @adapter: board private structure
1479 **/
igb_irq_disable(struct igb_adapter * adapter)1480 static void igb_irq_disable(struct igb_adapter *adapter)
1481 {
1482 struct e1000_hw *hw = &adapter->hw;
1483
1484 /* we need to be careful when disabling interrupts. The VFs are also
1485 * mapped into these registers and so clearing the bits can cause
1486 * issues on the VF drivers so we only need to clear what we set
1487 */
1488 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 u32 regval = rd32(E1000_EIAM);
1490
1491 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1492 wr32(E1000_EIMC, adapter->eims_enable_mask);
1493 regval = rd32(E1000_EIAC);
1494 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1495 }
1496
1497 wr32(E1000_IAM, 0);
1498 wr32(E1000_IMC, ~0);
1499 wrfl();
1500 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501 int i;
1502
1503 for (i = 0; i < adapter->num_q_vectors; i++)
1504 synchronize_irq(adapter->msix_entries[i].vector);
1505 } else {
1506 synchronize_irq(adapter->pdev->irq);
1507 }
1508 }
1509
1510 /**
1511 * igb_irq_enable - Enable default interrupt generation settings
1512 * @adapter: board private structure
1513 **/
igb_irq_enable(struct igb_adapter * adapter)1514 static void igb_irq_enable(struct igb_adapter *adapter)
1515 {
1516 struct e1000_hw *hw = &adapter->hw;
1517
1518 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1519 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1520 u32 regval = rd32(E1000_EIAC);
1521
1522 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1523 regval = rd32(E1000_EIAM);
1524 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1525 wr32(E1000_EIMS, adapter->eims_enable_mask);
1526 if (adapter->vfs_allocated_count) {
1527 wr32(E1000_MBVFIMR, 0xFF);
1528 ims |= E1000_IMS_VMMB;
1529 }
1530 wr32(E1000_IMS, ims);
1531 } else {
1532 wr32(E1000_IMS, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
1534 wr32(E1000_IAM, IMS_ENABLE_MASK |
1535 E1000_IMS_DRSTA);
1536 }
1537 }
1538
igb_update_mng_vlan(struct igb_adapter * adapter)1539 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1540 {
1541 struct e1000_hw *hw = &adapter->hw;
1542 u16 pf_id = adapter->vfs_allocated_count;
1543 u16 vid = adapter->hw.mng_cookie.vlan_id;
1544 u16 old_vid = adapter->mng_vlan_id;
1545
1546 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1547 /* add VID to filter table */
1548 igb_vfta_set(hw, vid, pf_id, true, true);
1549 adapter->mng_vlan_id = vid;
1550 } else {
1551 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1552 }
1553
1554 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1555 (vid != old_vid) &&
1556 !test_bit(old_vid, adapter->active_vlans)) {
1557 /* remove VID from filter table */
1558 igb_vfta_set(hw, vid, pf_id, false, true);
1559 }
1560 }
1561
1562 /**
1563 * igb_release_hw_control - release control of the h/w to f/w
1564 * @adapter: address of board private structure
1565 *
1566 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1567 * For ASF and Pass Through versions of f/w this means that the
1568 * driver is no longer loaded.
1569 **/
igb_release_hw_control(struct igb_adapter * adapter)1570 static void igb_release_hw_control(struct igb_adapter *adapter)
1571 {
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 ctrl_ext;
1574
1575 /* Let firmware take over control of h/w */
1576 ctrl_ext = rd32(E1000_CTRL_EXT);
1577 wr32(E1000_CTRL_EXT,
1578 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1579 }
1580
1581 /**
1582 * igb_get_hw_control - get control of the h/w from f/w
1583 * @adapter: address of board private structure
1584 *
1585 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1586 * For ASF and Pass Through versions of f/w this means that
1587 * the driver is loaded.
1588 **/
igb_get_hw_control(struct igb_adapter * adapter)1589 static void igb_get_hw_control(struct igb_adapter *adapter)
1590 {
1591 struct e1000_hw *hw = &adapter->hw;
1592 u32 ctrl_ext;
1593
1594 /* Let firmware know the driver has taken over */
1595 ctrl_ext = rd32(E1000_CTRL_EXT);
1596 wr32(E1000_CTRL_EXT,
1597 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1598 }
1599
enable_fqtss(struct igb_adapter * adapter,bool enable)1600 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1601 {
1602 struct net_device *netdev = adapter->netdev;
1603 struct e1000_hw *hw = &adapter->hw;
1604
1605 WARN_ON(hw->mac.type != e1000_i210);
1606
1607 if (enable)
1608 adapter->flags |= IGB_FLAG_FQTSS;
1609 else
1610 adapter->flags &= ~IGB_FLAG_FQTSS;
1611
1612 if (netif_running(netdev))
1613 schedule_work(&adapter->reset_task);
1614 }
1615
is_fqtss_enabled(struct igb_adapter * adapter)1616 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1617 {
1618 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1619 }
1620
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1621 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1622 enum tx_queue_prio prio)
1623 {
1624 u32 val;
1625
1626 WARN_ON(hw->mac.type != e1000_i210);
1627 WARN_ON(queue < 0 || queue > 4);
1628
1629 val = rd32(E1000_I210_TXDCTL(queue));
1630
1631 if (prio == TX_QUEUE_PRIO_HIGH)
1632 val |= E1000_TXDCTL_PRIORITY;
1633 else
1634 val &= ~E1000_TXDCTL_PRIORITY;
1635
1636 wr32(E1000_I210_TXDCTL(queue), val);
1637 }
1638
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1639 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1640 {
1641 u32 val;
1642
1643 WARN_ON(hw->mac.type != e1000_i210);
1644 WARN_ON(queue < 0 || queue > 1);
1645
1646 val = rd32(E1000_I210_TQAVCC(queue));
1647
1648 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1649 val |= E1000_TQAVCC_QUEUEMODE;
1650 else
1651 val &= ~E1000_TQAVCC_QUEUEMODE;
1652
1653 wr32(E1000_I210_TQAVCC(queue), val);
1654 }
1655
is_any_cbs_enabled(struct igb_adapter * adapter)1656 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1657 {
1658 int i;
1659
1660 for (i = 0; i < adapter->num_tx_queues; i++) {
1661 if (adapter->tx_ring[i]->cbs_enable)
1662 return true;
1663 }
1664
1665 return false;
1666 }
1667
is_any_txtime_enabled(struct igb_adapter * adapter)1668 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1669 {
1670 int i;
1671
1672 for (i = 0; i < adapter->num_tx_queues; i++) {
1673 if (adapter->tx_ring[i]->launchtime_enable)
1674 return true;
1675 }
1676
1677 return false;
1678 }
1679
1680 /**
1681 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1682 * @adapter: pointer to adapter struct
1683 * @queue: queue number
1684 *
1685 * Configure CBS and Launchtime for a given hardware queue.
1686 * Parameters are retrieved from the correct Tx ring, so
1687 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1688 * for setting those correctly prior to this function being called.
1689 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1690 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1691 {
1692 struct net_device *netdev = adapter->netdev;
1693 struct e1000_hw *hw = &adapter->hw;
1694 struct igb_ring *ring;
1695 u32 tqavcc, tqavctrl;
1696 u16 value;
1697
1698 WARN_ON(hw->mac.type != e1000_i210);
1699 WARN_ON(queue < 0 || queue > 1);
1700 ring = adapter->tx_ring[queue];
1701
1702 /* If any of the Qav features is enabled, configure queues as SR and
1703 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1704 * as SP.
1705 */
1706 if (ring->cbs_enable || ring->launchtime_enable) {
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1709 } else {
1710 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1711 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1712 }
1713
1714 /* If CBS is enabled, set DataTranARB and config its parameters. */
1715 if (ring->cbs_enable || queue == 0) {
1716 /* i210 does not allow the queue 0 to be in the Strict
1717 * Priority mode while the Qav mode is enabled, so,
1718 * instead of disabling strict priority mode, we give
1719 * queue 0 the maximum of credits possible.
1720 *
1721 * See section 8.12.19 of the i210 datasheet, "Note:
1722 * Queue0 QueueMode must be set to 1b when
1723 * TransmitMode is set to Qav."
1724 */
1725 if (queue == 0 && !ring->cbs_enable) {
1726 /* max "linkspeed" idleslope in kbps */
1727 ring->idleslope = 1000000;
1728 ring->hicredit = ETH_FRAME_LEN;
1729 }
1730
1731 /* Always set data transfer arbitration to credit-based
1732 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1733 * the queues.
1734 */
1735 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1736 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1737 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1738
1739 /* According to i210 datasheet section 7.2.7.7, we should set
1740 * the 'idleSlope' field from TQAVCC register following the
1741 * equation:
1742 *
1743 * For 100 Mbps link speed:
1744 *
1745 * value = BW * 0x7735 * 0.2 (E1)
1746 *
1747 * For 1000Mbps link speed:
1748 *
1749 * value = BW * 0x7735 * 2 (E2)
1750 *
1751 * E1 and E2 can be merged into one equation as shown below.
1752 * Note that 'link-speed' is in Mbps.
1753 *
1754 * value = BW * 0x7735 * 2 * link-speed
1755 * -------------- (E3)
1756 * 1000
1757 *
1758 * 'BW' is the percentage bandwidth out of full link speed
1759 * which can be found with the following equation. Note that
1760 * idleSlope here is the parameter from this function which
1761 * is in kbps.
1762 *
1763 * BW = idleSlope
1764 * ----------------- (E4)
1765 * link-speed * 1000
1766 *
1767 * That said, we can come up with a generic equation to
1768 * calculate the value we should set it TQAVCC register by
1769 * replacing 'BW' in E3 by E4. The resulting equation is:
1770 *
1771 * value = idleSlope * 0x7735 * 2 * link-speed
1772 * ----------------- -------------- (E5)
1773 * link-speed * 1000 1000
1774 *
1775 * 'link-speed' is present in both sides of the fraction so
1776 * it is canceled out. The final equation is the following:
1777 *
1778 * value = idleSlope * 61034
1779 * ----------------- (E6)
1780 * 1000000
1781 *
1782 * NOTE: For i210, given the above, we can see that idleslope
1783 * is represented in 16.38431 kbps units by the value at
1784 * the TQAVCC register (1Gbps / 61034), which reduces
1785 * the granularity for idleslope increments.
1786 * For instance, if you want to configure a 2576kbps
1787 * idleslope, the value to be written on the register
1788 * would have to be 157.23. If rounded down, you end
1789 * up with less bandwidth available than originally
1790 * required (~2572 kbps). If rounded up, you end up
1791 * with a higher bandwidth (~2589 kbps). Below the
1792 * approach we take is to always round up the
1793 * calculated value, so the resulting bandwidth might
1794 * be slightly higher for some configurations.
1795 */
1796 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1797
1798 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1799 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1800 tqavcc |= value;
1801 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1802
1803 wr32(E1000_I210_TQAVHC(queue),
1804 0x80000000 + ring->hicredit * 0x7735);
1805 } else {
1806
1807 /* Set idleSlope to zero. */
1808 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1809 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1810 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1811
1812 /* Set hiCredit to zero. */
1813 wr32(E1000_I210_TQAVHC(queue), 0);
1814
1815 /* If CBS is not enabled for any queues anymore, then return to
1816 * the default state of Data Transmission Arbitration on
1817 * TQAVCTRL.
1818 */
1819 if (!is_any_cbs_enabled(adapter)) {
1820 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1821 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1822 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823 }
1824 }
1825
1826 /* If LaunchTime is enabled, set DataTranTIM. */
1827 if (ring->launchtime_enable) {
1828 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1829 * for any of the SR queues, and configure fetchtime delta.
1830 * XXX NOTE:
1831 * - LaunchTime will be enabled for all SR queues.
1832 * - A fixed offset can be added relative to the launch
1833 * time of all packets if configured at reg LAUNCH_OS0.
1834 * We are keeping it as 0 for now (default value).
1835 */
1836 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1837 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1838 E1000_TQAVCTRL_FETCHTIME_DELTA;
1839 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1840 } else {
1841 /* If Launchtime is not enabled for any SR queues anymore,
1842 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1843 * effectively disabling Launchtime.
1844 */
1845 if (!is_any_txtime_enabled(adapter)) {
1846 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1847 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1848 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1849 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850 }
1851 }
1852
1853 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1854 * CBS are not configurable by software so we don't do any 'controller
1855 * configuration' in respect to these parameters.
1856 */
1857
1858 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1859 ring->cbs_enable ? "enabled" : "disabled",
1860 ring->launchtime_enable ? "enabled" : "disabled",
1861 queue,
1862 ring->idleslope, ring->sendslope,
1863 ring->hicredit, ring->locredit);
1864 }
1865
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1866 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1867 bool enable)
1868 {
1869 struct igb_ring *ring;
1870
1871 if (queue < 0 || queue > adapter->num_tx_queues)
1872 return -EINVAL;
1873
1874 ring = adapter->tx_ring[queue];
1875 ring->launchtime_enable = enable;
1876
1877 return 0;
1878 }
1879
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1880 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1881 bool enable, int idleslope, int sendslope,
1882 int hicredit, int locredit)
1883 {
1884 struct igb_ring *ring;
1885
1886 if (queue < 0 || queue > adapter->num_tx_queues)
1887 return -EINVAL;
1888
1889 ring = adapter->tx_ring[queue];
1890
1891 ring->cbs_enable = enable;
1892 ring->idleslope = idleslope;
1893 ring->sendslope = sendslope;
1894 ring->hicredit = hicredit;
1895 ring->locredit = locredit;
1896
1897 return 0;
1898 }
1899
1900 /**
1901 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1902 * @adapter: pointer to adapter struct
1903 *
1904 * Configure TQAVCTRL register switching the controller's Tx mode
1905 * if FQTSS mode is enabled or disabled. Additionally, will issue
1906 * a call to igb_config_tx_modes() per queue so any previously saved
1907 * Tx parameters are applied.
1908 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1909 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1910 {
1911 struct net_device *netdev = adapter->netdev;
1912 struct e1000_hw *hw = &adapter->hw;
1913 u32 val;
1914
1915 /* Only i210 controller supports changing the transmission mode. */
1916 if (hw->mac.type != e1000_i210)
1917 return;
1918
1919 if (is_fqtss_enabled(adapter)) {
1920 int i, max_queue;
1921
1922 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1923 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1924 * so SP queues wait for SR ones.
1925 */
1926 val = rd32(E1000_I210_TQAVCTRL);
1927 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1928 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1929 wr32(E1000_I210_TQAVCTRL, val);
1930
1931 /* Configure Tx and Rx packet buffers sizes as described in
1932 * i210 datasheet section 7.2.7.7.
1933 */
1934 val = rd32(E1000_TXPBS);
1935 val &= ~I210_TXPBSIZE_MASK;
1936 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1937 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1938 wr32(E1000_TXPBS, val);
1939
1940 val = rd32(E1000_RXPBS);
1941 val &= ~I210_RXPBSIZE_MASK;
1942 val |= I210_RXPBSIZE_PB_30KB;
1943 wr32(E1000_RXPBS, val);
1944
1945 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1946 * register should not exceed the buffer size programmed in
1947 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1948 * so according to the datasheet we should set MAX_TPKT_SIZE to
1949 * 4kB / 64.
1950 *
1951 * However, when we do so, no frame from queue 2 and 3 are
1952 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1953 * or _equal_ to the buffer size programmed in TXPBS. For this
1954 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1955 */
1956 val = (4096 - 1) / 64;
1957 wr32(E1000_I210_DTXMXPKTSZ, val);
1958
1959 /* Since FQTSS mode is enabled, apply any CBS configuration
1960 * previously set. If no previous CBS configuration has been
1961 * done, then the initial configuration is applied, which means
1962 * CBS is disabled.
1963 */
1964 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1965 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1966
1967 for (i = 0; i < max_queue; i++) {
1968 igb_config_tx_modes(adapter, i);
1969 }
1970 } else {
1971 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1972 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1973 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1974
1975 val = rd32(E1000_I210_TQAVCTRL);
1976 /* According to Section 8.12.21, the other flags we've set when
1977 * enabling FQTSS are not relevant when disabling FQTSS so we
1978 * don't set they here.
1979 */
1980 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1981 wr32(E1000_I210_TQAVCTRL, val);
1982 }
1983
1984 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1985 "enabled" : "disabled");
1986 }
1987
1988 /**
1989 * igb_configure - configure the hardware for RX and TX
1990 * @adapter: private board structure
1991 **/
igb_configure(struct igb_adapter * adapter)1992 static void igb_configure(struct igb_adapter *adapter)
1993 {
1994 struct net_device *netdev = adapter->netdev;
1995 int i;
1996
1997 igb_get_hw_control(adapter);
1998 igb_set_rx_mode(netdev);
1999 igb_setup_tx_mode(adapter);
2000
2001 igb_restore_vlan(adapter);
2002
2003 igb_setup_tctl(adapter);
2004 igb_setup_mrqc(adapter);
2005 igb_setup_rctl(adapter);
2006
2007 igb_nfc_filter_restore(adapter);
2008 igb_configure_tx(adapter);
2009 igb_configure_rx(adapter);
2010
2011 igb_rx_fifo_flush_82575(&adapter->hw);
2012
2013 /* call igb_desc_unused which always leaves
2014 * at least 1 descriptor unused to make sure
2015 * next_to_use != next_to_clean
2016 */
2017 for (i = 0; i < adapter->num_rx_queues; i++) {
2018 struct igb_ring *ring = adapter->rx_ring[i];
2019 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2020 }
2021 }
2022
2023 /**
2024 * igb_power_up_link - Power up the phy/serdes link
2025 * @adapter: address of board private structure
2026 **/
igb_power_up_link(struct igb_adapter * adapter)2027 void igb_power_up_link(struct igb_adapter *adapter)
2028 {
2029 igb_reset_phy(&adapter->hw);
2030
2031 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2032 igb_power_up_phy_copper(&adapter->hw);
2033 else
2034 igb_power_up_serdes_link_82575(&adapter->hw);
2035
2036 igb_setup_link(&adapter->hw);
2037 }
2038
2039 /**
2040 * igb_power_down_link - Power down the phy/serdes link
2041 * @adapter: address of board private structure
2042 */
igb_power_down_link(struct igb_adapter * adapter)2043 static void igb_power_down_link(struct igb_adapter *adapter)
2044 {
2045 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2046 igb_power_down_phy_copper_82575(&adapter->hw);
2047 else
2048 igb_shutdown_serdes_link_82575(&adapter->hw);
2049 }
2050
2051 /**
2052 * Detect and switch function for Media Auto Sense
2053 * @adapter: address of the board private structure
2054 **/
igb_check_swap_media(struct igb_adapter * adapter)2055 static void igb_check_swap_media(struct igb_adapter *adapter)
2056 {
2057 struct e1000_hw *hw = &adapter->hw;
2058 u32 ctrl_ext, connsw;
2059 bool swap_now = false;
2060
2061 ctrl_ext = rd32(E1000_CTRL_EXT);
2062 connsw = rd32(E1000_CONNSW);
2063
2064 /* need to live swap if current media is copper and we have fiber/serdes
2065 * to go to.
2066 */
2067
2068 if ((hw->phy.media_type == e1000_media_type_copper) &&
2069 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2070 swap_now = true;
2071 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2072 !(connsw & E1000_CONNSW_SERDESD)) {
2073 /* copper signal takes time to appear */
2074 if (adapter->copper_tries < 4) {
2075 adapter->copper_tries++;
2076 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2077 wr32(E1000_CONNSW, connsw);
2078 return;
2079 } else {
2080 adapter->copper_tries = 0;
2081 if ((connsw & E1000_CONNSW_PHYSD) &&
2082 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2083 swap_now = true;
2084 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2085 wr32(E1000_CONNSW, connsw);
2086 }
2087 }
2088 }
2089
2090 if (!swap_now)
2091 return;
2092
2093 switch (hw->phy.media_type) {
2094 case e1000_media_type_copper:
2095 netdev_info(adapter->netdev,
2096 "MAS: changing media to fiber/serdes\n");
2097 ctrl_ext |=
2098 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2099 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2100 adapter->copper_tries = 0;
2101 break;
2102 case e1000_media_type_internal_serdes:
2103 case e1000_media_type_fiber:
2104 netdev_info(adapter->netdev,
2105 "MAS: changing media to copper\n");
2106 ctrl_ext &=
2107 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2108 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2109 break;
2110 default:
2111 /* shouldn't get here during regular operation */
2112 netdev_err(adapter->netdev,
2113 "AMS: Invalid media type found, returning\n");
2114 break;
2115 }
2116 wr32(E1000_CTRL_EXT, ctrl_ext);
2117 }
2118
2119 /**
2120 * igb_up - Open the interface and prepare it to handle traffic
2121 * @adapter: board private structure
2122 **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 struct e1000_hw *hw = &adapter->hw;
2126 int i;
2127
2128 /* hardware has been reset, we need to reload some things */
2129 igb_configure(adapter);
2130
2131 clear_bit(__IGB_DOWN, &adapter->state);
2132
2133 for (i = 0; i < adapter->num_q_vectors; i++)
2134 napi_enable(&(adapter->q_vector[i]->napi));
2135
2136 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2137 igb_configure_msix(adapter);
2138 else
2139 igb_assign_vector(adapter->q_vector[0], 0);
2140
2141 /* Clear any pending interrupts. */
2142 rd32(E1000_TSICR);
2143 rd32(E1000_ICR);
2144 igb_irq_enable(adapter);
2145
2146 /* notify VFs that reset has been completed */
2147 if (adapter->vfs_allocated_count) {
2148 u32 reg_data = rd32(E1000_CTRL_EXT);
2149
2150 reg_data |= E1000_CTRL_EXT_PFRSTD;
2151 wr32(E1000_CTRL_EXT, reg_data);
2152 }
2153
2154 netif_tx_start_all_queues(adapter->netdev);
2155
2156 /* start the watchdog. */
2157 hw->mac.get_link_status = 1;
2158 schedule_work(&adapter->watchdog_task);
2159
2160 if ((adapter->flags & IGB_FLAG_EEE) &&
2161 (!hw->dev_spec._82575.eee_disable))
2162 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2163
2164 return 0;
2165 }
2166
igb_down(struct igb_adapter * adapter)2167 void igb_down(struct igb_adapter *adapter)
2168 {
2169 struct net_device *netdev = adapter->netdev;
2170 struct e1000_hw *hw = &adapter->hw;
2171 u32 tctl, rctl;
2172 int i;
2173
2174 /* signal that we're down so the interrupt handler does not
2175 * reschedule our watchdog timer
2176 */
2177 set_bit(__IGB_DOWN, &adapter->state);
2178
2179 /* disable receives in the hardware */
2180 rctl = rd32(E1000_RCTL);
2181 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2182 /* flush and sleep below */
2183
2184 igb_nfc_filter_exit(adapter);
2185
2186 netif_carrier_off(netdev);
2187 netif_tx_stop_all_queues(netdev);
2188
2189 /* disable transmits in the hardware */
2190 tctl = rd32(E1000_TCTL);
2191 tctl &= ~E1000_TCTL_EN;
2192 wr32(E1000_TCTL, tctl);
2193 /* flush both disables and wait for them to finish */
2194 wrfl();
2195 usleep_range(10000, 11000);
2196
2197 igb_irq_disable(adapter);
2198
2199 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2200
2201 for (i = 0; i < adapter->num_q_vectors; i++) {
2202 if (adapter->q_vector[i]) {
2203 napi_synchronize(&adapter->q_vector[i]->napi);
2204 napi_disable(&adapter->q_vector[i]->napi);
2205 }
2206 }
2207
2208 del_timer_sync(&adapter->watchdog_timer);
2209 del_timer_sync(&adapter->phy_info_timer);
2210
2211 /* record the stats before reset*/
2212 spin_lock(&adapter->stats64_lock);
2213 igb_update_stats(adapter);
2214 spin_unlock(&adapter->stats64_lock);
2215
2216 adapter->link_speed = 0;
2217 adapter->link_duplex = 0;
2218
2219 if (!pci_channel_offline(adapter->pdev))
2220 igb_reset(adapter);
2221
2222 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2223 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2224
2225 igb_clean_all_tx_rings(adapter);
2226 igb_clean_all_rx_rings(adapter);
2227 #ifdef CONFIG_IGB_DCA
2228
2229 /* since we reset the hardware DCA settings were cleared */
2230 igb_setup_dca(adapter);
2231 #endif
2232 }
2233
igb_reinit_locked(struct igb_adapter * adapter)2234 void igb_reinit_locked(struct igb_adapter *adapter)
2235 {
2236 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2237 usleep_range(1000, 2000);
2238 igb_down(adapter);
2239 igb_up(adapter);
2240 clear_bit(__IGB_RESETTING, &adapter->state);
2241 }
2242
2243 /** igb_enable_mas - Media Autosense re-enable after swap
2244 *
2245 * @adapter: adapter struct
2246 **/
igb_enable_mas(struct igb_adapter * adapter)2247 static void igb_enable_mas(struct igb_adapter *adapter)
2248 {
2249 struct e1000_hw *hw = &adapter->hw;
2250 u32 connsw = rd32(E1000_CONNSW);
2251
2252 /* configure for SerDes media detect */
2253 if ((hw->phy.media_type == e1000_media_type_copper) &&
2254 (!(connsw & E1000_CONNSW_SERDESD))) {
2255 connsw |= E1000_CONNSW_ENRGSRC;
2256 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2257 wr32(E1000_CONNSW, connsw);
2258 wrfl();
2259 }
2260 }
2261
igb_reset(struct igb_adapter * adapter)2262 void igb_reset(struct igb_adapter *adapter)
2263 {
2264 struct pci_dev *pdev = adapter->pdev;
2265 struct e1000_hw *hw = &adapter->hw;
2266 struct e1000_mac_info *mac = &hw->mac;
2267 struct e1000_fc_info *fc = &hw->fc;
2268 u32 pba, hwm;
2269
2270 /* Repartition Pba for greater than 9k mtu
2271 * To take effect CTRL.RST is required.
2272 */
2273 switch (mac->type) {
2274 case e1000_i350:
2275 case e1000_i354:
2276 case e1000_82580:
2277 pba = rd32(E1000_RXPBS);
2278 pba = igb_rxpbs_adjust_82580(pba);
2279 break;
2280 case e1000_82576:
2281 pba = rd32(E1000_RXPBS);
2282 pba &= E1000_RXPBS_SIZE_MASK_82576;
2283 break;
2284 case e1000_82575:
2285 case e1000_i210:
2286 case e1000_i211:
2287 default:
2288 pba = E1000_PBA_34K;
2289 break;
2290 }
2291
2292 if (mac->type == e1000_82575) {
2293 u32 min_rx_space, min_tx_space, needed_tx_space;
2294
2295 /* write Rx PBA so that hardware can report correct Tx PBA */
2296 wr32(E1000_PBA, pba);
2297
2298 /* To maintain wire speed transmits, the Tx FIFO should be
2299 * large enough to accommodate two full transmit packets,
2300 * rounded up to the next 1KB and expressed in KB. Likewise,
2301 * the Rx FIFO should be large enough to accommodate at least
2302 * one full receive packet and is similarly rounded up and
2303 * expressed in KB.
2304 */
2305 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2306
2307 /* The Tx FIFO also stores 16 bytes of information about the Tx
2308 * but don't include Ethernet FCS because hardware appends it.
2309 * We only need to round down to the nearest 512 byte block
2310 * count since the value we care about is 2 frames, not 1.
2311 */
2312 min_tx_space = adapter->max_frame_size;
2313 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2314 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2315
2316 /* upper 16 bits has Tx packet buffer allocation size in KB */
2317 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2318
2319 /* If current Tx allocation is less than the min Tx FIFO size,
2320 * and the min Tx FIFO size is less than the current Rx FIFO
2321 * allocation, take space away from current Rx allocation.
2322 */
2323 if (needed_tx_space < pba) {
2324 pba -= needed_tx_space;
2325
2326 /* if short on Rx space, Rx wins and must trump Tx
2327 * adjustment
2328 */
2329 if (pba < min_rx_space)
2330 pba = min_rx_space;
2331 }
2332
2333 /* adjust PBA for jumbo frames */
2334 wr32(E1000_PBA, pba);
2335 }
2336
2337 /* flow control settings
2338 * The high water mark must be low enough to fit one full frame
2339 * after transmitting the pause frame. As such we must have enough
2340 * space to allow for us to complete our current transmit and then
2341 * receive the frame that is in progress from the link partner.
2342 * Set it to:
2343 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2344 */
2345 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2346
2347 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2348 fc->low_water = fc->high_water - 16;
2349 fc->pause_time = 0xFFFF;
2350 fc->send_xon = 1;
2351 fc->current_mode = fc->requested_mode;
2352
2353 /* disable receive for all VFs and wait one second */
2354 if (adapter->vfs_allocated_count) {
2355 int i;
2356
2357 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2358 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2359
2360 /* ping all the active vfs to let them know we are going down */
2361 igb_ping_all_vfs(adapter);
2362
2363 /* disable transmits and receives */
2364 wr32(E1000_VFRE, 0);
2365 wr32(E1000_VFTE, 0);
2366 }
2367
2368 /* Allow time for pending master requests to run */
2369 hw->mac.ops.reset_hw(hw);
2370 wr32(E1000_WUC, 0);
2371
2372 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2373 /* need to resetup here after media swap */
2374 adapter->ei.get_invariants(hw);
2375 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2376 }
2377 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2378 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2379 igb_enable_mas(adapter);
2380 }
2381 if (hw->mac.ops.init_hw(hw))
2382 dev_err(&pdev->dev, "Hardware Error\n");
2383
2384 /* RAR registers were cleared during init_hw, clear mac table */
2385 igb_flush_mac_table(adapter);
2386 __dev_uc_unsync(adapter->netdev, NULL);
2387
2388 /* Recover default RAR entry */
2389 igb_set_default_mac_filter(adapter);
2390
2391 /* Flow control settings reset on hardware reset, so guarantee flow
2392 * control is off when forcing speed.
2393 */
2394 if (!hw->mac.autoneg)
2395 igb_force_mac_fc(hw);
2396
2397 igb_init_dmac(adapter, pba);
2398 #ifdef CONFIG_IGB_HWMON
2399 /* Re-initialize the thermal sensor on i350 devices. */
2400 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2401 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2402 /* If present, re-initialize the external thermal sensor
2403 * interface.
2404 */
2405 if (adapter->ets)
2406 mac->ops.init_thermal_sensor_thresh(hw);
2407 }
2408 }
2409 #endif
2410 /* Re-establish EEE setting */
2411 if (hw->phy.media_type == e1000_media_type_copper) {
2412 switch (mac->type) {
2413 case e1000_i350:
2414 case e1000_i210:
2415 case e1000_i211:
2416 igb_set_eee_i350(hw, true, true);
2417 break;
2418 case e1000_i354:
2419 igb_set_eee_i354(hw, true, true);
2420 break;
2421 default:
2422 break;
2423 }
2424 }
2425 if (!netif_running(adapter->netdev))
2426 igb_power_down_link(adapter);
2427
2428 igb_update_mng_vlan(adapter);
2429
2430 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2431 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2432
2433 /* Re-enable PTP, where applicable. */
2434 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2435 igb_ptp_reset(adapter);
2436
2437 igb_get_phy_info(hw);
2438 }
2439
igb_fix_features(struct net_device * netdev,netdev_features_t features)2440 static netdev_features_t igb_fix_features(struct net_device *netdev,
2441 netdev_features_t features)
2442 {
2443 /* Since there is no support for separate Rx/Tx vlan accel
2444 * enable/disable make sure Tx flag is always in same state as Rx.
2445 */
2446 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2447 features |= NETIF_F_HW_VLAN_CTAG_TX;
2448 else
2449 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2450
2451 return features;
2452 }
2453
igb_set_features(struct net_device * netdev,netdev_features_t features)2454 static int igb_set_features(struct net_device *netdev,
2455 netdev_features_t features)
2456 {
2457 netdev_features_t changed = netdev->features ^ features;
2458 struct igb_adapter *adapter = netdev_priv(netdev);
2459
2460 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2461 igb_vlan_mode(netdev, features);
2462
2463 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464 return 0;
2465
2466 if (!(features & NETIF_F_NTUPLE)) {
2467 struct hlist_node *node2;
2468 struct igb_nfc_filter *rule;
2469
2470 spin_lock(&adapter->nfc_lock);
2471 hlist_for_each_entry_safe(rule, node2,
2472 &adapter->nfc_filter_list, nfc_node) {
2473 igb_erase_filter(adapter, rule);
2474 hlist_del(&rule->nfc_node);
2475 kfree(rule);
2476 }
2477 spin_unlock(&adapter->nfc_lock);
2478 adapter->nfc_filter_count = 0;
2479 }
2480
2481 netdev->features = features;
2482
2483 if (netif_running(netdev))
2484 igb_reinit_locked(adapter);
2485 else
2486 igb_reset(adapter);
2487
2488 return 1;
2489 }
2490
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2491 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2492 struct net_device *dev,
2493 const unsigned char *addr, u16 vid,
2494 u16 flags,
2495 struct netlink_ext_ack *extack)
2496 {
2497 /* guarantee we can provide a unique filter for the unicast address */
2498 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2499 struct igb_adapter *adapter = netdev_priv(dev);
2500 int vfn = adapter->vfs_allocated_count;
2501
2502 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2503 return -ENOMEM;
2504 }
2505
2506 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2507 }
2508
2509 #define IGB_MAX_MAC_HDR_LEN 127
2510 #define IGB_MAX_NETWORK_HDR_LEN 511
2511
2512 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2513 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2514 netdev_features_t features)
2515 {
2516 unsigned int network_hdr_len, mac_hdr_len;
2517
2518 /* Make certain the headers can be described by a context descriptor */
2519 mac_hdr_len = skb_network_header(skb) - skb->data;
2520 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2521 return features & ~(NETIF_F_HW_CSUM |
2522 NETIF_F_SCTP_CRC |
2523 NETIF_F_GSO_UDP_L4 |
2524 NETIF_F_HW_VLAN_CTAG_TX |
2525 NETIF_F_TSO |
2526 NETIF_F_TSO6);
2527
2528 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2529 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2530 return features & ~(NETIF_F_HW_CSUM |
2531 NETIF_F_SCTP_CRC |
2532 NETIF_F_GSO_UDP_L4 |
2533 NETIF_F_TSO |
2534 NETIF_F_TSO6);
2535
2536 /* We can only support IPV4 TSO in tunnels if we can mangle the
2537 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2538 */
2539 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2540 features &= ~NETIF_F_TSO;
2541
2542 return features;
2543 }
2544
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2545 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2546 {
2547 if (!is_fqtss_enabled(adapter)) {
2548 enable_fqtss(adapter, true);
2549 return;
2550 }
2551
2552 igb_config_tx_modes(adapter, queue);
2553
2554 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2555 enable_fqtss(adapter, false);
2556 }
2557
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2558 static int igb_offload_cbs(struct igb_adapter *adapter,
2559 struct tc_cbs_qopt_offload *qopt)
2560 {
2561 struct e1000_hw *hw = &adapter->hw;
2562 int err;
2563
2564 /* CBS offloading is only supported by i210 controller. */
2565 if (hw->mac.type != e1000_i210)
2566 return -EOPNOTSUPP;
2567
2568 /* CBS offloading is only supported by queue 0 and queue 1. */
2569 if (qopt->queue < 0 || qopt->queue > 1)
2570 return -EINVAL;
2571
2572 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2573 qopt->idleslope, qopt->sendslope,
2574 qopt->hicredit, qopt->locredit);
2575 if (err)
2576 return err;
2577
2578 igb_offload_apply(adapter, qopt->queue);
2579
2580 return 0;
2581 }
2582
2583 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2584 #define VLAN_PRIO_FULL_MASK (0x07)
2585
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2586 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2587 struct flow_cls_offload *f,
2588 int traffic_class,
2589 struct igb_nfc_filter *input)
2590 {
2591 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2592 struct flow_dissector *dissector = rule->match.dissector;
2593 struct netlink_ext_ack *extack = f->common.extack;
2594
2595 if (dissector->used_keys &
2596 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2597 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2598 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2599 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2600 NL_SET_ERR_MSG_MOD(extack,
2601 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2602 return -EOPNOTSUPP;
2603 }
2604
2605 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2606 struct flow_match_eth_addrs match;
2607
2608 flow_rule_match_eth_addrs(rule, &match);
2609 if (!is_zero_ether_addr(match.mask->dst)) {
2610 if (!is_broadcast_ether_addr(match.mask->dst)) {
2611 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2612 return -EINVAL;
2613 }
2614
2615 input->filter.match_flags |=
2616 IGB_FILTER_FLAG_DST_MAC_ADDR;
2617 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2618 }
2619
2620 if (!is_zero_ether_addr(match.mask->src)) {
2621 if (!is_broadcast_ether_addr(match.mask->src)) {
2622 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2623 return -EINVAL;
2624 }
2625
2626 input->filter.match_flags |=
2627 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2628 ether_addr_copy(input->filter.src_addr, match.key->src);
2629 }
2630 }
2631
2632 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2633 struct flow_match_basic match;
2634
2635 flow_rule_match_basic(rule, &match);
2636 if (match.mask->n_proto) {
2637 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2638 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2639 return -EINVAL;
2640 }
2641
2642 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2643 input->filter.etype = match.key->n_proto;
2644 }
2645 }
2646
2647 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2648 struct flow_match_vlan match;
2649
2650 flow_rule_match_vlan(rule, &match);
2651 if (match.mask->vlan_priority) {
2652 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2653 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2654 return -EINVAL;
2655 }
2656
2657 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2658 input->filter.vlan_tci =
2659 (__force __be16)match.key->vlan_priority;
2660 }
2661 }
2662
2663 input->action = traffic_class;
2664 input->cookie = f->cookie;
2665
2666 return 0;
2667 }
2668
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2669 static int igb_configure_clsflower(struct igb_adapter *adapter,
2670 struct flow_cls_offload *cls_flower)
2671 {
2672 struct netlink_ext_ack *extack = cls_flower->common.extack;
2673 struct igb_nfc_filter *filter, *f;
2674 int err, tc;
2675
2676 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2677 if (tc < 0) {
2678 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679 return -EINVAL;
2680 }
2681
2682 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683 if (!filter)
2684 return -ENOMEM;
2685
2686 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687 if (err < 0)
2688 goto err_parse;
2689
2690 spin_lock(&adapter->nfc_lock);
2691
2692 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2693 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2694 err = -EEXIST;
2695 NL_SET_ERR_MSG_MOD(extack,
2696 "This filter is already set in ethtool");
2697 goto err_locked;
2698 }
2699 }
2700
2701 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2702 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703 err = -EEXIST;
2704 NL_SET_ERR_MSG_MOD(extack,
2705 "This filter is already set in cls_flower");
2706 goto err_locked;
2707 }
2708 }
2709
2710 err = igb_add_filter(adapter, filter);
2711 if (err < 0) {
2712 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713 goto err_locked;
2714 }
2715
2716 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2717
2718 spin_unlock(&adapter->nfc_lock);
2719
2720 return 0;
2721
2722 err_locked:
2723 spin_unlock(&adapter->nfc_lock);
2724
2725 err_parse:
2726 kfree(filter);
2727
2728 return err;
2729 }
2730
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2731 static int igb_delete_clsflower(struct igb_adapter *adapter,
2732 struct flow_cls_offload *cls_flower)
2733 {
2734 struct igb_nfc_filter *filter;
2735 int err;
2736
2737 spin_lock(&adapter->nfc_lock);
2738
2739 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2740 if (filter->cookie == cls_flower->cookie)
2741 break;
2742
2743 if (!filter) {
2744 err = -ENOENT;
2745 goto out;
2746 }
2747
2748 err = igb_erase_filter(adapter, filter);
2749 if (err < 0)
2750 goto out;
2751
2752 hlist_del(&filter->nfc_node);
2753 kfree(filter);
2754
2755 out:
2756 spin_unlock(&adapter->nfc_lock);
2757
2758 return err;
2759 }
2760
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2761 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2762 struct flow_cls_offload *cls_flower)
2763 {
2764 switch (cls_flower->command) {
2765 case FLOW_CLS_REPLACE:
2766 return igb_configure_clsflower(adapter, cls_flower);
2767 case FLOW_CLS_DESTROY:
2768 return igb_delete_clsflower(adapter, cls_flower);
2769 case FLOW_CLS_STATS:
2770 return -EOPNOTSUPP;
2771 default:
2772 return -EOPNOTSUPP;
2773 }
2774 }
2775
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2776 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2777 void *cb_priv)
2778 {
2779 struct igb_adapter *adapter = cb_priv;
2780
2781 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782 return -EOPNOTSUPP;
2783
2784 switch (type) {
2785 case TC_SETUP_CLSFLOWER:
2786 return igb_setup_tc_cls_flower(adapter, type_data);
2787
2788 default:
2789 return -EOPNOTSUPP;
2790 }
2791 }
2792
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2793 static int igb_offload_txtime(struct igb_adapter *adapter,
2794 struct tc_etf_qopt_offload *qopt)
2795 {
2796 struct e1000_hw *hw = &adapter->hw;
2797 int err;
2798
2799 /* Launchtime offloading is only supported by i210 controller. */
2800 if (hw->mac.type != e1000_i210)
2801 return -EOPNOTSUPP;
2802
2803 /* Launchtime offloading is only supported by queues 0 and 1. */
2804 if (qopt->queue < 0 || qopt->queue > 1)
2805 return -EINVAL;
2806
2807 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808 if (err)
2809 return err;
2810
2811 igb_offload_apply(adapter, qopt->queue);
2812
2813 return 0;
2814 }
2815
2816 static LIST_HEAD(igb_block_cb_list);
2817
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2818 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2819 void *type_data)
2820 {
2821 struct igb_adapter *adapter = netdev_priv(dev);
2822
2823 switch (type) {
2824 case TC_SETUP_QDISC_CBS:
2825 return igb_offload_cbs(adapter, type_data);
2826 case TC_SETUP_BLOCK:
2827 return flow_block_cb_setup_simple(type_data,
2828 &igb_block_cb_list,
2829 igb_setup_tc_block_cb,
2830 adapter, adapter, true);
2831
2832 case TC_SETUP_QDISC_ETF:
2833 return igb_offload_txtime(adapter, type_data);
2834
2835 default:
2836 return -EOPNOTSUPP;
2837 }
2838 }
2839
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2840 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2841 {
2842 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2843 struct igb_adapter *adapter = netdev_priv(dev);
2844 struct bpf_prog *prog = bpf->prog, *old_prog;
2845 bool running = netif_running(dev);
2846 bool need_reset;
2847
2848 /* verify igb ring attributes are sufficient for XDP */
2849 for (i = 0; i < adapter->num_rx_queues; i++) {
2850 struct igb_ring *ring = adapter->rx_ring[i];
2851
2852 if (frame_size > igb_rx_bufsz(ring)) {
2853 NL_SET_ERR_MSG_MOD(bpf->extack,
2854 "The RX buffer size is too small for the frame size");
2855 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2856 igb_rx_bufsz(ring), frame_size);
2857 return -EINVAL;
2858 }
2859 }
2860
2861 old_prog = xchg(&adapter->xdp_prog, prog);
2862 need_reset = (!!prog != !!old_prog);
2863
2864 /* device is up and bpf is added/removed, must setup the RX queues */
2865 if (need_reset && running) {
2866 igb_close(dev);
2867 } else {
2868 for (i = 0; i < adapter->num_rx_queues; i++)
2869 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2870 adapter->xdp_prog);
2871 }
2872
2873 if (old_prog)
2874 bpf_prog_put(old_prog);
2875
2876 /* bpf is just replaced, RXQ and MTU are already setup */
2877 if (!need_reset)
2878 return 0;
2879
2880 if (running)
2881 igb_open(dev);
2882
2883 return 0;
2884 }
2885
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2886 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2887 {
2888 switch (xdp->command) {
2889 case XDP_SETUP_PROG:
2890 return igb_xdp_setup(dev, xdp);
2891 default:
2892 return -EINVAL;
2893 }
2894 }
2895
igb_xdp_ring_update_tail(struct igb_ring * ring)2896 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2897 {
2898 /* Force memory writes to complete before letting h/w know there
2899 * are new descriptors to fetch.
2900 */
2901 wmb();
2902 writel(ring->next_to_use, ring->tail);
2903 }
2904
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2905 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2906 {
2907 unsigned int r_idx = smp_processor_id();
2908
2909 if (r_idx >= adapter->num_tx_queues)
2910 r_idx = r_idx % adapter->num_tx_queues;
2911
2912 return adapter->tx_ring[r_idx];
2913 }
2914
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2915 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2916 {
2917 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2918 int cpu = smp_processor_id();
2919 struct igb_ring *tx_ring;
2920 struct netdev_queue *nq;
2921 u32 ret;
2922
2923 if (unlikely(!xdpf))
2924 return IGB_XDP_CONSUMED;
2925
2926 /* During program transitions its possible adapter->xdp_prog is assigned
2927 * but ring has not been configured yet. In this case simply abort xmit.
2928 */
2929 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2930 if (unlikely(!tx_ring))
2931 return IGB_XDP_CONSUMED;
2932
2933 nq = txring_txq(tx_ring);
2934 __netif_tx_lock(nq, cpu);
2935 /* Avoid transmit queue timeout since we share it with the slow path */
2936 nq->trans_start = jiffies;
2937 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2938 __netif_tx_unlock(nq);
2939
2940 return ret;
2941 }
2942
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2943 static int igb_xdp_xmit(struct net_device *dev, int n,
2944 struct xdp_frame **frames, u32 flags)
2945 {
2946 struct igb_adapter *adapter = netdev_priv(dev);
2947 int cpu = smp_processor_id();
2948 struct igb_ring *tx_ring;
2949 struct netdev_queue *nq;
2950 int drops = 0;
2951 int i;
2952
2953 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2954 return -ENETDOWN;
2955
2956 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2957 return -EINVAL;
2958
2959 /* During program transitions its possible adapter->xdp_prog is assigned
2960 * but ring has not been configured yet. In this case simply abort xmit.
2961 */
2962 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2963 if (unlikely(!tx_ring))
2964 return -ENXIO;
2965
2966 nq = txring_txq(tx_ring);
2967 __netif_tx_lock(nq, cpu);
2968
2969 /* Avoid transmit queue timeout since we share it with the slow path */
2970 nq->trans_start = jiffies;
2971
2972 for (i = 0; i < n; i++) {
2973 struct xdp_frame *xdpf = frames[i];
2974 int err;
2975
2976 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2977 if (err != IGB_XDP_TX) {
2978 xdp_return_frame_rx_napi(xdpf);
2979 drops++;
2980 }
2981 }
2982
2983 __netif_tx_unlock(nq);
2984
2985 if (unlikely(flags & XDP_XMIT_FLUSH))
2986 igb_xdp_ring_update_tail(tx_ring);
2987
2988 return n - drops;
2989 }
2990
2991 static const struct net_device_ops igb_netdev_ops = {
2992 .ndo_open = igb_open,
2993 .ndo_stop = igb_close,
2994 .ndo_start_xmit = igb_xmit_frame,
2995 .ndo_get_stats64 = igb_get_stats64,
2996 .ndo_set_rx_mode = igb_set_rx_mode,
2997 .ndo_set_mac_address = igb_set_mac,
2998 .ndo_change_mtu = igb_change_mtu,
2999 .ndo_do_ioctl = igb_ioctl,
3000 .ndo_tx_timeout = igb_tx_timeout,
3001 .ndo_validate_addr = eth_validate_addr,
3002 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3003 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3004 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3005 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3006 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3007 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3008 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3009 .ndo_get_vf_config = igb_ndo_get_vf_config,
3010 .ndo_fix_features = igb_fix_features,
3011 .ndo_set_features = igb_set_features,
3012 .ndo_fdb_add = igb_ndo_fdb_add,
3013 .ndo_features_check = igb_features_check,
3014 .ndo_setup_tc = igb_setup_tc,
3015 .ndo_bpf = igb_xdp,
3016 .ndo_xdp_xmit = igb_xdp_xmit,
3017 };
3018
3019 /**
3020 * igb_set_fw_version - Configure version string for ethtool
3021 * @adapter: adapter struct
3022 **/
igb_set_fw_version(struct igb_adapter * adapter)3023 void igb_set_fw_version(struct igb_adapter *adapter)
3024 {
3025 struct e1000_hw *hw = &adapter->hw;
3026 struct e1000_fw_version fw;
3027
3028 igb_get_fw_version(hw, &fw);
3029
3030 switch (hw->mac.type) {
3031 case e1000_i210:
3032 case e1000_i211:
3033 if (!(igb_get_flash_presence_i210(hw))) {
3034 snprintf(adapter->fw_version,
3035 sizeof(adapter->fw_version),
3036 "%2d.%2d-%d",
3037 fw.invm_major, fw.invm_minor,
3038 fw.invm_img_type);
3039 break;
3040 }
3041 fallthrough;
3042 default:
3043 /* if option is rom valid, display its version too */
3044 if (fw.or_valid) {
3045 snprintf(adapter->fw_version,
3046 sizeof(adapter->fw_version),
3047 "%d.%d, 0x%08x, %d.%d.%d",
3048 fw.eep_major, fw.eep_minor, fw.etrack_id,
3049 fw.or_major, fw.or_build, fw.or_patch);
3050 /* no option rom */
3051 } else if (fw.etrack_id != 0X0000) {
3052 snprintf(adapter->fw_version,
3053 sizeof(adapter->fw_version),
3054 "%d.%d, 0x%08x",
3055 fw.eep_major, fw.eep_minor, fw.etrack_id);
3056 } else {
3057 snprintf(adapter->fw_version,
3058 sizeof(adapter->fw_version),
3059 "%d.%d.%d",
3060 fw.eep_major, fw.eep_minor, fw.eep_build);
3061 }
3062 break;
3063 }
3064 }
3065
3066 /**
3067 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3068 *
3069 * @adapter: adapter struct
3070 **/
igb_init_mas(struct igb_adapter * adapter)3071 static void igb_init_mas(struct igb_adapter *adapter)
3072 {
3073 struct e1000_hw *hw = &adapter->hw;
3074 u16 eeprom_data;
3075
3076 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3077 switch (hw->bus.func) {
3078 case E1000_FUNC_0:
3079 if (eeprom_data & IGB_MAS_ENABLE_0) {
3080 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3081 netdev_info(adapter->netdev,
3082 "MAS: Enabling Media Autosense for port %d\n",
3083 hw->bus.func);
3084 }
3085 break;
3086 case E1000_FUNC_1:
3087 if (eeprom_data & IGB_MAS_ENABLE_1) {
3088 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3089 netdev_info(adapter->netdev,
3090 "MAS: Enabling Media Autosense for port %d\n",
3091 hw->bus.func);
3092 }
3093 break;
3094 case E1000_FUNC_2:
3095 if (eeprom_data & IGB_MAS_ENABLE_2) {
3096 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3097 netdev_info(adapter->netdev,
3098 "MAS: Enabling Media Autosense for port %d\n",
3099 hw->bus.func);
3100 }
3101 break;
3102 case E1000_FUNC_3:
3103 if (eeprom_data & IGB_MAS_ENABLE_3) {
3104 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105 netdev_info(adapter->netdev,
3106 "MAS: Enabling Media Autosense for port %d\n",
3107 hw->bus.func);
3108 }
3109 break;
3110 default:
3111 /* Shouldn't get here */
3112 netdev_err(adapter->netdev,
3113 "MAS: Invalid port configuration, returning\n");
3114 break;
3115 }
3116 }
3117
3118 /**
3119 * igb_init_i2c - Init I2C interface
3120 * @adapter: pointer to adapter structure
3121 **/
igb_init_i2c(struct igb_adapter * adapter)3122 static s32 igb_init_i2c(struct igb_adapter *adapter)
3123 {
3124 s32 status = 0;
3125
3126 /* I2C interface supported on i350 devices */
3127 if (adapter->hw.mac.type != e1000_i350)
3128 return 0;
3129
3130 /* Initialize the i2c bus which is controlled by the registers.
3131 * This bus will use the i2c_algo_bit structue that implements
3132 * the protocol through toggling of the 4 bits in the register.
3133 */
3134 adapter->i2c_adap.owner = THIS_MODULE;
3135 adapter->i2c_algo = igb_i2c_algo;
3136 adapter->i2c_algo.data = adapter;
3137 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3138 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3139 strlcpy(adapter->i2c_adap.name, "igb BB",
3140 sizeof(adapter->i2c_adap.name));
3141 status = i2c_bit_add_bus(&adapter->i2c_adap);
3142 return status;
3143 }
3144
3145 /**
3146 * igb_probe - Device Initialization Routine
3147 * @pdev: PCI device information struct
3148 * @ent: entry in igb_pci_tbl
3149 *
3150 * Returns 0 on success, negative on failure
3151 *
3152 * igb_probe initializes an adapter identified by a pci_dev structure.
3153 * The OS initialization, configuring of the adapter private structure,
3154 * and a hardware reset occur.
3155 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3156 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3157 {
3158 struct net_device *netdev;
3159 struct igb_adapter *adapter;
3160 struct e1000_hw *hw;
3161 u16 eeprom_data = 0;
3162 s32 ret_val;
3163 static int global_quad_port_a; /* global quad port a indication */
3164 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3165 int err, pci_using_dac;
3166 u8 part_str[E1000_PBANUM_LENGTH];
3167
3168 /* Catch broken hardware that put the wrong VF device ID in
3169 * the PCIe SR-IOV capability.
3170 */
3171 if (pdev->is_virtfn) {
3172 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3173 pci_name(pdev), pdev->vendor, pdev->device);
3174 return -EINVAL;
3175 }
3176
3177 err = pci_enable_device_mem(pdev);
3178 if (err)
3179 return err;
3180
3181 pci_using_dac = 0;
3182 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183 if (!err) {
3184 pci_using_dac = 1;
3185 } else {
3186 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3187 if (err) {
3188 dev_err(&pdev->dev,
3189 "No usable DMA configuration, aborting\n");
3190 goto err_dma;
3191 }
3192 }
3193
3194 err = pci_request_mem_regions(pdev, igb_driver_name);
3195 if (err)
3196 goto err_pci_reg;
3197
3198 pci_enable_pcie_error_reporting(pdev);
3199
3200 pci_set_master(pdev);
3201 pci_save_state(pdev);
3202
3203 err = -ENOMEM;
3204 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3205 IGB_MAX_TX_QUEUES);
3206 if (!netdev)
3207 goto err_alloc_etherdev;
3208
3209 SET_NETDEV_DEV(netdev, &pdev->dev);
3210
3211 pci_set_drvdata(pdev, netdev);
3212 adapter = netdev_priv(netdev);
3213 adapter->netdev = netdev;
3214 adapter->pdev = pdev;
3215 hw = &adapter->hw;
3216 hw->back = adapter;
3217 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3218
3219 err = -EIO;
3220 adapter->io_addr = pci_iomap(pdev, 0, 0);
3221 if (!adapter->io_addr)
3222 goto err_ioremap;
3223 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3224 hw->hw_addr = adapter->io_addr;
3225
3226 netdev->netdev_ops = &igb_netdev_ops;
3227 igb_set_ethtool_ops(netdev);
3228 netdev->watchdog_timeo = 5 * HZ;
3229
3230 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3231
3232 netdev->mem_start = pci_resource_start(pdev, 0);
3233 netdev->mem_end = pci_resource_end(pdev, 0);
3234
3235 /* PCI config space info */
3236 hw->vendor_id = pdev->vendor;
3237 hw->device_id = pdev->device;
3238 hw->revision_id = pdev->revision;
3239 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3240 hw->subsystem_device_id = pdev->subsystem_device;
3241
3242 /* Copy the default MAC, PHY and NVM function pointers */
3243 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3244 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3245 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3246 /* Initialize skew-specific constants */
3247 err = ei->get_invariants(hw);
3248 if (err)
3249 goto err_sw_init;
3250
3251 /* setup the private structure */
3252 err = igb_sw_init(adapter);
3253 if (err)
3254 goto err_sw_init;
3255
3256 igb_get_bus_info_pcie(hw);
3257
3258 hw->phy.autoneg_wait_to_complete = false;
3259
3260 /* Copper options */
3261 if (hw->phy.media_type == e1000_media_type_copper) {
3262 hw->phy.mdix = AUTO_ALL_MODES;
3263 hw->phy.disable_polarity_correction = false;
3264 hw->phy.ms_type = e1000_ms_hw_default;
3265 }
3266
3267 if (igb_check_reset_block(hw))
3268 dev_info(&pdev->dev,
3269 "PHY reset is blocked due to SOL/IDER session.\n");
3270
3271 /* features is initialized to 0 in allocation, it might have bits
3272 * set by igb_sw_init so we should use an or instead of an
3273 * assignment.
3274 */
3275 netdev->features |= NETIF_F_SG |
3276 NETIF_F_TSO |
3277 NETIF_F_TSO6 |
3278 NETIF_F_RXHASH |
3279 NETIF_F_RXCSUM |
3280 NETIF_F_HW_CSUM;
3281
3282 if (hw->mac.type >= e1000_82576)
3283 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3284
3285 if (hw->mac.type >= e1000_i350)
3286 netdev->features |= NETIF_F_HW_TC;
3287
3288 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3289 NETIF_F_GSO_GRE_CSUM | \
3290 NETIF_F_GSO_IPXIP4 | \
3291 NETIF_F_GSO_IPXIP6 | \
3292 NETIF_F_GSO_UDP_TUNNEL | \
3293 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3294
3295 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3296 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3297
3298 /* copy netdev features into list of user selectable features */
3299 netdev->hw_features |= netdev->features |
3300 NETIF_F_HW_VLAN_CTAG_RX |
3301 NETIF_F_HW_VLAN_CTAG_TX |
3302 NETIF_F_RXALL;
3303
3304 if (hw->mac.type >= e1000_i350)
3305 netdev->hw_features |= NETIF_F_NTUPLE;
3306
3307 if (pci_using_dac)
3308 netdev->features |= NETIF_F_HIGHDMA;
3309
3310 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3311 netdev->mpls_features |= NETIF_F_HW_CSUM;
3312 netdev->hw_enc_features |= netdev->vlan_features;
3313
3314 /* set this bit last since it cannot be part of vlan_features */
3315 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3316 NETIF_F_HW_VLAN_CTAG_RX |
3317 NETIF_F_HW_VLAN_CTAG_TX;
3318
3319 netdev->priv_flags |= IFF_SUPP_NOFCS;
3320
3321 netdev->priv_flags |= IFF_UNICAST_FLT;
3322
3323 /* MTU range: 68 - 9216 */
3324 netdev->min_mtu = ETH_MIN_MTU;
3325 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3326
3327 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3328
3329 /* before reading the NVM, reset the controller to put the device in a
3330 * known good starting state
3331 */
3332 hw->mac.ops.reset_hw(hw);
3333
3334 /* make sure the NVM is good , i211/i210 parts can have special NVM
3335 * that doesn't contain a checksum
3336 */
3337 switch (hw->mac.type) {
3338 case e1000_i210:
3339 case e1000_i211:
3340 if (igb_get_flash_presence_i210(hw)) {
3341 if (hw->nvm.ops.validate(hw) < 0) {
3342 dev_err(&pdev->dev,
3343 "The NVM Checksum Is Not Valid\n");
3344 err = -EIO;
3345 goto err_eeprom;
3346 }
3347 }
3348 break;
3349 default:
3350 if (hw->nvm.ops.validate(hw) < 0) {
3351 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3352 err = -EIO;
3353 goto err_eeprom;
3354 }
3355 break;
3356 }
3357
3358 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3359 /* copy the MAC address out of the NVM */
3360 if (hw->mac.ops.read_mac_addr(hw))
3361 dev_err(&pdev->dev, "NVM Read Error\n");
3362 }
3363
3364 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3365
3366 if (!is_valid_ether_addr(netdev->dev_addr)) {
3367 dev_err(&pdev->dev, "Invalid MAC Address\n");
3368 err = -EIO;
3369 goto err_eeprom;
3370 }
3371
3372 igb_set_default_mac_filter(adapter);
3373
3374 /* get firmware version for ethtool -i */
3375 igb_set_fw_version(adapter);
3376
3377 /* configure RXPBSIZE and TXPBSIZE */
3378 if (hw->mac.type == e1000_i210) {
3379 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3380 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3381 }
3382
3383 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3384 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3385
3386 INIT_WORK(&adapter->reset_task, igb_reset_task);
3387 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3388
3389 /* Initialize link properties that are user-changeable */
3390 adapter->fc_autoneg = true;
3391 hw->mac.autoneg = true;
3392 hw->phy.autoneg_advertised = 0x2f;
3393
3394 hw->fc.requested_mode = e1000_fc_default;
3395 hw->fc.current_mode = e1000_fc_default;
3396
3397 igb_validate_mdi_setting(hw);
3398
3399 /* By default, support wake on port A */
3400 if (hw->bus.func == 0)
3401 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3402
3403 /* Check the NVM for wake support on non-port A ports */
3404 if (hw->mac.type >= e1000_82580)
3405 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3406 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3407 &eeprom_data);
3408 else if (hw->bus.func == 1)
3409 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3410
3411 if (eeprom_data & IGB_EEPROM_APME)
3412 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3413
3414 /* now that we have the eeprom settings, apply the special cases where
3415 * the eeprom may be wrong or the board simply won't support wake on
3416 * lan on a particular port
3417 */
3418 switch (pdev->device) {
3419 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3420 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3421 break;
3422 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3423 case E1000_DEV_ID_82576_FIBER:
3424 case E1000_DEV_ID_82576_SERDES:
3425 /* Wake events only supported on port A for dual fiber
3426 * regardless of eeprom setting
3427 */
3428 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3429 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3430 break;
3431 case E1000_DEV_ID_82576_QUAD_COPPER:
3432 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3433 /* if quad port adapter, disable WoL on all but port A */
3434 if (global_quad_port_a != 0)
3435 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3436 else
3437 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3438 /* Reset for multiple quad port adapters */
3439 if (++global_quad_port_a == 4)
3440 global_quad_port_a = 0;
3441 break;
3442 default:
3443 /* If the device can't wake, don't set software support */
3444 if (!device_can_wakeup(&adapter->pdev->dev))
3445 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 }
3447
3448 /* initialize the wol settings based on the eeprom settings */
3449 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3450 adapter->wol |= E1000_WUFC_MAG;
3451
3452 /* Some vendors want WoL disabled by default, but still supported */
3453 if ((hw->mac.type == e1000_i350) &&
3454 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3455 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456 adapter->wol = 0;
3457 }
3458
3459 /* Some vendors want the ability to Use the EEPROM setting as
3460 * enable/disable only, and not for capability
3461 */
3462 if (((hw->mac.type == e1000_i350) ||
3463 (hw->mac.type == e1000_i354)) &&
3464 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3465 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3466 adapter->wol = 0;
3467 }
3468 if (hw->mac.type == e1000_i350) {
3469 if (((pdev->subsystem_device == 0x5001) ||
3470 (pdev->subsystem_device == 0x5002)) &&
3471 (hw->bus.func == 0)) {
3472 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473 adapter->wol = 0;
3474 }
3475 if (pdev->subsystem_device == 0x1F52)
3476 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477 }
3478
3479 device_set_wakeup_enable(&adapter->pdev->dev,
3480 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3481
3482 /* reset the hardware with the new settings */
3483 igb_reset(adapter);
3484
3485 /* Init the I2C interface */
3486 err = igb_init_i2c(adapter);
3487 if (err) {
3488 dev_err(&pdev->dev, "failed to init i2c interface\n");
3489 goto err_eeprom;
3490 }
3491
3492 /* let the f/w know that the h/w is now under the control of the
3493 * driver.
3494 */
3495 igb_get_hw_control(adapter);
3496
3497 strcpy(netdev->name, "eth%d");
3498 err = register_netdev(netdev);
3499 if (err)
3500 goto err_register;
3501
3502 /* carrier off reporting is important to ethtool even BEFORE open */
3503 netif_carrier_off(netdev);
3504
3505 #ifdef CONFIG_IGB_DCA
3506 if (dca_add_requester(&pdev->dev) == 0) {
3507 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3508 dev_info(&pdev->dev, "DCA enabled\n");
3509 igb_setup_dca(adapter);
3510 }
3511
3512 #endif
3513 #ifdef CONFIG_IGB_HWMON
3514 /* Initialize the thermal sensor on i350 devices. */
3515 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3516 u16 ets_word;
3517
3518 /* Read the NVM to determine if this i350 device supports an
3519 * external thermal sensor.
3520 */
3521 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3522 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3523 adapter->ets = true;
3524 else
3525 adapter->ets = false;
3526 if (igb_sysfs_init(adapter))
3527 dev_err(&pdev->dev,
3528 "failed to allocate sysfs resources\n");
3529 } else {
3530 adapter->ets = false;
3531 }
3532 #endif
3533 /* Check if Media Autosense is enabled */
3534 adapter->ei = *ei;
3535 if (hw->dev_spec._82575.mas_capable)
3536 igb_init_mas(adapter);
3537
3538 /* do hw tstamp init after resetting */
3539 igb_ptp_init(adapter);
3540
3541 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3542 /* print bus type/speed/width info, not applicable to i354 */
3543 if (hw->mac.type != e1000_i354) {
3544 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3545 netdev->name,
3546 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3547 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3548 "unknown"),
3549 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3550 "Width x4" :
3551 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3552 "Width x2" :
3553 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3554 "Width x1" : "unknown"), netdev->dev_addr);
3555 }
3556
3557 if ((hw->mac.type == e1000_82576 &&
3558 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3559 (hw->mac.type >= e1000_i210 ||
3560 igb_get_flash_presence_i210(hw))) {
3561 ret_val = igb_read_part_string(hw, part_str,
3562 E1000_PBANUM_LENGTH);
3563 } else {
3564 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3565 }
3566
3567 if (ret_val)
3568 strcpy(part_str, "Unknown");
3569 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3570 dev_info(&pdev->dev,
3571 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3572 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3573 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3574 adapter->num_rx_queues, adapter->num_tx_queues);
3575 if (hw->phy.media_type == e1000_media_type_copper) {
3576 switch (hw->mac.type) {
3577 case e1000_i350:
3578 case e1000_i210:
3579 case e1000_i211:
3580 /* Enable EEE for internal copper PHY devices */
3581 err = igb_set_eee_i350(hw, true, true);
3582 if ((!err) &&
3583 (!hw->dev_spec._82575.eee_disable)) {
3584 adapter->eee_advert =
3585 MDIO_EEE_100TX | MDIO_EEE_1000T;
3586 adapter->flags |= IGB_FLAG_EEE;
3587 }
3588 break;
3589 case e1000_i354:
3590 if ((rd32(E1000_CTRL_EXT) &
3591 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3592 err = igb_set_eee_i354(hw, true, true);
3593 if ((!err) &&
3594 (!hw->dev_spec._82575.eee_disable)) {
3595 adapter->eee_advert =
3596 MDIO_EEE_100TX | MDIO_EEE_1000T;
3597 adapter->flags |= IGB_FLAG_EEE;
3598 }
3599 }
3600 break;
3601 default:
3602 break;
3603 }
3604 }
3605
3606 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3607
3608 pm_runtime_put_noidle(&pdev->dev);
3609 return 0;
3610
3611 err_register:
3612 igb_release_hw_control(adapter);
3613 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3614 err_eeprom:
3615 if (!igb_check_reset_block(hw))
3616 igb_reset_phy(hw);
3617
3618 if (hw->flash_address)
3619 iounmap(hw->flash_address);
3620 err_sw_init:
3621 kfree(adapter->mac_table);
3622 kfree(adapter->shadow_vfta);
3623 igb_clear_interrupt_scheme(adapter);
3624 #ifdef CONFIG_PCI_IOV
3625 igb_disable_sriov(pdev);
3626 #endif
3627 pci_iounmap(pdev, adapter->io_addr);
3628 err_ioremap:
3629 free_netdev(netdev);
3630 err_alloc_etherdev:
3631 pci_disable_pcie_error_reporting(pdev);
3632 pci_release_mem_regions(pdev);
3633 err_pci_reg:
3634 err_dma:
3635 pci_disable_device(pdev);
3636 return err;
3637 }
3638
3639 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3640 static int igb_disable_sriov(struct pci_dev *pdev)
3641 {
3642 struct net_device *netdev = pci_get_drvdata(pdev);
3643 struct igb_adapter *adapter = netdev_priv(netdev);
3644 struct e1000_hw *hw = &adapter->hw;
3645 unsigned long flags;
3646
3647 /* reclaim resources allocated to VFs */
3648 if (adapter->vf_data) {
3649 /* disable iov and allow time for transactions to clear */
3650 if (pci_vfs_assigned(pdev)) {
3651 dev_warn(&pdev->dev,
3652 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3653 return -EPERM;
3654 } else {
3655 pci_disable_sriov(pdev);
3656 msleep(500);
3657 }
3658 spin_lock_irqsave(&adapter->vfs_lock, flags);
3659 kfree(adapter->vf_mac_list);
3660 adapter->vf_mac_list = NULL;
3661 kfree(adapter->vf_data);
3662 adapter->vf_data = NULL;
3663 adapter->vfs_allocated_count = 0;
3664 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3665 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3666 wrfl();
3667 msleep(100);
3668 dev_info(&pdev->dev, "IOV Disabled\n");
3669
3670 /* Re-enable DMA Coalescing flag since IOV is turned off */
3671 adapter->flags |= IGB_FLAG_DMAC;
3672 }
3673
3674 return 0;
3675 }
3676
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3677 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3678 {
3679 struct net_device *netdev = pci_get_drvdata(pdev);
3680 struct igb_adapter *adapter = netdev_priv(netdev);
3681 int old_vfs = pci_num_vf(pdev);
3682 struct vf_mac_filter *mac_list;
3683 int err = 0;
3684 int num_vf_mac_filters, i;
3685
3686 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3687 err = -EPERM;
3688 goto out;
3689 }
3690 if (!num_vfs)
3691 goto out;
3692
3693 if (old_vfs) {
3694 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3695 old_vfs, max_vfs);
3696 adapter->vfs_allocated_count = old_vfs;
3697 } else
3698 adapter->vfs_allocated_count = num_vfs;
3699
3700 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3701 sizeof(struct vf_data_storage), GFP_KERNEL);
3702
3703 /* if allocation failed then we do not support SR-IOV */
3704 if (!adapter->vf_data) {
3705 adapter->vfs_allocated_count = 0;
3706 err = -ENOMEM;
3707 goto out;
3708 }
3709
3710 /* Due to the limited number of RAR entries calculate potential
3711 * number of MAC filters available for the VFs. Reserve entries
3712 * for PF default MAC, PF MAC filters and at least one RAR entry
3713 * for each VF for VF MAC.
3714 */
3715 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3716 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3717 adapter->vfs_allocated_count);
3718
3719 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3720 sizeof(struct vf_mac_filter),
3721 GFP_KERNEL);
3722
3723 mac_list = adapter->vf_mac_list;
3724 INIT_LIST_HEAD(&adapter->vf_macs.l);
3725
3726 if (adapter->vf_mac_list) {
3727 /* Initialize list of VF MAC filters */
3728 for (i = 0; i < num_vf_mac_filters; i++) {
3729 mac_list->vf = -1;
3730 mac_list->free = true;
3731 list_add(&mac_list->l, &adapter->vf_macs.l);
3732 mac_list++;
3733 }
3734 } else {
3735 /* If we could not allocate memory for the VF MAC filters
3736 * we can continue without this feature but warn user.
3737 */
3738 dev_err(&pdev->dev,
3739 "Unable to allocate memory for VF MAC filter list\n");
3740 }
3741
3742 /* only call pci_enable_sriov() if no VFs are allocated already */
3743 if (!old_vfs) {
3744 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3745 if (err)
3746 goto err_out;
3747 }
3748 dev_info(&pdev->dev, "%d VFs allocated\n",
3749 adapter->vfs_allocated_count);
3750 for (i = 0; i < adapter->vfs_allocated_count; i++)
3751 igb_vf_configure(adapter, i);
3752
3753 /* DMA Coalescing is not supported in IOV mode. */
3754 adapter->flags &= ~IGB_FLAG_DMAC;
3755 goto out;
3756
3757 err_out:
3758 kfree(adapter->vf_mac_list);
3759 adapter->vf_mac_list = NULL;
3760 kfree(adapter->vf_data);
3761 adapter->vf_data = NULL;
3762 adapter->vfs_allocated_count = 0;
3763 out:
3764 return err;
3765 }
3766
3767 #endif
3768 /**
3769 * igb_remove_i2c - Cleanup I2C interface
3770 * @adapter: pointer to adapter structure
3771 **/
igb_remove_i2c(struct igb_adapter * adapter)3772 static void igb_remove_i2c(struct igb_adapter *adapter)
3773 {
3774 /* free the adapter bus structure */
3775 i2c_del_adapter(&adapter->i2c_adap);
3776 }
3777
3778 /**
3779 * igb_remove - Device Removal Routine
3780 * @pdev: PCI device information struct
3781 *
3782 * igb_remove is called by the PCI subsystem to alert the driver
3783 * that it should release a PCI device. The could be caused by a
3784 * Hot-Plug event, or because the driver is going to be removed from
3785 * memory.
3786 **/
igb_remove(struct pci_dev * pdev)3787 static void igb_remove(struct pci_dev *pdev)
3788 {
3789 struct net_device *netdev = pci_get_drvdata(pdev);
3790 struct igb_adapter *adapter = netdev_priv(netdev);
3791 struct e1000_hw *hw = &adapter->hw;
3792
3793 pm_runtime_get_noresume(&pdev->dev);
3794 #ifdef CONFIG_IGB_HWMON
3795 igb_sysfs_exit(adapter);
3796 #endif
3797 igb_remove_i2c(adapter);
3798 igb_ptp_stop(adapter);
3799 /* The watchdog timer may be rescheduled, so explicitly
3800 * disable watchdog from being rescheduled.
3801 */
3802 set_bit(__IGB_DOWN, &adapter->state);
3803 del_timer_sync(&adapter->watchdog_timer);
3804 del_timer_sync(&adapter->phy_info_timer);
3805
3806 cancel_work_sync(&adapter->reset_task);
3807 cancel_work_sync(&adapter->watchdog_task);
3808
3809 #ifdef CONFIG_IGB_DCA
3810 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3811 dev_info(&pdev->dev, "DCA disabled\n");
3812 dca_remove_requester(&pdev->dev);
3813 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3814 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3815 }
3816 #endif
3817
3818 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3819 * would have already happened in close and is redundant.
3820 */
3821 igb_release_hw_control(adapter);
3822
3823 #ifdef CONFIG_PCI_IOV
3824 igb_disable_sriov(pdev);
3825 #endif
3826
3827 unregister_netdev(netdev);
3828
3829 igb_clear_interrupt_scheme(adapter);
3830
3831 pci_iounmap(pdev, adapter->io_addr);
3832 if (hw->flash_address)
3833 iounmap(hw->flash_address);
3834 pci_release_mem_regions(pdev);
3835
3836 kfree(adapter->mac_table);
3837 kfree(adapter->shadow_vfta);
3838 free_netdev(netdev);
3839
3840 pci_disable_pcie_error_reporting(pdev);
3841
3842 pci_disable_device(pdev);
3843 }
3844
3845 /**
3846 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847 * @adapter: board private structure to initialize
3848 *
3849 * This function initializes the vf specific data storage and then attempts to
3850 * allocate the VFs. The reason for ordering it this way is because it is much
3851 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3852 * the memory for the VFs.
3853 **/
igb_probe_vfs(struct igb_adapter * adapter)3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3855 {
3856 #ifdef CONFIG_PCI_IOV
3857 struct pci_dev *pdev = adapter->pdev;
3858 struct e1000_hw *hw = &adapter->hw;
3859
3860 /* Virtualization features not supported on i210 and 82580 family. */
3861 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3862 (hw->mac.type == e1000_82580))
3863 return;
3864
3865 /* Of the below we really only want the effect of getting
3866 * IGB_FLAG_HAS_MSIX set (if available), without which
3867 * igb_enable_sriov() has no effect.
3868 */
3869 igb_set_interrupt_capability(adapter, true);
3870 igb_reset_interrupt_capability(adapter);
3871
3872 pci_sriov_set_totalvfs(pdev, 7);
3873 igb_enable_sriov(pdev, max_vfs);
3874
3875 #endif /* CONFIG_PCI_IOV */
3876 }
3877
igb_get_max_rss_queues(struct igb_adapter * adapter)3878 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3879 {
3880 struct e1000_hw *hw = &adapter->hw;
3881 unsigned int max_rss_queues;
3882
3883 /* Determine the maximum number of RSS queues supported. */
3884 switch (hw->mac.type) {
3885 case e1000_i211:
3886 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3887 break;
3888 case e1000_82575:
3889 case e1000_i210:
3890 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3891 break;
3892 case e1000_i350:
3893 /* I350 cannot do RSS and SR-IOV at the same time */
3894 if (!!adapter->vfs_allocated_count) {
3895 max_rss_queues = 1;
3896 break;
3897 }
3898 fallthrough;
3899 case e1000_82576:
3900 if (!!adapter->vfs_allocated_count) {
3901 max_rss_queues = 2;
3902 break;
3903 }
3904 fallthrough;
3905 case e1000_82580:
3906 case e1000_i354:
3907 default:
3908 max_rss_queues = IGB_MAX_RX_QUEUES;
3909 break;
3910 }
3911
3912 return max_rss_queues;
3913 }
3914
igb_init_queue_configuration(struct igb_adapter * adapter)3915 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3916 {
3917 u32 max_rss_queues;
3918
3919 max_rss_queues = igb_get_max_rss_queues(adapter);
3920 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3921
3922 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3923 }
3924
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3925 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3926 const u32 max_rss_queues)
3927 {
3928 struct e1000_hw *hw = &adapter->hw;
3929
3930 /* Determine if we need to pair queues. */
3931 switch (hw->mac.type) {
3932 case e1000_82575:
3933 case e1000_i211:
3934 /* Device supports enough interrupts without queue pairing. */
3935 break;
3936 case e1000_82576:
3937 case e1000_82580:
3938 case e1000_i350:
3939 case e1000_i354:
3940 case e1000_i210:
3941 default:
3942 /* If rss_queues > half of max_rss_queues, pair the queues in
3943 * order to conserve interrupts due to limited supply.
3944 */
3945 if (adapter->rss_queues > (max_rss_queues / 2))
3946 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3947 else
3948 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3949 break;
3950 }
3951 }
3952
3953 /**
3954 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3955 * @adapter: board private structure to initialize
3956 *
3957 * igb_sw_init initializes the Adapter private data structure.
3958 * Fields are initialized based on PCI device information and
3959 * OS network device settings (MTU size).
3960 **/
igb_sw_init(struct igb_adapter * adapter)3961 static int igb_sw_init(struct igb_adapter *adapter)
3962 {
3963 struct e1000_hw *hw = &adapter->hw;
3964 struct net_device *netdev = adapter->netdev;
3965 struct pci_dev *pdev = adapter->pdev;
3966
3967 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3968
3969 /* set default ring sizes */
3970 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3971 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3972
3973 /* set default ITR values */
3974 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3975 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3976
3977 /* set default work limits */
3978 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3979
3980 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3981 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3982
3983 spin_lock_init(&adapter->nfc_lock);
3984 spin_lock_init(&adapter->stats64_lock);
3985
3986 /* init spinlock to avoid concurrency of VF resources */
3987 spin_lock_init(&adapter->vfs_lock);
3988 #ifdef CONFIG_PCI_IOV
3989 switch (hw->mac.type) {
3990 case e1000_82576:
3991 case e1000_i350:
3992 if (max_vfs > 7) {
3993 dev_warn(&pdev->dev,
3994 "Maximum of 7 VFs per PF, using max\n");
3995 max_vfs = adapter->vfs_allocated_count = 7;
3996 } else
3997 adapter->vfs_allocated_count = max_vfs;
3998 if (adapter->vfs_allocated_count)
3999 dev_warn(&pdev->dev,
4000 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4001 break;
4002 default:
4003 break;
4004 }
4005 #endif /* CONFIG_PCI_IOV */
4006
4007 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4008 adapter->flags |= IGB_FLAG_HAS_MSIX;
4009
4010 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4011 sizeof(struct igb_mac_addr),
4012 GFP_KERNEL);
4013 if (!adapter->mac_table)
4014 return -ENOMEM;
4015
4016 igb_probe_vfs(adapter);
4017
4018 igb_init_queue_configuration(adapter);
4019
4020 /* Setup and initialize a copy of the hw vlan table array */
4021 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4022 GFP_KERNEL);
4023 if (!adapter->shadow_vfta)
4024 return -ENOMEM;
4025
4026 /* This call may decrease the number of queues */
4027 if (igb_init_interrupt_scheme(adapter, true)) {
4028 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4029 return -ENOMEM;
4030 }
4031
4032 /* Explicitly disable IRQ since the NIC can be in any state. */
4033 igb_irq_disable(adapter);
4034
4035 if (hw->mac.type >= e1000_i350)
4036 adapter->flags &= ~IGB_FLAG_DMAC;
4037
4038 set_bit(__IGB_DOWN, &adapter->state);
4039 return 0;
4040 }
4041
4042 /**
4043 * igb_open - Called when a network interface is made active
4044 * @netdev: network interface device structure
4045 * @resuming: indicates whether we are in a resume call
4046 *
4047 * Returns 0 on success, negative value on failure
4048 *
4049 * The open entry point is called when a network interface is made
4050 * active by the system (IFF_UP). At this point all resources needed
4051 * for transmit and receive operations are allocated, the interrupt
4052 * handler is registered with the OS, the watchdog timer is started,
4053 * and the stack is notified that the interface is ready.
4054 **/
__igb_open(struct net_device * netdev,bool resuming)4055 static int __igb_open(struct net_device *netdev, bool resuming)
4056 {
4057 struct igb_adapter *adapter = netdev_priv(netdev);
4058 struct e1000_hw *hw = &adapter->hw;
4059 struct pci_dev *pdev = adapter->pdev;
4060 int err;
4061 int i;
4062
4063 /* disallow open during test */
4064 if (test_bit(__IGB_TESTING, &adapter->state)) {
4065 WARN_ON(resuming);
4066 return -EBUSY;
4067 }
4068
4069 if (!resuming)
4070 pm_runtime_get_sync(&pdev->dev);
4071
4072 netif_carrier_off(netdev);
4073
4074 /* allocate transmit descriptors */
4075 err = igb_setup_all_tx_resources(adapter);
4076 if (err)
4077 goto err_setup_tx;
4078
4079 /* allocate receive descriptors */
4080 err = igb_setup_all_rx_resources(adapter);
4081 if (err)
4082 goto err_setup_rx;
4083
4084 igb_power_up_link(adapter);
4085
4086 /* before we allocate an interrupt, we must be ready to handle it.
4087 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4088 * as soon as we call pci_request_irq, so we have to setup our
4089 * clean_rx handler before we do so.
4090 */
4091 igb_configure(adapter);
4092
4093 err = igb_request_irq(adapter);
4094 if (err)
4095 goto err_req_irq;
4096
4097 /* Notify the stack of the actual queue counts. */
4098 err = netif_set_real_num_tx_queues(adapter->netdev,
4099 adapter->num_tx_queues);
4100 if (err)
4101 goto err_set_queues;
4102
4103 err = netif_set_real_num_rx_queues(adapter->netdev,
4104 adapter->num_rx_queues);
4105 if (err)
4106 goto err_set_queues;
4107
4108 /* From here on the code is the same as igb_up() */
4109 clear_bit(__IGB_DOWN, &adapter->state);
4110
4111 for (i = 0; i < adapter->num_q_vectors; i++)
4112 napi_enable(&(adapter->q_vector[i]->napi));
4113
4114 /* Clear any pending interrupts. */
4115 rd32(E1000_TSICR);
4116 rd32(E1000_ICR);
4117
4118 igb_irq_enable(adapter);
4119
4120 /* notify VFs that reset has been completed */
4121 if (adapter->vfs_allocated_count) {
4122 u32 reg_data = rd32(E1000_CTRL_EXT);
4123
4124 reg_data |= E1000_CTRL_EXT_PFRSTD;
4125 wr32(E1000_CTRL_EXT, reg_data);
4126 }
4127
4128 netif_tx_start_all_queues(netdev);
4129
4130 if (!resuming)
4131 pm_runtime_put(&pdev->dev);
4132
4133 /* start the watchdog. */
4134 hw->mac.get_link_status = 1;
4135 schedule_work(&adapter->watchdog_task);
4136
4137 return 0;
4138
4139 err_set_queues:
4140 igb_free_irq(adapter);
4141 err_req_irq:
4142 igb_release_hw_control(adapter);
4143 igb_power_down_link(adapter);
4144 igb_free_all_rx_resources(adapter);
4145 err_setup_rx:
4146 igb_free_all_tx_resources(adapter);
4147 err_setup_tx:
4148 igb_reset(adapter);
4149 if (!resuming)
4150 pm_runtime_put(&pdev->dev);
4151
4152 return err;
4153 }
4154
igb_open(struct net_device * netdev)4155 int igb_open(struct net_device *netdev)
4156 {
4157 return __igb_open(netdev, false);
4158 }
4159
4160 /**
4161 * igb_close - Disables a network interface
4162 * @netdev: network interface device structure
4163 * @suspending: indicates we are in a suspend call
4164 *
4165 * Returns 0, this is not allowed to fail
4166 *
4167 * The close entry point is called when an interface is de-activated
4168 * by the OS. The hardware is still under the driver's control, but
4169 * needs to be disabled. A global MAC reset is issued to stop the
4170 * hardware, and all transmit and receive resources are freed.
4171 **/
__igb_close(struct net_device * netdev,bool suspending)4172 static int __igb_close(struct net_device *netdev, bool suspending)
4173 {
4174 struct igb_adapter *adapter = netdev_priv(netdev);
4175 struct pci_dev *pdev = adapter->pdev;
4176
4177 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4178
4179 if (!suspending)
4180 pm_runtime_get_sync(&pdev->dev);
4181
4182 igb_down(adapter);
4183 igb_free_irq(adapter);
4184
4185 igb_free_all_tx_resources(adapter);
4186 igb_free_all_rx_resources(adapter);
4187
4188 if (!suspending)
4189 pm_runtime_put_sync(&pdev->dev);
4190 return 0;
4191 }
4192
igb_close(struct net_device * netdev)4193 int igb_close(struct net_device *netdev)
4194 {
4195 if (netif_device_present(netdev) || netdev->dismantle)
4196 return __igb_close(netdev, false);
4197 return 0;
4198 }
4199
4200 /**
4201 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4202 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4203 *
4204 * Return 0 on success, negative on failure
4205 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4206 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4207 {
4208 struct device *dev = tx_ring->dev;
4209 int size;
4210
4211 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4212
4213 tx_ring->tx_buffer_info = vmalloc(size);
4214 if (!tx_ring->tx_buffer_info)
4215 goto err;
4216
4217 /* round up to nearest 4K */
4218 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4219 tx_ring->size = ALIGN(tx_ring->size, 4096);
4220
4221 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4222 &tx_ring->dma, GFP_KERNEL);
4223 if (!tx_ring->desc)
4224 goto err;
4225
4226 tx_ring->next_to_use = 0;
4227 tx_ring->next_to_clean = 0;
4228
4229 return 0;
4230
4231 err:
4232 vfree(tx_ring->tx_buffer_info);
4233 tx_ring->tx_buffer_info = NULL;
4234 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4235 return -ENOMEM;
4236 }
4237
4238 /**
4239 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4240 * (Descriptors) for all queues
4241 * @adapter: board private structure
4242 *
4243 * Return 0 on success, negative on failure
4244 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4245 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4246 {
4247 struct pci_dev *pdev = adapter->pdev;
4248 int i, err = 0;
4249
4250 for (i = 0; i < adapter->num_tx_queues; i++) {
4251 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4252 if (err) {
4253 dev_err(&pdev->dev,
4254 "Allocation for Tx Queue %u failed\n", i);
4255 for (i--; i >= 0; i--)
4256 igb_free_tx_resources(adapter->tx_ring[i]);
4257 break;
4258 }
4259 }
4260
4261 return err;
4262 }
4263
4264 /**
4265 * igb_setup_tctl - configure the transmit control registers
4266 * @adapter: Board private structure
4267 **/
igb_setup_tctl(struct igb_adapter * adapter)4268 void igb_setup_tctl(struct igb_adapter *adapter)
4269 {
4270 struct e1000_hw *hw = &adapter->hw;
4271 u32 tctl;
4272
4273 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4274 wr32(E1000_TXDCTL(0), 0);
4275
4276 /* Program the Transmit Control Register */
4277 tctl = rd32(E1000_TCTL);
4278 tctl &= ~E1000_TCTL_CT;
4279 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4280 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4281
4282 igb_config_collision_dist(hw);
4283
4284 /* Enable transmits */
4285 tctl |= E1000_TCTL_EN;
4286
4287 wr32(E1000_TCTL, tctl);
4288 }
4289
4290 /**
4291 * igb_configure_tx_ring - Configure transmit ring after Reset
4292 * @adapter: board private structure
4293 * @ring: tx ring to configure
4294 *
4295 * Configure a transmit ring after a reset.
4296 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4297 void igb_configure_tx_ring(struct igb_adapter *adapter,
4298 struct igb_ring *ring)
4299 {
4300 struct e1000_hw *hw = &adapter->hw;
4301 u32 txdctl = 0;
4302 u64 tdba = ring->dma;
4303 int reg_idx = ring->reg_idx;
4304
4305 wr32(E1000_TDLEN(reg_idx),
4306 ring->count * sizeof(union e1000_adv_tx_desc));
4307 wr32(E1000_TDBAL(reg_idx),
4308 tdba & 0x00000000ffffffffULL);
4309 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4310
4311 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4312 wr32(E1000_TDH(reg_idx), 0);
4313 writel(0, ring->tail);
4314
4315 txdctl |= IGB_TX_PTHRESH;
4316 txdctl |= IGB_TX_HTHRESH << 8;
4317 txdctl |= IGB_TX_WTHRESH << 16;
4318
4319 /* reinitialize tx_buffer_info */
4320 memset(ring->tx_buffer_info, 0,
4321 sizeof(struct igb_tx_buffer) * ring->count);
4322
4323 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4324 wr32(E1000_TXDCTL(reg_idx), txdctl);
4325 }
4326
4327 /**
4328 * igb_configure_tx - Configure transmit Unit after Reset
4329 * @adapter: board private structure
4330 *
4331 * Configure the Tx unit of the MAC after a reset.
4332 **/
igb_configure_tx(struct igb_adapter * adapter)4333 static void igb_configure_tx(struct igb_adapter *adapter)
4334 {
4335 struct e1000_hw *hw = &adapter->hw;
4336 int i;
4337
4338 /* disable the queues */
4339 for (i = 0; i < adapter->num_tx_queues; i++)
4340 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4341
4342 wrfl();
4343 usleep_range(10000, 20000);
4344
4345 for (i = 0; i < adapter->num_tx_queues; i++)
4346 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4347 }
4348
4349 /**
4350 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4351 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4352 *
4353 * Returns 0 on success, negative on failure
4354 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4355 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4356 {
4357 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4358 struct device *dev = rx_ring->dev;
4359 int size;
4360
4361 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4362
4363 rx_ring->rx_buffer_info = vmalloc(size);
4364 if (!rx_ring->rx_buffer_info)
4365 goto err;
4366
4367 /* Round up to nearest 4K */
4368 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4369 rx_ring->size = ALIGN(rx_ring->size, 4096);
4370
4371 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4372 &rx_ring->dma, GFP_KERNEL);
4373 if (!rx_ring->desc)
4374 goto err;
4375
4376 rx_ring->next_to_alloc = 0;
4377 rx_ring->next_to_clean = 0;
4378 rx_ring->next_to_use = 0;
4379
4380 rx_ring->xdp_prog = adapter->xdp_prog;
4381
4382 /* XDP RX-queue info */
4383 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4384 rx_ring->queue_index) < 0)
4385 goto err;
4386
4387 return 0;
4388
4389 err:
4390 vfree(rx_ring->rx_buffer_info);
4391 rx_ring->rx_buffer_info = NULL;
4392 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4393 return -ENOMEM;
4394 }
4395
4396 /**
4397 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4398 * (Descriptors) for all queues
4399 * @adapter: board private structure
4400 *
4401 * Return 0 on success, negative on failure
4402 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4403 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4404 {
4405 struct pci_dev *pdev = adapter->pdev;
4406 int i, err = 0;
4407
4408 for (i = 0; i < adapter->num_rx_queues; i++) {
4409 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4410 if (err) {
4411 dev_err(&pdev->dev,
4412 "Allocation for Rx Queue %u failed\n", i);
4413 for (i--; i >= 0; i--)
4414 igb_free_rx_resources(adapter->rx_ring[i]);
4415 break;
4416 }
4417 }
4418
4419 return err;
4420 }
4421
4422 /**
4423 * igb_setup_mrqc - configure the multiple receive queue control registers
4424 * @adapter: Board private structure
4425 **/
igb_setup_mrqc(struct igb_adapter * adapter)4426 static void igb_setup_mrqc(struct igb_adapter *adapter)
4427 {
4428 struct e1000_hw *hw = &adapter->hw;
4429 u32 mrqc, rxcsum;
4430 u32 j, num_rx_queues;
4431 u32 rss_key[10];
4432
4433 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4434 for (j = 0; j < 10; j++)
4435 wr32(E1000_RSSRK(j), rss_key[j]);
4436
4437 num_rx_queues = adapter->rss_queues;
4438
4439 switch (hw->mac.type) {
4440 case e1000_82576:
4441 /* 82576 supports 2 RSS queues for SR-IOV */
4442 if (adapter->vfs_allocated_count)
4443 num_rx_queues = 2;
4444 break;
4445 default:
4446 break;
4447 }
4448
4449 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4450 for (j = 0; j < IGB_RETA_SIZE; j++)
4451 adapter->rss_indir_tbl[j] =
4452 (j * num_rx_queues) / IGB_RETA_SIZE;
4453 adapter->rss_indir_tbl_init = num_rx_queues;
4454 }
4455 igb_write_rss_indir_tbl(adapter);
4456
4457 /* Disable raw packet checksumming so that RSS hash is placed in
4458 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4459 * offloads as they are enabled by default
4460 */
4461 rxcsum = rd32(E1000_RXCSUM);
4462 rxcsum |= E1000_RXCSUM_PCSD;
4463
4464 if (adapter->hw.mac.type >= e1000_82576)
4465 /* Enable Receive Checksum Offload for SCTP */
4466 rxcsum |= E1000_RXCSUM_CRCOFL;
4467
4468 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4469 wr32(E1000_RXCSUM, rxcsum);
4470
4471 /* Generate RSS hash based on packet types, TCP/UDP
4472 * port numbers and/or IPv4/v6 src and dst addresses
4473 */
4474 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4475 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4476 E1000_MRQC_RSS_FIELD_IPV6 |
4477 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4478 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4479
4480 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4481 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4482 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4483 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4484
4485 /* If VMDq is enabled then we set the appropriate mode for that, else
4486 * we default to RSS so that an RSS hash is calculated per packet even
4487 * if we are only using one queue
4488 */
4489 if (adapter->vfs_allocated_count) {
4490 if (hw->mac.type > e1000_82575) {
4491 /* Set the default pool for the PF's first queue */
4492 u32 vtctl = rd32(E1000_VT_CTL);
4493
4494 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4495 E1000_VT_CTL_DISABLE_DEF_POOL);
4496 vtctl |= adapter->vfs_allocated_count <<
4497 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4498 wr32(E1000_VT_CTL, vtctl);
4499 }
4500 if (adapter->rss_queues > 1)
4501 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4502 else
4503 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4504 } else {
4505 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4506 }
4507 igb_vmm_control(adapter);
4508
4509 wr32(E1000_MRQC, mrqc);
4510 }
4511
4512 /**
4513 * igb_setup_rctl - configure the receive control registers
4514 * @adapter: Board private structure
4515 **/
igb_setup_rctl(struct igb_adapter * adapter)4516 void igb_setup_rctl(struct igb_adapter *adapter)
4517 {
4518 struct e1000_hw *hw = &adapter->hw;
4519 u32 rctl;
4520
4521 rctl = rd32(E1000_RCTL);
4522
4523 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4524 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4525
4526 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4527 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4528
4529 /* enable stripping of CRC. It's unlikely this will break BMC
4530 * redirection as it did with e1000. Newer features require
4531 * that the HW strips the CRC.
4532 */
4533 rctl |= E1000_RCTL_SECRC;
4534
4535 /* disable store bad packets and clear size bits. */
4536 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4537
4538 /* enable LPE to allow for reception of jumbo frames */
4539 rctl |= E1000_RCTL_LPE;
4540
4541 /* disable queue 0 to prevent tail write w/o re-config */
4542 wr32(E1000_RXDCTL(0), 0);
4543
4544 /* Attention!!! For SR-IOV PF driver operations you must enable
4545 * queue drop for all VF and PF queues to prevent head of line blocking
4546 * if an un-trusted VF does not provide descriptors to hardware.
4547 */
4548 if (adapter->vfs_allocated_count) {
4549 /* set all queue drop enable bits */
4550 wr32(E1000_QDE, ALL_QUEUES);
4551 }
4552
4553 /* This is useful for sniffing bad packets. */
4554 if (adapter->netdev->features & NETIF_F_RXALL) {
4555 /* UPE and MPE will be handled by normal PROMISC logic
4556 * in e1000e_set_rx_mode
4557 */
4558 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4559 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4560 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4561
4562 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4563 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4564 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4565 * and that breaks VLANs.
4566 */
4567 }
4568
4569 wr32(E1000_RCTL, rctl);
4570 }
4571
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4572 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4573 int vfn)
4574 {
4575 struct e1000_hw *hw = &adapter->hw;
4576 u32 vmolr;
4577
4578 if (size > MAX_JUMBO_FRAME_SIZE)
4579 size = MAX_JUMBO_FRAME_SIZE;
4580
4581 vmolr = rd32(E1000_VMOLR(vfn));
4582 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4583 vmolr |= size | E1000_VMOLR_LPE;
4584 wr32(E1000_VMOLR(vfn), vmolr);
4585
4586 return 0;
4587 }
4588
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4589 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4590 int vfn, bool enable)
4591 {
4592 struct e1000_hw *hw = &adapter->hw;
4593 u32 val, reg;
4594
4595 if (hw->mac.type < e1000_82576)
4596 return;
4597
4598 if (hw->mac.type == e1000_i350)
4599 reg = E1000_DVMOLR(vfn);
4600 else
4601 reg = E1000_VMOLR(vfn);
4602
4603 val = rd32(reg);
4604 if (enable)
4605 val |= E1000_VMOLR_STRVLAN;
4606 else
4607 val &= ~(E1000_VMOLR_STRVLAN);
4608 wr32(reg, val);
4609 }
4610
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4611 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4612 int vfn, bool aupe)
4613 {
4614 struct e1000_hw *hw = &adapter->hw;
4615 u32 vmolr;
4616
4617 /* This register exists only on 82576 and newer so if we are older then
4618 * we should exit and do nothing
4619 */
4620 if (hw->mac.type < e1000_82576)
4621 return;
4622
4623 vmolr = rd32(E1000_VMOLR(vfn));
4624 if (aupe)
4625 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4626 else
4627 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4628
4629 /* clear all bits that might not be set */
4630 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4631
4632 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4633 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4634 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4635 * multicast packets
4636 */
4637 if (vfn <= adapter->vfs_allocated_count)
4638 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4639
4640 wr32(E1000_VMOLR(vfn), vmolr);
4641 }
4642
4643 /**
4644 * igb_setup_srrctl - configure the split and replication receive control
4645 * registers
4646 * @adapter: Board private structure
4647 * @ring: receive ring to be configured
4648 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4649 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4650 {
4651 struct e1000_hw *hw = &adapter->hw;
4652 int reg_idx = ring->reg_idx;
4653 u32 srrctl = 0;
4654
4655 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4656 if (ring_uses_large_buffer(ring))
4657 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4658 else
4659 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4660 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4661 if (hw->mac.type >= e1000_82580)
4662 srrctl |= E1000_SRRCTL_TIMESTAMP;
4663 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4664 * queues and rx flow control is disabled
4665 */
4666 if (adapter->vfs_allocated_count ||
4667 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4668 adapter->num_rx_queues > 1))
4669 srrctl |= E1000_SRRCTL_DROP_EN;
4670
4671 wr32(E1000_SRRCTL(reg_idx), srrctl);
4672 }
4673
4674 /**
4675 * igb_configure_rx_ring - Configure a receive ring after Reset
4676 * @adapter: board private structure
4677 * @ring: receive ring to be configured
4678 *
4679 * Configure the Rx unit of the MAC after a reset.
4680 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4681 void igb_configure_rx_ring(struct igb_adapter *adapter,
4682 struct igb_ring *ring)
4683 {
4684 struct e1000_hw *hw = &adapter->hw;
4685 union e1000_adv_rx_desc *rx_desc;
4686 u64 rdba = ring->dma;
4687 int reg_idx = ring->reg_idx;
4688 u32 rxdctl = 0;
4689
4690 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4691 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4692 MEM_TYPE_PAGE_SHARED, NULL));
4693
4694 /* disable the queue */
4695 wr32(E1000_RXDCTL(reg_idx), 0);
4696
4697 /* Set DMA base address registers */
4698 wr32(E1000_RDBAL(reg_idx),
4699 rdba & 0x00000000ffffffffULL);
4700 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4701 wr32(E1000_RDLEN(reg_idx),
4702 ring->count * sizeof(union e1000_adv_rx_desc));
4703
4704 /* initialize head and tail */
4705 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4706 wr32(E1000_RDH(reg_idx), 0);
4707 writel(0, ring->tail);
4708
4709 /* set descriptor configuration */
4710 igb_setup_srrctl(adapter, ring);
4711
4712 /* set filtering for VMDQ pools */
4713 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4714
4715 rxdctl |= IGB_RX_PTHRESH;
4716 rxdctl |= IGB_RX_HTHRESH << 8;
4717 rxdctl |= IGB_RX_WTHRESH << 16;
4718
4719 /* initialize rx_buffer_info */
4720 memset(ring->rx_buffer_info, 0,
4721 sizeof(struct igb_rx_buffer) * ring->count);
4722
4723 /* initialize Rx descriptor 0 */
4724 rx_desc = IGB_RX_DESC(ring, 0);
4725 rx_desc->wb.upper.length = 0;
4726
4727 /* enable receive descriptor fetching */
4728 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4729 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4730 }
4731
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4732 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4733 struct igb_ring *rx_ring)
4734 {
4735 #if (PAGE_SIZE < 8192)
4736 struct e1000_hw *hw = &adapter->hw;
4737 #endif
4738
4739 /* set build_skb and buffer size flags */
4740 clear_ring_build_skb_enabled(rx_ring);
4741 clear_ring_uses_large_buffer(rx_ring);
4742
4743 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4744 return;
4745
4746 set_ring_build_skb_enabled(rx_ring);
4747
4748 #if (PAGE_SIZE < 8192)
4749 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4750 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4751 set_ring_uses_large_buffer(rx_ring);
4752 #endif
4753 }
4754
4755 /**
4756 * igb_configure_rx - Configure receive Unit after Reset
4757 * @adapter: board private structure
4758 *
4759 * Configure the Rx unit of the MAC after a reset.
4760 **/
igb_configure_rx(struct igb_adapter * adapter)4761 static void igb_configure_rx(struct igb_adapter *adapter)
4762 {
4763 int i;
4764
4765 /* set the correct pool for the PF default MAC address in entry 0 */
4766 igb_set_default_mac_filter(adapter);
4767
4768 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4769 * the Base and Length of the Rx Descriptor Ring
4770 */
4771 for (i = 0; i < adapter->num_rx_queues; i++) {
4772 struct igb_ring *rx_ring = adapter->rx_ring[i];
4773
4774 igb_set_rx_buffer_len(adapter, rx_ring);
4775 igb_configure_rx_ring(adapter, rx_ring);
4776 }
4777 }
4778
4779 /**
4780 * igb_free_tx_resources - Free Tx Resources per Queue
4781 * @tx_ring: Tx descriptor ring for a specific queue
4782 *
4783 * Free all transmit software resources
4784 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4785 void igb_free_tx_resources(struct igb_ring *tx_ring)
4786 {
4787 igb_clean_tx_ring(tx_ring);
4788
4789 vfree(tx_ring->tx_buffer_info);
4790 tx_ring->tx_buffer_info = NULL;
4791
4792 /* if not set, then don't free */
4793 if (!tx_ring->desc)
4794 return;
4795
4796 dma_free_coherent(tx_ring->dev, tx_ring->size,
4797 tx_ring->desc, tx_ring->dma);
4798
4799 tx_ring->desc = NULL;
4800 }
4801
4802 /**
4803 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4804 * @adapter: board private structure
4805 *
4806 * Free all transmit software resources
4807 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4808 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809 {
4810 int i;
4811
4812 for (i = 0; i < adapter->num_tx_queues; i++)
4813 if (adapter->tx_ring[i])
4814 igb_free_tx_resources(adapter->tx_ring[i]);
4815 }
4816
4817 /**
4818 * igb_clean_tx_ring - Free Tx Buffers
4819 * @tx_ring: ring to be cleaned
4820 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4821 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822 {
4823 u16 i = tx_ring->next_to_clean;
4824 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825
4826 while (i != tx_ring->next_to_use) {
4827 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828
4829 /* Free all the Tx ring sk_buffs or xdp frames */
4830 if (tx_buffer->type == IGB_TYPE_SKB)
4831 dev_kfree_skb_any(tx_buffer->skb);
4832 else
4833 xdp_return_frame(tx_buffer->xdpf);
4834
4835 /* unmap skb header data */
4836 dma_unmap_single(tx_ring->dev,
4837 dma_unmap_addr(tx_buffer, dma),
4838 dma_unmap_len(tx_buffer, len),
4839 DMA_TO_DEVICE);
4840
4841 /* check for eop_desc to determine the end of the packet */
4842 eop_desc = tx_buffer->next_to_watch;
4843 tx_desc = IGB_TX_DESC(tx_ring, i);
4844
4845 /* unmap remaining buffers */
4846 while (tx_desc != eop_desc) {
4847 tx_buffer++;
4848 tx_desc++;
4849 i++;
4850 if (unlikely(i == tx_ring->count)) {
4851 i = 0;
4852 tx_buffer = tx_ring->tx_buffer_info;
4853 tx_desc = IGB_TX_DESC(tx_ring, 0);
4854 }
4855
4856 /* unmap any remaining paged data */
4857 if (dma_unmap_len(tx_buffer, len))
4858 dma_unmap_page(tx_ring->dev,
4859 dma_unmap_addr(tx_buffer, dma),
4860 dma_unmap_len(tx_buffer, len),
4861 DMA_TO_DEVICE);
4862 }
4863
4864 tx_buffer->next_to_watch = NULL;
4865
4866 /* move us one more past the eop_desc for start of next pkt */
4867 tx_buffer++;
4868 i++;
4869 if (unlikely(i == tx_ring->count)) {
4870 i = 0;
4871 tx_buffer = tx_ring->tx_buffer_info;
4872 }
4873 }
4874
4875 /* reset BQL for queue */
4876 netdev_tx_reset_queue(txring_txq(tx_ring));
4877
4878 /* reset next_to_use and next_to_clean */
4879 tx_ring->next_to_use = 0;
4880 tx_ring->next_to_clean = 0;
4881 }
4882
4883 /**
4884 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885 * @adapter: board private structure
4886 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4887 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888 {
4889 int i;
4890
4891 for (i = 0; i < adapter->num_tx_queues; i++)
4892 if (adapter->tx_ring[i])
4893 igb_clean_tx_ring(adapter->tx_ring[i]);
4894 }
4895
4896 /**
4897 * igb_free_rx_resources - Free Rx Resources
4898 * @rx_ring: ring to clean the resources from
4899 *
4900 * Free all receive software resources
4901 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4902 void igb_free_rx_resources(struct igb_ring *rx_ring)
4903 {
4904 igb_clean_rx_ring(rx_ring);
4905
4906 rx_ring->xdp_prog = NULL;
4907 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908 vfree(rx_ring->rx_buffer_info);
4909 rx_ring->rx_buffer_info = NULL;
4910
4911 /* if not set, then don't free */
4912 if (!rx_ring->desc)
4913 return;
4914
4915 dma_free_coherent(rx_ring->dev, rx_ring->size,
4916 rx_ring->desc, rx_ring->dma);
4917
4918 rx_ring->desc = NULL;
4919 }
4920
4921 /**
4922 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4923 * @adapter: board private structure
4924 *
4925 * Free all receive software resources
4926 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4927 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928 {
4929 int i;
4930
4931 for (i = 0; i < adapter->num_rx_queues; i++)
4932 if (adapter->rx_ring[i])
4933 igb_free_rx_resources(adapter->rx_ring[i]);
4934 }
4935
4936 /**
4937 * igb_clean_rx_ring - Free Rx Buffers per Queue
4938 * @rx_ring: ring to free buffers from
4939 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4940 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941 {
4942 u16 i = rx_ring->next_to_clean;
4943
4944 dev_kfree_skb(rx_ring->skb);
4945 rx_ring->skb = NULL;
4946
4947 /* Free all the Rx ring sk_buffs */
4948 while (i != rx_ring->next_to_alloc) {
4949 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950
4951 /* Invalidate cache lines that may have been written to by
4952 * device so that we avoid corrupting memory.
4953 */
4954 dma_sync_single_range_for_cpu(rx_ring->dev,
4955 buffer_info->dma,
4956 buffer_info->page_offset,
4957 igb_rx_bufsz(rx_ring),
4958 DMA_FROM_DEVICE);
4959
4960 /* free resources associated with mapping */
4961 dma_unmap_page_attrs(rx_ring->dev,
4962 buffer_info->dma,
4963 igb_rx_pg_size(rx_ring),
4964 DMA_FROM_DEVICE,
4965 IGB_RX_DMA_ATTR);
4966 __page_frag_cache_drain(buffer_info->page,
4967 buffer_info->pagecnt_bias);
4968
4969 i++;
4970 if (i == rx_ring->count)
4971 i = 0;
4972 }
4973
4974 rx_ring->next_to_alloc = 0;
4975 rx_ring->next_to_clean = 0;
4976 rx_ring->next_to_use = 0;
4977 }
4978
4979 /**
4980 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981 * @adapter: board private structure
4982 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4983 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984 {
4985 int i;
4986
4987 for (i = 0; i < adapter->num_rx_queues; i++)
4988 if (adapter->rx_ring[i])
4989 igb_clean_rx_ring(adapter->rx_ring[i]);
4990 }
4991
4992 /**
4993 * igb_set_mac - Change the Ethernet Address of the NIC
4994 * @netdev: network interface device structure
4995 * @p: pointer to an address structure
4996 *
4997 * Returns 0 on success, negative on failure
4998 **/
igb_set_mac(struct net_device * netdev,void * p)4999 static int igb_set_mac(struct net_device *netdev, void *p)
5000 {
5001 struct igb_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 struct sockaddr *addr = p;
5004
5005 if (!is_valid_ether_addr(addr->sa_data))
5006 return -EADDRNOTAVAIL;
5007
5008 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
5009 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010
5011 /* set the correct pool for the new PF MAC address in entry 0 */
5012 igb_set_default_mac_filter(adapter);
5013
5014 return 0;
5015 }
5016
5017 /**
5018 * igb_write_mc_addr_list - write multicast addresses to MTA
5019 * @netdev: network interface device structure
5020 *
5021 * Writes multicast address list to the MTA hash table.
5022 * Returns: -ENOMEM on failure
5023 * 0 on no addresses written
5024 * X on writing X addresses to MTA
5025 **/
igb_write_mc_addr_list(struct net_device * netdev)5026 static int igb_write_mc_addr_list(struct net_device *netdev)
5027 {
5028 struct igb_adapter *adapter = netdev_priv(netdev);
5029 struct e1000_hw *hw = &adapter->hw;
5030 struct netdev_hw_addr *ha;
5031 u8 *mta_list;
5032 int i;
5033
5034 if (netdev_mc_empty(netdev)) {
5035 /* nothing to program, so clear mc list */
5036 igb_update_mc_addr_list(hw, NULL, 0);
5037 igb_restore_vf_multicasts(adapter);
5038 return 0;
5039 }
5040
5041 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042 if (!mta_list)
5043 return -ENOMEM;
5044
5045 /* The shared function expects a packed array of only addresses. */
5046 i = 0;
5047 netdev_for_each_mc_addr(ha, netdev)
5048 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049
5050 igb_update_mc_addr_list(hw, mta_list, i);
5051 kfree(mta_list);
5052
5053 return netdev_mc_count(netdev);
5054 }
5055
igb_vlan_promisc_enable(struct igb_adapter * adapter)5056 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057 {
5058 struct e1000_hw *hw = &adapter->hw;
5059 u32 i, pf_id;
5060
5061 switch (hw->mac.type) {
5062 case e1000_i210:
5063 case e1000_i211:
5064 case e1000_i350:
5065 /* VLAN filtering needed for VLAN prio filter */
5066 if (adapter->netdev->features & NETIF_F_NTUPLE)
5067 break;
5068 fallthrough;
5069 case e1000_82576:
5070 case e1000_82580:
5071 case e1000_i354:
5072 /* VLAN filtering needed for pool filtering */
5073 if (adapter->vfs_allocated_count)
5074 break;
5075 fallthrough;
5076 default:
5077 return 1;
5078 }
5079
5080 /* We are already in VLAN promisc, nothing to do */
5081 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082 return 0;
5083
5084 if (!adapter->vfs_allocated_count)
5085 goto set_vfta;
5086
5087 /* Add PF to all active pools */
5088 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089
5090 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091 u32 vlvf = rd32(E1000_VLVF(i));
5092
5093 vlvf |= BIT(pf_id);
5094 wr32(E1000_VLVF(i), vlvf);
5095 }
5096
5097 set_vfta:
5098 /* Set all bits in the VLAN filter table array */
5099 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100 hw->mac.ops.write_vfta(hw, i, ~0U);
5101
5102 /* Set flag so we don't redo unnecessary work */
5103 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104
5105 return 0;
5106 }
5107
5108 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5109 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110 {
5111 struct e1000_hw *hw = &adapter->hw;
5112 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113 u32 vid_start = vfta_offset * 32;
5114 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115 u32 i, vid, word, bits, pf_id;
5116
5117 /* guarantee that we don't scrub out management VLAN */
5118 vid = adapter->mng_vlan_id;
5119 if (vid >= vid_start && vid < vid_end)
5120 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121
5122 if (!adapter->vfs_allocated_count)
5123 goto set_vfta;
5124
5125 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126
5127 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128 u32 vlvf = rd32(E1000_VLVF(i));
5129
5130 /* pull VLAN ID from VLVF */
5131 vid = vlvf & VLAN_VID_MASK;
5132
5133 /* only concern ourselves with a certain range */
5134 if (vid < vid_start || vid >= vid_end)
5135 continue;
5136
5137 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138 /* record VLAN ID in VFTA */
5139 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140
5141 /* if PF is part of this then continue */
5142 if (test_bit(vid, adapter->active_vlans))
5143 continue;
5144 }
5145
5146 /* remove PF from the pool */
5147 bits = ~BIT(pf_id);
5148 bits &= rd32(E1000_VLVF(i));
5149 wr32(E1000_VLVF(i), bits);
5150 }
5151
5152 set_vfta:
5153 /* extract values from active_vlans and write back to VFTA */
5154 for (i = VFTA_BLOCK_SIZE; i--;) {
5155 vid = (vfta_offset + i) * 32;
5156 word = vid / BITS_PER_LONG;
5157 bits = vid % BITS_PER_LONG;
5158
5159 vfta[i] |= adapter->active_vlans[word] >> bits;
5160
5161 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162 }
5163 }
5164
igb_vlan_promisc_disable(struct igb_adapter * adapter)5165 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166 {
5167 u32 i;
5168
5169 /* We are not in VLAN promisc, nothing to do */
5170 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171 return;
5172
5173 /* Set flag so we don't redo unnecessary work */
5174 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175
5176 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177 igb_scrub_vfta(adapter, i);
5178 }
5179
5180 /**
5181 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182 * @netdev: network interface device structure
5183 *
5184 * The set_rx_mode entry point is called whenever the unicast or multicast
5185 * address lists or the network interface flags are updated. This routine is
5186 * responsible for configuring the hardware for proper unicast, multicast,
5187 * promiscuous mode, and all-multi behavior.
5188 **/
igb_set_rx_mode(struct net_device * netdev)5189 static void igb_set_rx_mode(struct net_device *netdev)
5190 {
5191 struct igb_adapter *adapter = netdev_priv(netdev);
5192 struct e1000_hw *hw = &adapter->hw;
5193 unsigned int vfn = adapter->vfs_allocated_count;
5194 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195 int count;
5196
5197 /* Check for Promiscuous and All Multicast modes */
5198 if (netdev->flags & IFF_PROMISC) {
5199 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200 vmolr |= E1000_VMOLR_MPME;
5201
5202 /* enable use of UTA filter to force packets to default pool */
5203 if (hw->mac.type == e1000_82576)
5204 vmolr |= E1000_VMOLR_ROPE;
5205 } else {
5206 if (netdev->flags & IFF_ALLMULTI) {
5207 rctl |= E1000_RCTL_MPE;
5208 vmolr |= E1000_VMOLR_MPME;
5209 } else {
5210 /* Write addresses to the MTA, if the attempt fails
5211 * then we should just turn on promiscuous mode so
5212 * that we can at least receive multicast traffic
5213 */
5214 count = igb_write_mc_addr_list(netdev);
5215 if (count < 0) {
5216 rctl |= E1000_RCTL_MPE;
5217 vmolr |= E1000_VMOLR_MPME;
5218 } else if (count) {
5219 vmolr |= E1000_VMOLR_ROMPE;
5220 }
5221 }
5222 }
5223
5224 /* Write addresses to available RAR registers, if there is not
5225 * sufficient space to store all the addresses then enable
5226 * unicast promiscuous mode
5227 */
5228 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229 rctl |= E1000_RCTL_UPE;
5230 vmolr |= E1000_VMOLR_ROPE;
5231 }
5232
5233 /* enable VLAN filtering by default */
5234 rctl |= E1000_RCTL_VFE;
5235
5236 /* disable VLAN filtering for modes that require it */
5237 if ((netdev->flags & IFF_PROMISC) ||
5238 (netdev->features & NETIF_F_RXALL)) {
5239 /* if we fail to set all rules then just clear VFE */
5240 if (igb_vlan_promisc_enable(adapter))
5241 rctl &= ~E1000_RCTL_VFE;
5242 } else {
5243 igb_vlan_promisc_disable(adapter);
5244 }
5245
5246 /* update state of unicast, multicast, and VLAN filtering modes */
5247 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248 E1000_RCTL_VFE);
5249 wr32(E1000_RCTL, rctl);
5250
5251 #if (PAGE_SIZE < 8192)
5252 if (!adapter->vfs_allocated_count) {
5253 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255 }
5256 #endif
5257 wr32(E1000_RLPML, rlpml);
5258
5259 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5260 * the VMOLR to enable the appropriate modes. Without this workaround
5261 * we will have issues with VLAN tag stripping not being done for frames
5262 * that are only arriving because we are the default pool
5263 */
5264 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265 return;
5266
5267 /* set UTA to appropriate mode */
5268 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269
5270 vmolr |= rd32(E1000_VMOLR(vfn)) &
5271 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272
5273 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5274 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275 #if (PAGE_SIZE < 8192)
5276 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278 else
5279 #endif
5280 vmolr |= MAX_JUMBO_FRAME_SIZE;
5281 vmolr |= E1000_VMOLR_LPE;
5282
5283 wr32(E1000_VMOLR(vfn), vmolr);
5284
5285 igb_restore_vf_multicasts(adapter);
5286 }
5287
igb_check_wvbr(struct igb_adapter * adapter)5288 static void igb_check_wvbr(struct igb_adapter *adapter)
5289 {
5290 struct e1000_hw *hw = &adapter->hw;
5291 u32 wvbr = 0;
5292
5293 switch (hw->mac.type) {
5294 case e1000_82576:
5295 case e1000_i350:
5296 wvbr = rd32(E1000_WVBR);
5297 if (!wvbr)
5298 return;
5299 break;
5300 default:
5301 break;
5302 }
5303
5304 adapter->wvbr |= wvbr;
5305 }
5306
5307 #define IGB_STAGGERED_QUEUE_OFFSET 8
5308
igb_spoof_check(struct igb_adapter * adapter)5309 static void igb_spoof_check(struct igb_adapter *adapter)
5310 {
5311 int j;
5312
5313 if (!adapter->wvbr)
5314 return;
5315
5316 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317 if (adapter->wvbr & BIT(j) ||
5318 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319 dev_warn(&adapter->pdev->dev,
5320 "Spoof event(s) detected on VF %d\n", j);
5321 adapter->wvbr &=
5322 ~(BIT(j) |
5323 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324 }
5325 }
5326 }
5327
5328 /* Need to wait a few seconds after link up to get diagnostic information from
5329 * the phy
5330 */
igb_update_phy_info(struct timer_list * t)5331 static void igb_update_phy_info(struct timer_list *t)
5332 {
5333 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334 igb_get_phy_info(&adapter->hw);
5335 }
5336
5337 /**
5338 * igb_has_link - check shared code for link and determine up/down
5339 * @adapter: pointer to driver private info
5340 **/
igb_has_link(struct igb_adapter * adapter)5341 bool igb_has_link(struct igb_adapter *adapter)
5342 {
5343 struct e1000_hw *hw = &adapter->hw;
5344 bool link_active = false;
5345
5346 /* get_link_status is set on LSC (link status) interrupt or
5347 * rx sequence error interrupt. get_link_status will stay
5348 * false until the e1000_check_for_link establishes link
5349 * for copper adapters ONLY
5350 */
5351 switch (hw->phy.media_type) {
5352 case e1000_media_type_copper:
5353 if (!hw->mac.get_link_status)
5354 return true;
5355 fallthrough;
5356 case e1000_media_type_internal_serdes:
5357 hw->mac.ops.check_for_link(hw);
5358 link_active = !hw->mac.get_link_status;
5359 break;
5360 default:
5361 case e1000_media_type_unknown:
5362 break;
5363 }
5364
5365 if (((hw->mac.type == e1000_i210) ||
5366 (hw->mac.type == e1000_i211)) &&
5367 (hw->phy.id == I210_I_PHY_ID)) {
5368 if (!netif_carrier_ok(adapter->netdev)) {
5369 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372 adapter->link_check_timeout = jiffies;
5373 }
5374 }
5375
5376 return link_active;
5377 }
5378
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380 {
5381 bool ret = false;
5382 u32 ctrl_ext, thstat;
5383
5384 /* check for thermal sensor event on i350 copper only */
5385 if (hw->mac.type == e1000_i350) {
5386 thstat = rd32(E1000_THSTAT);
5387 ctrl_ext = rd32(E1000_CTRL_EXT);
5388
5389 if ((hw->phy.media_type == e1000_media_type_copper) &&
5390 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391 ret = !!(thstat & event);
5392 }
5393
5394 return ret;
5395 }
5396
5397 /**
5398 * igb_check_lvmmc - check for malformed packets received
5399 * and indicated in LVMMC register
5400 * @adapter: pointer to adapter
5401 **/
igb_check_lvmmc(struct igb_adapter * adapter)5402 static void igb_check_lvmmc(struct igb_adapter *adapter)
5403 {
5404 struct e1000_hw *hw = &adapter->hw;
5405 u32 lvmmc;
5406
5407 lvmmc = rd32(E1000_LVMMC);
5408 if (lvmmc) {
5409 if (unlikely(net_ratelimit())) {
5410 netdev_warn(adapter->netdev,
5411 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412 lvmmc);
5413 }
5414 }
5415 }
5416
5417 /**
5418 * igb_watchdog - Timer Call-back
5419 * @t: pointer to timer_list containing our private info pointer
5420 **/
igb_watchdog(struct timer_list * t)5421 static void igb_watchdog(struct timer_list *t)
5422 {
5423 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424 /* Do the rest outside of interrupt context */
5425 schedule_work(&adapter->watchdog_task);
5426 }
5427
igb_watchdog_task(struct work_struct * work)5428 static void igb_watchdog_task(struct work_struct *work)
5429 {
5430 struct igb_adapter *adapter = container_of(work,
5431 struct igb_adapter,
5432 watchdog_task);
5433 struct e1000_hw *hw = &adapter->hw;
5434 struct e1000_phy_info *phy = &hw->phy;
5435 struct net_device *netdev = adapter->netdev;
5436 u32 link;
5437 int i;
5438 u32 connsw;
5439 u16 phy_data, retry_count = 20;
5440
5441 link = igb_has_link(adapter);
5442
5443 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446 else
5447 link = false;
5448 }
5449
5450 /* Force link down if we have fiber to swap to */
5451 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452 if (hw->phy.media_type == e1000_media_type_copper) {
5453 connsw = rd32(E1000_CONNSW);
5454 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455 link = 0;
5456 }
5457 }
5458 if (link) {
5459 /* Perform a reset if the media type changed. */
5460 if (hw->dev_spec._82575.media_changed) {
5461 hw->dev_spec._82575.media_changed = false;
5462 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463 igb_reset(adapter);
5464 }
5465 /* Cancel scheduled suspend requests. */
5466 pm_runtime_resume(netdev->dev.parent);
5467
5468 if (!netif_carrier_ok(netdev)) {
5469 u32 ctrl;
5470
5471 hw->mac.ops.get_speed_and_duplex(hw,
5472 &adapter->link_speed,
5473 &adapter->link_duplex);
5474
5475 ctrl = rd32(E1000_CTRL);
5476 /* Links status message must follow this format */
5477 netdev_info(netdev,
5478 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479 netdev->name,
5480 adapter->link_speed,
5481 adapter->link_duplex == FULL_DUPLEX ?
5482 "Full" : "Half",
5483 (ctrl & E1000_CTRL_TFCE) &&
5484 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5486 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5487
5488 /* disable EEE if enabled */
5489 if ((adapter->flags & IGB_FLAG_EEE) &&
5490 (adapter->link_duplex == HALF_DUPLEX)) {
5491 dev_info(&adapter->pdev->dev,
5492 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493 adapter->hw.dev_spec._82575.eee_disable = true;
5494 adapter->flags &= ~IGB_FLAG_EEE;
5495 }
5496
5497 /* check if SmartSpeed worked */
5498 igb_check_downshift(hw);
5499 if (phy->speed_downgraded)
5500 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501
5502 /* check for thermal sensor event */
5503 if (igb_thermal_sensor_event(hw,
5504 E1000_THSTAT_LINK_THROTTLE))
5505 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506
5507 /* adjust timeout factor according to speed/duplex */
5508 adapter->tx_timeout_factor = 1;
5509 switch (adapter->link_speed) {
5510 case SPEED_10:
5511 adapter->tx_timeout_factor = 14;
5512 break;
5513 case SPEED_100:
5514 /* maybe add some timeout factor ? */
5515 break;
5516 }
5517
5518 if (adapter->link_speed != SPEED_1000 ||
5519 !hw->phy.ops.read_reg)
5520 goto no_wait;
5521
5522 /* wait for Remote receiver status OK */
5523 retry_read_status:
5524 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525 &phy_data)) {
5526 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527 retry_count) {
5528 msleep(100);
5529 retry_count--;
5530 goto retry_read_status;
5531 } else if (!retry_count) {
5532 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533 }
5534 } else {
5535 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536 }
5537 no_wait:
5538 netif_carrier_on(netdev);
5539
5540 igb_ping_all_vfs(adapter);
5541 igb_check_vf_rate_limit(adapter);
5542
5543 /* link state has changed, schedule phy info update */
5544 if (!test_bit(__IGB_DOWN, &adapter->state))
5545 mod_timer(&adapter->phy_info_timer,
5546 round_jiffies(jiffies + 2 * HZ));
5547 }
5548 } else {
5549 if (netif_carrier_ok(netdev)) {
5550 adapter->link_speed = 0;
5551 adapter->link_duplex = 0;
5552
5553 /* check for thermal sensor event */
5554 if (igb_thermal_sensor_event(hw,
5555 E1000_THSTAT_PWR_DOWN)) {
5556 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557 }
5558
5559 /* Links status message must follow this format */
5560 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561 netdev->name);
5562 netif_carrier_off(netdev);
5563
5564 igb_ping_all_vfs(adapter);
5565
5566 /* link state has changed, schedule phy info update */
5567 if (!test_bit(__IGB_DOWN, &adapter->state))
5568 mod_timer(&adapter->phy_info_timer,
5569 round_jiffies(jiffies + 2 * HZ));
5570
5571 /* link is down, time to check for alternate media */
5572 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573 igb_check_swap_media(adapter);
5574 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575 schedule_work(&adapter->reset_task);
5576 /* return immediately */
5577 return;
5578 }
5579 }
5580 pm_schedule_suspend(netdev->dev.parent,
5581 MSEC_PER_SEC * 5);
5582
5583 /* also check for alternate media here */
5584 } else if (!netif_carrier_ok(netdev) &&
5585 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586 igb_check_swap_media(adapter);
5587 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588 schedule_work(&adapter->reset_task);
5589 /* return immediately */
5590 return;
5591 }
5592 }
5593 }
5594
5595 spin_lock(&adapter->stats64_lock);
5596 igb_update_stats(adapter);
5597 spin_unlock(&adapter->stats64_lock);
5598
5599 for (i = 0; i < adapter->num_tx_queues; i++) {
5600 struct igb_ring *tx_ring = adapter->tx_ring[i];
5601 if (!netif_carrier_ok(netdev)) {
5602 /* We've lost link, so the controller stops DMA,
5603 * but we've got queued Tx work that's never going
5604 * to get done, so reset controller to flush Tx.
5605 * (Do the reset outside of interrupt context).
5606 */
5607 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608 adapter->tx_timeout_count++;
5609 schedule_work(&adapter->reset_task);
5610 /* return immediately since reset is imminent */
5611 return;
5612 }
5613 }
5614
5615 /* Force detection of hung controller every watchdog period */
5616 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617 }
5618
5619 /* Cause software interrupt to ensure Rx ring is cleaned */
5620 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621 u32 eics = 0;
5622
5623 for (i = 0; i < adapter->num_q_vectors; i++)
5624 eics |= adapter->q_vector[i]->eims_value;
5625 wr32(E1000_EICS, eics);
5626 } else {
5627 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628 }
5629
5630 igb_spoof_check(adapter);
5631 igb_ptp_rx_hang(adapter);
5632 igb_ptp_tx_hang(adapter);
5633
5634 /* Check LVMMC register on i350/i354 only */
5635 if ((adapter->hw.mac.type == e1000_i350) ||
5636 (adapter->hw.mac.type == e1000_i354))
5637 igb_check_lvmmc(adapter);
5638
5639 /* Reset the timer */
5640 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642 mod_timer(&adapter->watchdog_timer,
5643 round_jiffies(jiffies + HZ));
5644 else
5645 mod_timer(&adapter->watchdog_timer,
5646 round_jiffies(jiffies + 2 * HZ));
5647 }
5648 }
5649
5650 enum latency_range {
5651 lowest_latency = 0,
5652 low_latency = 1,
5653 bulk_latency = 2,
5654 latency_invalid = 255
5655 };
5656
5657 /**
5658 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5659 * @q_vector: pointer to q_vector
5660 *
5661 * Stores a new ITR value based on strictly on packet size. This
5662 * algorithm is less sophisticated than that used in igb_update_itr,
5663 * due to the difficulty of synchronizing statistics across multiple
5664 * receive rings. The divisors and thresholds used by this function
5665 * were determined based on theoretical maximum wire speed and testing
5666 * data, in order to minimize response time while increasing bulk
5667 * throughput.
5668 * This functionality is controlled by ethtool's coalescing settings.
5669 * NOTE: This function is called only when operating in a multiqueue
5670 * receive environment.
5671 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5672 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673 {
5674 int new_val = q_vector->itr_val;
5675 int avg_wire_size = 0;
5676 struct igb_adapter *adapter = q_vector->adapter;
5677 unsigned int packets;
5678
5679 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5680 * ints/sec - ITR timer value of 120 ticks.
5681 */
5682 if (adapter->link_speed != SPEED_1000) {
5683 new_val = IGB_4K_ITR;
5684 goto set_itr_val;
5685 }
5686
5687 packets = q_vector->rx.total_packets;
5688 if (packets)
5689 avg_wire_size = q_vector->rx.total_bytes / packets;
5690
5691 packets = q_vector->tx.total_packets;
5692 if (packets)
5693 avg_wire_size = max_t(u32, avg_wire_size,
5694 q_vector->tx.total_bytes / packets);
5695
5696 /* if avg_wire_size isn't set no work was done */
5697 if (!avg_wire_size)
5698 goto clear_counts;
5699
5700 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5701 avg_wire_size += 24;
5702
5703 /* Don't starve jumbo frames */
5704 avg_wire_size = min(avg_wire_size, 3000);
5705
5706 /* Give a little boost to mid-size frames */
5707 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708 new_val = avg_wire_size / 3;
5709 else
5710 new_val = avg_wire_size / 2;
5711
5712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5713 if (new_val < IGB_20K_ITR &&
5714 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716 new_val = IGB_20K_ITR;
5717
5718 set_itr_val:
5719 if (new_val != q_vector->itr_val) {
5720 q_vector->itr_val = new_val;
5721 q_vector->set_itr = 1;
5722 }
5723 clear_counts:
5724 q_vector->rx.total_bytes = 0;
5725 q_vector->rx.total_packets = 0;
5726 q_vector->tx.total_bytes = 0;
5727 q_vector->tx.total_packets = 0;
5728 }
5729
5730 /**
5731 * igb_update_itr - update the dynamic ITR value based on statistics
5732 * @q_vector: pointer to q_vector
5733 * @ring_container: ring info to update the itr for
5734 *
5735 * Stores a new ITR value based on packets and byte
5736 * counts during the last interrupt. The advantage of per interrupt
5737 * computation is faster updates and more accurate ITR for the current
5738 * traffic pattern. Constants in this function were computed
5739 * based on theoretical maximum wire speed and thresholds were set based
5740 * on testing data as well as attempting to minimize response time
5741 * while increasing bulk throughput.
5742 * This functionality is controlled by ethtool's coalescing settings.
5743 * NOTE: These calculations are only valid when operating in a single-
5744 * queue environment.
5745 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5746 static void igb_update_itr(struct igb_q_vector *q_vector,
5747 struct igb_ring_container *ring_container)
5748 {
5749 unsigned int packets = ring_container->total_packets;
5750 unsigned int bytes = ring_container->total_bytes;
5751 u8 itrval = ring_container->itr;
5752
5753 /* no packets, exit with status unchanged */
5754 if (packets == 0)
5755 return;
5756
5757 switch (itrval) {
5758 case lowest_latency:
5759 /* handle TSO and jumbo frames */
5760 if (bytes/packets > 8000)
5761 itrval = bulk_latency;
5762 else if ((packets < 5) && (bytes > 512))
5763 itrval = low_latency;
5764 break;
5765 case low_latency: /* 50 usec aka 20000 ints/s */
5766 if (bytes > 10000) {
5767 /* this if handles the TSO accounting */
5768 if (bytes/packets > 8000)
5769 itrval = bulk_latency;
5770 else if ((packets < 10) || ((bytes/packets) > 1200))
5771 itrval = bulk_latency;
5772 else if ((packets > 35))
5773 itrval = lowest_latency;
5774 } else if (bytes/packets > 2000) {
5775 itrval = bulk_latency;
5776 } else if (packets <= 2 && bytes < 512) {
5777 itrval = lowest_latency;
5778 }
5779 break;
5780 case bulk_latency: /* 250 usec aka 4000 ints/s */
5781 if (bytes > 25000) {
5782 if (packets > 35)
5783 itrval = low_latency;
5784 } else if (bytes < 1500) {
5785 itrval = low_latency;
5786 }
5787 break;
5788 }
5789
5790 /* clear work counters since we have the values we need */
5791 ring_container->total_bytes = 0;
5792 ring_container->total_packets = 0;
5793
5794 /* write updated itr to ring container */
5795 ring_container->itr = itrval;
5796 }
5797
igb_set_itr(struct igb_q_vector * q_vector)5798 static void igb_set_itr(struct igb_q_vector *q_vector)
5799 {
5800 struct igb_adapter *adapter = q_vector->adapter;
5801 u32 new_itr = q_vector->itr_val;
5802 u8 current_itr = 0;
5803
5804 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805 if (adapter->link_speed != SPEED_1000) {
5806 current_itr = 0;
5807 new_itr = IGB_4K_ITR;
5808 goto set_itr_now;
5809 }
5810
5811 igb_update_itr(q_vector, &q_vector->tx);
5812 igb_update_itr(q_vector, &q_vector->rx);
5813
5814 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815
5816 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5817 if (current_itr == lowest_latency &&
5818 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820 current_itr = low_latency;
5821
5822 switch (current_itr) {
5823 /* counts and packets in update_itr are dependent on these numbers */
5824 case lowest_latency:
5825 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826 break;
5827 case low_latency:
5828 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829 break;
5830 case bulk_latency:
5831 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5832 break;
5833 default:
5834 break;
5835 }
5836
5837 set_itr_now:
5838 if (new_itr != q_vector->itr_val) {
5839 /* this attempts to bias the interrupt rate towards Bulk
5840 * by adding intermediate steps when interrupt rate is
5841 * increasing
5842 */
5843 new_itr = new_itr > q_vector->itr_val ?
5844 max((new_itr * q_vector->itr_val) /
5845 (new_itr + (q_vector->itr_val >> 2)),
5846 new_itr) : new_itr;
5847 /* Don't write the value here; it resets the adapter's
5848 * internal timer, and causes us to delay far longer than
5849 * we should between interrupts. Instead, we write the ITR
5850 * value at the beginning of the next interrupt so the timing
5851 * ends up being correct.
5852 */
5853 q_vector->itr_val = new_itr;
5854 q_vector->set_itr = 1;
5855 }
5856 }
5857
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5858 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859 struct igb_tx_buffer *first,
5860 u32 vlan_macip_lens, u32 type_tucmd,
5861 u32 mss_l4len_idx)
5862 {
5863 struct e1000_adv_tx_context_desc *context_desc;
5864 u16 i = tx_ring->next_to_use;
5865 struct timespec64 ts;
5866
5867 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868
5869 i++;
5870 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871
5872 /* set bits to identify this as an advanced context descriptor */
5873 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874
5875 /* For 82575, context index must be unique per ring. */
5876 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877 mss_l4len_idx |= tx_ring->reg_idx << 4;
5878
5879 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5880 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5881 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5882
5883 /* We assume there is always a valid tx time available. Invalid times
5884 * should have been handled by the upper layers.
5885 */
5886 if (tx_ring->launchtime_enable) {
5887 ts = ktime_to_timespec64(first->skb->tstamp);
5888 skb_txtime_consumed(first->skb);
5889 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890 } else {
5891 context_desc->seqnum_seed = 0;
5892 }
5893 }
5894
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5895 static int igb_tso(struct igb_ring *tx_ring,
5896 struct igb_tx_buffer *first,
5897 u8 *hdr_len)
5898 {
5899 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900 struct sk_buff *skb = first->skb;
5901 union {
5902 struct iphdr *v4;
5903 struct ipv6hdr *v6;
5904 unsigned char *hdr;
5905 } ip;
5906 union {
5907 struct tcphdr *tcp;
5908 struct udphdr *udp;
5909 unsigned char *hdr;
5910 } l4;
5911 u32 paylen, l4_offset;
5912 int err;
5913
5914 if (skb->ip_summed != CHECKSUM_PARTIAL)
5915 return 0;
5916
5917 if (!skb_is_gso(skb))
5918 return 0;
5919
5920 err = skb_cow_head(skb, 0);
5921 if (err < 0)
5922 return err;
5923
5924 ip.hdr = skb_network_header(skb);
5925 l4.hdr = skb_checksum_start(skb);
5926
5927 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930
5931 /* initialize outer IP header fields */
5932 if (ip.v4->version == 4) {
5933 unsigned char *csum_start = skb_checksum_start(skb);
5934 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935
5936 /* IP header will have to cancel out any data that
5937 * is not a part of the outer IP header
5938 */
5939 ip.v4->check = csum_fold(csum_partial(trans_start,
5940 csum_start - trans_start,
5941 0));
5942 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943
5944 ip.v4->tot_len = 0;
5945 first->tx_flags |= IGB_TX_FLAGS_TSO |
5946 IGB_TX_FLAGS_CSUM |
5947 IGB_TX_FLAGS_IPV4;
5948 } else {
5949 ip.v6->payload_len = 0;
5950 first->tx_flags |= IGB_TX_FLAGS_TSO |
5951 IGB_TX_FLAGS_CSUM;
5952 }
5953
5954 /* determine offset of inner transport header */
5955 l4_offset = l4.hdr - skb->data;
5956
5957 /* remove payload length from inner checksum */
5958 paylen = skb->len - l4_offset;
5959 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960 /* compute length of segmentation header */
5961 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962 csum_replace_by_diff(&l4.tcp->check,
5963 (__force __wsum)htonl(paylen));
5964 } else {
5965 /* compute length of segmentation header */
5966 *hdr_len = sizeof(*l4.udp) + l4_offset;
5967 csum_replace_by_diff(&l4.udp->check,
5968 (__force __wsum)htonl(paylen));
5969 }
5970
5971 /* update gso size and bytecount with header size */
5972 first->gso_segs = skb_shinfo(skb)->gso_segs;
5973 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974
5975 /* MSS L4LEN IDX */
5976 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978
5979 /* VLAN MACLEN IPLEN */
5980 vlan_macip_lens = l4.hdr - ip.hdr;
5981 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983
5984 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985 type_tucmd, mss_l4len_idx);
5986
5987 return 1;
5988 }
5989
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5990 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5991 {
5992 unsigned int offset = 0;
5993
5994 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5995
5996 return offset == skb_checksum_start_offset(skb);
5997 }
5998
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5999 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6000 {
6001 struct sk_buff *skb = first->skb;
6002 u32 vlan_macip_lens = 0;
6003 u32 type_tucmd = 0;
6004
6005 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6006 csum_failed:
6007 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6008 !tx_ring->launchtime_enable)
6009 return;
6010 goto no_csum;
6011 }
6012
6013 switch (skb->csum_offset) {
6014 case offsetof(struct tcphdr, check):
6015 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6016 fallthrough;
6017 case offsetof(struct udphdr, check):
6018 break;
6019 case offsetof(struct sctphdr, checksum):
6020 /* validate that this is actually an SCTP request */
6021 if (((first->protocol == htons(ETH_P_IP)) &&
6022 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6023 ((first->protocol == htons(ETH_P_IPV6)) &&
6024 igb_ipv6_csum_is_sctp(skb))) {
6025 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6026 break;
6027 }
6028 fallthrough;
6029 default:
6030 skb_checksum_help(skb);
6031 goto csum_failed;
6032 }
6033
6034 /* update TX checksum flag */
6035 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6036 vlan_macip_lens = skb_checksum_start_offset(skb) -
6037 skb_network_offset(skb);
6038 no_csum:
6039 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6040 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6041
6042 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6043 }
6044
6045 #define IGB_SET_FLAG(_input, _flag, _result) \
6046 ((_flag <= _result) ? \
6047 ((u32)(_input & _flag) * (_result / _flag)) : \
6048 ((u32)(_input & _flag) / (_flag / _result)))
6049
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6050 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6051 {
6052 /* set type for advanced descriptor with frame checksum insertion */
6053 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6054 E1000_ADVTXD_DCMD_DEXT |
6055 E1000_ADVTXD_DCMD_IFCS;
6056
6057 /* set HW vlan bit if vlan is present */
6058 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6059 (E1000_ADVTXD_DCMD_VLE));
6060
6061 /* set segmentation bits for TSO */
6062 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6063 (E1000_ADVTXD_DCMD_TSE));
6064
6065 /* set timestamp bit if present */
6066 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6067 (E1000_ADVTXD_MAC_TSTAMP));
6068
6069 /* insert frame checksum */
6070 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6071
6072 return cmd_type;
6073 }
6074
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6075 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6076 union e1000_adv_tx_desc *tx_desc,
6077 u32 tx_flags, unsigned int paylen)
6078 {
6079 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6080
6081 /* 82575 requires a unique index per ring */
6082 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6083 olinfo_status |= tx_ring->reg_idx << 4;
6084
6085 /* insert L4 checksum */
6086 olinfo_status |= IGB_SET_FLAG(tx_flags,
6087 IGB_TX_FLAGS_CSUM,
6088 (E1000_TXD_POPTS_TXSM << 8));
6089
6090 /* insert IPv4 checksum */
6091 olinfo_status |= IGB_SET_FLAG(tx_flags,
6092 IGB_TX_FLAGS_IPV4,
6093 (E1000_TXD_POPTS_IXSM << 8));
6094
6095 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6096 }
6097
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6098 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100 struct net_device *netdev = tx_ring->netdev;
6101
6102 netif_stop_subqueue(netdev, tx_ring->queue_index);
6103
6104 /* Herbert's original patch had:
6105 * smp_mb__after_netif_stop_queue();
6106 * but since that doesn't exist yet, just open code it.
6107 */
6108 smp_mb();
6109
6110 /* We need to check again in a case another CPU has just
6111 * made room available.
6112 */
6113 if (igb_desc_unused(tx_ring) < size)
6114 return -EBUSY;
6115
6116 /* A reprieve! */
6117 netif_wake_subqueue(netdev, tx_ring->queue_index);
6118
6119 u64_stats_update_begin(&tx_ring->tx_syncp2);
6120 tx_ring->tx_stats.restart_queue2++;
6121 u64_stats_update_end(&tx_ring->tx_syncp2);
6122
6123 return 0;
6124 }
6125
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6126 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6127 {
6128 if (igb_desc_unused(tx_ring) >= size)
6129 return 0;
6130 return __igb_maybe_stop_tx(tx_ring, size);
6131 }
6132
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6133 static int igb_tx_map(struct igb_ring *tx_ring,
6134 struct igb_tx_buffer *first,
6135 const u8 hdr_len)
6136 {
6137 struct sk_buff *skb = first->skb;
6138 struct igb_tx_buffer *tx_buffer;
6139 union e1000_adv_tx_desc *tx_desc;
6140 skb_frag_t *frag;
6141 dma_addr_t dma;
6142 unsigned int data_len, size;
6143 u32 tx_flags = first->tx_flags;
6144 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6145 u16 i = tx_ring->next_to_use;
6146
6147 tx_desc = IGB_TX_DESC(tx_ring, i);
6148
6149 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6150
6151 size = skb_headlen(skb);
6152 data_len = skb->data_len;
6153
6154 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6155
6156 tx_buffer = first;
6157
6158 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6159 if (dma_mapping_error(tx_ring->dev, dma))
6160 goto dma_error;
6161
6162 /* record length, and DMA address */
6163 dma_unmap_len_set(tx_buffer, len, size);
6164 dma_unmap_addr_set(tx_buffer, dma, dma);
6165
6166 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6167
6168 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6169 tx_desc->read.cmd_type_len =
6170 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6171
6172 i++;
6173 tx_desc++;
6174 if (i == tx_ring->count) {
6175 tx_desc = IGB_TX_DESC(tx_ring, 0);
6176 i = 0;
6177 }
6178 tx_desc->read.olinfo_status = 0;
6179
6180 dma += IGB_MAX_DATA_PER_TXD;
6181 size -= IGB_MAX_DATA_PER_TXD;
6182
6183 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6184 }
6185
6186 if (likely(!data_len))
6187 break;
6188
6189 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6190
6191 i++;
6192 tx_desc++;
6193 if (i == tx_ring->count) {
6194 tx_desc = IGB_TX_DESC(tx_ring, 0);
6195 i = 0;
6196 }
6197 tx_desc->read.olinfo_status = 0;
6198
6199 size = skb_frag_size(frag);
6200 data_len -= size;
6201
6202 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6203 size, DMA_TO_DEVICE);
6204
6205 tx_buffer = &tx_ring->tx_buffer_info[i];
6206 }
6207
6208 /* write last descriptor with RS and EOP bits */
6209 cmd_type |= size | IGB_TXD_DCMD;
6210 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6211
6212 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6213
6214 /* set the timestamp */
6215 first->time_stamp = jiffies;
6216
6217 skb_tx_timestamp(skb);
6218
6219 /* Force memory writes to complete before letting h/w know there
6220 * are new descriptors to fetch. (Only applicable for weak-ordered
6221 * memory model archs, such as IA-64).
6222 *
6223 * We also need this memory barrier to make certain all of the
6224 * status bits have been updated before next_to_watch is written.
6225 */
6226 dma_wmb();
6227
6228 /* set next_to_watch value indicating a packet is present */
6229 first->next_to_watch = tx_desc;
6230
6231 i++;
6232 if (i == tx_ring->count)
6233 i = 0;
6234
6235 tx_ring->next_to_use = i;
6236
6237 /* Make sure there is space in the ring for the next send. */
6238 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6239
6240 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6241 writel(i, tx_ring->tail);
6242 }
6243 return 0;
6244
6245 dma_error:
6246 dev_err(tx_ring->dev, "TX DMA map failed\n");
6247 tx_buffer = &tx_ring->tx_buffer_info[i];
6248
6249 /* clear dma mappings for failed tx_buffer_info map */
6250 while (tx_buffer != first) {
6251 if (dma_unmap_len(tx_buffer, len))
6252 dma_unmap_page(tx_ring->dev,
6253 dma_unmap_addr(tx_buffer, dma),
6254 dma_unmap_len(tx_buffer, len),
6255 DMA_TO_DEVICE);
6256 dma_unmap_len_set(tx_buffer, len, 0);
6257
6258 if (i-- == 0)
6259 i += tx_ring->count;
6260 tx_buffer = &tx_ring->tx_buffer_info[i];
6261 }
6262
6263 if (dma_unmap_len(tx_buffer, len))
6264 dma_unmap_single(tx_ring->dev,
6265 dma_unmap_addr(tx_buffer, dma),
6266 dma_unmap_len(tx_buffer, len),
6267 DMA_TO_DEVICE);
6268 dma_unmap_len_set(tx_buffer, len, 0);
6269
6270 dev_kfree_skb_any(tx_buffer->skb);
6271 tx_buffer->skb = NULL;
6272
6273 tx_ring->next_to_use = i;
6274
6275 return -1;
6276 }
6277
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6278 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6279 struct igb_ring *tx_ring,
6280 struct xdp_frame *xdpf)
6281 {
6282 union e1000_adv_tx_desc *tx_desc;
6283 u32 len, cmd_type, olinfo_status;
6284 struct igb_tx_buffer *tx_buffer;
6285 dma_addr_t dma;
6286 u16 i;
6287
6288 len = xdpf->len;
6289
6290 if (unlikely(!igb_desc_unused(tx_ring)))
6291 return IGB_XDP_CONSUMED;
6292
6293 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6294 if (dma_mapping_error(tx_ring->dev, dma))
6295 return IGB_XDP_CONSUMED;
6296
6297 /* record the location of the first descriptor for this packet */
6298 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6299 tx_buffer->bytecount = len;
6300 tx_buffer->gso_segs = 1;
6301 tx_buffer->protocol = 0;
6302
6303 i = tx_ring->next_to_use;
6304 tx_desc = IGB_TX_DESC(tx_ring, i);
6305
6306 dma_unmap_len_set(tx_buffer, len, len);
6307 dma_unmap_addr_set(tx_buffer, dma, dma);
6308 tx_buffer->type = IGB_TYPE_XDP;
6309 tx_buffer->xdpf = xdpf;
6310
6311 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6312
6313 /* put descriptor type bits */
6314 cmd_type = E1000_ADVTXD_DTYP_DATA |
6315 E1000_ADVTXD_DCMD_DEXT |
6316 E1000_ADVTXD_DCMD_IFCS;
6317 cmd_type |= len | IGB_TXD_DCMD;
6318 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6319
6320 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6321 /* 82575 requires a unique index per ring */
6322 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6323 olinfo_status |= tx_ring->reg_idx << 4;
6324
6325 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6326
6327 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6328
6329 /* set the timestamp */
6330 tx_buffer->time_stamp = jiffies;
6331
6332 /* Avoid any potential race with xdp_xmit and cleanup */
6333 smp_wmb();
6334
6335 /* set next_to_watch value indicating a packet is present */
6336 i++;
6337 if (i == tx_ring->count)
6338 i = 0;
6339
6340 tx_buffer->next_to_watch = tx_desc;
6341 tx_ring->next_to_use = i;
6342
6343 /* Make sure there is space in the ring for the next send. */
6344 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6345
6346 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6347 writel(i, tx_ring->tail);
6348
6349 return IGB_XDP_TX;
6350 }
6351
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6352 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6353 struct igb_ring *tx_ring)
6354 {
6355 struct igb_tx_buffer *first;
6356 int tso;
6357 u32 tx_flags = 0;
6358 unsigned short f;
6359 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6360 __be16 protocol = vlan_get_protocol(skb);
6361 u8 hdr_len = 0;
6362
6363 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6364 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6365 * + 2 desc gap to keep tail from touching head,
6366 * + 1 desc for context descriptor,
6367 * otherwise try next time
6368 */
6369 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6370 count += TXD_USE_COUNT(skb_frag_size(
6371 &skb_shinfo(skb)->frags[f]));
6372
6373 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6374 /* this is a hard error */
6375 return NETDEV_TX_BUSY;
6376 }
6377
6378 /* record the location of the first descriptor for this packet */
6379 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6380 first->type = IGB_TYPE_SKB;
6381 first->skb = skb;
6382 first->bytecount = skb->len;
6383 first->gso_segs = 1;
6384
6385 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6386 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387
6388 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6389 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6390 &adapter->state)) {
6391 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6392 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6393
6394 adapter->ptp_tx_skb = skb_get(skb);
6395 adapter->ptp_tx_start = jiffies;
6396 if (adapter->hw.mac.type == e1000_82576)
6397 schedule_work(&adapter->ptp_tx_work);
6398 } else {
6399 adapter->tx_hwtstamp_skipped++;
6400 }
6401 }
6402
6403 if (skb_vlan_tag_present(skb)) {
6404 tx_flags |= IGB_TX_FLAGS_VLAN;
6405 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6406 }
6407
6408 /* record initial flags and protocol */
6409 first->tx_flags = tx_flags;
6410 first->protocol = protocol;
6411
6412 tso = igb_tso(tx_ring, first, &hdr_len);
6413 if (tso < 0)
6414 goto out_drop;
6415 else if (!tso)
6416 igb_tx_csum(tx_ring, first);
6417
6418 if (igb_tx_map(tx_ring, first, hdr_len))
6419 goto cleanup_tx_tstamp;
6420
6421 return NETDEV_TX_OK;
6422
6423 out_drop:
6424 dev_kfree_skb_any(first->skb);
6425 first->skb = NULL;
6426 cleanup_tx_tstamp:
6427 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6428 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6429
6430 dev_kfree_skb_any(adapter->ptp_tx_skb);
6431 adapter->ptp_tx_skb = NULL;
6432 if (adapter->hw.mac.type == e1000_82576)
6433 cancel_work_sync(&adapter->ptp_tx_work);
6434 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6435 }
6436
6437 return NETDEV_TX_OK;
6438 }
6439
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6440 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6441 struct sk_buff *skb)
6442 {
6443 unsigned int r_idx = skb->queue_mapping;
6444
6445 if (r_idx >= adapter->num_tx_queues)
6446 r_idx = r_idx % adapter->num_tx_queues;
6447
6448 return adapter->tx_ring[r_idx];
6449 }
6450
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6451 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6452 struct net_device *netdev)
6453 {
6454 struct igb_adapter *adapter = netdev_priv(netdev);
6455
6456 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6457 * in order to meet this minimum size requirement.
6458 */
6459 if (skb_put_padto(skb, 17))
6460 return NETDEV_TX_OK;
6461
6462 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6463 }
6464
6465 /**
6466 * igb_tx_timeout - Respond to a Tx Hang
6467 * @netdev: network interface device structure
6468 * @txqueue: number of the Tx queue that hung (unused)
6469 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6470 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6471 {
6472 struct igb_adapter *adapter = netdev_priv(netdev);
6473 struct e1000_hw *hw = &adapter->hw;
6474
6475 /* Do the reset outside of interrupt context */
6476 adapter->tx_timeout_count++;
6477
6478 if (hw->mac.type >= e1000_82580)
6479 hw->dev_spec._82575.global_device_reset = true;
6480
6481 schedule_work(&adapter->reset_task);
6482 wr32(E1000_EICS,
6483 (adapter->eims_enable_mask & ~adapter->eims_other));
6484 }
6485
igb_reset_task(struct work_struct * work)6486 static void igb_reset_task(struct work_struct *work)
6487 {
6488 struct igb_adapter *adapter;
6489 adapter = container_of(work, struct igb_adapter, reset_task);
6490
6491 rtnl_lock();
6492 /* If we're already down or resetting, just bail */
6493 if (test_bit(__IGB_DOWN, &adapter->state) ||
6494 test_bit(__IGB_RESETTING, &adapter->state)) {
6495 rtnl_unlock();
6496 return;
6497 }
6498
6499 igb_dump(adapter);
6500 netdev_err(adapter->netdev, "Reset adapter\n");
6501 igb_reinit_locked(adapter);
6502 rtnl_unlock();
6503 }
6504
6505 /**
6506 * igb_get_stats64 - Get System Network Statistics
6507 * @netdev: network interface device structure
6508 * @stats: rtnl_link_stats64 pointer
6509 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6510 static void igb_get_stats64(struct net_device *netdev,
6511 struct rtnl_link_stats64 *stats)
6512 {
6513 struct igb_adapter *adapter = netdev_priv(netdev);
6514
6515 spin_lock(&adapter->stats64_lock);
6516 igb_update_stats(adapter);
6517 memcpy(stats, &adapter->stats64, sizeof(*stats));
6518 spin_unlock(&adapter->stats64_lock);
6519 }
6520
6521 /**
6522 * igb_change_mtu - Change the Maximum Transfer Unit
6523 * @netdev: network interface device structure
6524 * @new_mtu: new value for maximum frame size
6525 *
6526 * Returns 0 on success, negative on failure
6527 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6528 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6529 {
6530 struct igb_adapter *adapter = netdev_priv(netdev);
6531 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6532
6533 if (adapter->xdp_prog) {
6534 int i;
6535
6536 for (i = 0; i < adapter->num_rx_queues; i++) {
6537 struct igb_ring *ring = adapter->rx_ring[i];
6538
6539 if (max_frame > igb_rx_bufsz(ring)) {
6540 netdev_warn(adapter->netdev,
6541 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6542 max_frame);
6543 return -EINVAL;
6544 }
6545 }
6546 }
6547
6548 /* adjust max frame to be at least the size of a standard frame */
6549 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6550 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6551
6552 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6553 usleep_range(1000, 2000);
6554
6555 /* igb_down has a dependency on max_frame_size */
6556 adapter->max_frame_size = max_frame;
6557
6558 if (netif_running(netdev))
6559 igb_down(adapter);
6560
6561 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6562 netdev->mtu, new_mtu);
6563 netdev->mtu = new_mtu;
6564
6565 if (netif_running(netdev))
6566 igb_up(adapter);
6567 else
6568 igb_reset(adapter);
6569
6570 clear_bit(__IGB_RESETTING, &adapter->state);
6571
6572 return 0;
6573 }
6574
6575 /**
6576 * igb_update_stats - Update the board statistics counters
6577 * @adapter: board private structure
6578 **/
igb_update_stats(struct igb_adapter * adapter)6579 void igb_update_stats(struct igb_adapter *adapter)
6580 {
6581 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6582 struct e1000_hw *hw = &adapter->hw;
6583 struct pci_dev *pdev = adapter->pdev;
6584 u32 reg, mpc;
6585 int i;
6586 u64 bytes, packets;
6587 unsigned int start;
6588 u64 _bytes, _packets;
6589
6590 /* Prevent stats update while adapter is being reset, or if the pci
6591 * connection is down.
6592 */
6593 if (adapter->link_speed == 0)
6594 return;
6595 if (pci_channel_offline(pdev))
6596 return;
6597
6598 bytes = 0;
6599 packets = 0;
6600
6601 rcu_read_lock();
6602 for (i = 0; i < adapter->num_rx_queues; i++) {
6603 struct igb_ring *ring = adapter->rx_ring[i];
6604 u32 rqdpc = rd32(E1000_RQDPC(i));
6605 if (hw->mac.type >= e1000_i210)
6606 wr32(E1000_RQDPC(i), 0);
6607
6608 if (rqdpc) {
6609 ring->rx_stats.drops += rqdpc;
6610 net_stats->rx_fifo_errors += rqdpc;
6611 }
6612
6613 do {
6614 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6615 _bytes = ring->rx_stats.bytes;
6616 _packets = ring->rx_stats.packets;
6617 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6618 bytes += _bytes;
6619 packets += _packets;
6620 }
6621
6622 net_stats->rx_bytes = bytes;
6623 net_stats->rx_packets = packets;
6624
6625 bytes = 0;
6626 packets = 0;
6627 for (i = 0; i < adapter->num_tx_queues; i++) {
6628 struct igb_ring *ring = adapter->tx_ring[i];
6629 do {
6630 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6631 _bytes = ring->tx_stats.bytes;
6632 _packets = ring->tx_stats.packets;
6633 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6634 bytes += _bytes;
6635 packets += _packets;
6636 }
6637 net_stats->tx_bytes = bytes;
6638 net_stats->tx_packets = packets;
6639 rcu_read_unlock();
6640
6641 /* read stats registers */
6642 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6643 adapter->stats.gprc += rd32(E1000_GPRC);
6644 adapter->stats.gorc += rd32(E1000_GORCL);
6645 rd32(E1000_GORCH); /* clear GORCL */
6646 adapter->stats.bprc += rd32(E1000_BPRC);
6647 adapter->stats.mprc += rd32(E1000_MPRC);
6648 adapter->stats.roc += rd32(E1000_ROC);
6649
6650 adapter->stats.prc64 += rd32(E1000_PRC64);
6651 adapter->stats.prc127 += rd32(E1000_PRC127);
6652 adapter->stats.prc255 += rd32(E1000_PRC255);
6653 adapter->stats.prc511 += rd32(E1000_PRC511);
6654 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6655 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6656 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6657 adapter->stats.sec += rd32(E1000_SEC);
6658
6659 mpc = rd32(E1000_MPC);
6660 adapter->stats.mpc += mpc;
6661 net_stats->rx_fifo_errors += mpc;
6662 adapter->stats.scc += rd32(E1000_SCC);
6663 adapter->stats.ecol += rd32(E1000_ECOL);
6664 adapter->stats.mcc += rd32(E1000_MCC);
6665 adapter->stats.latecol += rd32(E1000_LATECOL);
6666 adapter->stats.dc += rd32(E1000_DC);
6667 adapter->stats.rlec += rd32(E1000_RLEC);
6668 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6669 adapter->stats.xontxc += rd32(E1000_XONTXC);
6670 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6671 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6672 adapter->stats.fcruc += rd32(E1000_FCRUC);
6673 adapter->stats.gptc += rd32(E1000_GPTC);
6674 adapter->stats.gotc += rd32(E1000_GOTCL);
6675 rd32(E1000_GOTCH); /* clear GOTCL */
6676 adapter->stats.rnbc += rd32(E1000_RNBC);
6677 adapter->stats.ruc += rd32(E1000_RUC);
6678 adapter->stats.rfc += rd32(E1000_RFC);
6679 adapter->stats.rjc += rd32(E1000_RJC);
6680 adapter->stats.tor += rd32(E1000_TORH);
6681 adapter->stats.tot += rd32(E1000_TOTH);
6682 adapter->stats.tpr += rd32(E1000_TPR);
6683
6684 adapter->stats.ptc64 += rd32(E1000_PTC64);
6685 adapter->stats.ptc127 += rd32(E1000_PTC127);
6686 adapter->stats.ptc255 += rd32(E1000_PTC255);
6687 adapter->stats.ptc511 += rd32(E1000_PTC511);
6688 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6689 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6690
6691 adapter->stats.mptc += rd32(E1000_MPTC);
6692 adapter->stats.bptc += rd32(E1000_BPTC);
6693
6694 adapter->stats.tpt += rd32(E1000_TPT);
6695 adapter->stats.colc += rd32(E1000_COLC);
6696
6697 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6698 /* read internal phy specific stats */
6699 reg = rd32(E1000_CTRL_EXT);
6700 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6701 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6702
6703 /* this stat has invalid values on i210/i211 */
6704 if ((hw->mac.type != e1000_i210) &&
6705 (hw->mac.type != e1000_i211))
6706 adapter->stats.tncrs += rd32(E1000_TNCRS);
6707 }
6708
6709 adapter->stats.tsctc += rd32(E1000_TSCTC);
6710 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6711
6712 adapter->stats.iac += rd32(E1000_IAC);
6713 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6714 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6715 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6716 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6717 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6718 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6719 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6720 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6721
6722 /* Fill out the OS statistics structure */
6723 net_stats->multicast = adapter->stats.mprc;
6724 net_stats->collisions = adapter->stats.colc;
6725
6726 /* Rx Errors */
6727
6728 /* RLEC on some newer hardware can be incorrect so build
6729 * our own version based on RUC and ROC
6730 */
6731 net_stats->rx_errors = adapter->stats.rxerrc +
6732 adapter->stats.crcerrs + adapter->stats.algnerrc +
6733 adapter->stats.ruc + adapter->stats.roc +
6734 adapter->stats.cexterr;
6735 net_stats->rx_length_errors = adapter->stats.ruc +
6736 adapter->stats.roc;
6737 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6738 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6739 net_stats->rx_missed_errors = adapter->stats.mpc;
6740
6741 /* Tx Errors */
6742 net_stats->tx_errors = adapter->stats.ecol +
6743 adapter->stats.latecol;
6744 net_stats->tx_aborted_errors = adapter->stats.ecol;
6745 net_stats->tx_window_errors = adapter->stats.latecol;
6746 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6747
6748 /* Tx Dropped needs to be maintained elsewhere */
6749
6750 /* Management Stats */
6751 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6752 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6753 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6754
6755 /* OS2BMC Stats */
6756 reg = rd32(E1000_MANC);
6757 if (reg & E1000_MANC_EN_BMC2OS) {
6758 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6759 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6760 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6761 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6762 }
6763 }
6764
igb_tsync_interrupt(struct igb_adapter * adapter)6765 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6766 {
6767 struct e1000_hw *hw = &adapter->hw;
6768 struct ptp_clock_event event;
6769 struct timespec64 ts;
6770 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6771
6772 if (tsicr & TSINTR_SYS_WRAP) {
6773 event.type = PTP_CLOCK_PPS;
6774 if (adapter->ptp_caps.pps)
6775 ptp_clock_event(adapter->ptp_clock, &event);
6776 ack |= TSINTR_SYS_WRAP;
6777 }
6778
6779 if (tsicr & E1000_TSICR_TXTS) {
6780 /* retrieve hardware timestamp */
6781 schedule_work(&adapter->ptp_tx_work);
6782 ack |= E1000_TSICR_TXTS;
6783 }
6784
6785 if (tsicr & TSINTR_TT0) {
6786 spin_lock(&adapter->tmreg_lock);
6787 ts = timespec64_add(adapter->perout[0].start,
6788 adapter->perout[0].period);
6789 /* u32 conversion of tv_sec is safe until y2106 */
6790 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6791 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6792 tsauxc = rd32(E1000_TSAUXC);
6793 tsauxc |= TSAUXC_EN_TT0;
6794 wr32(E1000_TSAUXC, tsauxc);
6795 adapter->perout[0].start = ts;
6796 spin_unlock(&adapter->tmreg_lock);
6797 ack |= TSINTR_TT0;
6798 }
6799
6800 if (tsicr & TSINTR_TT1) {
6801 spin_lock(&adapter->tmreg_lock);
6802 ts = timespec64_add(adapter->perout[1].start,
6803 adapter->perout[1].period);
6804 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6805 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6806 tsauxc = rd32(E1000_TSAUXC);
6807 tsauxc |= TSAUXC_EN_TT1;
6808 wr32(E1000_TSAUXC, tsauxc);
6809 adapter->perout[1].start = ts;
6810 spin_unlock(&adapter->tmreg_lock);
6811 ack |= TSINTR_TT1;
6812 }
6813
6814 if (tsicr & TSINTR_AUTT0) {
6815 nsec = rd32(E1000_AUXSTMPL0);
6816 sec = rd32(E1000_AUXSTMPH0);
6817 event.type = PTP_CLOCK_EXTTS;
6818 event.index = 0;
6819 event.timestamp = sec * 1000000000ULL + nsec;
6820 ptp_clock_event(adapter->ptp_clock, &event);
6821 ack |= TSINTR_AUTT0;
6822 }
6823
6824 if (tsicr & TSINTR_AUTT1) {
6825 nsec = rd32(E1000_AUXSTMPL1);
6826 sec = rd32(E1000_AUXSTMPH1);
6827 event.type = PTP_CLOCK_EXTTS;
6828 event.index = 1;
6829 event.timestamp = sec * 1000000000ULL + nsec;
6830 ptp_clock_event(adapter->ptp_clock, &event);
6831 ack |= TSINTR_AUTT1;
6832 }
6833
6834 /* acknowledge the interrupts */
6835 wr32(E1000_TSICR, ack);
6836 }
6837
igb_msix_other(int irq,void * data)6838 static irqreturn_t igb_msix_other(int irq, void *data)
6839 {
6840 struct igb_adapter *adapter = data;
6841 struct e1000_hw *hw = &adapter->hw;
6842 u32 icr = rd32(E1000_ICR);
6843 /* reading ICR causes bit 31 of EICR to be cleared */
6844
6845 if (icr & E1000_ICR_DRSTA)
6846 schedule_work(&adapter->reset_task);
6847
6848 if (icr & E1000_ICR_DOUTSYNC) {
6849 /* HW is reporting DMA is out of sync */
6850 adapter->stats.doosync++;
6851 /* The DMA Out of Sync is also indication of a spoof event
6852 * in IOV mode. Check the Wrong VM Behavior register to
6853 * see if it is really a spoof event.
6854 */
6855 igb_check_wvbr(adapter);
6856 }
6857
6858 /* Check for a mailbox event */
6859 if (icr & E1000_ICR_VMMB)
6860 igb_msg_task(adapter);
6861
6862 if (icr & E1000_ICR_LSC) {
6863 hw->mac.get_link_status = 1;
6864 /* guard against interrupt when we're going down */
6865 if (!test_bit(__IGB_DOWN, &adapter->state))
6866 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6867 }
6868
6869 if (icr & E1000_ICR_TS)
6870 igb_tsync_interrupt(adapter);
6871
6872 wr32(E1000_EIMS, adapter->eims_other);
6873
6874 return IRQ_HANDLED;
6875 }
6876
igb_write_itr(struct igb_q_vector * q_vector)6877 static void igb_write_itr(struct igb_q_vector *q_vector)
6878 {
6879 struct igb_adapter *adapter = q_vector->adapter;
6880 u32 itr_val = q_vector->itr_val & 0x7FFC;
6881
6882 if (!q_vector->set_itr)
6883 return;
6884
6885 if (!itr_val)
6886 itr_val = 0x4;
6887
6888 if (adapter->hw.mac.type == e1000_82575)
6889 itr_val |= itr_val << 16;
6890 else
6891 itr_val |= E1000_EITR_CNT_IGNR;
6892
6893 writel(itr_val, q_vector->itr_register);
6894 q_vector->set_itr = 0;
6895 }
6896
igb_msix_ring(int irq,void * data)6897 static irqreturn_t igb_msix_ring(int irq, void *data)
6898 {
6899 struct igb_q_vector *q_vector = data;
6900
6901 /* Write the ITR value calculated from the previous interrupt. */
6902 igb_write_itr(q_vector);
6903
6904 napi_schedule(&q_vector->napi);
6905
6906 return IRQ_HANDLED;
6907 }
6908
6909 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6910 static void igb_update_tx_dca(struct igb_adapter *adapter,
6911 struct igb_ring *tx_ring,
6912 int cpu)
6913 {
6914 struct e1000_hw *hw = &adapter->hw;
6915 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6916
6917 if (hw->mac.type != e1000_82575)
6918 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6919
6920 /* We can enable relaxed ordering for reads, but not writes when
6921 * DCA is enabled. This is due to a known issue in some chipsets
6922 * which will cause the DCA tag to be cleared.
6923 */
6924 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6925 E1000_DCA_TXCTRL_DATA_RRO_EN |
6926 E1000_DCA_TXCTRL_DESC_DCA_EN;
6927
6928 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6929 }
6930
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6931 static void igb_update_rx_dca(struct igb_adapter *adapter,
6932 struct igb_ring *rx_ring,
6933 int cpu)
6934 {
6935 struct e1000_hw *hw = &adapter->hw;
6936 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6937
6938 if (hw->mac.type != e1000_82575)
6939 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6940
6941 /* We can enable relaxed ordering for reads, but not writes when
6942 * DCA is enabled. This is due to a known issue in some chipsets
6943 * which will cause the DCA tag to be cleared.
6944 */
6945 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6946 E1000_DCA_RXCTRL_DESC_DCA_EN;
6947
6948 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6949 }
6950
igb_update_dca(struct igb_q_vector * q_vector)6951 static void igb_update_dca(struct igb_q_vector *q_vector)
6952 {
6953 struct igb_adapter *adapter = q_vector->adapter;
6954 int cpu = get_cpu();
6955
6956 if (q_vector->cpu == cpu)
6957 goto out_no_update;
6958
6959 if (q_vector->tx.ring)
6960 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6961
6962 if (q_vector->rx.ring)
6963 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6964
6965 q_vector->cpu = cpu;
6966 out_no_update:
6967 put_cpu();
6968 }
6969
igb_setup_dca(struct igb_adapter * adapter)6970 static void igb_setup_dca(struct igb_adapter *adapter)
6971 {
6972 struct e1000_hw *hw = &adapter->hw;
6973 int i;
6974
6975 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6976 return;
6977
6978 /* Always use CB2 mode, difference is masked in the CB driver. */
6979 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6980
6981 for (i = 0; i < adapter->num_q_vectors; i++) {
6982 adapter->q_vector[i]->cpu = -1;
6983 igb_update_dca(adapter->q_vector[i]);
6984 }
6985 }
6986
__igb_notify_dca(struct device * dev,void * data)6987 static int __igb_notify_dca(struct device *dev, void *data)
6988 {
6989 struct net_device *netdev = dev_get_drvdata(dev);
6990 struct igb_adapter *adapter = netdev_priv(netdev);
6991 struct pci_dev *pdev = adapter->pdev;
6992 struct e1000_hw *hw = &adapter->hw;
6993 unsigned long event = *(unsigned long *)data;
6994
6995 switch (event) {
6996 case DCA_PROVIDER_ADD:
6997 /* if already enabled, don't do it again */
6998 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6999 break;
7000 if (dca_add_requester(dev) == 0) {
7001 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7002 dev_info(&pdev->dev, "DCA enabled\n");
7003 igb_setup_dca(adapter);
7004 break;
7005 }
7006 fallthrough; /* since DCA is disabled. */
7007 case DCA_PROVIDER_REMOVE:
7008 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7009 /* without this a class_device is left
7010 * hanging around in the sysfs model
7011 */
7012 dca_remove_requester(dev);
7013 dev_info(&pdev->dev, "DCA disabled\n");
7014 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7015 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7016 }
7017 break;
7018 }
7019
7020 return 0;
7021 }
7022
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7023 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7024 void *p)
7025 {
7026 int ret_val;
7027
7028 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7029 __igb_notify_dca);
7030
7031 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7032 }
7033 #endif /* CONFIG_IGB_DCA */
7034
7035 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7036 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7037 {
7038 unsigned char mac_addr[ETH_ALEN];
7039
7040 eth_zero_addr(mac_addr);
7041 igb_set_vf_mac(adapter, vf, mac_addr);
7042
7043 /* By default spoof check is enabled for all VFs */
7044 adapter->vf_data[vf].spoofchk_enabled = true;
7045
7046 /* By default VFs are not trusted */
7047 adapter->vf_data[vf].trusted = false;
7048
7049 return 0;
7050 }
7051
7052 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7053 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7054 {
7055 struct e1000_hw *hw = &adapter->hw;
7056 u32 ping;
7057 int i;
7058
7059 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7060 ping = E1000_PF_CONTROL_MSG;
7061 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7062 ping |= E1000_VT_MSGTYPE_CTS;
7063 igb_write_mbx(hw, &ping, 1, i);
7064 }
7065 }
7066
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7067 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7068 {
7069 struct e1000_hw *hw = &adapter->hw;
7070 u32 vmolr = rd32(E1000_VMOLR(vf));
7071 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072
7073 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7074 IGB_VF_FLAG_MULTI_PROMISC);
7075 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7076
7077 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7078 vmolr |= E1000_VMOLR_MPME;
7079 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7080 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7081 } else {
7082 /* if we have hashes and we are clearing a multicast promisc
7083 * flag we need to write the hashes to the MTA as this step
7084 * was previously skipped
7085 */
7086 if (vf_data->num_vf_mc_hashes > 30) {
7087 vmolr |= E1000_VMOLR_MPME;
7088 } else if (vf_data->num_vf_mc_hashes) {
7089 int j;
7090
7091 vmolr |= E1000_VMOLR_ROMPE;
7092 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7093 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7094 }
7095 }
7096
7097 wr32(E1000_VMOLR(vf), vmolr);
7098
7099 /* there are flags left unprocessed, likely not supported */
7100 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7101 return -EINVAL;
7102
7103 return 0;
7104 }
7105
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7106 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7107 u32 *msgbuf, u32 vf)
7108 {
7109 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7110 u16 *hash_list = (u16 *)&msgbuf[1];
7111 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7112 int i;
7113
7114 /* salt away the number of multicast addresses assigned
7115 * to this VF for later use to restore when the PF multi cast
7116 * list changes
7117 */
7118 vf_data->num_vf_mc_hashes = n;
7119
7120 /* only up to 30 hash values supported */
7121 if (n > 30)
7122 n = 30;
7123
7124 /* store the hashes for later use */
7125 for (i = 0; i < n; i++)
7126 vf_data->vf_mc_hashes[i] = hash_list[i];
7127
7128 /* Flush and reset the mta with the new values */
7129 igb_set_rx_mode(adapter->netdev);
7130
7131 return 0;
7132 }
7133
igb_restore_vf_multicasts(struct igb_adapter * adapter)7134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7135 {
7136 struct e1000_hw *hw = &adapter->hw;
7137 struct vf_data_storage *vf_data;
7138 int i, j;
7139
7140 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7141 u32 vmolr = rd32(E1000_VMOLR(i));
7142
7143 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7144
7145 vf_data = &adapter->vf_data[i];
7146
7147 if ((vf_data->num_vf_mc_hashes > 30) ||
7148 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7149 vmolr |= E1000_VMOLR_MPME;
7150 } else if (vf_data->num_vf_mc_hashes) {
7151 vmolr |= E1000_VMOLR_ROMPE;
7152 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7153 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7154 }
7155 wr32(E1000_VMOLR(i), vmolr);
7156 }
7157 }
7158
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7159 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7160 {
7161 struct e1000_hw *hw = &adapter->hw;
7162 u32 pool_mask, vlvf_mask, i;
7163
7164 /* create mask for VF and other pools */
7165 pool_mask = E1000_VLVF_POOLSEL_MASK;
7166 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7167
7168 /* drop PF from pool bits */
7169 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7170 adapter->vfs_allocated_count);
7171
7172 /* Find the vlan filter for this id */
7173 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7174 u32 vlvf = rd32(E1000_VLVF(i));
7175 u32 vfta_mask, vid, vfta;
7176
7177 /* remove the vf from the pool */
7178 if (!(vlvf & vlvf_mask))
7179 continue;
7180
7181 /* clear out bit from VLVF */
7182 vlvf ^= vlvf_mask;
7183
7184 /* if other pools are present, just remove ourselves */
7185 if (vlvf & pool_mask)
7186 goto update_vlvfb;
7187
7188 /* if PF is present, leave VFTA */
7189 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7190 goto update_vlvf;
7191
7192 vid = vlvf & E1000_VLVF_VLANID_MASK;
7193 vfta_mask = BIT(vid % 32);
7194
7195 /* clear bit from VFTA */
7196 vfta = adapter->shadow_vfta[vid / 32];
7197 if (vfta & vfta_mask)
7198 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7199 update_vlvf:
7200 /* clear pool selection enable */
7201 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7202 vlvf &= E1000_VLVF_POOLSEL_MASK;
7203 else
7204 vlvf = 0;
7205 update_vlvfb:
7206 /* clear pool bits */
7207 wr32(E1000_VLVF(i), vlvf);
7208 }
7209 }
7210
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7211 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7212 {
7213 u32 vlvf;
7214 int idx;
7215
7216 /* short cut the special case */
7217 if (vlan == 0)
7218 return 0;
7219
7220 /* Search for the VLAN id in the VLVF entries */
7221 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7222 vlvf = rd32(E1000_VLVF(idx));
7223 if ((vlvf & VLAN_VID_MASK) == vlan)
7224 break;
7225 }
7226
7227 return idx;
7228 }
7229
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7230 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7231 {
7232 struct e1000_hw *hw = &adapter->hw;
7233 u32 bits, pf_id;
7234 int idx;
7235
7236 idx = igb_find_vlvf_entry(hw, vid);
7237 if (!idx)
7238 return;
7239
7240 /* See if any other pools are set for this VLAN filter
7241 * entry other than the PF.
7242 */
7243 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7244 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7245 bits &= rd32(E1000_VLVF(idx));
7246
7247 /* Disable the filter so this falls into the default pool. */
7248 if (!bits) {
7249 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7250 wr32(E1000_VLVF(idx), BIT(pf_id));
7251 else
7252 wr32(E1000_VLVF(idx), 0);
7253 }
7254 }
7255
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7256 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7257 bool add, u32 vf)
7258 {
7259 int pf_id = adapter->vfs_allocated_count;
7260 struct e1000_hw *hw = &adapter->hw;
7261 int err;
7262
7263 /* If VLAN overlaps with one the PF is currently monitoring make
7264 * sure that we are able to allocate a VLVF entry. This may be
7265 * redundant but it guarantees PF will maintain visibility to
7266 * the VLAN.
7267 */
7268 if (add && test_bit(vid, adapter->active_vlans)) {
7269 err = igb_vfta_set(hw, vid, pf_id, true, false);
7270 if (err)
7271 return err;
7272 }
7273
7274 err = igb_vfta_set(hw, vid, vf, add, false);
7275
7276 if (add && !err)
7277 return err;
7278
7279 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7280 * we may need to drop the PF pool bit in order to allow us to free
7281 * up the VLVF resources.
7282 */
7283 if (test_bit(vid, adapter->active_vlans) ||
7284 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7285 igb_update_pf_vlvf(adapter, vid);
7286
7287 return err;
7288 }
7289
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7290 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7291 {
7292 struct e1000_hw *hw = &adapter->hw;
7293
7294 if (vid)
7295 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7296 else
7297 wr32(E1000_VMVIR(vf), 0);
7298 }
7299
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7300 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7301 u16 vlan, u8 qos)
7302 {
7303 int err;
7304
7305 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7306 if (err)
7307 return err;
7308
7309 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7310 igb_set_vmolr(adapter, vf, !vlan);
7311
7312 /* revoke access to previous VLAN */
7313 if (vlan != adapter->vf_data[vf].pf_vlan)
7314 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315 false, vf);
7316
7317 adapter->vf_data[vf].pf_vlan = vlan;
7318 adapter->vf_data[vf].pf_qos = qos;
7319 igb_set_vf_vlan_strip(adapter, vf, true);
7320 dev_info(&adapter->pdev->dev,
7321 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7322 if (test_bit(__IGB_DOWN, &adapter->state)) {
7323 dev_warn(&adapter->pdev->dev,
7324 "The VF VLAN has been set, but the PF device is not up.\n");
7325 dev_warn(&adapter->pdev->dev,
7326 "Bring the PF device up before attempting to use the VF device.\n");
7327 }
7328
7329 return err;
7330 }
7331
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7332 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7333 {
7334 /* Restore tagless access via VLAN 0 */
7335 igb_set_vf_vlan(adapter, 0, true, vf);
7336
7337 igb_set_vmvir(adapter, 0, vf);
7338 igb_set_vmolr(adapter, vf, true);
7339
7340 /* Remove any PF assigned VLAN */
7341 if (adapter->vf_data[vf].pf_vlan)
7342 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7343 false, vf);
7344
7345 adapter->vf_data[vf].pf_vlan = 0;
7346 adapter->vf_data[vf].pf_qos = 0;
7347 igb_set_vf_vlan_strip(adapter, vf, false);
7348
7349 return 0;
7350 }
7351
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7352 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7353 u16 vlan, u8 qos, __be16 vlan_proto)
7354 {
7355 struct igb_adapter *adapter = netdev_priv(netdev);
7356
7357 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7358 return -EINVAL;
7359
7360 if (vlan_proto != htons(ETH_P_8021Q))
7361 return -EPROTONOSUPPORT;
7362
7363 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7364 igb_disable_port_vlan(adapter, vf);
7365 }
7366
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7367 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7368 {
7369 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7370 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7371 int ret;
7372
7373 if (adapter->vf_data[vf].pf_vlan)
7374 return -1;
7375
7376 /* VLAN 0 is a special case, don't allow it to be removed */
7377 if (!vid && !add)
7378 return 0;
7379
7380 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7381 if (!ret)
7382 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7383 return ret;
7384 }
7385
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7386 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7387 {
7388 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7389
7390 /* clear flags - except flag that indicates PF has set the MAC */
7391 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7392 vf_data->last_nack = jiffies;
7393
7394 /* reset vlans for device */
7395 igb_clear_vf_vfta(adapter, vf);
7396 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7397 igb_set_vmvir(adapter, vf_data->pf_vlan |
7398 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7399 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7400 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7401
7402 /* reset multicast table array for vf */
7403 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7404
7405 /* Flush and reset the mta with the new values */
7406 igb_set_rx_mode(adapter->netdev);
7407 }
7408
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7409 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7410 {
7411 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7412
7413 /* clear mac address as we were hotplug removed/added */
7414 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7415 eth_zero_addr(vf_mac);
7416
7417 /* process remaining reset events */
7418 igb_vf_reset(adapter, vf);
7419 }
7420
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7421 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7422 {
7423 struct e1000_hw *hw = &adapter->hw;
7424 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7425 u32 reg, msgbuf[3] = {};
7426 u8 *addr = (u8 *)(&msgbuf[1]);
7427
7428 /* process all the same items cleared in a function level reset */
7429 igb_vf_reset(adapter, vf);
7430
7431 /* set vf mac address */
7432 igb_set_vf_mac(adapter, vf, vf_mac);
7433
7434 /* enable transmit and receive for vf */
7435 reg = rd32(E1000_VFTE);
7436 wr32(E1000_VFTE, reg | BIT(vf));
7437 reg = rd32(E1000_VFRE);
7438 wr32(E1000_VFRE, reg | BIT(vf));
7439
7440 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7441
7442 /* reply to reset with ack and vf mac address */
7443 if (!is_zero_ether_addr(vf_mac)) {
7444 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7445 memcpy(addr, vf_mac, ETH_ALEN);
7446 } else {
7447 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7448 }
7449 igb_write_mbx(hw, msgbuf, 3, vf);
7450 }
7451
igb_flush_mac_table(struct igb_adapter * adapter)7452 static void igb_flush_mac_table(struct igb_adapter *adapter)
7453 {
7454 struct e1000_hw *hw = &adapter->hw;
7455 int i;
7456
7457 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7458 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7459 eth_zero_addr(adapter->mac_table[i].addr);
7460 adapter->mac_table[i].queue = 0;
7461 igb_rar_set_index(adapter, i);
7462 }
7463 }
7464
igb_available_rars(struct igb_adapter * adapter,u8 queue)7465 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7466 {
7467 struct e1000_hw *hw = &adapter->hw;
7468 /* do not count rar entries reserved for VFs MAC addresses */
7469 int rar_entries = hw->mac.rar_entry_count -
7470 adapter->vfs_allocated_count;
7471 int i, count = 0;
7472
7473 for (i = 0; i < rar_entries; i++) {
7474 /* do not count default entries */
7475 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7476 continue;
7477
7478 /* do not count "in use" entries for different queues */
7479 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7480 (adapter->mac_table[i].queue != queue))
7481 continue;
7482
7483 count++;
7484 }
7485
7486 return count;
7487 }
7488
7489 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7490 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7491 {
7492 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7493
7494 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7495 mac_table->queue = adapter->vfs_allocated_count;
7496 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7497
7498 igb_rar_set_index(adapter, 0);
7499 }
7500
7501 /* If the filter to be added and an already existing filter express
7502 * the same address and address type, it should be possible to only
7503 * override the other configurations, for example the queue to steer
7504 * traffic.
7505 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7506 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7507 const u8 *addr, const u8 flags)
7508 {
7509 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7510 return true;
7511
7512 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7513 (flags & IGB_MAC_STATE_SRC_ADDR))
7514 return false;
7515
7516 if (!ether_addr_equal(addr, entry->addr))
7517 return false;
7518
7519 return true;
7520 }
7521
7522 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7523 * 'flags' is used to indicate what kind of match is made, match is by
7524 * default for the destination address, if matching by source address
7525 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7526 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7527 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7528 const u8 *addr, const u8 queue,
7529 const u8 flags)
7530 {
7531 struct e1000_hw *hw = &adapter->hw;
7532 int rar_entries = hw->mac.rar_entry_count -
7533 adapter->vfs_allocated_count;
7534 int i;
7535
7536 if (is_zero_ether_addr(addr))
7537 return -EINVAL;
7538
7539 /* Search for the first empty entry in the MAC table.
7540 * Do not touch entries at the end of the table reserved for the VF MAC
7541 * addresses.
7542 */
7543 for (i = 0; i < rar_entries; i++) {
7544 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7545 addr, flags))
7546 continue;
7547
7548 ether_addr_copy(adapter->mac_table[i].addr, addr);
7549 adapter->mac_table[i].queue = queue;
7550 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7551
7552 igb_rar_set_index(adapter, i);
7553 return i;
7554 }
7555
7556 return -ENOSPC;
7557 }
7558
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7559 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7560 const u8 queue)
7561 {
7562 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7563 }
7564
7565 /* Remove a MAC filter for 'addr' directing matching traffic to
7566 * 'queue', 'flags' is used to indicate what kind of match need to be
7567 * removed, match is by default for the destination address, if
7568 * matching by source address is to be removed the flag
7569 * IGB_MAC_STATE_SRC_ADDR can be used.
7570 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7571 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7572 const u8 *addr, const u8 queue,
7573 const u8 flags)
7574 {
7575 struct e1000_hw *hw = &adapter->hw;
7576 int rar_entries = hw->mac.rar_entry_count -
7577 adapter->vfs_allocated_count;
7578 int i;
7579
7580 if (is_zero_ether_addr(addr))
7581 return -EINVAL;
7582
7583 /* Search for matching entry in the MAC table based on given address
7584 * and queue. Do not touch entries at the end of the table reserved
7585 * for the VF MAC addresses.
7586 */
7587 for (i = 0; i < rar_entries; i++) {
7588 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7589 continue;
7590 if ((adapter->mac_table[i].state & flags) != flags)
7591 continue;
7592 if (adapter->mac_table[i].queue != queue)
7593 continue;
7594 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7595 continue;
7596
7597 /* When a filter for the default address is "deleted",
7598 * we return it to its initial configuration
7599 */
7600 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7601 adapter->mac_table[i].state =
7602 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7603 adapter->mac_table[i].queue =
7604 adapter->vfs_allocated_count;
7605 } else {
7606 adapter->mac_table[i].state = 0;
7607 adapter->mac_table[i].queue = 0;
7608 eth_zero_addr(adapter->mac_table[i].addr);
7609 }
7610
7611 igb_rar_set_index(adapter, i);
7612 return 0;
7613 }
7614
7615 return -ENOENT;
7616 }
7617
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7618 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7619 const u8 queue)
7620 {
7621 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7622 }
7623
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7624 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7625 const u8 *addr, u8 queue, u8 flags)
7626 {
7627 struct e1000_hw *hw = &adapter->hw;
7628
7629 /* In theory, this should be supported on 82575 as well, but
7630 * that part wasn't easily accessible during development.
7631 */
7632 if (hw->mac.type != e1000_i210)
7633 return -EOPNOTSUPP;
7634
7635 return igb_add_mac_filter_flags(adapter, addr, queue,
7636 IGB_MAC_STATE_QUEUE_STEERING | flags);
7637 }
7638
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7639 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7640 const u8 *addr, u8 queue, u8 flags)
7641 {
7642 return igb_del_mac_filter_flags(adapter, addr, queue,
7643 IGB_MAC_STATE_QUEUE_STEERING | flags);
7644 }
7645
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7646 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7647 {
7648 struct igb_adapter *adapter = netdev_priv(netdev);
7649 int ret;
7650
7651 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7652
7653 return min_t(int, ret, 0);
7654 }
7655
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7656 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7657 {
7658 struct igb_adapter *adapter = netdev_priv(netdev);
7659
7660 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7661
7662 return 0;
7663 }
7664
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7665 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7666 const u32 info, const u8 *addr)
7667 {
7668 struct pci_dev *pdev = adapter->pdev;
7669 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7670 struct list_head *pos;
7671 struct vf_mac_filter *entry = NULL;
7672 int ret = 0;
7673
7674 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7675 !vf_data->trusted) {
7676 dev_warn(&pdev->dev,
7677 "VF %d requested MAC filter but is administratively denied\n",
7678 vf);
7679 return -EINVAL;
7680 }
7681 if (!is_valid_ether_addr(addr)) {
7682 dev_warn(&pdev->dev,
7683 "VF %d attempted to set invalid MAC filter\n",
7684 vf);
7685 return -EINVAL;
7686 }
7687
7688 switch (info) {
7689 case E1000_VF_MAC_FILTER_CLR:
7690 /* remove all unicast MAC filters related to the current VF */
7691 list_for_each(pos, &adapter->vf_macs.l) {
7692 entry = list_entry(pos, struct vf_mac_filter, l);
7693 if (entry->vf == vf) {
7694 entry->vf = -1;
7695 entry->free = true;
7696 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7697 }
7698 }
7699 break;
7700 case E1000_VF_MAC_FILTER_ADD:
7701 /* try to find empty slot in the list */
7702 list_for_each(pos, &adapter->vf_macs.l) {
7703 entry = list_entry(pos, struct vf_mac_filter, l);
7704 if (entry->free)
7705 break;
7706 }
7707
7708 if (entry && entry->free) {
7709 entry->free = false;
7710 entry->vf = vf;
7711 ether_addr_copy(entry->vf_mac, addr);
7712
7713 ret = igb_add_mac_filter(adapter, addr, vf);
7714 ret = min_t(int, ret, 0);
7715 } else {
7716 ret = -ENOSPC;
7717 }
7718
7719 if (ret == -ENOSPC)
7720 dev_warn(&pdev->dev,
7721 "VF %d has requested MAC filter but there is no space for it\n",
7722 vf);
7723 break;
7724 default:
7725 ret = -EINVAL;
7726 break;
7727 }
7728
7729 return ret;
7730 }
7731
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7732 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7733 {
7734 struct pci_dev *pdev = adapter->pdev;
7735 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7736 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7737
7738 /* The VF MAC Address is stored in a packed array of bytes
7739 * starting at the second 32 bit word of the msg array
7740 */
7741 unsigned char *addr = (unsigned char *)&msg[1];
7742 int ret = 0;
7743
7744 if (!info) {
7745 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7746 !vf_data->trusted) {
7747 dev_warn(&pdev->dev,
7748 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7749 vf);
7750 return -EINVAL;
7751 }
7752
7753 if (!is_valid_ether_addr(addr)) {
7754 dev_warn(&pdev->dev,
7755 "VF %d attempted to set invalid MAC\n",
7756 vf);
7757 return -EINVAL;
7758 }
7759
7760 ret = igb_set_vf_mac(adapter, vf, addr);
7761 } else {
7762 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7763 }
7764
7765 return ret;
7766 }
7767
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7768 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7769 {
7770 struct e1000_hw *hw = &adapter->hw;
7771 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7772 u32 msg = E1000_VT_MSGTYPE_NACK;
7773
7774 /* if device isn't clear to send it shouldn't be reading either */
7775 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7776 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7777 igb_write_mbx(hw, &msg, 1, vf);
7778 vf_data->last_nack = jiffies;
7779 }
7780 }
7781
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7782 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7783 {
7784 struct pci_dev *pdev = adapter->pdev;
7785 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7786 struct e1000_hw *hw = &adapter->hw;
7787 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7788 s32 retval;
7789
7790 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7791
7792 if (retval) {
7793 /* if receive failed revoke VF CTS stats and restart init */
7794 dev_err(&pdev->dev, "Error receiving message from VF\n");
7795 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7796 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7797 goto unlock;
7798 goto out;
7799 }
7800
7801 /* this is a message we already processed, do nothing */
7802 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7803 goto unlock;
7804
7805 /* until the vf completes a reset it should not be
7806 * allowed to start any configuration.
7807 */
7808 if (msgbuf[0] == E1000_VF_RESET) {
7809 /* unlocks mailbox */
7810 igb_vf_reset_msg(adapter, vf);
7811 return;
7812 }
7813
7814 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7815 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7816 goto unlock;
7817 retval = -1;
7818 goto out;
7819 }
7820
7821 switch ((msgbuf[0] & 0xFFFF)) {
7822 case E1000_VF_SET_MAC_ADDR:
7823 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7824 break;
7825 case E1000_VF_SET_PROMISC:
7826 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7827 break;
7828 case E1000_VF_SET_MULTICAST:
7829 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7830 break;
7831 case E1000_VF_SET_LPE:
7832 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7833 break;
7834 case E1000_VF_SET_VLAN:
7835 retval = -1;
7836 if (vf_data->pf_vlan)
7837 dev_warn(&pdev->dev,
7838 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7839 vf);
7840 else
7841 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7842 break;
7843 default:
7844 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7845 retval = -1;
7846 break;
7847 }
7848
7849 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7850 out:
7851 /* notify the VF of the results of what it sent us */
7852 if (retval)
7853 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7854 else
7855 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7856
7857 /* unlocks mailbox */
7858 igb_write_mbx(hw, msgbuf, 1, vf);
7859 return;
7860
7861 unlock:
7862 igb_unlock_mbx(hw, vf);
7863 }
7864
igb_msg_task(struct igb_adapter * adapter)7865 static void igb_msg_task(struct igb_adapter *adapter)
7866 {
7867 struct e1000_hw *hw = &adapter->hw;
7868 unsigned long flags;
7869 u32 vf;
7870
7871 spin_lock_irqsave(&adapter->vfs_lock, flags);
7872 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7873 /* process any reset requests */
7874 if (!igb_check_for_rst(hw, vf))
7875 igb_vf_reset_event(adapter, vf);
7876
7877 /* process any messages pending */
7878 if (!igb_check_for_msg(hw, vf))
7879 igb_rcv_msg_from_vf(adapter, vf);
7880
7881 /* process any acks */
7882 if (!igb_check_for_ack(hw, vf))
7883 igb_rcv_ack_from_vf(adapter, vf);
7884 }
7885 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7886 }
7887
7888 /**
7889 * igb_set_uta - Set unicast filter table address
7890 * @adapter: board private structure
7891 * @set: boolean indicating if we are setting or clearing bits
7892 *
7893 * The unicast table address is a register array of 32-bit registers.
7894 * The table is meant to be used in a way similar to how the MTA is used
7895 * however due to certain limitations in the hardware it is necessary to
7896 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7897 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7898 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7899 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7900 {
7901 struct e1000_hw *hw = &adapter->hw;
7902 u32 uta = set ? ~0 : 0;
7903 int i;
7904
7905 /* we only need to do this if VMDq is enabled */
7906 if (!adapter->vfs_allocated_count)
7907 return;
7908
7909 for (i = hw->mac.uta_reg_count; i--;)
7910 array_wr32(E1000_UTA, i, uta);
7911 }
7912
7913 /**
7914 * igb_intr_msi - Interrupt Handler
7915 * @irq: interrupt number
7916 * @data: pointer to a network interface device structure
7917 **/
igb_intr_msi(int irq,void * data)7918 static irqreturn_t igb_intr_msi(int irq, void *data)
7919 {
7920 struct igb_adapter *adapter = data;
7921 struct igb_q_vector *q_vector = adapter->q_vector[0];
7922 struct e1000_hw *hw = &adapter->hw;
7923 /* read ICR disables interrupts using IAM */
7924 u32 icr = rd32(E1000_ICR);
7925
7926 igb_write_itr(q_vector);
7927
7928 if (icr & E1000_ICR_DRSTA)
7929 schedule_work(&adapter->reset_task);
7930
7931 if (icr & E1000_ICR_DOUTSYNC) {
7932 /* HW is reporting DMA is out of sync */
7933 adapter->stats.doosync++;
7934 }
7935
7936 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7937 hw->mac.get_link_status = 1;
7938 if (!test_bit(__IGB_DOWN, &adapter->state))
7939 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7940 }
7941
7942 if (icr & E1000_ICR_TS)
7943 igb_tsync_interrupt(adapter);
7944
7945 napi_schedule(&q_vector->napi);
7946
7947 return IRQ_HANDLED;
7948 }
7949
7950 /**
7951 * igb_intr - Legacy Interrupt Handler
7952 * @irq: interrupt number
7953 * @data: pointer to a network interface device structure
7954 **/
igb_intr(int irq,void * data)7955 static irqreturn_t igb_intr(int irq, void *data)
7956 {
7957 struct igb_adapter *adapter = data;
7958 struct igb_q_vector *q_vector = adapter->q_vector[0];
7959 struct e1000_hw *hw = &adapter->hw;
7960 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7961 * need for the IMC write
7962 */
7963 u32 icr = rd32(E1000_ICR);
7964
7965 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7966 * not set, then the adapter didn't send an interrupt
7967 */
7968 if (!(icr & E1000_ICR_INT_ASSERTED))
7969 return IRQ_NONE;
7970
7971 igb_write_itr(q_vector);
7972
7973 if (icr & E1000_ICR_DRSTA)
7974 schedule_work(&adapter->reset_task);
7975
7976 if (icr & E1000_ICR_DOUTSYNC) {
7977 /* HW is reporting DMA is out of sync */
7978 adapter->stats.doosync++;
7979 }
7980
7981 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7982 hw->mac.get_link_status = 1;
7983 /* guard against interrupt when we're going down */
7984 if (!test_bit(__IGB_DOWN, &adapter->state))
7985 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7986 }
7987
7988 if (icr & E1000_ICR_TS)
7989 igb_tsync_interrupt(adapter);
7990
7991 napi_schedule(&q_vector->napi);
7992
7993 return IRQ_HANDLED;
7994 }
7995
igb_ring_irq_enable(struct igb_q_vector * q_vector)7996 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7997 {
7998 struct igb_adapter *adapter = q_vector->adapter;
7999 struct e1000_hw *hw = &adapter->hw;
8000
8001 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8002 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8003 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8004 igb_set_itr(q_vector);
8005 else
8006 igb_update_ring_itr(q_vector);
8007 }
8008
8009 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8010 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8011 wr32(E1000_EIMS, q_vector->eims_value);
8012 else
8013 igb_irq_enable(adapter);
8014 }
8015 }
8016
8017 /**
8018 * igb_poll - NAPI Rx polling callback
8019 * @napi: napi polling structure
8020 * @budget: count of how many packets we should handle
8021 **/
igb_poll(struct napi_struct * napi,int budget)8022 static int igb_poll(struct napi_struct *napi, int budget)
8023 {
8024 struct igb_q_vector *q_vector = container_of(napi,
8025 struct igb_q_vector,
8026 napi);
8027 bool clean_complete = true;
8028 int work_done = 0;
8029
8030 #ifdef CONFIG_IGB_DCA
8031 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8032 igb_update_dca(q_vector);
8033 #endif
8034 if (q_vector->tx.ring)
8035 clean_complete = igb_clean_tx_irq(q_vector, budget);
8036
8037 if (q_vector->rx.ring) {
8038 int cleaned = igb_clean_rx_irq(q_vector, budget);
8039
8040 work_done += cleaned;
8041 if (cleaned >= budget)
8042 clean_complete = false;
8043 }
8044
8045 /* If all work not completed, return budget and keep polling */
8046 if (!clean_complete)
8047 return budget;
8048
8049 /* Exit the polling mode, but don't re-enable interrupts if stack might
8050 * poll us due to busy-polling
8051 */
8052 if (likely(napi_complete_done(napi, work_done)))
8053 igb_ring_irq_enable(q_vector);
8054
8055 return work_done;
8056 }
8057
8058 /**
8059 * igb_clean_tx_irq - Reclaim resources after transmit completes
8060 * @q_vector: pointer to q_vector containing needed info
8061 * @napi_budget: Used to determine if we are in netpoll
8062 *
8063 * returns true if ring is completely cleaned
8064 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8065 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8066 {
8067 struct igb_adapter *adapter = q_vector->adapter;
8068 struct igb_ring *tx_ring = q_vector->tx.ring;
8069 struct igb_tx_buffer *tx_buffer;
8070 union e1000_adv_tx_desc *tx_desc;
8071 unsigned int total_bytes = 0, total_packets = 0;
8072 unsigned int budget = q_vector->tx.work_limit;
8073 unsigned int i = tx_ring->next_to_clean;
8074
8075 if (test_bit(__IGB_DOWN, &adapter->state))
8076 return true;
8077
8078 tx_buffer = &tx_ring->tx_buffer_info[i];
8079 tx_desc = IGB_TX_DESC(tx_ring, i);
8080 i -= tx_ring->count;
8081
8082 do {
8083 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8084
8085 /* if next_to_watch is not set then there is no work pending */
8086 if (!eop_desc)
8087 break;
8088
8089 /* prevent any other reads prior to eop_desc */
8090 smp_rmb();
8091
8092 /* if DD is not set pending work has not been completed */
8093 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8094 break;
8095
8096 /* clear next_to_watch to prevent false hangs */
8097 tx_buffer->next_to_watch = NULL;
8098
8099 /* update the statistics for this packet */
8100 total_bytes += tx_buffer->bytecount;
8101 total_packets += tx_buffer->gso_segs;
8102
8103 /* free the skb */
8104 if (tx_buffer->type == IGB_TYPE_SKB)
8105 napi_consume_skb(tx_buffer->skb, napi_budget);
8106 else
8107 xdp_return_frame(tx_buffer->xdpf);
8108
8109 /* unmap skb header data */
8110 dma_unmap_single(tx_ring->dev,
8111 dma_unmap_addr(tx_buffer, dma),
8112 dma_unmap_len(tx_buffer, len),
8113 DMA_TO_DEVICE);
8114
8115 /* clear tx_buffer data */
8116 dma_unmap_len_set(tx_buffer, len, 0);
8117
8118 /* clear last DMA location and unmap remaining buffers */
8119 while (tx_desc != eop_desc) {
8120 tx_buffer++;
8121 tx_desc++;
8122 i++;
8123 if (unlikely(!i)) {
8124 i -= tx_ring->count;
8125 tx_buffer = tx_ring->tx_buffer_info;
8126 tx_desc = IGB_TX_DESC(tx_ring, 0);
8127 }
8128
8129 /* unmap any remaining paged data */
8130 if (dma_unmap_len(tx_buffer, len)) {
8131 dma_unmap_page(tx_ring->dev,
8132 dma_unmap_addr(tx_buffer, dma),
8133 dma_unmap_len(tx_buffer, len),
8134 DMA_TO_DEVICE);
8135 dma_unmap_len_set(tx_buffer, len, 0);
8136 }
8137 }
8138
8139 /* move us one more past the eop_desc for start of next pkt */
8140 tx_buffer++;
8141 tx_desc++;
8142 i++;
8143 if (unlikely(!i)) {
8144 i -= tx_ring->count;
8145 tx_buffer = tx_ring->tx_buffer_info;
8146 tx_desc = IGB_TX_DESC(tx_ring, 0);
8147 }
8148
8149 /* issue prefetch for next Tx descriptor */
8150 prefetch(tx_desc);
8151
8152 /* update budget accounting */
8153 budget--;
8154 } while (likely(budget));
8155
8156 netdev_tx_completed_queue(txring_txq(tx_ring),
8157 total_packets, total_bytes);
8158 i += tx_ring->count;
8159 tx_ring->next_to_clean = i;
8160 u64_stats_update_begin(&tx_ring->tx_syncp);
8161 tx_ring->tx_stats.bytes += total_bytes;
8162 tx_ring->tx_stats.packets += total_packets;
8163 u64_stats_update_end(&tx_ring->tx_syncp);
8164 q_vector->tx.total_bytes += total_bytes;
8165 q_vector->tx.total_packets += total_packets;
8166
8167 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8168 struct e1000_hw *hw = &adapter->hw;
8169
8170 /* Detect a transmit hang in hardware, this serializes the
8171 * check with the clearing of time_stamp and movement of i
8172 */
8173 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8174 if (tx_buffer->next_to_watch &&
8175 time_after(jiffies, tx_buffer->time_stamp +
8176 (adapter->tx_timeout_factor * HZ)) &&
8177 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8178
8179 /* detected Tx unit hang */
8180 dev_err(tx_ring->dev,
8181 "Detected Tx Unit Hang\n"
8182 " Tx Queue <%d>\n"
8183 " TDH <%x>\n"
8184 " TDT <%x>\n"
8185 " next_to_use <%x>\n"
8186 " next_to_clean <%x>\n"
8187 "buffer_info[next_to_clean]\n"
8188 " time_stamp <%lx>\n"
8189 " next_to_watch <%p>\n"
8190 " jiffies <%lx>\n"
8191 " desc.status <%x>\n",
8192 tx_ring->queue_index,
8193 rd32(E1000_TDH(tx_ring->reg_idx)),
8194 readl(tx_ring->tail),
8195 tx_ring->next_to_use,
8196 tx_ring->next_to_clean,
8197 tx_buffer->time_stamp,
8198 tx_buffer->next_to_watch,
8199 jiffies,
8200 tx_buffer->next_to_watch->wb.status);
8201 netif_stop_subqueue(tx_ring->netdev,
8202 tx_ring->queue_index);
8203
8204 /* we are about to reset, no point in enabling stuff */
8205 return true;
8206 }
8207 }
8208
8209 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8210 if (unlikely(total_packets &&
8211 netif_carrier_ok(tx_ring->netdev) &&
8212 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8213 /* Make sure that anybody stopping the queue after this
8214 * sees the new next_to_clean.
8215 */
8216 smp_mb();
8217 if (__netif_subqueue_stopped(tx_ring->netdev,
8218 tx_ring->queue_index) &&
8219 !(test_bit(__IGB_DOWN, &adapter->state))) {
8220 netif_wake_subqueue(tx_ring->netdev,
8221 tx_ring->queue_index);
8222
8223 u64_stats_update_begin(&tx_ring->tx_syncp);
8224 tx_ring->tx_stats.restart_queue++;
8225 u64_stats_update_end(&tx_ring->tx_syncp);
8226 }
8227 }
8228
8229 return !!budget;
8230 }
8231
8232 /**
8233 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8234 * @rx_ring: rx descriptor ring to store buffers on
8235 * @old_buff: donor buffer to have page reused
8236 *
8237 * Synchronizes page for reuse by the adapter
8238 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8239 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8240 struct igb_rx_buffer *old_buff)
8241 {
8242 struct igb_rx_buffer *new_buff;
8243 u16 nta = rx_ring->next_to_alloc;
8244
8245 new_buff = &rx_ring->rx_buffer_info[nta];
8246
8247 /* update, and store next to alloc */
8248 nta++;
8249 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8250
8251 /* Transfer page from old buffer to new buffer.
8252 * Move each member individually to avoid possible store
8253 * forwarding stalls.
8254 */
8255 new_buff->dma = old_buff->dma;
8256 new_buff->page = old_buff->page;
8257 new_buff->page_offset = old_buff->page_offset;
8258 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8259 }
8260
igb_page_is_reserved(struct page * page)8261 static inline bool igb_page_is_reserved(struct page *page)
8262 {
8263 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8264 }
8265
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8266 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8267 int rx_buf_pgcnt)
8268 {
8269 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8270 struct page *page = rx_buffer->page;
8271
8272 /* avoid re-using remote pages */
8273 if (unlikely(igb_page_is_reserved(page)))
8274 return false;
8275
8276 #if (PAGE_SIZE < 8192)
8277 /* if we are only owner of page we can reuse it */
8278 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8279 return false;
8280 #else
8281 #define IGB_LAST_OFFSET \
8282 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8283
8284 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8285 return false;
8286 #endif
8287
8288 /* If we have drained the page fragment pool we need to update
8289 * the pagecnt_bias and page count so that we fully restock the
8290 * number of references the driver holds.
8291 */
8292 if (unlikely(pagecnt_bias == 1)) {
8293 page_ref_add(page, USHRT_MAX - 1);
8294 rx_buffer->pagecnt_bias = USHRT_MAX;
8295 }
8296
8297 return true;
8298 }
8299
8300 /**
8301 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8302 * @rx_ring: rx descriptor ring to transact packets on
8303 * @rx_buffer: buffer containing page to add
8304 * @skb: sk_buff to place the data into
8305 * @size: size of buffer to be added
8306 *
8307 * This function will add the data contained in rx_buffer->page to the skb.
8308 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8309 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8310 struct igb_rx_buffer *rx_buffer,
8311 struct sk_buff *skb,
8312 unsigned int size)
8313 {
8314 #if (PAGE_SIZE < 8192)
8315 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8316 #else
8317 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8318 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8319 SKB_DATA_ALIGN(size);
8320 #endif
8321 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8322 rx_buffer->page_offset, size, truesize);
8323 #if (PAGE_SIZE < 8192)
8324 rx_buffer->page_offset ^= truesize;
8325 #else
8326 rx_buffer->page_offset += truesize;
8327 #endif
8328 }
8329
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8330 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8331 struct igb_rx_buffer *rx_buffer,
8332 struct xdp_buff *xdp,
8333 union e1000_adv_rx_desc *rx_desc)
8334 {
8335 #if (PAGE_SIZE < 8192)
8336 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8337 #else
8338 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8339 xdp->data_hard_start);
8340 #endif
8341 unsigned int size = xdp->data_end - xdp->data;
8342 unsigned int headlen;
8343 struct sk_buff *skb;
8344
8345 /* prefetch first cache line of first page */
8346 net_prefetch(xdp->data);
8347
8348 /* allocate a skb to store the frags */
8349 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8350 if (unlikely(!skb))
8351 return NULL;
8352
8353 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8354 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8355 xdp->data += IGB_TS_HDR_LEN;
8356 size -= IGB_TS_HDR_LEN;
8357 }
8358 }
8359
8360 /* Determine available headroom for copy */
8361 headlen = size;
8362 if (headlen > IGB_RX_HDR_LEN)
8363 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8364
8365 /* align pull length to size of long to optimize memcpy performance */
8366 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8367
8368 /* update all of the pointers */
8369 size -= headlen;
8370 if (size) {
8371 skb_add_rx_frag(skb, 0, rx_buffer->page,
8372 (xdp->data + headlen) - page_address(rx_buffer->page),
8373 size, truesize);
8374 #if (PAGE_SIZE < 8192)
8375 rx_buffer->page_offset ^= truesize;
8376 #else
8377 rx_buffer->page_offset += truesize;
8378 #endif
8379 } else {
8380 rx_buffer->pagecnt_bias++;
8381 }
8382
8383 return skb;
8384 }
8385
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8386 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8387 struct igb_rx_buffer *rx_buffer,
8388 struct xdp_buff *xdp,
8389 union e1000_adv_rx_desc *rx_desc)
8390 {
8391 #if (PAGE_SIZE < 8192)
8392 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8393 #else
8394 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8395 SKB_DATA_ALIGN(xdp->data_end -
8396 xdp->data_hard_start);
8397 #endif
8398 unsigned int metasize = xdp->data - xdp->data_meta;
8399 struct sk_buff *skb;
8400
8401 /* prefetch first cache line of first page */
8402 net_prefetch(xdp->data_meta);
8403
8404 /* build an skb around the page buffer */
8405 skb = build_skb(xdp->data_hard_start, truesize);
8406 if (unlikely(!skb))
8407 return NULL;
8408
8409 /* update pointers within the skb to store the data */
8410 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8411 __skb_put(skb, xdp->data_end - xdp->data);
8412
8413 if (metasize)
8414 skb_metadata_set(skb, metasize);
8415
8416 /* pull timestamp out of packet data */
8417 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8418 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8419 __skb_pull(skb, IGB_TS_HDR_LEN);
8420 }
8421
8422 /* update buffer offset */
8423 #if (PAGE_SIZE < 8192)
8424 rx_buffer->page_offset ^= truesize;
8425 #else
8426 rx_buffer->page_offset += truesize;
8427 #endif
8428
8429 return skb;
8430 }
8431
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8432 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8433 struct igb_ring *rx_ring,
8434 struct xdp_buff *xdp)
8435 {
8436 int err, result = IGB_XDP_PASS;
8437 struct bpf_prog *xdp_prog;
8438 u32 act;
8439
8440 rcu_read_lock();
8441 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8442
8443 if (!xdp_prog)
8444 goto xdp_out;
8445
8446 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8447
8448 act = bpf_prog_run_xdp(xdp_prog, xdp);
8449 switch (act) {
8450 case XDP_PASS:
8451 break;
8452 case XDP_TX:
8453 result = igb_xdp_xmit_back(adapter, xdp);
8454 if (result == IGB_XDP_CONSUMED)
8455 goto out_failure;
8456 break;
8457 case XDP_REDIRECT:
8458 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8459 if (err)
8460 goto out_failure;
8461 result = IGB_XDP_REDIR;
8462 break;
8463 default:
8464 bpf_warn_invalid_xdp_action(act);
8465 fallthrough;
8466 case XDP_ABORTED:
8467 out_failure:
8468 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8469 fallthrough;
8470 case XDP_DROP:
8471 result = IGB_XDP_CONSUMED;
8472 break;
8473 }
8474 xdp_out:
8475 rcu_read_unlock();
8476 return ERR_PTR(-result);
8477 }
8478
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8479 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8480 unsigned int size)
8481 {
8482 unsigned int truesize;
8483
8484 #if (PAGE_SIZE < 8192)
8485 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8486 #else
8487 truesize = ring_uses_build_skb(rx_ring) ?
8488 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8489 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8490 SKB_DATA_ALIGN(size);
8491 #endif
8492 return truesize;
8493 }
8494
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8495 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8496 struct igb_rx_buffer *rx_buffer,
8497 unsigned int size)
8498 {
8499 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8500 #if (PAGE_SIZE < 8192)
8501 rx_buffer->page_offset ^= truesize;
8502 #else
8503 rx_buffer->page_offset += truesize;
8504 #endif
8505 }
8506
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8507 static inline void igb_rx_checksum(struct igb_ring *ring,
8508 union e1000_adv_rx_desc *rx_desc,
8509 struct sk_buff *skb)
8510 {
8511 skb_checksum_none_assert(skb);
8512
8513 /* Ignore Checksum bit is set */
8514 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8515 return;
8516
8517 /* Rx checksum disabled via ethtool */
8518 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8519 return;
8520
8521 /* TCP/UDP checksum error bit is set */
8522 if (igb_test_staterr(rx_desc,
8523 E1000_RXDEXT_STATERR_TCPE |
8524 E1000_RXDEXT_STATERR_IPE)) {
8525 /* work around errata with sctp packets where the TCPE aka
8526 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8527 * packets, (aka let the stack check the crc32c)
8528 */
8529 if (!((skb->len == 60) &&
8530 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8531 u64_stats_update_begin(&ring->rx_syncp);
8532 ring->rx_stats.csum_err++;
8533 u64_stats_update_end(&ring->rx_syncp);
8534 }
8535 /* let the stack verify checksum errors */
8536 return;
8537 }
8538 /* It must be a TCP or UDP packet with a valid checksum */
8539 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8540 E1000_RXD_STAT_UDPCS))
8541 skb->ip_summed = CHECKSUM_UNNECESSARY;
8542
8543 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8544 le32_to_cpu(rx_desc->wb.upper.status_error));
8545 }
8546
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8547 static inline void igb_rx_hash(struct igb_ring *ring,
8548 union e1000_adv_rx_desc *rx_desc,
8549 struct sk_buff *skb)
8550 {
8551 if (ring->netdev->features & NETIF_F_RXHASH)
8552 skb_set_hash(skb,
8553 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8554 PKT_HASH_TYPE_L3);
8555 }
8556
8557 /**
8558 * igb_is_non_eop - process handling of non-EOP buffers
8559 * @rx_ring: Rx ring being processed
8560 * @rx_desc: Rx descriptor for current buffer
8561 *
8562 * This function updates next to clean. If the buffer is an EOP buffer
8563 * this function exits returning false, otherwise it will place the
8564 * sk_buff in the next buffer to be chained and return true indicating
8565 * that this is in fact a non-EOP buffer.
8566 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8567 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8568 union e1000_adv_rx_desc *rx_desc)
8569 {
8570 u32 ntc = rx_ring->next_to_clean + 1;
8571
8572 /* fetch, update, and store next to clean */
8573 ntc = (ntc < rx_ring->count) ? ntc : 0;
8574 rx_ring->next_to_clean = ntc;
8575
8576 prefetch(IGB_RX_DESC(rx_ring, ntc));
8577
8578 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8579 return false;
8580
8581 return true;
8582 }
8583
8584 /**
8585 * igb_cleanup_headers - Correct corrupted or empty headers
8586 * @rx_ring: rx descriptor ring packet is being transacted on
8587 * @rx_desc: pointer to the EOP Rx descriptor
8588 * @skb: pointer to current skb being fixed
8589 *
8590 * Address the case where we are pulling data in on pages only
8591 * and as such no data is present in the skb header.
8592 *
8593 * In addition if skb is not at least 60 bytes we need to pad it so that
8594 * it is large enough to qualify as a valid Ethernet frame.
8595 *
8596 * Returns true if an error was encountered and skb was freed.
8597 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8598 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8599 union e1000_adv_rx_desc *rx_desc,
8600 struct sk_buff *skb)
8601 {
8602 /* XDP packets use error pointer so abort at this point */
8603 if (IS_ERR(skb))
8604 return true;
8605
8606 if (unlikely((igb_test_staterr(rx_desc,
8607 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8608 struct net_device *netdev = rx_ring->netdev;
8609 if (!(netdev->features & NETIF_F_RXALL)) {
8610 dev_kfree_skb_any(skb);
8611 return true;
8612 }
8613 }
8614
8615 /* if eth_skb_pad returns an error the skb was freed */
8616 if (eth_skb_pad(skb))
8617 return true;
8618
8619 return false;
8620 }
8621
8622 /**
8623 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8624 * @rx_ring: rx descriptor ring packet is being transacted on
8625 * @rx_desc: pointer to the EOP Rx descriptor
8626 * @skb: pointer to current skb being populated
8627 *
8628 * This function checks the ring, descriptor, and packet information in
8629 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8630 * other fields within the skb.
8631 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8632 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8633 union e1000_adv_rx_desc *rx_desc,
8634 struct sk_buff *skb)
8635 {
8636 struct net_device *dev = rx_ring->netdev;
8637
8638 igb_rx_hash(rx_ring, rx_desc, skb);
8639
8640 igb_rx_checksum(rx_ring, rx_desc, skb);
8641
8642 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8643 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8644 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8645
8646 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8647 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8648 u16 vid;
8649
8650 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8651 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8652 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8653 else
8654 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8655
8656 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8657 }
8658
8659 skb_record_rx_queue(skb, rx_ring->queue_index);
8660
8661 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8662 }
8663
igb_rx_offset(struct igb_ring * rx_ring)8664 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8665 {
8666 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8667 }
8668
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8669 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8670 const unsigned int size, int *rx_buf_pgcnt)
8671 {
8672 struct igb_rx_buffer *rx_buffer;
8673
8674 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8675 *rx_buf_pgcnt =
8676 #if (PAGE_SIZE < 8192)
8677 page_count(rx_buffer->page);
8678 #else
8679 0;
8680 #endif
8681 prefetchw(rx_buffer->page);
8682
8683 /* we are reusing so sync this buffer for CPU use */
8684 dma_sync_single_range_for_cpu(rx_ring->dev,
8685 rx_buffer->dma,
8686 rx_buffer->page_offset,
8687 size,
8688 DMA_FROM_DEVICE);
8689
8690 rx_buffer->pagecnt_bias--;
8691
8692 return rx_buffer;
8693 }
8694
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8695 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8696 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8697 {
8698 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8699 /* hand second half of page back to the ring */
8700 igb_reuse_rx_page(rx_ring, rx_buffer);
8701 } else {
8702 /* We are not reusing the buffer so unmap it and free
8703 * any references we are holding to it
8704 */
8705 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8706 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8707 IGB_RX_DMA_ATTR);
8708 __page_frag_cache_drain(rx_buffer->page,
8709 rx_buffer->pagecnt_bias);
8710 }
8711
8712 /* clear contents of rx_buffer */
8713 rx_buffer->page = NULL;
8714 }
8715
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8716 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8717 {
8718 struct igb_adapter *adapter = q_vector->adapter;
8719 struct igb_ring *rx_ring = q_vector->rx.ring;
8720 struct sk_buff *skb = rx_ring->skb;
8721 unsigned int total_bytes = 0, total_packets = 0;
8722 u16 cleaned_count = igb_desc_unused(rx_ring);
8723 unsigned int xdp_xmit = 0;
8724 struct xdp_buff xdp;
8725 int rx_buf_pgcnt;
8726
8727 xdp.rxq = &rx_ring->xdp_rxq;
8728
8729 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8730 #if (PAGE_SIZE < 8192)
8731 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8732 #endif
8733
8734 while (likely(total_packets < budget)) {
8735 union e1000_adv_rx_desc *rx_desc;
8736 struct igb_rx_buffer *rx_buffer;
8737 unsigned int size;
8738
8739 /* return some buffers to hardware, one at a time is too slow */
8740 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8741 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8742 cleaned_count = 0;
8743 }
8744
8745 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8746 size = le16_to_cpu(rx_desc->wb.upper.length);
8747 if (!size)
8748 break;
8749
8750 /* This memory barrier is needed to keep us from reading
8751 * any other fields out of the rx_desc until we know the
8752 * descriptor has been written back
8753 */
8754 dma_rmb();
8755
8756 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8757
8758 /* retrieve a buffer from the ring */
8759 if (!skb) {
8760 xdp.data = page_address(rx_buffer->page) +
8761 rx_buffer->page_offset;
8762 xdp.data_meta = xdp.data;
8763 xdp.data_hard_start = xdp.data -
8764 igb_rx_offset(rx_ring);
8765 xdp.data_end = xdp.data + size;
8766 #if (PAGE_SIZE > 4096)
8767 /* At larger PAGE_SIZE, frame_sz depend on len size */
8768 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8769 #endif
8770 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8771 }
8772
8773 if (IS_ERR(skb)) {
8774 unsigned int xdp_res = -PTR_ERR(skb);
8775
8776 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8777 xdp_xmit |= xdp_res;
8778 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8779 } else {
8780 rx_buffer->pagecnt_bias++;
8781 }
8782 total_packets++;
8783 total_bytes += size;
8784 } else if (skb)
8785 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8786 else if (ring_uses_build_skb(rx_ring))
8787 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8788 else
8789 skb = igb_construct_skb(rx_ring, rx_buffer,
8790 &xdp, rx_desc);
8791
8792 /* exit if we failed to retrieve a buffer */
8793 if (!skb) {
8794 rx_ring->rx_stats.alloc_failed++;
8795 rx_buffer->pagecnt_bias++;
8796 break;
8797 }
8798
8799 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8800 cleaned_count++;
8801
8802 /* fetch next buffer in frame if non-eop */
8803 if (igb_is_non_eop(rx_ring, rx_desc))
8804 continue;
8805
8806 /* verify the packet layout is correct */
8807 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8808 skb = NULL;
8809 continue;
8810 }
8811
8812 /* probably a little skewed due to removing CRC */
8813 total_bytes += skb->len;
8814
8815 /* populate checksum, timestamp, VLAN, and protocol */
8816 igb_process_skb_fields(rx_ring, rx_desc, skb);
8817
8818 napi_gro_receive(&q_vector->napi, skb);
8819
8820 /* reset skb pointer */
8821 skb = NULL;
8822
8823 /* update budget accounting */
8824 total_packets++;
8825 }
8826
8827 /* place incomplete frames back on ring for completion */
8828 rx_ring->skb = skb;
8829
8830 if (xdp_xmit & IGB_XDP_REDIR)
8831 xdp_do_flush();
8832
8833 if (xdp_xmit & IGB_XDP_TX) {
8834 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8835
8836 igb_xdp_ring_update_tail(tx_ring);
8837 }
8838
8839 u64_stats_update_begin(&rx_ring->rx_syncp);
8840 rx_ring->rx_stats.packets += total_packets;
8841 rx_ring->rx_stats.bytes += total_bytes;
8842 u64_stats_update_end(&rx_ring->rx_syncp);
8843 q_vector->rx.total_packets += total_packets;
8844 q_vector->rx.total_bytes += total_bytes;
8845
8846 if (cleaned_count)
8847 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8848
8849 return total_packets;
8850 }
8851
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8852 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8853 struct igb_rx_buffer *bi)
8854 {
8855 struct page *page = bi->page;
8856 dma_addr_t dma;
8857
8858 /* since we are recycling buffers we should seldom need to alloc */
8859 if (likely(page))
8860 return true;
8861
8862 /* alloc new page for storage */
8863 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8864 if (unlikely(!page)) {
8865 rx_ring->rx_stats.alloc_failed++;
8866 return false;
8867 }
8868
8869 /* map page for use */
8870 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8871 igb_rx_pg_size(rx_ring),
8872 DMA_FROM_DEVICE,
8873 IGB_RX_DMA_ATTR);
8874
8875 /* if mapping failed free memory back to system since
8876 * there isn't much point in holding memory we can't use
8877 */
8878 if (dma_mapping_error(rx_ring->dev, dma)) {
8879 __free_pages(page, igb_rx_pg_order(rx_ring));
8880
8881 rx_ring->rx_stats.alloc_failed++;
8882 return false;
8883 }
8884
8885 bi->dma = dma;
8886 bi->page = page;
8887 bi->page_offset = igb_rx_offset(rx_ring);
8888 page_ref_add(page, USHRT_MAX - 1);
8889 bi->pagecnt_bias = USHRT_MAX;
8890
8891 return true;
8892 }
8893
8894 /**
8895 * igb_alloc_rx_buffers - Replace used receive buffers
8896 * @rx_ring: rx descriptor ring to allocate new receive buffers
8897 * @cleaned_count: count of buffers to allocate
8898 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8899 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8900 {
8901 union e1000_adv_rx_desc *rx_desc;
8902 struct igb_rx_buffer *bi;
8903 u16 i = rx_ring->next_to_use;
8904 u16 bufsz;
8905
8906 /* nothing to do */
8907 if (!cleaned_count)
8908 return;
8909
8910 rx_desc = IGB_RX_DESC(rx_ring, i);
8911 bi = &rx_ring->rx_buffer_info[i];
8912 i -= rx_ring->count;
8913
8914 bufsz = igb_rx_bufsz(rx_ring);
8915
8916 do {
8917 if (!igb_alloc_mapped_page(rx_ring, bi))
8918 break;
8919
8920 /* sync the buffer for use by the device */
8921 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8922 bi->page_offset, bufsz,
8923 DMA_FROM_DEVICE);
8924
8925 /* Refresh the desc even if buffer_addrs didn't change
8926 * because each write-back erases this info.
8927 */
8928 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8929
8930 rx_desc++;
8931 bi++;
8932 i++;
8933 if (unlikely(!i)) {
8934 rx_desc = IGB_RX_DESC(rx_ring, 0);
8935 bi = rx_ring->rx_buffer_info;
8936 i -= rx_ring->count;
8937 }
8938
8939 /* clear the length for the next_to_use descriptor */
8940 rx_desc->wb.upper.length = 0;
8941
8942 cleaned_count--;
8943 } while (cleaned_count);
8944
8945 i += rx_ring->count;
8946
8947 if (rx_ring->next_to_use != i) {
8948 /* record the next descriptor to use */
8949 rx_ring->next_to_use = i;
8950
8951 /* update next to alloc since we have filled the ring */
8952 rx_ring->next_to_alloc = i;
8953
8954 /* Force memory writes to complete before letting h/w
8955 * know there are new descriptors to fetch. (Only
8956 * applicable for weak-ordered memory model archs,
8957 * such as IA-64).
8958 */
8959 dma_wmb();
8960 writel(i, rx_ring->tail);
8961 }
8962 }
8963
8964 /**
8965 * igb_mii_ioctl -
8966 * @netdev: pointer to netdev struct
8967 * @ifr: interface structure
8968 * @cmd: ioctl command to execute
8969 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8970 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8971 {
8972 struct igb_adapter *adapter = netdev_priv(netdev);
8973 struct mii_ioctl_data *data = if_mii(ifr);
8974
8975 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8976 return -EOPNOTSUPP;
8977
8978 switch (cmd) {
8979 case SIOCGMIIPHY:
8980 data->phy_id = adapter->hw.phy.addr;
8981 break;
8982 case SIOCGMIIREG:
8983 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8984 &data->val_out))
8985 return -EIO;
8986 break;
8987 case SIOCSMIIREG:
8988 default:
8989 return -EOPNOTSUPP;
8990 }
8991 return 0;
8992 }
8993
8994 /**
8995 * igb_ioctl -
8996 * @netdev: pointer to netdev struct
8997 * @ifr: interface structure
8998 * @cmd: ioctl command to execute
8999 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9000 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9001 {
9002 switch (cmd) {
9003 case SIOCGMIIPHY:
9004 case SIOCGMIIREG:
9005 case SIOCSMIIREG:
9006 return igb_mii_ioctl(netdev, ifr, cmd);
9007 case SIOCGHWTSTAMP:
9008 return igb_ptp_get_ts_config(netdev, ifr);
9009 case SIOCSHWTSTAMP:
9010 return igb_ptp_set_ts_config(netdev, ifr);
9011 default:
9012 return -EOPNOTSUPP;
9013 }
9014 }
9015
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9016 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9017 {
9018 struct igb_adapter *adapter = hw->back;
9019
9020 pci_read_config_word(adapter->pdev, reg, value);
9021 }
9022
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9023 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9024 {
9025 struct igb_adapter *adapter = hw->back;
9026
9027 pci_write_config_word(adapter->pdev, reg, *value);
9028 }
9029
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9030 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9031 {
9032 struct igb_adapter *adapter = hw->back;
9033
9034 if (pcie_capability_read_word(adapter->pdev, reg, value))
9035 return -E1000_ERR_CONFIG;
9036
9037 return 0;
9038 }
9039
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9040 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9041 {
9042 struct igb_adapter *adapter = hw->back;
9043
9044 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9045 return -E1000_ERR_CONFIG;
9046
9047 return 0;
9048 }
9049
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9050 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9051 {
9052 struct igb_adapter *adapter = netdev_priv(netdev);
9053 struct e1000_hw *hw = &adapter->hw;
9054 u32 ctrl, rctl;
9055 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9056
9057 if (enable) {
9058 /* enable VLAN tag insert/strip */
9059 ctrl = rd32(E1000_CTRL);
9060 ctrl |= E1000_CTRL_VME;
9061 wr32(E1000_CTRL, ctrl);
9062
9063 /* Disable CFI check */
9064 rctl = rd32(E1000_RCTL);
9065 rctl &= ~E1000_RCTL_CFIEN;
9066 wr32(E1000_RCTL, rctl);
9067 } else {
9068 /* disable VLAN tag insert/strip */
9069 ctrl = rd32(E1000_CTRL);
9070 ctrl &= ~E1000_CTRL_VME;
9071 wr32(E1000_CTRL, ctrl);
9072 }
9073
9074 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9075 }
9076
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9077 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9078 __be16 proto, u16 vid)
9079 {
9080 struct igb_adapter *adapter = netdev_priv(netdev);
9081 struct e1000_hw *hw = &adapter->hw;
9082 int pf_id = adapter->vfs_allocated_count;
9083
9084 /* add the filter since PF can receive vlans w/o entry in vlvf */
9085 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9086 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9087
9088 set_bit(vid, adapter->active_vlans);
9089
9090 return 0;
9091 }
9092
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9093 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9094 __be16 proto, u16 vid)
9095 {
9096 struct igb_adapter *adapter = netdev_priv(netdev);
9097 int pf_id = adapter->vfs_allocated_count;
9098 struct e1000_hw *hw = &adapter->hw;
9099
9100 /* remove VID from filter table */
9101 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9102 igb_vfta_set(hw, vid, pf_id, false, true);
9103
9104 clear_bit(vid, adapter->active_vlans);
9105
9106 return 0;
9107 }
9108
igb_restore_vlan(struct igb_adapter * adapter)9109 static void igb_restore_vlan(struct igb_adapter *adapter)
9110 {
9111 u16 vid = 1;
9112
9113 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9114 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9115
9116 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9117 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9118 }
9119
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9120 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9121 {
9122 struct pci_dev *pdev = adapter->pdev;
9123 struct e1000_mac_info *mac = &adapter->hw.mac;
9124
9125 mac->autoneg = 0;
9126
9127 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9128 * for the switch() below to work
9129 */
9130 if ((spd & 1) || (dplx & ~1))
9131 goto err_inval;
9132
9133 /* Fiber NIC's only allow 1000 gbps Full duplex
9134 * and 100Mbps Full duplex for 100baseFx sfp
9135 */
9136 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9137 switch (spd + dplx) {
9138 case SPEED_10 + DUPLEX_HALF:
9139 case SPEED_10 + DUPLEX_FULL:
9140 case SPEED_100 + DUPLEX_HALF:
9141 goto err_inval;
9142 default:
9143 break;
9144 }
9145 }
9146
9147 switch (spd + dplx) {
9148 case SPEED_10 + DUPLEX_HALF:
9149 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9150 break;
9151 case SPEED_10 + DUPLEX_FULL:
9152 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9153 break;
9154 case SPEED_100 + DUPLEX_HALF:
9155 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9156 break;
9157 case SPEED_100 + DUPLEX_FULL:
9158 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9159 break;
9160 case SPEED_1000 + DUPLEX_FULL:
9161 mac->autoneg = 1;
9162 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9163 break;
9164 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9165 default:
9166 goto err_inval;
9167 }
9168
9169 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9170 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9171
9172 return 0;
9173
9174 err_inval:
9175 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9176 return -EINVAL;
9177 }
9178
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9179 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9180 bool runtime)
9181 {
9182 struct net_device *netdev = pci_get_drvdata(pdev);
9183 struct igb_adapter *adapter = netdev_priv(netdev);
9184 struct e1000_hw *hw = &adapter->hw;
9185 u32 ctrl, rctl, status;
9186 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9187 bool wake;
9188
9189 rtnl_lock();
9190 netif_device_detach(netdev);
9191
9192 if (netif_running(netdev))
9193 __igb_close(netdev, true);
9194
9195 igb_ptp_suspend(adapter);
9196
9197 igb_clear_interrupt_scheme(adapter);
9198 rtnl_unlock();
9199
9200 status = rd32(E1000_STATUS);
9201 if (status & E1000_STATUS_LU)
9202 wufc &= ~E1000_WUFC_LNKC;
9203
9204 if (wufc) {
9205 igb_setup_rctl(adapter);
9206 igb_set_rx_mode(netdev);
9207
9208 /* turn on all-multi mode if wake on multicast is enabled */
9209 if (wufc & E1000_WUFC_MC) {
9210 rctl = rd32(E1000_RCTL);
9211 rctl |= E1000_RCTL_MPE;
9212 wr32(E1000_RCTL, rctl);
9213 }
9214
9215 ctrl = rd32(E1000_CTRL);
9216 ctrl |= E1000_CTRL_ADVD3WUC;
9217 wr32(E1000_CTRL, ctrl);
9218
9219 /* Allow time for pending master requests to run */
9220 igb_disable_pcie_master(hw);
9221
9222 wr32(E1000_WUC, E1000_WUC_PME_EN);
9223 wr32(E1000_WUFC, wufc);
9224 } else {
9225 wr32(E1000_WUC, 0);
9226 wr32(E1000_WUFC, 0);
9227 }
9228
9229 wake = wufc || adapter->en_mng_pt;
9230 if (!wake)
9231 igb_power_down_link(adapter);
9232 else
9233 igb_power_up_link(adapter);
9234
9235 if (enable_wake)
9236 *enable_wake = wake;
9237
9238 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9239 * would have already happened in close and is redundant.
9240 */
9241 igb_release_hw_control(adapter);
9242
9243 pci_disable_device(pdev);
9244
9245 return 0;
9246 }
9247
igb_deliver_wake_packet(struct net_device * netdev)9248 static void igb_deliver_wake_packet(struct net_device *netdev)
9249 {
9250 struct igb_adapter *adapter = netdev_priv(netdev);
9251 struct e1000_hw *hw = &adapter->hw;
9252 struct sk_buff *skb;
9253 u32 wupl;
9254
9255 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9256
9257 /* WUPM stores only the first 128 bytes of the wake packet.
9258 * Read the packet only if we have the whole thing.
9259 */
9260 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9261 return;
9262
9263 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9264 if (!skb)
9265 return;
9266
9267 skb_put(skb, wupl);
9268
9269 /* Ensure reads are 32-bit aligned */
9270 wupl = roundup(wupl, 4);
9271
9272 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9273
9274 skb->protocol = eth_type_trans(skb, netdev);
9275 netif_rx(skb);
9276 }
9277
igb_suspend(struct device * dev)9278 static int __maybe_unused igb_suspend(struct device *dev)
9279 {
9280 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9281 }
9282
__igb_resume(struct device * dev,bool rpm)9283 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9284 {
9285 struct pci_dev *pdev = to_pci_dev(dev);
9286 struct net_device *netdev = pci_get_drvdata(pdev);
9287 struct igb_adapter *adapter = netdev_priv(netdev);
9288 struct e1000_hw *hw = &adapter->hw;
9289 u32 err, val;
9290
9291 pci_set_power_state(pdev, PCI_D0);
9292 pci_restore_state(pdev);
9293 pci_save_state(pdev);
9294
9295 if (!pci_device_is_present(pdev))
9296 return -ENODEV;
9297 err = pci_enable_device_mem(pdev);
9298 if (err) {
9299 dev_err(&pdev->dev,
9300 "igb: Cannot enable PCI device from suspend\n");
9301 return err;
9302 }
9303 pci_set_master(pdev);
9304
9305 pci_enable_wake(pdev, PCI_D3hot, 0);
9306 pci_enable_wake(pdev, PCI_D3cold, 0);
9307
9308 if (igb_init_interrupt_scheme(adapter, true)) {
9309 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9310 return -ENOMEM;
9311 }
9312
9313 igb_reset(adapter);
9314
9315 /* let the f/w know that the h/w is now under the control of the
9316 * driver.
9317 */
9318 igb_get_hw_control(adapter);
9319
9320 val = rd32(E1000_WUS);
9321 if (val & WAKE_PKT_WUS)
9322 igb_deliver_wake_packet(netdev);
9323
9324 wr32(E1000_WUS, ~0);
9325
9326 if (!rpm)
9327 rtnl_lock();
9328 if (!err && netif_running(netdev))
9329 err = __igb_open(netdev, true);
9330
9331 if (!err)
9332 netif_device_attach(netdev);
9333 if (!rpm)
9334 rtnl_unlock();
9335
9336 return err;
9337 }
9338
igb_resume(struct device * dev)9339 static int __maybe_unused igb_resume(struct device *dev)
9340 {
9341 return __igb_resume(dev, false);
9342 }
9343
igb_runtime_idle(struct device * dev)9344 static int __maybe_unused igb_runtime_idle(struct device *dev)
9345 {
9346 struct net_device *netdev = dev_get_drvdata(dev);
9347 struct igb_adapter *adapter = netdev_priv(netdev);
9348
9349 if (!igb_has_link(adapter))
9350 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9351
9352 return -EBUSY;
9353 }
9354
igb_runtime_suspend(struct device * dev)9355 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9356 {
9357 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9358 }
9359
igb_runtime_resume(struct device * dev)9360 static int __maybe_unused igb_runtime_resume(struct device *dev)
9361 {
9362 return __igb_resume(dev, true);
9363 }
9364
igb_shutdown(struct pci_dev * pdev)9365 static void igb_shutdown(struct pci_dev *pdev)
9366 {
9367 bool wake;
9368
9369 __igb_shutdown(pdev, &wake, 0);
9370
9371 if (system_state == SYSTEM_POWER_OFF) {
9372 pci_wake_from_d3(pdev, wake);
9373 pci_set_power_state(pdev, PCI_D3hot);
9374 }
9375 }
9376
9377 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9378 static int igb_sriov_reinit(struct pci_dev *dev)
9379 {
9380 struct net_device *netdev = pci_get_drvdata(dev);
9381 struct igb_adapter *adapter = netdev_priv(netdev);
9382 struct pci_dev *pdev = adapter->pdev;
9383
9384 rtnl_lock();
9385
9386 if (netif_running(netdev))
9387 igb_close(netdev);
9388 else
9389 igb_reset(adapter);
9390
9391 igb_clear_interrupt_scheme(adapter);
9392
9393 igb_init_queue_configuration(adapter);
9394
9395 if (igb_init_interrupt_scheme(adapter, true)) {
9396 rtnl_unlock();
9397 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9398 return -ENOMEM;
9399 }
9400
9401 if (netif_running(netdev))
9402 igb_open(netdev);
9403
9404 rtnl_unlock();
9405
9406 return 0;
9407 }
9408
igb_pci_disable_sriov(struct pci_dev * dev)9409 static int igb_pci_disable_sriov(struct pci_dev *dev)
9410 {
9411 int err = igb_disable_sriov(dev);
9412
9413 if (!err)
9414 err = igb_sriov_reinit(dev);
9415
9416 return err;
9417 }
9418
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9419 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9420 {
9421 int err = igb_enable_sriov(dev, num_vfs);
9422
9423 if (err)
9424 goto out;
9425
9426 err = igb_sriov_reinit(dev);
9427 if (!err)
9428 return num_vfs;
9429
9430 out:
9431 return err;
9432 }
9433
9434 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9435 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9436 {
9437 #ifdef CONFIG_PCI_IOV
9438 if (num_vfs == 0)
9439 return igb_pci_disable_sriov(dev);
9440 else
9441 return igb_pci_enable_sriov(dev, num_vfs);
9442 #endif
9443 return 0;
9444 }
9445
9446 /**
9447 * igb_io_error_detected - called when PCI error is detected
9448 * @pdev: Pointer to PCI device
9449 * @state: The current pci connection state
9450 *
9451 * This function is called after a PCI bus error affecting
9452 * this device has been detected.
9453 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9454 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9455 pci_channel_state_t state)
9456 {
9457 struct net_device *netdev = pci_get_drvdata(pdev);
9458 struct igb_adapter *adapter = netdev_priv(netdev);
9459
9460 if (state == pci_channel_io_normal) {
9461 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9462 return PCI_ERS_RESULT_CAN_RECOVER;
9463 }
9464
9465 netif_device_detach(netdev);
9466
9467 if (state == pci_channel_io_perm_failure)
9468 return PCI_ERS_RESULT_DISCONNECT;
9469
9470 if (netif_running(netdev))
9471 igb_down(adapter);
9472 pci_disable_device(pdev);
9473
9474 /* Request a slot slot reset. */
9475 return PCI_ERS_RESULT_NEED_RESET;
9476 }
9477
9478 /**
9479 * igb_io_slot_reset - called after the pci bus has been reset.
9480 * @pdev: Pointer to PCI device
9481 *
9482 * Restart the card from scratch, as if from a cold-boot. Implementation
9483 * resembles the first-half of the __igb_resume routine.
9484 **/
igb_io_slot_reset(struct pci_dev * pdev)9485 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9486 {
9487 struct net_device *netdev = pci_get_drvdata(pdev);
9488 struct igb_adapter *adapter = netdev_priv(netdev);
9489 struct e1000_hw *hw = &adapter->hw;
9490 pci_ers_result_t result;
9491
9492 if (pci_enable_device_mem(pdev)) {
9493 dev_err(&pdev->dev,
9494 "Cannot re-enable PCI device after reset.\n");
9495 result = PCI_ERS_RESULT_DISCONNECT;
9496 } else {
9497 pci_set_master(pdev);
9498 pci_restore_state(pdev);
9499 pci_save_state(pdev);
9500
9501 pci_enable_wake(pdev, PCI_D3hot, 0);
9502 pci_enable_wake(pdev, PCI_D3cold, 0);
9503
9504 /* In case of PCI error, adapter lose its HW address
9505 * so we should re-assign it here.
9506 */
9507 hw->hw_addr = adapter->io_addr;
9508
9509 igb_reset(adapter);
9510 wr32(E1000_WUS, ~0);
9511 result = PCI_ERS_RESULT_RECOVERED;
9512 }
9513
9514 return result;
9515 }
9516
9517 /**
9518 * igb_io_resume - called when traffic can start flowing again.
9519 * @pdev: Pointer to PCI device
9520 *
9521 * This callback is called when the error recovery driver tells us that
9522 * its OK to resume normal operation. Implementation resembles the
9523 * second-half of the __igb_resume routine.
9524 */
igb_io_resume(struct pci_dev * pdev)9525 static void igb_io_resume(struct pci_dev *pdev)
9526 {
9527 struct net_device *netdev = pci_get_drvdata(pdev);
9528 struct igb_adapter *adapter = netdev_priv(netdev);
9529
9530 if (netif_running(netdev)) {
9531 if (igb_up(adapter)) {
9532 dev_err(&pdev->dev, "igb_up failed after reset\n");
9533 return;
9534 }
9535 }
9536
9537 netif_device_attach(netdev);
9538
9539 /* let the f/w know that the h/w is now under the control of the
9540 * driver.
9541 */
9542 igb_get_hw_control(adapter);
9543 }
9544
9545 /**
9546 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9547 * @adapter: Pointer to adapter structure
9548 * @index: Index of the RAR entry which need to be synced with MAC table
9549 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9550 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9551 {
9552 struct e1000_hw *hw = &adapter->hw;
9553 u32 rar_low, rar_high;
9554 u8 *addr = adapter->mac_table[index].addr;
9555
9556 /* HW expects these to be in network order when they are plugged
9557 * into the registers which are little endian. In order to guarantee
9558 * that ordering we need to do an leXX_to_cpup here in order to be
9559 * ready for the byteswap that occurs with writel
9560 */
9561 rar_low = le32_to_cpup((__le32 *)(addr));
9562 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9563
9564 /* Indicate to hardware the Address is Valid. */
9565 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9566 if (is_valid_ether_addr(addr))
9567 rar_high |= E1000_RAH_AV;
9568
9569 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9570 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9571
9572 switch (hw->mac.type) {
9573 case e1000_82575:
9574 case e1000_i210:
9575 if (adapter->mac_table[index].state &
9576 IGB_MAC_STATE_QUEUE_STEERING)
9577 rar_high |= E1000_RAH_QSEL_ENABLE;
9578
9579 rar_high |= E1000_RAH_POOL_1 *
9580 adapter->mac_table[index].queue;
9581 break;
9582 default:
9583 rar_high |= E1000_RAH_POOL_1 <<
9584 adapter->mac_table[index].queue;
9585 break;
9586 }
9587 }
9588
9589 wr32(E1000_RAL(index), rar_low);
9590 wrfl();
9591 wr32(E1000_RAH(index), rar_high);
9592 wrfl();
9593 }
9594
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9595 static int igb_set_vf_mac(struct igb_adapter *adapter,
9596 int vf, unsigned char *mac_addr)
9597 {
9598 struct e1000_hw *hw = &adapter->hw;
9599 /* VF MAC addresses start at end of receive addresses and moves
9600 * towards the first, as a result a collision should not be possible
9601 */
9602 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9603 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9604
9605 ether_addr_copy(vf_mac_addr, mac_addr);
9606 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9607 adapter->mac_table[rar_entry].queue = vf;
9608 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9609 igb_rar_set_index(adapter, rar_entry);
9610
9611 return 0;
9612 }
9613
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9614 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9615 {
9616 struct igb_adapter *adapter = netdev_priv(netdev);
9617
9618 if (vf >= adapter->vfs_allocated_count)
9619 return -EINVAL;
9620
9621 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9622 * flag and allows to overwrite the MAC via VF netdev. This
9623 * is necessary to allow libvirt a way to restore the original
9624 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9625 * down a VM.
9626 */
9627 if (is_zero_ether_addr(mac)) {
9628 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9629 dev_info(&adapter->pdev->dev,
9630 "remove administratively set MAC on VF %d\n",
9631 vf);
9632 } else if (is_valid_ether_addr(mac)) {
9633 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9634 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9635 mac, vf);
9636 dev_info(&adapter->pdev->dev,
9637 "Reload the VF driver to make this change effective.");
9638 /* Generate additional warning if PF is down */
9639 if (test_bit(__IGB_DOWN, &adapter->state)) {
9640 dev_warn(&adapter->pdev->dev,
9641 "The VF MAC address has been set, but the PF device is not up.\n");
9642 dev_warn(&adapter->pdev->dev,
9643 "Bring the PF device up before attempting to use the VF device.\n");
9644 }
9645 } else {
9646 return -EINVAL;
9647 }
9648 return igb_set_vf_mac(adapter, vf, mac);
9649 }
9650
igb_link_mbps(int internal_link_speed)9651 static int igb_link_mbps(int internal_link_speed)
9652 {
9653 switch (internal_link_speed) {
9654 case SPEED_100:
9655 return 100;
9656 case SPEED_1000:
9657 return 1000;
9658 default:
9659 return 0;
9660 }
9661 }
9662
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9663 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9664 int link_speed)
9665 {
9666 int rf_dec, rf_int;
9667 u32 bcnrc_val;
9668
9669 if (tx_rate != 0) {
9670 /* Calculate the rate factor values to set */
9671 rf_int = link_speed / tx_rate;
9672 rf_dec = (link_speed - (rf_int * tx_rate));
9673 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9674 tx_rate;
9675
9676 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9677 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9678 E1000_RTTBCNRC_RF_INT_MASK);
9679 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9680 } else {
9681 bcnrc_val = 0;
9682 }
9683
9684 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9685 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9686 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9687 */
9688 wr32(E1000_RTTBCNRM, 0x14);
9689 wr32(E1000_RTTBCNRC, bcnrc_val);
9690 }
9691
igb_check_vf_rate_limit(struct igb_adapter * adapter)9692 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9693 {
9694 int actual_link_speed, i;
9695 bool reset_rate = false;
9696
9697 /* VF TX rate limit was not set or not supported */
9698 if ((adapter->vf_rate_link_speed == 0) ||
9699 (adapter->hw.mac.type != e1000_82576))
9700 return;
9701
9702 actual_link_speed = igb_link_mbps(adapter->link_speed);
9703 if (actual_link_speed != adapter->vf_rate_link_speed) {
9704 reset_rate = true;
9705 adapter->vf_rate_link_speed = 0;
9706 dev_info(&adapter->pdev->dev,
9707 "Link speed has been changed. VF Transmit rate is disabled\n");
9708 }
9709
9710 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9711 if (reset_rate)
9712 adapter->vf_data[i].tx_rate = 0;
9713
9714 igb_set_vf_rate_limit(&adapter->hw, i,
9715 adapter->vf_data[i].tx_rate,
9716 actual_link_speed);
9717 }
9718 }
9719
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9720 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9721 int min_tx_rate, int max_tx_rate)
9722 {
9723 struct igb_adapter *adapter = netdev_priv(netdev);
9724 struct e1000_hw *hw = &adapter->hw;
9725 int actual_link_speed;
9726
9727 if (hw->mac.type != e1000_82576)
9728 return -EOPNOTSUPP;
9729
9730 if (min_tx_rate)
9731 return -EINVAL;
9732
9733 actual_link_speed = igb_link_mbps(adapter->link_speed);
9734 if ((vf >= adapter->vfs_allocated_count) ||
9735 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9736 (max_tx_rate < 0) ||
9737 (max_tx_rate > actual_link_speed))
9738 return -EINVAL;
9739
9740 adapter->vf_rate_link_speed = actual_link_speed;
9741 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9742 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9743
9744 return 0;
9745 }
9746
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9747 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9748 bool setting)
9749 {
9750 struct igb_adapter *adapter = netdev_priv(netdev);
9751 struct e1000_hw *hw = &adapter->hw;
9752 u32 reg_val, reg_offset;
9753
9754 if (!adapter->vfs_allocated_count)
9755 return -EOPNOTSUPP;
9756
9757 if (vf >= adapter->vfs_allocated_count)
9758 return -EINVAL;
9759
9760 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9761 reg_val = rd32(reg_offset);
9762 if (setting)
9763 reg_val |= (BIT(vf) |
9764 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9765 else
9766 reg_val &= ~(BIT(vf) |
9767 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9768 wr32(reg_offset, reg_val);
9769
9770 adapter->vf_data[vf].spoofchk_enabled = setting;
9771 return 0;
9772 }
9773
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9774 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9775 {
9776 struct igb_adapter *adapter = netdev_priv(netdev);
9777
9778 if (vf >= adapter->vfs_allocated_count)
9779 return -EINVAL;
9780 if (adapter->vf_data[vf].trusted == setting)
9781 return 0;
9782
9783 adapter->vf_data[vf].trusted = setting;
9784
9785 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9786 vf, setting ? "" : "not ");
9787 return 0;
9788 }
9789
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9790 static int igb_ndo_get_vf_config(struct net_device *netdev,
9791 int vf, struct ifla_vf_info *ivi)
9792 {
9793 struct igb_adapter *adapter = netdev_priv(netdev);
9794 if (vf >= adapter->vfs_allocated_count)
9795 return -EINVAL;
9796 ivi->vf = vf;
9797 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9798 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9799 ivi->min_tx_rate = 0;
9800 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9801 ivi->qos = adapter->vf_data[vf].pf_qos;
9802 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9803 ivi->trusted = adapter->vf_data[vf].trusted;
9804 return 0;
9805 }
9806
igb_vmm_control(struct igb_adapter * adapter)9807 static void igb_vmm_control(struct igb_adapter *adapter)
9808 {
9809 struct e1000_hw *hw = &adapter->hw;
9810 u32 reg;
9811
9812 switch (hw->mac.type) {
9813 case e1000_82575:
9814 case e1000_i210:
9815 case e1000_i211:
9816 case e1000_i354:
9817 default:
9818 /* replication is not supported for 82575 */
9819 return;
9820 case e1000_82576:
9821 /* notify HW that the MAC is adding vlan tags */
9822 reg = rd32(E1000_DTXCTL);
9823 reg |= E1000_DTXCTL_VLAN_ADDED;
9824 wr32(E1000_DTXCTL, reg);
9825 fallthrough;
9826 case e1000_82580:
9827 /* enable replication vlan tag stripping */
9828 reg = rd32(E1000_RPLOLR);
9829 reg |= E1000_RPLOLR_STRVLAN;
9830 wr32(E1000_RPLOLR, reg);
9831 fallthrough;
9832 case e1000_i350:
9833 /* none of the above registers are supported by i350 */
9834 break;
9835 }
9836
9837 if (adapter->vfs_allocated_count) {
9838 igb_vmdq_set_loopback_pf(hw, true);
9839 igb_vmdq_set_replication_pf(hw, true);
9840 igb_vmdq_set_anti_spoofing_pf(hw, true,
9841 adapter->vfs_allocated_count);
9842 } else {
9843 igb_vmdq_set_loopback_pf(hw, false);
9844 igb_vmdq_set_replication_pf(hw, false);
9845 }
9846 }
9847
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9848 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9849 {
9850 struct e1000_hw *hw = &adapter->hw;
9851 u32 dmac_thr;
9852 u16 hwm;
9853 u32 reg;
9854
9855 if (hw->mac.type > e1000_82580) {
9856 if (adapter->flags & IGB_FLAG_DMAC) {
9857 /* force threshold to 0. */
9858 wr32(E1000_DMCTXTH, 0);
9859
9860 /* DMA Coalescing high water mark needs to be greater
9861 * than the Rx threshold. Set hwm to PBA - max frame
9862 * size in 16B units, capping it at PBA - 6KB.
9863 */
9864 hwm = 64 * (pba - 6);
9865 reg = rd32(E1000_FCRTC);
9866 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9867 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9868 & E1000_FCRTC_RTH_COAL_MASK);
9869 wr32(E1000_FCRTC, reg);
9870
9871 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9872 * frame size, capping it at PBA - 10KB.
9873 */
9874 dmac_thr = pba - 10;
9875 reg = rd32(E1000_DMACR);
9876 reg &= ~E1000_DMACR_DMACTHR_MASK;
9877 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9878 & E1000_DMACR_DMACTHR_MASK);
9879
9880 /* transition to L0x or L1 if available..*/
9881 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9882
9883 /* watchdog timer= +-1000 usec in 32usec intervals */
9884 reg |= (1000 >> 5);
9885
9886 /* Disable BMC-to-OS Watchdog Enable */
9887 if (hw->mac.type != e1000_i354)
9888 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9889 wr32(E1000_DMACR, reg);
9890
9891 /* no lower threshold to disable
9892 * coalescing(smart fifb)-UTRESH=0
9893 */
9894 wr32(E1000_DMCRTRH, 0);
9895
9896 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9897
9898 wr32(E1000_DMCTLX, reg);
9899
9900 /* free space in tx packet buffer to wake from
9901 * DMA coal
9902 */
9903 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9904 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9905 }
9906
9907 if (hw->mac.type >= e1000_i210 ||
9908 (adapter->flags & IGB_FLAG_DMAC)) {
9909 reg = rd32(E1000_PCIEMISC);
9910 reg |= E1000_PCIEMISC_LX_DECISION;
9911 wr32(E1000_PCIEMISC, reg);
9912 } /* endif adapter->dmac is not disabled */
9913 } else if (hw->mac.type == e1000_82580) {
9914 u32 reg = rd32(E1000_PCIEMISC);
9915
9916 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9917 wr32(E1000_DMACR, 0);
9918 }
9919 }
9920
9921 /**
9922 * igb_read_i2c_byte - Reads 8 bit word over I2C
9923 * @hw: pointer to hardware structure
9924 * @byte_offset: byte offset to read
9925 * @dev_addr: device address
9926 * @data: value read
9927 *
9928 * Performs byte read operation over I2C interface at
9929 * a specified device address.
9930 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9931 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9932 u8 dev_addr, u8 *data)
9933 {
9934 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9935 struct i2c_client *this_client = adapter->i2c_client;
9936 s32 status;
9937 u16 swfw_mask = 0;
9938
9939 if (!this_client)
9940 return E1000_ERR_I2C;
9941
9942 swfw_mask = E1000_SWFW_PHY0_SM;
9943
9944 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9945 return E1000_ERR_SWFW_SYNC;
9946
9947 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9948 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9949
9950 if (status < 0)
9951 return E1000_ERR_I2C;
9952 else {
9953 *data = status;
9954 return 0;
9955 }
9956 }
9957
9958 /**
9959 * igb_write_i2c_byte - Writes 8 bit word over I2C
9960 * @hw: pointer to hardware structure
9961 * @byte_offset: byte offset to write
9962 * @dev_addr: device address
9963 * @data: value to write
9964 *
9965 * Performs byte write operation over I2C interface at
9966 * a specified device address.
9967 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9968 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9969 u8 dev_addr, u8 data)
9970 {
9971 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9972 struct i2c_client *this_client = adapter->i2c_client;
9973 s32 status;
9974 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9975
9976 if (!this_client)
9977 return E1000_ERR_I2C;
9978
9979 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9980 return E1000_ERR_SWFW_SYNC;
9981 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9982 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9983
9984 if (status)
9985 return E1000_ERR_I2C;
9986 else
9987 return 0;
9988
9989 }
9990
igb_reinit_queues(struct igb_adapter * adapter)9991 int igb_reinit_queues(struct igb_adapter *adapter)
9992 {
9993 struct net_device *netdev = adapter->netdev;
9994 struct pci_dev *pdev = adapter->pdev;
9995 int err = 0;
9996
9997 if (netif_running(netdev))
9998 igb_close(netdev);
9999
10000 igb_reset_interrupt_capability(adapter);
10001
10002 if (igb_init_interrupt_scheme(adapter, true)) {
10003 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10004 return -ENOMEM;
10005 }
10006
10007 if (netif_running(netdev))
10008 err = igb_open(netdev);
10009
10010 return err;
10011 }
10012
igb_nfc_filter_exit(struct igb_adapter * adapter)10013 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10014 {
10015 struct igb_nfc_filter *rule;
10016
10017 spin_lock(&adapter->nfc_lock);
10018
10019 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10020 igb_erase_filter(adapter, rule);
10021
10022 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10023 igb_erase_filter(adapter, rule);
10024
10025 spin_unlock(&adapter->nfc_lock);
10026 }
10027
igb_nfc_filter_restore(struct igb_adapter * adapter)10028 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10029 {
10030 struct igb_nfc_filter *rule;
10031
10032 spin_lock(&adapter->nfc_lock);
10033
10034 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10035 igb_add_filter(adapter, rule);
10036
10037 spin_unlock(&adapter->nfc_lock);
10038 }
10039 /* igb_main.c */
10040