• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { u64 a; u64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state)
581 		i2cctl |= E1000_I2C_DATA_OUT;
582 	else
583 		i2cctl &= ~E1000_I2C_DATA_OUT;
584 
585 	i2cctl &= ~E1000_I2C_DATA_OE_N;
586 	i2cctl |= E1000_I2C_CLK_OE_N;
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 
590 }
591 
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 	struct igb_adapter *adapter = (struct igb_adapter *)data;
602 	struct e1000_hw *hw = &adapter->hw;
603 	s32 i2cctl = rd32(E1000_I2CPARAMS);
604 
605 	if (state) {
606 		i2cctl |= E1000_I2C_CLK_OUT;
607 		i2cctl &= ~E1000_I2C_CLK_OE_N;
608 	} else {
609 		i2cctl &= ~E1000_I2C_CLK_OUT;
610 		i2cctl &= ~E1000_I2C_CLK_OE_N;
611 	}
612 	wr32(E1000_I2CPARAMS, i2cctl);
613 	wrfl();
614 }
615 
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
igb_get_i2c_clk(void * data)622 static int igb_get_i2c_clk(void *data)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630 
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 	.setsda		= igb_set_i2c_data,
633 	.setscl		= igb_set_i2c_clk,
634 	.getsda		= igb_get_i2c_data,
635 	.getscl		= igb_get_i2c_clk,
636 	.udelay		= 5,
637 	.timeout	= 20,
638 };
639 
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
igb_get_hw_dev(struct e1000_hw * hw)646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 	struct igb_adapter *adapter = hw->back;
649 	return adapter->netdev;
650 }
651 
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
igb_init_module(void)658 static int __init igb_init_module(void)
659 {
660 	int ret;
661 
662 	pr_info("%s\n", igb_driver_string);
663 	pr_info("%s\n", igb_copyright);
664 
665 #ifdef CONFIG_IGB_DCA
666 	dca_register_notify(&dca_notifier);
667 #endif
668 	ret = pci_register_driver(&igb_driver);
669 	return ret;
670 }
671 
672 module_init(igb_init_module);
673 
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
igb_exit_module(void)680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 	dca_unregister_notify(&dca_notifier);
684 #endif
685 	pci_unregister_driver(&igb_driver);
686 }
687 
688 module_exit(igb_exit_module);
689 
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
igb_cache_ring_register(struct igb_adapter * adapter)698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 	int i = 0, j = 0;
701 	u32 rbase_offset = adapter->vfs_allocated_count;
702 
703 	switch (adapter->hw.mac.type) {
704 	case e1000_82576:
705 		/* The queues are allocated for virtualization such that VF 0
706 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 		 * In order to avoid collision we start at the first free queue
708 		 * and continue consuming queues in the same sequence
709 		 */
710 		if (adapter->vfs_allocated_count) {
711 			for (; i < adapter->rss_queues; i++)
712 				adapter->rx_ring[i]->reg_idx = rbase_offset +
713 							       Q_IDX_82576(i);
714 		}
715 		fallthrough;
716 	case e1000_82575:
717 	case e1000_82580:
718 	case e1000_i350:
719 	case e1000_i354:
720 	case e1000_i210:
721 	case e1000_i211:
722 	default:
723 		for (; i < adapter->num_rx_queues; i++)
724 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 		for (; j < adapter->num_tx_queues; j++)
726 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 		break;
728 	}
729 }
730 
igb_rd32(struct e1000_hw * hw,u32 reg)731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 	u32 value = 0;
736 
737 	if (E1000_REMOVED(hw_addr))
738 		return ~value;
739 
740 	value = readl(&hw_addr[reg]);
741 
742 	/* reads should not return all F's */
743 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 		struct net_device *netdev = igb->netdev;
745 		hw->hw_addr = NULL;
746 		netdev_err(netdev, "PCIe link lost\n");
747 		WARN(pci_device_is_present(igb->pdev),
748 		     "igb: Failed to read reg 0x%x!\n", reg);
749 	}
750 
751 	return value;
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = BIT(msix_vector);
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = BIT(msix_vector);
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
igb_configure_msix(struct igb_adapter * adapter)866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = BIT(vector);
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
igb_request_msix(struct igb_adapter * adapter)932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	unsigned int num_q_vectors = adapter->num_q_vectors;
935 	struct net_device *netdev = adapter->netdev;
936 	int i, err = 0, vector = 0, free_vector = 0;
937 
938 	err = request_irq(adapter->msix_entries[vector].vector,
939 			  igb_msix_other, 0, netdev->name, adapter);
940 	if (err)
941 		goto err_out;
942 
943 	if (num_q_vectors > MAX_Q_VECTORS) {
944 		num_q_vectors = MAX_Q_VECTORS;
945 		dev_warn(&adapter->pdev->dev,
946 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947 			 adapter->num_q_vectors, MAX_Q_VECTORS);
948 	}
949 	for (i = 0; i < num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count;
1193 	size_t size;
1194 
1195 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 	if (txr_count > 1 || rxr_count > 1)
1197 		return -ENOMEM;
1198 
1199 	ring_count = txr_count + rxr_count;
1200 	size = struct_size(q_vector, ring, ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		struct igb_q_vector *new_q_vector;
1208 
1209 		new_q_vector = kzalloc(size, GFP_KERNEL);
1210 		if (new_q_vector)
1211 			kfree_rcu(q_vector, rcu);
1212 		q_vector = new_q_vector;
1213 	} else {
1214 		memset(q_vector, 0, size);
1215 	}
1216 	if (!q_vector)
1217 		return -ENOMEM;
1218 
1219 	/* initialize NAPI */
1220 	netif_napi_add(adapter->netdev, &q_vector->napi,
1221 		       igb_poll, 64);
1222 
1223 	/* tie q_vector and adapter together */
1224 	adapter->q_vector[v_idx] = q_vector;
1225 	q_vector->adapter = adapter;
1226 
1227 	/* initialize work limits */
1228 	q_vector->tx.work_limit = adapter->tx_work_limit;
1229 
1230 	/* initialize ITR configuration */
1231 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1232 	q_vector->itr_val = IGB_START_ITR;
1233 
1234 	/* initialize pointer to rings */
1235 	ring = q_vector->ring;
1236 
1237 	/* intialize ITR */
1238 	if (rxr_count) {
1239 		/* rx or rx/tx vector */
1240 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->rx_itr_setting;
1242 	} else {
1243 		/* tx only vector */
1244 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245 			q_vector->itr_val = adapter->tx_itr_setting;
1246 	}
1247 
1248 	if (txr_count) {
1249 		/* assign generic ring traits */
1250 		ring->dev = &adapter->pdev->dev;
1251 		ring->netdev = adapter->netdev;
1252 
1253 		/* configure backlink on ring */
1254 		ring->q_vector = q_vector;
1255 
1256 		/* update q_vector Tx values */
1257 		igb_add_ring(ring, &q_vector->tx);
1258 
1259 		/* For 82575, context index must be unique per ring. */
1260 		if (adapter->hw.mac.type == e1000_82575)
1261 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262 
1263 		/* apply Tx specific ring traits */
1264 		ring->count = adapter->tx_ring_count;
1265 		ring->queue_index = txr_idx;
1266 
1267 		ring->cbs_enable = false;
1268 		ring->idleslope = 0;
1269 		ring->sendslope = 0;
1270 		ring->hicredit = 0;
1271 		ring->locredit = 0;
1272 
1273 		u64_stats_init(&ring->tx_syncp);
1274 		u64_stats_init(&ring->tx_syncp2);
1275 
1276 		/* assign ring to adapter */
1277 		adapter->tx_ring[txr_idx] = ring;
1278 
1279 		/* push pointer to next ring */
1280 		ring++;
1281 	}
1282 
1283 	if (rxr_count) {
1284 		/* assign generic ring traits */
1285 		ring->dev = &adapter->pdev->dev;
1286 		ring->netdev = adapter->netdev;
1287 
1288 		/* configure backlink on ring */
1289 		ring->q_vector = q_vector;
1290 
1291 		/* update q_vector Rx values */
1292 		igb_add_ring(ring, &q_vector->rx);
1293 
1294 		/* set flag indicating ring supports SCTP checksum offload */
1295 		if (adapter->hw.mac.type >= e1000_82576)
1296 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1297 
1298 		/* On i350, i354, i210, and i211, loopback VLAN packets
1299 		 * have the tag byte-swapped.
1300 		 */
1301 		if (adapter->hw.mac.type >= e1000_i350)
1302 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1303 
1304 		/* apply Rx specific ring traits */
1305 		ring->count = adapter->rx_ring_count;
1306 		ring->queue_index = rxr_idx;
1307 
1308 		u64_stats_init(&ring->rx_syncp);
1309 
1310 		/* assign ring to adapter */
1311 		adapter->rx_ring[rxr_idx] = ring;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 
1318 /**
1319  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1320  *  @adapter: board private structure to initialize
1321  *
1322  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1323  *  return -ENOMEM.
1324  **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1325 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1326 {
1327 	int q_vectors = adapter->num_q_vectors;
1328 	int rxr_remaining = adapter->num_rx_queues;
1329 	int txr_remaining = adapter->num_tx_queues;
1330 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331 	int err;
1332 
1333 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1334 		for (; rxr_remaining; v_idx++) {
1335 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1336 						 0, 0, 1, rxr_idx);
1337 
1338 			if (err)
1339 				goto err_out;
1340 
1341 			/* update counts and index */
1342 			rxr_remaining--;
1343 			rxr_idx++;
1344 		}
1345 	}
1346 
1347 	for (; v_idx < q_vectors; v_idx++) {
1348 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1349 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1350 
1351 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1352 					 tqpv, txr_idx, rqpv, rxr_idx);
1353 
1354 		if (err)
1355 			goto err_out;
1356 
1357 		/* update counts and index */
1358 		rxr_remaining -= rqpv;
1359 		txr_remaining -= tqpv;
1360 		rxr_idx++;
1361 		txr_idx++;
1362 	}
1363 
1364 	return 0;
1365 
1366 err_out:
1367 	adapter->num_tx_queues = 0;
1368 	adapter->num_rx_queues = 0;
1369 	adapter->num_q_vectors = 0;
1370 
1371 	while (v_idx--)
1372 		igb_free_q_vector(adapter, v_idx);
1373 
1374 	return -ENOMEM;
1375 }
1376 
1377 /**
1378  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1379  *  @adapter: board private structure to initialize
1380  *  @msix: boolean value of MSIX capability
1381  *
1382  *  This function initializes the interrupts and allocates all of the queues.
1383  **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1384 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1385 {
1386 	struct pci_dev *pdev = adapter->pdev;
1387 	int err;
1388 
1389 	igb_set_interrupt_capability(adapter, msix);
1390 
1391 	err = igb_alloc_q_vectors(adapter);
1392 	if (err) {
1393 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1394 		goto err_alloc_q_vectors;
1395 	}
1396 
1397 	igb_cache_ring_register(adapter);
1398 
1399 	return 0;
1400 
1401 err_alloc_q_vectors:
1402 	igb_reset_interrupt_capability(adapter);
1403 	return err;
1404 }
1405 
1406 /**
1407  *  igb_request_irq - initialize interrupts
1408  *  @adapter: board private structure to initialize
1409  *
1410  *  Attempts to configure interrupts using the best available
1411  *  capabilities of the hardware and kernel.
1412  **/
igb_request_irq(struct igb_adapter * adapter)1413 static int igb_request_irq(struct igb_adapter *adapter)
1414 {
1415 	struct net_device *netdev = adapter->netdev;
1416 	struct pci_dev *pdev = adapter->pdev;
1417 	int err = 0;
1418 
1419 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1420 		err = igb_request_msix(adapter);
1421 		if (!err)
1422 			goto request_done;
1423 		/* fall back to MSI */
1424 		igb_free_all_tx_resources(adapter);
1425 		igb_free_all_rx_resources(adapter);
1426 
1427 		igb_clear_interrupt_scheme(adapter);
1428 		err = igb_init_interrupt_scheme(adapter, false);
1429 		if (err)
1430 			goto request_done;
1431 
1432 		igb_setup_all_tx_resources(adapter);
1433 		igb_setup_all_rx_resources(adapter);
1434 		igb_configure(adapter);
1435 	}
1436 
1437 	igb_assign_vector(adapter->q_vector[0], 0);
1438 
1439 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1440 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1441 				  netdev->name, adapter);
1442 		if (!err)
1443 			goto request_done;
1444 
1445 		/* fall back to legacy interrupts */
1446 		igb_reset_interrupt_capability(adapter);
1447 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1448 	}
1449 
1450 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1451 			  netdev->name, adapter);
1452 
1453 	if (err)
1454 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1455 			err);
1456 
1457 request_done:
1458 	return err;
1459 }
1460 
igb_free_irq(struct igb_adapter * adapter)1461 static void igb_free_irq(struct igb_adapter *adapter)
1462 {
1463 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464 		int vector = 0, i;
1465 
1466 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1467 
1468 		for (i = 0; i < adapter->num_q_vectors; i++)
1469 			free_irq(adapter->msix_entries[vector++].vector,
1470 				 adapter->q_vector[i]);
1471 	} else {
1472 		free_irq(adapter->pdev->irq, adapter);
1473 	}
1474 }
1475 
1476 /**
1477  *  igb_irq_disable - Mask off interrupt generation on the NIC
1478  *  @adapter: board private structure
1479  **/
igb_irq_disable(struct igb_adapter * adapter)1480 static void igb_irq_disable(struct igb_adapter *adapter)
1481 {
1482 	struct e1000_hw *hw = &adapter->hw;
1483 
1484 	/* we need to be careful when disabling interrupts.  The VFs are also
1485 	 * mapped into these registers and so clearing the bits can cause
1486 	 * issues on the VF drivers so we only need to clear what we set
1487 	 */
1488 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 		u32 regval = rd32(E1000_EIAM);
1490 
1491 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1492 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1493 		regval = rd32(E1000_EIAC);
1494 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1495 	}
1496 
1497 	wr32(E1000_IAM, 0);
1498 	wr32(E1000_IMC, ~0);
1499 	wrfl();
1500 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501 		int i;
1502 
1503 		for (i = 0; i < adapter->num_q_vectors; i++)
1504 			synchronize_irq(adapter->msix_entries[i].vector);
1505 	} else {
1506 		synchronize_irq(adapter->pdev->irq);
1507 	}
1508 }
1509 
1510 /**
1511  *  igb_irq_enable - Enable default interrupt generation settings
1512  *  @adapter: board private structure
1513  **/
igb_irq_enable(struct igb_adapter * adapter)1514 static void igb_irq_enable(struct igb_adapter *adapter)
1515 {
1516 	struct e1000_hw *hw = &adapter->hw;
1517 
1518 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1519 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1520 		u32 regval = rd32(E1000_EIAC);
1521 
1522 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1523 		regval = rd32(E1000_EIAM);
1524 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1525 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1526 		if (adapter->vfs_allocated_count) {
1527 			wr32(E1000_MBVFIMR, 0xFF);
1528 			ims |= E1000_IMS_VMMB;
1529 		}
1530 		wr32(E1000_IMS, ims);
1531 	} else {
1532 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1533 				E1000_IMS_DRSTA);
1534 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1535 				E1000_IMS_DRSTA);
1536 	}
1537 }
1538 
igb_update_mng_vlan(struct igb_adapter * adapter)1539 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1540 {
1541 	struct e1000_hw *hw = &adapter->hw;
1542 	u16 pf_id = adapter->vfs_allocated_count;
1543 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1544 	u16 old_vid = adapter->mng_vlan_id;
1545 
1546 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1547 		/* add VID to filter table */
1548 		igb_vfta_set(hw, vid, pf_id, true, true);
1549 		adapter->mng_vlan_id = vid;
1550 	} else {
1551 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1552 	}
1553 
1554 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1555 	    (vid != old_vid) &&
1556 	    !test_bit(old_vid, adapter->active_vlans)) {
1557 		/* remove VID from filter table */
1558 		igb_vfta_set(hw, vid, pf_id, false, true);
1559 	}
1560 }
1561 
1562 /**
1563  *  igb_release_hw_control - release control of the h/w to f/w
1564  *  @adapter: address of board private structure
1565  *
1566  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1567  *  For ASF and Pass Through versions of f/w this means that the
1568  *  driver is no longer loaded.
1569  **/
igb_release_hw_control(struct igb_adapter * adapter)1570 static void igb_release_hw_control(struct igb_adapter *adapter)
1571 {
1572 	struct e1000_hw *hw = &adapter->hw;
1573 	u32 ctrl_ext;
1574 
1575 	/* Let firmware take over control of h/w */
1576 	ctrl_ext = rd32(E1000_CTRL_EXT);
1577 	wr32(E1000_CTRL_EXT,
1578 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1579 }
1580 
1581 /**
1582  *  igb_get_hw_control - get control of the h/w from f/w
1583  *  @adapter: address of board private structure
1584  *
1585  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1586  *  For ASF and Pass Through versions of f/w this means that
1587  *  the driver is loaded.
1588  **/
igb_get_hw_control(struct igb_adapter * adapter)1589 static void igb_get_hw_control(struct igb_adapter *adapter)
1590 {
1591 	struct e1000_hw *hw = &adapter->hw;
1592 	u32 ctrl_ext;
1593 
1594 	/* Let firmware know the driver has taken over */
1595 	ctrl_ext = rd32(E1000_CTRL_EXT);
1596 	wr32(E1000_CTRL_EXT,
1597 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1598 }
1599 
enable_fqtss(struct igb_adapter * adapter,bool enable)1600 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1601 {
1602 	struct net_device *netdev = adapter->netdev;
1603 	struct e1000_hw *hw = &adapter->hw;
1604 
1605 	WARN_ON(hw->mac.type != e1000_i210);
1606 
1607 	if (enable)
1608 		adapter->flags |= IGB_FLAG_FQTSS;
1609 	else
1610 		adapter->flags &= ~IGB_FLAG_FQTSS;
1611 
1612 	if (netif_running(netdev))
1613 		schedule_work(&adapter->reset_task);
1614 }
1615 
is_fqtss_enabled(struct igb_adapter * adapter)1616 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1617 {
1618 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1619 }
1620 
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1621 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1622 				   enum tx_queue_prio prio)
1623 {
1624 	u32 val;
1625 
1626 	WARN_ON(hw->mac.type != e1000_i210);
1627 	WARN_ON(queue < 0 || queue > 4);
1628 
1629 	val = rd32(E1000_I210_TXDCTL(queue));
1630 
1631 	if (prio == TX_QUEUE_PRIO_HIGH)
1632 		val |= E1000_TXDCTL_PRIORITY;
1633 	else
1634 		val &= ~E1000_TXDCTL_PRIORITY;
1635 
1636 	wr32(E1000_I210_TXDCTL(queue), val);
1637 }
1638 
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1639 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1640 {
1641 	u32 val;
1642 
1643 	WARN_ON(hw->mac.type != e1000_i210);
1644 	WARN_ON(queue < 0 || queue > 1);
1645 
1646 	val = rd32(E1000_I210_TQAVCC(queue));
1647 
1648 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1649 		val |= E1000_TQAVCC_QUEUEMODE;
1650 	else
1651 		val &= ~E1000_TQAVCC_QUEUEMODE;
1652 
1653 	wr32(E1000_I210_TQAVCC(queue), val);
1654 }
1655 
is_any_cbs_enabled(struct igb_adapter * adapter)1656 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < adapter->num_tx_queues; i++) {
1661 		if (adapter->tx_ring[i]->cbs_enable)
1662 			return true;
1663 	}
1664 
1665 	return false;
1666 }
1667 
is_any_txtime_enabled(struct igb_adapter * adapter)1668 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1669 {
1670 	int i;
1671 
1672 	for (i = 0; i < adapter->num_tx_queues; i++) {
1673 		if (adapter->tx_ring[i]->launchtime_enable)
1674 			return true;
1675 	}
1676 
1677 	return false;
1678 }
1679 
1680 /**
1681  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1682  *  @adapter: pointer to adapter struct
1683  *  @queue: queue number
1684  *
1685  *  Configure CBS and Launchtime for a given hardware queue.
1686  *  Parameters are retrieved from the correct Tx ring, so
1687  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1688  *  for setting those correctly prior to this function being called.
1689  **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1690 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1691 {
1692 	struct net_device *netdev = adapter->netdev;
1693 	struct e1000_hw *hw = &adapter->hw;
1694 	struct igb_ring *ring;
1695 	u32 tqavcc, tqavctrl;
1696 	u16 value;
1697 
1698 	WARN_ON(hw->mac.type != e1000_i210);
1699 	WARN_ON(queue < 0 || queue > 1);
1700 	ring = adapter->tx_ring[queue];
1701 
1702 	/* If any of the Qav features is enabled, configure queues as SR and
1703 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1704 	 * as SP.
1705 	 */
1706 	if (ring->cbs_enable || ring->launchtime_enable) {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1709 	} else {
1710 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1711 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1712 	}
1713 
1714 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1715 	if (ring->cbs_enable || queue == 0) {
1716 		/* i210 does not allow the queue 0 to be in the Strict
1717 		 * Priority mode while the Qav mode is enabled, so,
1718 		 * instead of disabling strict priority mode, we give
1719 		 * queue 0 the maximum of credits possible.
1720 		 *
1721 		 * See section 8.12.19 of the i210 datasheet, "Note:
1722 		 * Queue0 QueueMode must be set to 1b when
1723 		 * TransmitMode is set to Qav."
1724 		 */
1725 		if (queue == 0 && !ring->cbs_enable) {
1726 			/* max "linkspeed" idleslope in kbps */
1727 			ring->idleslope = 1000000;
1728 			ring->hicredit = ETH_FRAME_LEN;
1729 		}
1730 
1731 		/* Always set data transfer arbitration to credit-based
1732 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1733 		 * the queues.
1734 		 */
1735 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1736 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1737 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1738 
1739 		/* According to i210 datasheet section 7.2.7.7, we should set
1740 		 * the 'idleSlope' field from TQAVCC register following the
1741 		 * equation:
1742 		 *
1743 		 * For 100 Mbps link speed:
1744 		 *
1745 		 *     value = BW * 0x7735 * 0.2                          (E1)
1746 		 *
1747 		 * For 1000Mbps link speed:
1748 		 *
1749 		 *     value = BW * 0x7735 * 2                            (E2)
1750 		 *
1751 		 * E1 and E2 can be merged into one equation as shown below.
1752 		 * Note that 'link-speed' is in Mbps.
1753 		 *
1754 		 *     value = BW * 0x7735 * 2 * link-speed
1755 		 *                           --------------               (E3)
1756 		 *                                1000
1757 		 *
1758 		 * 'BW' is the percentage bandwidth out of full link speed
1759 		 * which can be found with the following equation. Note that
1760 		 * idleSlope here is the parameter from this function which
1761 		 * is in kbps.
1762 		 *
1763 		 *     BW =     idleSlope
1764 		 *          -----------------                             (E4)
1765 		 *          link-speed * 1000
1766 		 *
1767 		 * That said, we can come up with a generic equation to
1768 		 * calculate the value we should set it TQAVCC register by
1769 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1770 		 *
1771 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1772 		 *         -----------------            --------------    (E5)
1773 		 *         link-speed * 1000                 1000
1774 		 *
1775 		 * 'link-speed' is present in both sides of the fraction so
1776 		 * it is canceled out. The final equation is the following:
1777 		 *
1778 		 *     value = idleSlope * 61034
1779 		 *             -----------------                          (E6)
1780 		 *                  1000000
1781 		 *
1782 		 * NOTE: For i210, given the above, we can see that idleslope
1783 		 *       is represented in 16.38431 kbps units by the value at
1784 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1785 		 *       the granularity for idleslope increments.
1786 		 *       For instance, if you want to configure a 2576kbps
1787 		 *       idleslope, the value to be written on the register
1788 		 *       would have to be 157.23. If rounded down, you end
1789 		 *       up with less bandwidth available than originally
1790 		 *       required (~2572 kbps). If rounded up, you end up
1791 		 *       with a higher bandwidth (~2589 kbps). Below the
1792 		 *       approach we take is to always round up the
1793 		 *       calculated value, so the resulting bandwidth might
1794 		 *       be slightly higher for some configurations.
1795 		 */
1796 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1797 
1798 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1799 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1800 		tqavcc |= value;
1801 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1802 
1803 		wr32(E1000_I210_TQAVHC(queue),
1804 		     0x80000000 + ring->hicredit * 0x7735);
1805 	} else {
1806 
1807 		/* Set idleSlope to zero. */
1808 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1809 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1810 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1811 
1812 		/* Set hiCredit to zero. */
1813 		wr32(E1000_I210_TQAVHC(queue), 0);
1814 
1815 		/* If CBS is not enabled for any queues anymore, then return to
1816 		 * the default state of Data Transmission Arbitration on
1817 		 * TQAVCTRL.
1818 		 */
1819 		if (!is_any_cbs_enabled(adapter)) {
1820 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1821 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1822 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823 		}
1824 	}
1825 
1826 	/* If LaunchTime is enabled, set DataTranTIM. */
1827 	if (ring->launchtime_enable) {
1828 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1829 		 * for any of the SR queues, and configure fetchtime delta.
1830 		 * XXX NOTE:
1831 		 *     - LaunchTime will be enabled for all SR queues.
1832 		 *     - A fixed offset can be added relative to the launch
1833 		 *       time of all packets if configured at reg LAUNCH_OS0.
1834 		 *       We are keeping it as 0 for now (default value).
1835 		 */
1836 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1837 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1838 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1839 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1840 	} else {
1841 		/* If Launchtime is not enabled for any SR queues anymore,
1842 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1843 		 * effectively disabling Launchtime.
1844 		 */
1845 		if (!is_any_txtime_enabled(adapter)) {
1846 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1847 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1848 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1849 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850 		}
1851 	}
1852 
1853 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1854 	 * CBS are not configurable by software so we don't do any 'controller
1855 	 * configuration' in respect to these parameters.
1856 	 */
1857 
1858 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1859 		   ring->cbs_enable ? "enabled" : "disabled",
1860 		   ring->launchtime_enable ? "enabled" : "disabled",
1861 		   queue,
1862 		   ring->idleslope, ring->sendslope,
1863 		   ring->hicredit, ring->locredit);
1864 }
1865 
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1866 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1867 				  bool enable)
1868 {
1869 	struct igb_ring *ring;
1870 
1871 	if (queue < 0 || queue > adapter->num_tx_queues)
1872 		return -EINVAL;
1873 
1874 	ring = adapter->tx_ring[queue];
1875 	ring->launchtime_enable = enable;
1876 
1877 	return 0;
1878 }
1879 
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1880 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1881 			       bool enable, int idleslope, int sendslope,
1882 			       int hicredit, int locredit)
1883 {
1884 	struct igb_ring *ring;
1885 
1886 	if (queue < 0 || queue > adapter->num_tx_queues)
1887 		return -EINVAL;
1888 
1889 	ring = adapter->tx_ring[queue];
1890 
1891 	ring->cbs_enable = enable;
1892 	ring->idleslope = idleslope;
1893 	ring->sendslope = sendslope;
1894 	ring->hicredit = hicredit;
1895 	ring->locredit = locredit;
1896 
1897 	return 0;
1898 }
1899 
1900 /**
1901  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1902  *  @adapter: pointer to adapter struct
1903  *
1904  *  Configure TQAVCTRL register switching the controller's Tx mode
1905  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1906  *  a call to igb_config_tx_modes() per queue so any previously saved
1907  *  Tx parameters are applied.
1908  **/
igb_setup_tx_mode(struct igb_adapter * adapter)1909 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1910 {
1911 	struct net_device *netdev = adapter->netdev;
1912 	struct e1000_hw *hw = &adapter->hw;
1913 	u32 val;
1914 
1915 	/* Only i210 controller supports changing the transmission mode. */
1916 	if (hw->mac.type != e1000_i210)
1917 		return;
1918 
1919 	if (is_fqtss_enabled(adapter)) {
1920 		int i, max_queue;
1921 
1922 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1923 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1924 		 * so SP queues wait for SR ones.
1925 		 */
1926 		val = rd32(E1000_I210_TQAVCTRL);
1927 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1928 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1929 		wr32(E1000_I210_TQAVCTRL, val);
1930 
1931 		/* Configure Tx and Rx packet buffers sizes as described in
1932 		 * i210 datasheet section 7.2.7.7.
1933 		 */
1934 		val = rd32(E1000_TXPBS);
1935 		val &= ~I210_TXPBSIZE_MASK;
1936 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1937 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1938 		wr32(E1000_TXPBS, val);
1939 
1940 		val = rd32(E1000_RXPBS);
1941 		val &= ~I210_RXPBSIZE_MASK;
1942 		val |= I210_RXPBSIZE_PB_30KB;
1943 		wr32(E1000_RXPBS, val);
1944 
1945 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1946 		 * register should not exceed the buffer size programmed in
1947 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1948 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1949 		 * 4kB / 64.
1950 		 *
1951 		 * However, when we do so, no frame from queue 2 and 3 are
1952 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1953 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1954 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1955 		 */
1956 		val = (4096 - 1) / 64;
1957 		wr32(E1000_I210_DTXMXPKTSZ, val);
1958 
1959 		/* Since FQTSS mode is enabled, apply any CBS configuration
1960 		 * previously set. If no previous CBS configuration has been
1961 		 * done, then the initial configuration is applied, which means
1962 		 * CBS is disabled.
1963 		 */
1964 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1965 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1966 
1967 		for (i = 0; i < max_queue; i++) {
1968 			igb_config_tx_modes(adapter, i);
1969 		}
1970 	} else {
1971 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1972 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1973 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1974 
1975 		val = rd32(E1000_I210_TQAVCTRL);
1976 		/* According to Section 8.12.21, the other flags we've set when
1977 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1978 		 * don't set they here.
1979 		 */
1980 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1981 		wr32(E1000_I210_TQAVCTRL, val);
1982 	}
1983 
1984 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1985 		   "enabled" : "disabled");
1986 }
1987 
1988 /**
1989  *  igb_configure - configure the hardware for RX and TX
1990  *  @adapter: private board structure
1991  **/
igb_configure(struct igb_adapter * adapter)1992 static void igb_configure(struct igb_adapter *adapter)
1993 {
1994 	struct net_device *netdev = adapter->netdev;
1995 	int i;
1996 
1997 	igb_get_hw_control(adapter);
1998 	igb_set_rx_mode(netdev);
1999 	igb_setup_tx_mode(adapter);
2000 
2001 	igb_restore_vlan(adapter);
2002 
2003 	igb_setup_tctl(adapter);
2004 	igb_setup_mrqc(adapter);
2005 	igb_setup_rctl(adapter);
2006 
2007 	igb_nfc_filter_restore(adapter);
2008 	igb_configure_tx(adapter);
2009 	igb_configure_rx(adapter);
2010 
2011 	igb_rx_fifo_flush_82575(&adapter->hw);
2012 
2013 	/* call igb_desc_unused which always leaves
2014 	 * at least 1 descriptor unused to make sure
2015 	 * next_to_use != next_to_clean
2016 	 */
2017 	for (i = 0; i < adapter->num_rx_queues; i++) {
2018 		struct igb_ring *ring = adapter->rx_ring[i];
2019 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2020 	}
2021 }
2022 
2023 /**
2024  *  igb_power_up_link - Power up the phy/serdes link
2025  *  @adapter: address of board private structure
2026  **/
igb_power_up_link(struct igb_adapter * adapter)2027 void igb_power_up_link(struct igb_adapter *adapter)
2028 {
2029 	igb_reset_phy(&adapter->hw);
2030 
2031 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2032 		igb_power_up_phy_copper(&adapter->hw);
2033 	else
2034 		igb_power_up_serdes_link_82575(&adapter->hw);
2035 
2036 	igb_setup_link(&adapter->hw);
2037 }
2038 
2039 /**
2040  *  igb_power_down_link - Power down the phy/serdes link
2041  *  @adapter: address of board private structure
2042  */
igb_power_down_link(struct igb_adapter * adapter)2043 static void igb_power_down_link(struct igb_adapter *adapter)
2044 {
2045 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2046 		igb_power_down_phy_copper_82575(&adapter->hw);
2047 	else
2048 		igb_shutdown_serdes_link_82575(&adapter->hw);
2049 }
2050 
2051 /**
2052  * Detect and switch function for Media Auto Sense
2053  * @adapter: address of the board private structure
2054  **/
igb_check_swap_media(struct igb_adapter * adapter)2055 static void igb_check_swap_media(struct igb_adapter *adapter)
2056 {
2057 	struct e1000_hw *hw = &adapter->hw;
2058 	u32 ctrl_ext, connsw;
2059 	bool swap_now = false;
2060 
2061 	ctrl_ext = rd32(E1000_CTRL_EXT);
2062 	connsw = rd32(E1000_CONNSW);
2063 
2064 	/* need to live swap if current media is copper and we have fiber/serdes
2065 	 * to go to.
2066 	 */
2067 
2068 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2069 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2070 		swap_now = true;
2071 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2072 		   !(connsw & E1000_CONNSW_SERDESD)) {
2073 		/* copper signal takes time to appear */
2074 		if (adapter->copper_tries < 4) {
2075 			adapter->copper_tries++;
2076 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2077 			wr32(E1000_CONNSW, connsw);
2078 			return;
2079 		} else {
2080 			adapter->copper_tries = 0;
2081 			if ((connsw & E1000_CONNSW_PHYSD) &&
2082 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2083 				swap_now = true;
2084 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2085 				wr32(E1000_CONNSW, connsw);
2086 			}
2087 		}
2088 	}
2089 
2090 	if (!swap_now)
2091 		return;
2092 
2093 	switch (hw->phy.media_type) {
2094 	case e1000_media_type_copper:
2095 		netdev_info(adapter->netdev,
2096 			"MAS: changing media to fiber/serdes\n");
2097 		ctrl_ext |=
2098 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2099 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2100 		adapter->copper_tries = 0;
2101 		break;
2102 	case e1000_media_type_internal_serdes:
2103 	case e1000_media_type_fiber:
2104 		netdev_info(adapter->netdev,
2105 			"MAS: changing media to copper\n");
2106 		ctrl_ext &=
2107 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2108 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2109 		break;
2110 	default:
2111 		/* shouldn't get here during regular operation */
2112 		netdev_err(adapter->netdev,
2113 			"AMS: Invalid media type found, returning\n");
2114 		break;
2115 	}
2116 	wr32(E1000_CTRL_EXT, ctrl_ext);
2117 }
2118 
2119 /**
2120  *  igb_up - Open the interface and prepare it to handle traffic
2121  *  @adapter: board private structure
2122  **/
igb_up(struct igb_adapter * adapter)2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125 	struct e1000_hw *hw = &adapter->hw;
2126 	int i;
2127 
2128 	/* hardware has been reset, we need to reload some things */
2129 	igb_configure(adapter);
2130 
2131 	clear_bit(__IGB_DOWN, &adapter->state);
2132 
2133 	for (i = 0; i < adapter->num_q_vectors; i++)
2134 		napi_enable(&(adapter->q_vector[i]->napi));
2135 
2136 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2137 		igb_configure_msix(adapter);
2138 	else
2139 		igb_assign_vector(adapter->q_vector[0], 0);
2140 
2141 	/* Clear any pending interrupts. */
2142 	rd32(E1000_TSICR);
2143 	rd32(E1000_ICR);
2144 	igb_irq_enable(adapter);
2145 
2146 	/* notify VFs that reset has been completed */
2147 	if (adapter->vfs_allocated_count) {
2148 		u32 reg_data = rd32(E1000_CTRL_EXT);
2149 
2150 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2151 		wr32(E1000_CTRL_EXT, reg_data);
2152 	}
2153 
2154 	netif_tx_start_all_queues(adapter->netdev);
2155 
2156 	/* start the watchdog. */
2157 	hw->mac.get_link_status = 1;
2158 	schedule_work(&adapter->watchdog_task);
2159 
2160 	if ((adapter->flags & IGB_FLAG_EEE) &&
2161 	    (!hw->dev_spec._82575.eee_disable))
2162 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2163 
2164 	return 0;
2165 }
2166 
igb_down(struct igb_adapter * adapter)2167 void igb_down(struct igb_adapter *adapter)
2168 {
2169 	struct net_device *netdev = adapter->netdev;
2170 	struct e1000_hw *hw = &adapter->hw;
2171 	u32 tctl, rctl;
2172 	int i;
2173 
2174 	/* signal that we're down so the interrupt handler does not
2175 	 * reschedule our watchdog timer
2176 	 */
2177 	set_bit(__IGB_DOWN, &adapter->state);
2178 
2179 	/* disable receives in the hardware */
2180 	rctl = rd32(E1000_RCTL);
2181 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2182 	/* flush and sleep below */
2183 
2184 	igb_nfc_filter_exit(adapter);
2185 
2186 	netif_carrier_off(netdev);
2187 	netif_tx_stop_all_queues(netdev);
2188 
2189 	/* disable transmits in the hardware */
2190 	tctl = rd32(E1000_TCTL);
2191 	tctl &= ~E1000_TCTL_EN;
2192 	wr32(E1000_TCTL, tctl);
2193 	/* flush both disables and wait for them to finish */
2194 	wrfl();
2195 	usleep_range(10000, 11000);
2196 
2197 	igb_irq_disable(adapter);
2198 
2199 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2200 
2201 	for (i = 0; i < adapter->num_q_vectors; i++) {
2202 		if (adapter->q_vector[i]) {
2203 			napi_synchronize(&adapter->q_vector[i]->napi);
2204 			napi_disable(&adapter->q_vector[i]->napi);
2205 		}
2206 	}
2207 
2208 	del_timer_sync(&adapter->watchdog_timer);
2209 	del_timer_sync(&adapter->phy_info_timer);
2210 
2211 	/* record the stats before reset*/
2212 	spin_lock(&adapter->stats64_lock);
2213 	igb_update_stats(adapter);
2214 	spin_unlock(&adapter->stats64_lock);
2215 
2216 	adapter->link_speed = 0;
2217 	adapter->link_duplex = 0;
2218 
2219 	if (!pci_channel_offline(adapter->pdev))
2220 		igb_reset(adapter);
2221 
2222 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2223 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2224 
2225 	igb_clean_all_tx_rings(adapter);
2226 	igb_clean_all_rx_rings(adapter);
2227 #ifdef CONFIG_IGB_DCA
2228 
2229 	/* since we reset the hardware DCA settings were cleared */
2230 	igb_setup_dca(adapter);
2231 #endif
2232 }
2233 
igb_reinit_locked(struct igb_adapter * adapter)2234 void igb_reinit_locked(struct igb_adapter *adapter)
2235 {
2236 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2237 		usleep_range(1000, 2000);
2238 	igb_down(adapter);
2239 	igb_up(adapter);
2240 	clear_bit(__IGB_RESETTING, &adapter->state);
2241 }
2242 
2243 /** igb_enable_mas - Media Autosense re-enable after swap
2244  *
2245  * @adapter: adapter struct
2246  **/
igb_enable_mas(struct igb_adapter * adapter)2247 static void igb_enable_mas(struct igb_adapter *adapter)
2248 {
2249 	struct e1000_hw *hw = &adapter->hw;
2250 	u32 connsw = rd32(E1000_CONNSW);
2251 
2252 	/* configure for SerDes media detect */
2253 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2254 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2255 		connsw |= E1000_CONNSW_ENRGSRC;
2256 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2257 		wr32(E1000_CONNSW, connsw);
2258 		wrfl();
2259 	}
2260 }
2261 
igb_reset(struct igb_adapter * adapter)2262 void igb_reset(struct igb_adapter *adapter)
2263 {
2264 	struct pci_dev *pdev = adapter->pdev;
2265 	struct e1000_hw *hw = &adapter->hw;
2266 	struct e1000_mac_info *mac = &hw->mac;
2267 	struct e1000_fc_info *fc = &hw->fc;
2268 	u32 pba, hwm;
2269 
2270 	/* Repartition Pba for greater than 9k mtu
2271 	 * To take effect CTRL.RST is required.
2272 	 */
2273 	switch (mac->type) {
2274 	case e1000_i350:
2275 	case e1000_i354:
2276 	case e1000_82580:
2277 		pba = rd32(E1000_RXPBS);
2278 		pba = igb_rxpbs_adjust_82580(pba);
2279 		break;
2280 	case e1000_82576:
2281 		pba = rd32(E1000_RXPBS);
2282 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2283 		break;
2284 	case e1000_82575:
2285 	case e1000_i210:
2286 	case e1000_i211:
2287 	default:
2288 		pba = E1000_PBA_34K;
2289 		break;
2290 	}
2291 
2292 	if (mac->type == e1000_82575) {
2293 		u32 min_rx_space, min_tx_space, needed_tx_space;
2294 
2295 		/* write Rx PBA so that hardware can report correct Tx PBA */
2296 		wr32(E1000_PBA, pba);
2297 
2298 		/* To maintain wire speed transmits, the Tx FIFO should be
2299 		 * large enough to accommodate two full transmit packets,
2300 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2301 		 * the Rx FIFO should be large enough to accommodate at least
2302 		 * one full receive packet and is similarly rounded up and
2303 		 * expressed in KB.
2304 		 */
2305 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2306 
2307 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2308 		 * but don't include Ethernet FCS because hardware appends it.
2309 		 * We only need to round down to the nearest 512 byte block
2310 		 * count since the value we care about is 2 frames, not 1.
2311 		 */
2312 		min_tx_space = adapter->max_frame_size;
2313 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2314 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2315 
2316 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2317 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2318 
2319 		/* If current Tx allocation is less than the min Tx FIFO size,
2320 		 * and the min Tx FIFO size is less than the current Rx FIFO
2321 		 * allocation, take space away from current Rx allocation.
2322 		 */
2323 		if (needed_tx_space < pba) {
2324 			pba -= needed_tx_space;
2325 
2326 			/* if short on Rx space, Rx wins and must trump Tx
2327 			 * adjustment
2328 			 */
2329 			if (pba < min_rx_space)
2330 				pba = min_rx_space;
2331 		}
2332 
2333 		/* adjust PBA for jumbo frames */
2334 		wr32(E1000_PBA, pba);
2335 	}
2336 
2337 	/* flow control settings
2338 	 * The high water mark must be low enough to fit one full frame
2339 	 * after transmitting the pause frame.  As such we must have enough
2340 	 * space to allow for us to complete our current transmit and then
2341 	 * receive the frame that is in progress from the link partner.
2342 	 * Set it to:
2343 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2344 	 */
2345 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2346 
2347 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2348 	fc->low_water = fc->high_water - 16;
2349 	fc->pause_time = 0xFFFF;
2350 	fc->send_xon = 1;
2351 	fc->current_mode = fc->requested_mode;
2352 
2353 	/* disable receive for all VFs and wait one second */
2354 	if (adapter->vfs_allocated_count) {
2355 		int i;
2356 
2357 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2358 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2359 
2360 		/* ping all the active vfs to let them know we are going down */
2361 		igb_ping_all_vfs(adapter);
2362 
2363 		/* disable transmits and receives */
2364 		wr32(E1000_VFRE, 0);
2365 		wr32(E1000_VFTE, 0);
2366 	}
2367 
2368 	/* Allow time for pending master requests to run */
2369 	hw->mac.ops.reset_hw(hw);
2370 	wr32(E1000_WUC, 0);
2371 
2372 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2373 		/* need to resetup here after media swap */
2374 		adapter->ei.get_invariants(hw);
2375 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2376 	}
2377 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2378 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2379 		igb_enable_mas(adapter);
2380 	}
2381 	if (hw->mac.ops.init_hw(hw))
2382 		dev_err(&pdev->dev, "Hardware Error\n");
2383 
2384 	/* RAR registers were cleared during init_hw, clear mac table */
2385 	igb_flush_mac_table(adapter);
2386 	__dev_uc_unsync(adapter->netdev, NULL);
2387 
2388 	/* Recover default RAR entry */
2389 	igb_set_default_mac_filter(adapter);
2390 
2391 	/* Flow control settings reset on hardware reset, so guarantee flow
2392 	 * control is off when forcing speed.
2393 	 */
2394 	if (!hw->mac.autoneg)
2395 		igb_force_mac_fc(hw);
2396 
2397 	igb_init_dmac(adapter, pba);
2398 #ifdef CONFIG_IGB_HWMON
2399 	/* Re-initialize the thermal sensor on i350 devices. */
2400 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2401 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2402 			/* If present, re-initialize the external thermal sensor
2403 			 * interface.
2404 			 */
2405 			if (adapter->ets)
2406 				mac->ops.init_thermal_sensor_thresh(hw);
2407 		}
2408 	}
2409 #endif
2410 	/* Re-establish EEE setting */
2411 	if (hw->phy.media_type == e1000_media_type_copper) {
2412 		switch (mac->type) {
2413 		case e1000_i350:
2414 		case e1000_i210:
2415 		case e1000_i211:
2416 			igb_set_eee_i350(hw, true, true);
2417 			break;
2418 		case e1000_i354:
2419 			igb_set_eee_i354(hw, true, true);
2420 			break;
2421 		default:
2422 			break;
2423 		}
2424 	}
2425 	if (!netif_running(adapter->netdev))
2426 		igb_power_down_link(adapter);
2427 
2428 	igb_update_mng_vlan(adapter);
2429 
2430 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2431 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2432 
2433 	/* Re-enable PTP, where applicable. */
2434 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2435 		igb_ptp_reset(adapter);
2436 
2437 	igb_get_phy_info(hw);
2438 }
2439 
igb_fix_features(struct net_device * netdev,netdev_features_t features)2440 static netdev_features_t igb_fix_features(struct net_device *netdev,
2441 	netdev_features_t features)
2442 {
2443 	/* Since there is no support for separate Rx/Tx vlan accel
2444 	 * enable/disable make sure Tx flag is always in same state as Rx.
2445 	 */
2446 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2447 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2448 	else
2449 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2450 
2451 	return features;
2452 }
2453 
igb_set_features(struct net_device * netdev,netdev_features_t features)2454 static int igb_set_features(struct net_device *netdev,
2455 	netdev_features_t features)
2456 {
2457 	netdev_features_t changed = netdev->features ^ features;
2458 	struct igb_adapter *adapter = netdev_priv(netdev);
2459 
2460 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2461 		igb_vlan_mode(netdev, features);
2462 
2463 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464 		return 0;
2465 
2466 	if (!(features & NETIF_F_NTUPLE)) {
2467 		struct hlist_node *node2;
2468 		struct igb_nfc_filter *rule;
2469 
2470 		spin_lock(&adapter->nfc_lock);
2471 		hlist_for_each_entry_safe(rule, node2,
2472 					  &adapter->nfc_filter_list, nfc_node) {
2473 			igb_erase_filter(adapter, rule);
2474 			hlist_del(&rule->nfc_node);
2475 			kfree(rule);
2476 		}
2477 		spin_unlock(&adapter->nfc_lock);
2478 		adapter->nfc_filter_count = 0;
2479 	}
2480 
2481 	netdev->features = features;
2482 
2483 	if (netif_running(netdev))
2484 		igb_reinit_locked(adapter);
2485 	else
2486 		igb_reset(adapter);
2487 
2488 	return 1;
2489 }
2490 
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2491 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2492 			   struct net_device *dev,
2493 			   const unsigned char *addr, u16 vid,
2494 			   u16 flags,
2495 			   struct netlink_ext_ack *extack)
2496 {
2497 	/* guarantee we can provide a unique filter for the unicast address */
2498 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2499 		struct igb_adapter *adapter = netdev_priv(dev);
2500 		int vfn = adapter->vfs_allocated_count;
2501 
2502 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2503 			return -ENOMEM;
2504 	}
2505 
2506 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2507 }
2508 
2509 #define IGB_MAX_MAC_HDR_LEN	127
2510 #define IGB_MAX_NETWORK_HDR_LEN	511
2511 
2512 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2513 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2514 		   netdev_features_t features)
2515 {
2516 	unsigned int network_hdr_len, mac_hdr_len;
2517 
2518 	/* Make certain the headers can be described by a context descriptor */
2519 	mac_hdr_len = skb_network_header(skb) - skb->data;
2520 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2521 		return features & ~(NETIF_F_HW_CSUM |
2522 				    NETIF_F_SCTP_CRC |
2523 				    NETIF_F_GSO_UDP_L4 |
2524 				    NETIF_F_HW_VLAN_CTAG_TX |
2525 				    NETIF_F_TSO |
2526 				    NETIF_F_TSO6);
2527 
2528 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2529 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2530 		return features & ~(NETIF_F_HW_CSUM |
2531 				    NETIF_F_SCTP_CRC |
2532 				    NETIF_F_GSO_UDP_L4 |
2533 				    NETIF_F_TSO |
2534 				    NETIF_F_TSO6);
2535 
2536 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2537 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2538 	 */
2539 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2540 		features &= ~NETIF_F_TSO;
2541 
2542 	return features;
2543 }
2544 
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2545 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2546 {
2547 	if (!is_fqtss_enabled(adapter)) {
2548 		enable_fqtss(adapter, true);
2549 		return;
2550 	}
2551 
2552 	igb_config_tx_modes(adapter, queue);
2553 
2554 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2555 		enable_fqtss(adapter, false);
2556 }
2557 
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2558 static int igb_offload_cbs(struct igb_adapter *adapter,
2559 			   struct tc_cbs_qopt_offload *qopt)
2560 {
2561 	struct e1000_hw *hw = &adapter->hw;
2562 	int err;
2563 
2564 	/* CBS offloading is only supported by i210 controller. */
2565 	if (hw->mac.type != e1000_i210)
2566 		return -EOPNOTSUPP;
2567 
2568 	/* CBS offloading is only supported by queue 0 and queue 1. */
2569 	if (qopt->queue < 0 || qopt->queue > 1)
2570 		return -EINVAL;
2571 
2572 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2573 				  qopt->idleslope, qopt->sendslope,
2574 				  qopt->hicredit, qopt->locredit);
2575 	if (err)
2576 		return err;
2577 
2578 	igb_offload_apply(adapter, qopt->queue);
2579 
2580 	return 0;
2581 }
2582 
2583 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2584 #define VLAN_PRIO_FULL_MASK (0x07)
2585 
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2586 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2587 				struct flow_cls_offload *f,
2588 				int traffic_class,
2589 				struct igb_nfc_filter *input)
2590 {
2591 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2592 	struct flow_dissector *dissector = rule->match.dissector;
2593 	struct netlink_ext_ack *extack = f->common.extack;
2594 
2595 	if (dissector->used_keys &
2596 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2597 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2598 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2599 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2600 		NL_SET_ERR_MSG_MOD(extack,
2601 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2602 		return -EOPNOTSUPP;
2603 	}
2604 
2605 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2606 		struct flow_match_eth_addrs match;
2607 
2608 		flow_rule_match_eth_addrs(rule, &match);
2609 		if (!is_zero_ether_addr(match.mask->dst)) {
2610 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2611 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2612 				return -EINVAL;
2613 			}
2614 
2615 			input->filter.match_flags |=
2616 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2617 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2618 		}
2619 
2620 		if (!is_zero_ether_addr(match.mask->src)) {
2621 			if (!is_broadcast_ether_addr(match.mask->src)) {
2622 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2623 				return -EINVAL;
2624 			}
2625 
2626 			input->filter.match_flags |=
2627 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2628 			ether_addr_copy(input->filter.src_addr, match.key->src);
2629 		}
2630 	}
2631 
2632 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2633 		struct flow_match_basic match;
2634 
2635 		flow_rule_match_basic(rule, &match);
2636 		if (match.mask->n_proto) {
2637 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2638 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2639 				return -EINVAL;
2640 			}
2641 
2642 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2643 			input->filter.etype = match.key->n_proto;
2644 		}
2645 	}
2646 
2647 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2648 		struct flow_match_vlan match;
2649 
2650 		flow_rule_match_vlan(rule, &match);
2651 		if (match.mask->vlan_priority) {
2652 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2653 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2654 				return -EINVAL;
2655 			}
2656 
2657 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2658 			input->filter.vlan_tci =
2659 				(__force __be16)match.key->vlan_priority;
2660 		}
2661 	}
2662 
2663 	input->action = traffic_class;
2664 	input->cookie = f->cookie;
2665 
2666 	return 0;
2667 }
2668 
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2669 static int igb_configure_clsflower(struct igb_adapter *adapter,
2670 				   struct flow_cls_offload *cls_flower)
2671 {
2672 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2673 	struct igb_nfc_filter *filter, *f;
2674 	int err, tc;
2675 
2676 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2677 	if (tc < 0) {
2678 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679 		return -EINVAL;
2680 	}
2681 
2682 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683 	if (!filter)
2684 		return -ENOMEM;
2685 
2686 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687 	if (err < 0)
2688 		goto err_parse;
2689 
2690 	spin_lock(&adapter->nfc_lock);
2691 
2692 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2693 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2694 			err = -EEXIST;
2695 			NL_SET_ERR_MSG_MOD(extack,
2696 					   "This filter is already set in ethtool");
2697 			goto err_locked;
2698 		}
2699 	}
2700 
2701 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2702 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703 			err = -EEXIST;
2704 			NL_SET_ERR_MSG_MOD(extack,
2705 					   "This filter is already set in cls_flower");
2706 			goto err_locked;
2707 		}
2708 	}
2709 
2710 	err = igb_add_filter(adapter, filter);
2711 	if (err < 0) {
2712 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713 		goto err_locked;
2714 	}
2715 
2716 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2717 
2718 	spin_unlock(&adapter->nfc_lock);
2719 
2720 	return 0;
2721 
2722 err_locked:
2723 	spin_unlock(&adapter->nfc_lock);
2724 
2725 err_parse:
2726 	kfree(filter);
2727 
2728 	return err;
2729 }
2730 
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2731 static int igb_delete_clsflower(struct igb_adapter *adapter,
2732 				struct flow_cls_offload *cls_flower)
2733 {
2734 	struct igb_nfc_filter *filter;
2735 	int err;
2736 
2737 	spin_lock(&adapter->nfc_lock);
2738 
2739 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2740 		if (filter->cookie == cls_flower->cookie)
2741 			break;
2742 
2743 	if (!filter) {
2744 		err = -ENOENT;
2745 		goto out;
2746 	}
2747 
2748 	err = igb_erase_filter(adapter, filter);
2749 	if (err < 0)
2750 		goto out;
2751 
2752 	hlist_del(&filter->nfc_node);
2753 	kfree(filter);
2754 
2755 out:
2756 	spin_unlock(&adapter->nfc_lock);
2757 
2758 	return err;
2759 }
2760 
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2761 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2762 				   struct flow_cls_offload *cls_flower)
2763 {
2764 	switch (cls_flower->command) {
2765 	case FLOW_CLS_REPLACE:
2766 		return igb_configure_clsflower(adapter, cls_flower);
2767 	case FLOW_CLS_DESTROY:
2768 		return igb_delete_clsflower(adapter, cls_flower);
2769 	case FLOW_CLS_STATS:
2770 		return -EOPNOTSUPP;
2771 	default:
2772 		return -EOPNOTSUPP;
2773 	}
2774 }
2775 
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2776 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2777 				 void *cb_priv)
2778 {
2779 	struct igb_adapter *adapter = cb_priv;
2780 
2781 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782 		return -EOPNOTSUPP;
2783 
2784 	switch (type) {
2785 	case TC_SETUP_CLSFLOWER:
2786 		return igb_setup_tc_cls_flower(adapter, type_data);
2787 
2788 	default:
2789 		return -EOPNOTSUPP;
2790 	}
2791 }
2792 
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2793 static int igb_offload_txtime(struct igb_adapter *adapter,
2794 			      struct tc_etf_qopt_offload *qopt)
2795 {
2796 	struct e1000_hw *hw = &adapter->hw;
2797 	int err;
2798 
2799 	/* Launchtime offloading is only supported by i210 controller. */
2800 	if (hw->mac.type != e1000_i210)
2801 		return -EOPNOTSUPP;
2802 
2803 	/* Launchtime offloading is only supported by queues 0 and 1. */
2804 	if (qopt->queue < 0 || qopt->queue > 1)
2805 		return -EINVAL;
2806 
2807 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808 	if (err)
2809 		return err;
2810 
2811 	igb_offload_apply(adapter, qopt->queue);
2812 
2813 	return 0;
2814 }
2815 
2816 static LIST_HEAD(igb_block_cb_list);
2817 
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2818 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2819 			void *type_data)
2820 {
2821 	struct igb_adapter *adapter = netdev_priv(dev);
2822 
2823 	switch (type) {
2824 	case TC_SETUP_QDISC_CBS:
2825 		return igb_offload_cbs(adapter, type_data);
2826 	case TC_SETUP_BLOCK:
2827 		return flow_block_cb_setup_simple(type_data,
2828 						  &igb_block_cb_list,
2829 						  igb_setup_tc_block_cb,
2830 						  adapter, adapter, true);
2831 
2832 	case TC_SETUP_QDISC_ETF:
2833 		return igb_offload_txtime(adapter, type_data);
2834 
2835 	default:
2836 		return -EOPNOTSUPP;
2837 	}
2838 }
2839 
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2840 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2841 {
2842 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2843 	struct igb_adapter *adapter = netdev_priv(dev);
2844 	struct bpf_prog *prog = bpf->prog, *old_prog;
2845 	bool running = netif_running(dev);
2846 	bool need_reset;
2847 
2848 	/* verify igb ring attributes are sufficient for XDP */
2849 	for (i = 0; i < adapter->num_rx_queues; i++) {
2850 		struct igb_ring *ring = adapter->rx_ring[i];
2851 
2852 		if (frame_size > igb_rx_bufsz(ring)) {
2853 			NL_SET_ERR_MSG_MOD(bpf->extack,
2854 					   "The RX buffer size is too small for the frame size");
2855 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2856 				    igb_rx_bufsz(ring), frame_size);
2857 			return -EINVAL;
2858 		}
2859 	}
2860 
2861 	old_prog = xchg(&adapter->xdp_prog, prog);
2862 	need_reset = (!!prog != !!old_prog);
2863 
2864 	/* device is up and bpf is added/removed, must setup the RX queues */
2865 	if (need_reset && running) {
2866 		igb_close(dev);
2867 	} else {
2868 		for (i = 0; i < adapter->num_rx_queues; i++)
2869 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2870 			    adapter->xdp_prog);
2871 	}
2872 
2873 	if (old_prog)
2874 		bpf_prog_put(old_prog);
2875 
2876 	/* bpf is just replaced, RXQ and MTU are already setup */
2877 	if (!need_reset)
2878 		return 0;
2879 
2880 	if (running)
2881 		igb_open(dev);
2882 
2883 	return 0;
2884 }
2885 
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2886 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2887 {
2888 	switch (xdp->command) {
2889 	case XDP_SETUP_PROG:
2890 		return igb_xdp_setup(dev, xdp);
2891 	default:
2892 		return -EINVAL;
2893 	}
2894 }
2895 
igb_xdp_ring_update_tail(struct igb_ring * ring)2896 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2897 {
2898 	/* Force memory writes to complete before letting h/w know there
2899 	 * are new descriptors to fetch.
2900 	 */
2901 	wmb();
2902 	writel(ring->next_to_use, ring->tail);
2903 }
2904 
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2905 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2906 {
2907 	unsigned int r_idx = smp_processor_id();
2908 
2909 	if (r_idx >= adapter->num_tx_queues)
2910 		r_idx = r_idx % adapter->num_tx_queues;
2911 
2912 	return adapter->tx_ring[r_idx];
2913 }
2914 
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2915 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2916 {
2917 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2918 	int cpu = smp_processor_id();
2919 	struct igb_ring *tx_ring;
2920 	struct netdev_queue *nq;
2921 	u32 ret;
2922 
2923 	if (unlikely(!xdpf))
2924 		return IGB_XDP_CONSUMED;
2925 
2926 	/* During program transitions its possible adapter->xdp_prog is assigned
2927 	 * but ring has not been configured yet. In this case simply abort xmit.
2928 	 */
2929 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2930 	if (unlikely(!tx_ring))
2931 		return IGB_XDP_CONSUMED;
2932 
2933 	nq = txring_txq(tx_ring);
2934 	__netif_tx_lock(nq, cpu);
2935 	/* Avoid transmit queue timeout since we share it with the slow path */
2936 	nq->trans_start = jiffies;
2937 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2938 	__netif_tx_unlock(nq);
2939 
2940 	return ret;
2941 }
2942 
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2943 static int igb_xdp_xmit(struct net_device *dev, int n,
2944 			struct xdp_frame **frames, u32 flags)
2945 {
2946 	struct igb_adapter *adapter = netdev_priv(dev);
2947 	int cpu = smp_processor_id();
2948 	struct igb_ring *tx_ring;
2949 	struct netdev_queue *nq;
2950 	int drops = 0;
2951 	int i;
2952 
2953 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2954 		return -ENETDOWN;
2955 
2956 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2957 		return -EINVAL;
2958 
2959 	/* During program transitions its possible adapter->xdp_prog is assigned
2960 	 * but ring has not been configured yet. In this case simply abort xmit.
2961 	 */
2962 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2963 	if (unlikely(!tx_ring))
2964 		return -ENXIO;
2965 
2966 	nq = txring_txq(tx_ring);
2967 	__netif_tx_lock(nq, cpu);
2968 
2969 	/* Avoid transmit queue timeout since we share it with the slow path */
2970 	nq->trans_start = jiffies;
2971 
2972 	for (i = 0; i < n; i++) {
2973 		struct xdp_frame *xdpf = frames[i];
2974 		int err;
2975 
2976 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2977 		if (err != IGB_XDP_TX) {
2978 			xdp_return_frame_rx_napi(xdpf);
2979 			drops++;
2980 		}
2981 	}
2982 
2983 	__netif_tx_unlock(nq);
2984 
2985 	if (unlikely(flags & XDP_XMIT_FLUSH))
2986 		igb_xdp_ring_update_tail(tx_ring);
2987 
2988 	return n - drops;
2989 }
2990 
2991 static const struct net_device_ops igb_netdev_ops = {
2992 	.ndo_open		= igb_open,
2993 	.ndo_stop		= igb_close,
2994 	.ndo_start_xmit		= igb_xmit_frame,
2995 	.ndo_get_stats64	= igb_get_stats64,
2996 	.ndo_set_rx_mode	= igb_set_rx_mode,
2997 	.ndo_set_mac_address	= igb_set_mac,
2998 	.ndo_change_mtu		= igb_change_mtu,
2999 	.ndo_do_ioctl		= igb_ioctl,
3000 	.ndo_tx_timeout		= igb_tx_timeout,
3001 	.ndo_validate_addr	= eth_validate_addr,
3002 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3003 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3004 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3005 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3006 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3007 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3008 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3009 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3010 	.ndo_fix_features	= igb_fix_features,
3011 	.ndo_set_features	= igb_set_features,
3012 	.ndo_fdb_add		= igb_ndo_fdb_add,
3013 	.ndo_features_check	= igb_features_check,
3014 	.ndo_setup_tc		= igb_setup_tc,
3015 	.ndo_bpf		= igb_xdp,
3016 	.ndo_xdp_xmit		= igb_xdp_xmit,
3017 };
3018 
3019 /**
3020  * igb_set_fw_version - Configure version string for ethtool
3021  * @adapter: adapter struct
3022  **/
igb_set_fw_version(struct igb_adapter * adapter)3023 void igb_set_fw_version(struct igb_adapter *adapter)
3024 {
3025 	struct e1000_hw *hw = &adapter->hw;
3026 	struct e1000_fw_version fw;
3027 
3028 	igb_get_fw_version(hw, &fw);
3029 
3030 	switch (hw->mac.type) {
3031 	case e1000_i210:
3032 	case e1000_i211:
3033 		if (!(igb_get_flash_presence_i210(hw))) {
3034 			snprintf(adapter->fw_version,
3035 				 sizeof(adapter->fw_version),
3036 				 "%2d.%2d-%d",
3037 				 fw.invm_major, fw.invm_minor,
3038 				 fw.invm_img_type);
3039 			break;
3040 		}
3041 		fallthrough;
3042 	default:
3043 		/* if option is rom valid, display its version too */
3044 		if (fw.or_valid) {
3045 			snprintf(adapter->fw_version,
3046 				 sizeof(adapter->fw_version),
3047 				 "%d.%d, 0x%08x, %d.%d.%d",
3048 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3049 				 fw.or_major, fw.or_build, fw.or_patch);
3050 		/* no option rom */
3051 		} else if (fw.etrack_id != 0X0000) {
3052 			snprintf(adapter->fw_version,
3053 			    sizeof(adapter->fw_version),
3054 			    "%d.%d, 0x%08x",
3055 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3056 		} else {
3057 		snprintf(adapter->fw_version,
3058 		    sizeof(adapter->fw_version),
3059 		    "%d.%d.%d",
3060 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3061 		}
3062 		break;
3063 	}
3064 }
3065 
3066 /**
3067  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3068  *
3069  * @adapter: adapter struct
3070  **/
igb_init_mas(struct igb_adapter * adapter)3071 static void igb_init_mas(struct igb_adapter *adapter)
3072 {
3073 	struct e1000_hw *hw = &adapter->hw;
3074 	u16 eeprom_data;
3075 
3076 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3077 	switch (hw->bus.func) {
3078 	case E1000_FUNC_0:
3079 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3080 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3081 			netdev_info(adapter->netdev,
3082 				"MAS: Enabling Media Autosense for port %d\n",
3083 				hw->bus.func);
3084 		}
3085 		break;
3086 	case E1000_FUNC_1:
3087 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3088 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3089 			netdev_info(adapter->netdev,
3090 				"MAS: Enabling Media Autosense for port %d\n",
3091 				hw->bus.func);
3092 		}
3093 		break;
3094 	case E1000_FUNC_2:
3095 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3096 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3097 			netdev_info(adapter->netdev,
3098 				"MAS: Enabling Media Autosense for port %d\n",
3099 				hw->bus.func);
3100 		}
3101 		break;
3102 	case E1000_FUNC_3:
3103 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3104 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105 			netdev_info(adapter->netdev,
3106 				"MAS: Enabling Media Autosense for port %d\n",
3107 				hw->bus.func);
3108 		}
3109 		break;
3110 	default:
3111 		/* Shouldn't get here */
3112 		netdev_err(adapter->netdev,
3113 			"MAS: Invalid port configuration, returning\n");
3114 		break;
3115 	}
3116 }
3117 
3118 /**
3119  *  igb_init_i2c - Init I2C interface
3120  *  @adapter: pointer to adapter structure
3121  **/
igb_init_i2c(struct igb_adapter * adapter)3122 static s32 igb_init_i2c(struct igb_adapter *adapter)
3123 {
3124 	s32 status = 0;
3125 
3126 	/* I2C interface supported on i350 devices */
3127 	if (adapter->hw.mac.type != e1000_i350)
3128 		return 0;
3129 
3130 	/* Initialize the i2c bus which is controlled by the registers.
3131 	 * This bus will use the i2c_algo_bit structue that implements
3132 	 * the protocol through toggling of the 4 bits in the register.
3133 	 */
3134 	adapter->i2c_adap.owner = THIS_MODULE;
3135 	adapter->i2c_algo = igb_i2c_algo;
3136 	adapter->i2c_algo.data = adapter;
3137 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3138 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3139 	strlcpy(adapter->i2c_adap.name, "igb BB",
3140 		sizeof(adapter->i2c_adap.name));
3141 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3142 	return status;
3143 }
3144 
3145 /**
3146  *  igb_probe - Device Initialization Routine
3147  *  @pdev: PCI device information struct
3148  *  @ent: entry in igb_pci_tbl
3149  *
3150  *  Returns 0 on success, negative on failure
3151  *
3152  *  igb_probe initializes an adapter identified by a pci_dev structure.
3153  *  The OS initialization, configuring of the adapter private structure,
3154  *  and a hardware reset occur.
3155  **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3156 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3157 {
3158 	struct net_device *netdev;
3159 	struct igb_adapter *adapter;
3160 	struct e1000_hw *hw;
3161 	u16 eeprom_data = 0;
3162 	s32 ret_val;
3163 	static int global_quad_port_a; /* global quad port a indication */
3164 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3165 	int err, pci_using_dac;
3166 	u8 part_str[E1000_PBANUM_LENGTH];
3167 
3168 	/* Catch broken hardware that put the wrong VF device ID in
3169 	 * the PCIe SR-IOV capability.
3170 	 */
3171 	if (pdev->is_virtfn) {
3172 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3173 			pci_name(pdev), pdev->vendor, pdev->device);
3174 		return -EINVAL;
3175 	}
3176 
3177 	err = pci_enable_device_mem(pdev);
3178 	if (err)
3179 		return err;
3180 
3181 	pci_using_dac = 0;
3182 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183 	if (!err) {
3184 		pci_using_dac = 1;
3185 	} else {
3186 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3187 		if (err) {
3188 			dev_err(&pdev->dev,
3189 				"No usable DMA configuration, aborting\n");
3190 			goto err_dma;
3191 		}
3192 	}
3193 
3194 	err = pci_request_mem_regions(pdev, igb_driver_name);
3195 	if (err)
3196 		goto err_pci_reg;
3197 
3198 	pci_enable_pcie_error_reporting(pdev);
3199 
3200 	pci_set_master(pdev);
3201 	pci_save_state(pdev);
3202 
3203 	err = -ENOMEM;
3204 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3205 				   IGB_MAX_TX_QUEUES);
3206 	if (!netdev)
3207 		goto err_alloc_etherdev;
3208 
3209 	SET_NETDEV_DEV(netdev, &pdev->dev);
3210 
3211 	pci_set_drvdata(pdev, netdev);
3212 	adapter = netdev_priv(netdev);
3213 	adapter->netdev = netdev;
3214 	adapter->pdev = pdev;
3215 	hw = &adapter->hw;
3216 	hw->back = adapter;
3217 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3218 
3219 	err = -EIO;
3220 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3221 	if (!adapter->io_addr)
3222 		goto err_ioremap;
3223 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3224 	hw->hw_addr = adapter->io_addr;
3225 
3226 	netdev->netdev_ops = &igb_netdev_ops;
3227 	igb_set_ethtool_ops(netdev);
3228 	netdev->watchdog_timeo = 5 * HZ;
3229 
3230 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3231 
3232 	netdev->mem_start = pci_resource_start(pdev, 0);
3233 	netdev->mem_end = pci_resource_end(pdev, 0);
3234 
3235 	/* PCI config space info */
3236 	hw->vendor_id = pdev->vendor;
3237 	hw->device_id = pdev->device;
3238 	hw->revision_id = pdev->revision;
3239 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3240 	hw->subsystem_device_id = pdev->subsystem_device;
3241 
3242 	/* Copy the default MAC, PHY and NVM function pointers */
3243 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3244 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3245 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3246 	/* Initialize skew-specific constants */
3247 	err = ei->get_invariants(hw);
3248 	if (err)
3249 		goto err_sw_init;
3250 
3251 	/* setup the private structure */
3252 	err = igb_sw_init(adapter);
3253 	if (err)
3254 		goto err_sw_init;
3255 
3256 	igb_get_bus_info_pcie(hw);
3257 
3258 	hw->phy.autoneg_wait_to_complete = false;
3259 
3260 	/* Copper options */
3261 	if (hw->phy.media_type == e1000_media_type_copper) {
3262 		hw->phy.mdix = AUTO_ALL_MODES;
3263 		hw->phy.disable_polarity_correction = false;
3264 		hw->phy.ms_type = e1000_ms_hw_default;
3265 	}
3266 
3267 	if (igb_check_reset_block(hw))
3268 		dev_info(&pdev->dev,
3269 			"PHY reset is blocked due to SOL/IDER session.\n");
3270 
3271 	/* features is initialized to 0 in allocation, it might have bits
3272 	 * set by igb_sw_init so we should use an or instead of an
3273 	 * assignment.
3274 	 */
3275 	netdev->features |= NETIF_F_SG |
3276 			    NETIF_F_TSO |
3277 			    NETIF_F_TSO6 |
3278 			    NETIF_F_RXHASH |
3279 			    NETIF_F_RXCSUM |
3280 			    NETIF_F_HW_CSUM;
3281 
3282 	if (hw->mac.type >= e1000_82576)
3283 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3284 
3285 	if (hw->mac.type >= e1000_i350)
3286 		netdev->features |= NETIF_F_HW_TC;
3287 
3288 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3289 				  NETIF_F_GSO_GRE_CSUM | \
3290 				  NETIF_F_GSO_IPXIP4 | \
3291 				  NETIF_F_GSO_IPXIP6 | \
3292 				  NETIF_F_GSO_UDP_TUNNEL | \
3293 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3294 
3295 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3296 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3297 
3298 	/* copy netdev features into list of user selectable features */
3299 	netdev->hw_features |= netdev->features |
3300 			       NETIF_F_HW_VLAN_CTAG_RX |
3301 			       NETIF_F_HW_VLAN_CTAG_TX |
3302 			       NETIF_F_RXALL;
3303 
3304 	if (hw->mac.type >= e1000_i350)
3305 		netdev->hw_features |= NETIF_F_NTUPLE;
3306 
3307 	if (pci_using_dac)
3308 		netdev->features |= NETIF_F_HIGHDMA;
3309 
3310 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3311 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3312 	netdev->hw_enc_features |= netdev->vlan_features;
3313 
3314 	/* set this bit last since it cannot be part of vlan_features */
3315 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3316 			    NETIF_F_HW_VLAN_CTAG_RX |
3317 			    NETIF_F_HW_VLAN_CTAG_TX;
3318 
3319 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3320 
3321 	netdev->priv_flags |= IFF_UNICAST_FLT;
3322 
3323 	/* MTU range: 68 - 9216 */
3324 	netdev->min_mtu = ETH_MIN_MTU;
3325 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3326 
3327 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3328 
3329 	/* before reading the NVM, reset the controller to put the device in a
3330 	 * known good starting state
3331 	 */
3332 	hw->mac.ops.reset_hw(hw);
3333 
3334 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3335 	 * that doesn't contain a checksum
3336 	 */
3337 	switch (hw->mac.type) {
3338 	case e1000_i210:
3339 	case e1000_i211:
3340 		if (igb_get_flash_presence_i210(hw)) {
3341 			if (hw->nvm.ops.validate(hw) < 0) {
3342 				dev_err(&pdev->dev,
3343 					"The NVM Checksum Is Not Valid\n");
3344 				err = -EIO;
3345 				goto err_eeprom;
3346 			}
3347 		}
3348 		break;
3349 	default:
3350 		if (hw->nvm.ops.validate(hw) < 0) {
3351 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3352 			err = -EIO;
3353 			goto err_eeprom;
3354 		}
3355 		break;
3356 	}
3357 
3358 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3359 		/* copy the MAC address out of the NVM */
3360 		if (hw->mac.ops.read_mac_addr(hw))
3361 			dev_err(&pdev->dev, "NVM Read Error\n");
3362 	}
3363 
3364 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3365 
3366 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3367 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3368 		err = -EIO;
3369 		goto err_eeprom;
3370 	}
3371 
3372 	igb_set_default_mac_filter(adapter);
3373 
3374 	/* get firmware version for ethtool -i */
3375 	igb_set_fw_version(adapter);
3376 
3377 	/* configure RXPBSIZE and TXPBSIZE */
3378 	if (hw->mac.type == e1000_i210) {
3379 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3380 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3381 	}
3382 
3383 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3384 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3385 
3386 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3387 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3388 
3389 	/* Initialize link properties that are user-changeable */
3390 	adapter->fc_autoneg = true;
3391 	hw->mac.autoneg = true;
3392 	hw->phy.autoneg_advertised = 0x2f;
3393 
3394 	hw->fc.requested_mode = e1000_fc_default;
3395 	hw->fc.current_mode = e1000_fc_default;
3396 
3397 	igb_validate_mdi_setting(hw);
3398 
3399 	/* By default, support wake on port A */
3400 	if (hw->bus.func == 0)
3401 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3402 
3403 	/* Check the NVM for wake support on non-port A ports */
3404 	if (hw->mac.type >= e1000_82580)
3405 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3406 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3407 				 &eeprom_data);
3408 	else if (hw->bus.func == 1)
3409 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3410 
3411 	if (eeprom_data & IGB_EEPROM_APME)
3412 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3413 
3414 	/* now that we have the eeprom settings, apply the special cases where
3415 	 * the eeprom may be wrong or the board simply won't support wake on
3416 	 * lan on a particular port
3417 	 */
3418 	switch (pdev->device) {
3419 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3420 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3421 		break;
3422 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3423 	case E1000_DEV_ID_82576_FIBER:
3424 	case E1000_DEV_ID_82576_SERDES:
3425 		/* Wake events only supported on port A for dual fiber
3426 		 * regardless of eeprom setting
3427 		 */
3428 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3429 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3430 		break;
3431 	case E1000_DEV_ID_82576_QUAD_COPPER:
3432 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3433 		/* if quad port adapter, disable WoL on all but port A */
3434 		if (global_quad_port_a != 0)
3435 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3436 		else
3437 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3438 		/* Reset for multiple quad port adapters */
3439 		if (++global_quad_port_a == 4)
3440 			global_quad_port_a = 0;
3441 		break;
3442 	default:
3443 		/* If the device can't wake, don't set software support */
3444 		if (!device_can_wakeup(&adapter->pdev->dev))
3445 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446 	}
3447 
3448 	/* initialize the wol settings based on the eeprom settings */
3449 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3450 		adapter->wol |= E1000_WUFC_MAG;
3451 
3452 	/* Some vendors want WoL disabled by default, but still supported */
3453 	if ((hw->mac.type == e1000_i350) &&
3454 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3455 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456 		adapter->wol = 0;
3457 	}
3458 
3459 	/* Some vendors want the ability to Use the EEPROM setting as
3460 	 * enable/disable only, and not for capability
3461 	 */
3462 	if (((hw->mac.type == e1000_i350) ||
3463 	     (hw->mac.type == e1000_i354)) &&
3464 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3465 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3466 		adapter->wol = 0;
3467 	}
3468 	if (hw->mac.type == e1000_i350) {
3469 		if (((pdev->subsystem_device == 0x5001) ||
3470 		     (pdev->subsystem_device == 0x5002)) &&
3471 				(hw->bus.func == 0)) {
3472 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473 			adapter->wol = 0;
3474 		}
3475 		if (pdev->subsystem_device == 0x1F52)
3476 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477 	}
3478 
3479 	device_set_wakeup_enable(&adapter->pdev->dev,
3480 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3481 
3482 	/* reset the hardware with the new settings */
3483 	igb_reset(adapter);
3484 
3485 	/* Init the I2C interface */
3486 	err = igb_init_i2c(adapter);
3487 	if (err) {
3488 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3489 		goto err_eeprom;
3490 	}
3491 
3492 	/* let the f/w know that the h/w is now under the control of the
3493 	 * driver.
3494 	 */
3495 	igb_get_hw_control(adapter);
3496 
3497 	strcpy(netdev->name, "eth%d");
3498 	err = register_netdev(netdev);
3499 	if (err)
3500 		goto err_register;
3501 
3502 	/* carrier off reporting is important to ethtool even BEFORE open */
3503 	netif_carrier_off(netdev);
3504 
3505 #ifdef CONFIG_IGB_DCA
3506 	if (dca_add_requester(&pdev->dev) == 0) {
3507 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3508 		dev_info(&pdev->dev, "DCA enabled\n");
3509 		igb_setup_dca(adapter);
3510 	}
3511 
3512 #endif
3513 #ifdef CONFIG_IGB_HWMON
3514 	/* Initialize the thermal sensor on i350 devices. */
3515 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3516 		u16 ets_word;
3517 
3518 		/* Read the NVM to determine if this i350 device supports an
3519 		 * external thermal sensor.
3520 		 */
3521 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3522 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3523 			adapter->ets = true;
3524 		else
3525 			adapter->ets = false;
3526 		if (igb_sysfs_init(adapter))
3527 			dev_err(&pdev->dev,
3528 				"failed to allocate sysfs resources\n");
3529 	} else {
3530 		adapter->ets = false;
3531 	}
3532 #endif
3533 	/* Check if Media Autosense is enabled */
3534 	adapter->ei = *ei;
3535 	if (hw->dev_spec._82575.mas_capable)
3536 		igb_init_mas(adapter);
3537 
3538 	/* do hw tstamp init after resetting */
3539 	igb_ptp_init(adapter);
3540 
3541 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3542 	/* print bus type/speed/width info, not applicable to i354 */
3543 	if (hw->mac.type != e1000_i354) {
3544 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3545 			 netdev->name,
3546 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3547 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3548 			   "unknown"),
3549 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3550 			  "Width x4" :
3551 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3552 			  "Width x2" :
3553 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3554 			  "Width x1" : "unknown"), netdev->dev_addr);
3555 	}
3556 
3557 	if ((hw->mac.type == e1000_82576 &&
3558 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3559 	    (hw->mac.type >= e1000_i210 ||
3560 	     igb_get_flash_presence_i210(hw))) {
3561 		ret_val = igb_read_part_string(hw, part_str,
3562 					       E1000_PBANUM_LENGTH);
3563 	} else {
3564 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3565 	}
3566 
3567 	if (ret_val)
3568 		strcpy(part_str, "Unknown");
3569 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3570 	dev_info(&pdev->dev,
3571 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3572 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3573 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3574 		adapter->num_rx_queues, adapter->num_tx_queues);
3575 	if (hw->phy.media_type == e1000_media_type_copper) {
3576 		switch (hw->mac.type) {
3577 		case e1000_i350:
3578 		case e1000_i210:
3579 		case e1000_i211:
3580 			/* Enable EEE for internal copper PHY devices */
3581 			err = igb_set_eee_i350(hw, true, true);
3582 			if ((!err) &&
3583 			    (!hw->dev_spec._82575.eee_disable)) {
3584 				adapter->eee_advert =
3585 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3586 				adapter->flags |= IGB_FLAG_EEE;
3587 			}
3588 			break;
3589 		case e1000_i354:
3590 			if ((rd32(E1000_CTRL_EXT) &
3591 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3592 				err = igb_set_eee_i354(hw, true, true);
3593 				if ((!err) &&
3594 					(!hw->dev_spec._82575.eee_disable)) {
3595 					adapter->eee_advert =
3596 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3597 					adapter->flags |= IGB_FLAG_EEE;
3598 				}
3599 			}
3600 			break;
3601 		default:
3602 			break;
3603 		}
3604 	}
3605 
3606 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3607 
3608 	pm_runtime_put_noidle(&pdev->dev);
3609 	return 0;
3610 
3611 err_register:
3612 	igb_release_hw_control(adapter);
3613 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3614 err_eeprom:
3615 	if (!igb_check_reset_block(hw))
3616 		igb_reset_phy(hw);
3617 
3618 	if (hw->flash_address)
3619 		iounmap(hw->flash_address);
3620 err_sw_init:
3621 	kfree(adapter->mac_table);
3622 	kfree(adapter->shadow_vfta);
3623 	igb_clear_interrupt_scheme(adapter);
3624 #ifdef CONFIG_PCI_IOV
3625 	igb_disable_sriov(pdev);
3626 #endif
3627 	pci_iounmap(pdev, adapter->io_addr);
3628 err_ioremap:
3629 	free_netdev(netdev);
3630 err_alloc_etherdev:
3631 	pci_disable_pcie_error_reporting(pdev);
3632 	pci_release_mem_regions(pdev);
3633 err_pci_reg:
3634 err_dma:
3635 	pci_disable_device(pdev);
3636 	return err;
3637 }
3638 
3639 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3640 static int igb_disable_sriov(struct pci_dev *pdev)
3641 {
3642 	struct net_device *netdev = pci_get_drvdata(pdev);
3643 	struct igb_adapter *adapter = netdev_priv(netdev);
3644 	struct e1000_hw *hw = &adapter->hw;
3645 	unsigned long flags;
3646 
3647 	/* reclaim resources allocated to VFs */
3648 	if (adapter->vf_data) {
3649 		/* disable iov and allow time for transactions to clear */
3650 		if (pci_vfs_assigned(pdev)) {
3651 			dev_warn(&pdev->dev,
3652 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3653 			return -EPERM;
3654 		} else {
3655 			pci_disable_sriov(pdev);
3656 			msleep(500);
3657 		}
3658 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3659 		kfree(adapter->vf_mac_list);
3660 		adapter->vf_mac_list = NULL;
3661 		kfree(adapter->vf_data);
3662 		adapter->vf_data = NULL;
3663 		adapter->vfs_allocated_count = 0;
3664 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3665 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3666 		wrfl();
3667 		msleep(100);
3668 		dev_info(&pdev->dev, "IOV Disabled\n");
3669 
3670 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3671 		adapter->flags |= IGB_FLAG_DMAC;
3672 	}
3673 
3674 	return 0;
3675 }
3676 
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3677 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3678 {
3679 	struct net_device *netdev = pci_get_drvdata(pdev);
3680 	struct igb_adapter *adapter = netdev_priv(netdev);
3681 	int old_vfs = pci_num_vf(pdev);
3682 	struct vf_mac_filter *mac_list;
3683 	int err = 0;
3684 	int num_vf_mac_filters, i;
3685 
3686 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3687 		err = -EPERM;
3688 		goto out;
3689 	}
3690 	if (!num_vfs)
3691 		goto out;
3692 
3693 	if (old_vfs) {
3694 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3695 			 old_vfs, max_vfs);
3696 		adapter->vfs_allocated_count = old_vfs;
3697 	} else
3698 		adapter->vfs_allocated_count = num_vfs;
3699 
3700 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3701 				sizeof(struct vf_data_storage), GFP_KERNEL);
3702 
3703 	/* if allocation failed then we do not support SR-IOV */
3704 	if (!adapter->vf_data) {
3705 		adapter->vfs_allocated_count = 0;
3706 		err = -ENOMEM;
3707 		goto out;
3708 	}
3709 
3710 	/* Due to the limited number of RAR entries calculate potential
3711 	 * number of MAC filters available for the VFs. Reserve entries
3712 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3713 	 * for each VF for VF MAC.
3714 	 */
3715 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3716 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3717 			      adapter->vfs_allocated_count);
3718 
3719 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3720 				       sizeof(struct vf_mac_filter),
3721 				       GFP_KERNEL);
3722 
3723 	mac_list = adapter->vf_mac_list;
3724 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3725 
3726 	if (adapter->vf_mac_list) {
3727 		/* Initialize list of VF MAC filters */
3728 		for (i = 0; i < num_vf_mac_filters; i++) {
3729 			mac_list->vf = -1;
3730 			mac_list->free = true;
3731 			list_add(&mac_list->l, &adapter->vf_macs.l);
3732 			mac_list++;
3733 		}
3734 	} else {
3735 		/* If we could not allocate memory for the VF MAC filters
3736 		 * we can continue without this feature but warn user.
3737 		 */
3738 		dev_err(&pdev->dev,
3739 			"Unable to allocate memory for VF MAC filter list\n");
3740 	}
3741 
3742 	/* only call pci_enable_sriov() if no VFs are allocated already */
3743 	if (!old_vfs) {
3744 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3745 		if (err)
3746 			goto err_out;
3747 	}
3748 	dev_info(&pdev->dev, "%d VFs allocated\n",
3749 		 adapter->vfs_allocated_count);
3750 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3751 		igb_vf_configure(adapter, i);
3752 
3753 	/* DMA Coalescing is not supported in IOV mode. */
3754 	adapter->flags &= ~IGB_FLAG_DMAC;
3755 	goto out;
3756 
3757 err_out:
3758 	kfree(adapter->vf_mac_list);
3759 	adapter->vf_mac_list = NULL;
3760 	kfree(adapter->vf_data);
3761 	adapter->vf_data = NULL;
3762 	adapter->vfs_allocated_count = 0;
3763 out:
3764 	return err;
3765 }
3766 
3767 #endif
3768 /**
3769  *  igb_remove_i2c - Cleanup  I2C interface
3770  *  @adapter: pointer to adapter structure
3771  **/
igb_remove_i2c(struct igb_adapter * adapter)3772 static void igb_remove_i2c(struct igb_adapter *adapter)
3773 {
3774 	/* free the adapter bus structure */
3775 	i2c_del_adapter(&adapter->i2c_adap);
3776 }
3777 
3778 /**
3779  *  igb_remove - Device Removal Routine
3780  *  @pdev: PCI device information struct
3781  *
3782  *  igb_remove is called by the PCI subsystem to alert the driver
3783  *  that it should release a PCI device.  The could be caused by a
3784  *  Hot-Plug event, or because the driver is going to be removed from
3785  *  memory.
3786  **/
igb_remove(struct pci_dev * pdev)3787 static void igb_remove(struct pci_dev *pdev)
3788 {
3789 	struct net_device *netdev = pci_get_drvdata(pdev);
3790 	struct igb_adapter *adapter = netdev_priv(netdev);
3791 	struct e1000_hw *hw = &adapter->hw;
3792 
3793 	pm_runtime_get_noresume(&pdev->dev);
3794 #ifdef CONFIG_IGB_HWMON
3795 	igb_sysfs_exit(adapter);
3796 #endif
3797 	igb_remove_i2c(adapter);
3798 	igb_ptp_stop(adapter);
3799 	/* The watchdog timer may be rescheduled, so explicitly
3800 	 * disable watchdog from being rescheduled.
3801 	 */
3802 	set_bit(__IGB_DOWN, &adapter->state);
3803 	del_timer_sync(&adapter->watchdog_timer);
3804 	del_timer_sync(&adapter->phy_info_timer);
3805 
3806 	cancel_work_sync(&adapter->reset_task);
3807 	cancel_work_sync(&adapter->watchdog_task);
3808 
3809 #ifdef CONFIG_IGB_DCA
3810 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3811 		dev_info(&pdev->dev, "DCA disabled\n");
3812 		dca_remove_requester(&pdev->dev);
3813 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3814 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3815 	}
3816 #endif
3817 
3818 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3819 	 * would have already happened in close and is redundant.
3820 	 */
3821 	igb_release_hw_control(adapter);
3822 
3823 #ifdef CONFIG_PCI_IOV
3824 	igb_disable_sriov(pdev);
3825 #endif
3826 
3827 	unregister_netdev(netdev);
3828 
3829 	igb_clear_interrupt_scheme(adapter);
3830 
3831 	pci_iounmap(pdev, adapter->io_addr);
3832 	if (hw->flash_address)
3833 		iounmap(hw->flash_address);
3834 	pci_release_mem_regions(pdev);
3835 
3836 	kfree(adapter->mac_table);
3837 	kfree(adapter->shadow_vfta);
3838 	free_netdev(netdev);
3839 
3840 	pci_disable_pcie_error_reporting(pdev);
3841 
3842 	pci_disable_device(pdev);
3843 }
3844 
3845 /**
3846  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847  *  @adapter: board private structure to initialize
3848  *
3849  *  This function initializes the vf specific data storage and then attempts to
3850  *  allocate the VFs.  The reason for ordering it this way is because it is much
3851  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3852  *  the memory for the VFs.
3853  **/
igb_probe_vfs(struct igb_adapter * adapter)3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3855 {
3856 #ifdef CONFIG_PCI_IOV
3857 	struct pci_dev *pdev = adapter->pdev;
3858 	struct e1000_hw *hw = &adapter->hw;
3859 
3860 	/* Virtualization features not supported on i210 and 82580 family. */
3861 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3862 	    (hw->mac.type == e1000_82580))
3863 		return;
3864 
3865 	/* Of the below we really only want the effect of getting
3866 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3867 	 * igb_enable_sriov() has no effect.
3868 	 */
3869 	igb_set_interrupt_capability(adapter, true);
3870 	igb_reset_interrupt_capability(adapter);
3871 
3872 	pci_sriov_set_totalvfs(pdev, 7);
3873 	igb_enable_sriov(pdev, max_vfs);
3874 
3875 #endif /* CONFIG_PCI_IOV */
3876 }
3877 
igb_get_max_rss_queues(struct igb_adapter * adapter)3878 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3879 {
3880 	struct e1000_hw *hw = &adapter->hw;
3881 	unsigned int max_rss_queues;
3882 
3883 	/* Determine the maximum number of RSS queues supported. */
3884 	switch (hw->mac.type) {
3885 	case e1000_i211:
3886 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3887 		break;
3888 	case e1000_82575:
3889 	case e1000_i210:
3890 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3891 		break;
3892 	case e1000_i350:
3893 		/* I350 cannot do RSS and SR-IOV at the same time */
3894 		if (!!adapter->vfs_allocated_count) {
3895 			max_rss_queues = 1;
3896 			break;
3897 		}
3898 		fallthrough;
3899 	case e1000_82576:
3900 		if (!!adapter->vfs_allocated_count) {
3901 			max_rss_queues = 2;
3902 			break;
3903 		}
3904 		fallthrough;
3905 	case e1000_82580:
3906 	case e1000_i354:
3907 	default:
3908 		max_rss_queues = IGB_MAX_RX_QUEUES;
3909 		break;
3910 	}
3911 
3912 	return max_rss_queues;
3913 }
3914 
igb_init_queue_configuration(struct igb_adapter * adapter)3915 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3916 {
3917 	u32 max_rss_queues;
3918 
3919 	max_rss_queues = igb_get_max_rss_queues(adapter);
3920 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3921 
3922 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3923 }
3924 
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3925 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3926 			      const u32 max_rss_queues)
3927 {
3928 	struct e1000_hw *hw = &adapter->hw;
3929 
3930 	/* Determine if we need to pair queues. */
3931 	switch (hw->mac.type) {
3932 	case e1000_82575:
3933 	case e1000_i211:
3934 		/* Device supports enough interrupts without queue pairing. */
3935 		break;
3936 	case e1000_82576:
3937 	case e1000_82580:
3938 	case e1000_i350:
3939 	case e1000_i354:
3940 	case e1000_i210:
3941 	default:
3942 		/* If rss_queues > half of max_rss_queues, pair the queues in
3943 		 * order to conserve interrupts due to limited supply.
3944 		 */
3945 		if (adapter->rss_queues > (max_rss_queues / 2))
3946 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3947 		else
3948 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3949 		break;
3950 	}
3951 }
3952 
3953 /**
3954  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3955  *  @adapter: board private structure to initialize
3956  *
3957  *  igb_sw_init initializes the Adapter private data structure.
3958  *  Fields are initialized based on PCI device information and
3959  *  OS network device settings (MTU size).
3960  **/
igb_sw_init(struct igb_adapter * adapter)3961 static int igb_sw_init(struct igb_adapter *adapter)
3962 {
3963 	struct e1000_hw *hw = &adapter->hw;
3964 	struct net_device *netdev = adapter->netdev;
3965 	struct pci_dev *pdev = adapter->pdev;
3966 
3967 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3968 
3969 	/* set default ring sizes */
3970 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3971 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3972 
3973 	/* set default ITR values */
3974 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3975 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3976 
3977 	/* set default work limits */
3978 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3979 
3980 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3981 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3982 
3983 	spin_lock_init(&adapter->nfc_lock);
3984 	spin_lock_init(&adapter->stats64_lock);
3985 
3986 	/* init spinlock to avoid concurrency of VF resources */
3987 	spin_lock_init(&adapter->vfs_lock);
3988 #ifdef CONFIG_PCI_IOV
3989 	switch (hw->mac.type) {
3990 	case e1000_82576:
3991 	case e1000_i350:
3992 		if (max_vfs > 7) {
3993 			dev_warn(&pdev->dev,
3994 				 "Maximum of 7 VFs per PF, using max\n");
3995 			max_vfs = adapter->vfs_allocated_count = 7;
3996 		} else
3997 			adapter->vfs_allocated_count = max_vfs;
3998 		if (adapter->vfs_allocated_count)
3999 			dev_warn(&pdev->dev,
4000 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4001 		break;
4002 	default:
4003 		break;
4004 	}
4005 #endif /* CONFIG_PCI_IOV */
4006 
4007 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4008 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4009 
4010 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4011 				     sizeof(struct igb_mac_addr),
4012 				     GFP_KERNEL);
4013 	if (!adapter->mac_table)
4014 		return -ENOMEM;
4015 
4016 	igb_probe_vfs(adapter);
4017 
4018 	igb_init_queue_configuration(adapter);
4019 
4020 	/* Setup and initialize a copy of the hw vlan table array */
4021 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4022 				       GFP_KERNEL);
4023 	if (!adapter->shadow_vfta)
4024 		return -ENOMEM;
4025 
4026 	/* This call may decrease the number of queues */
4027 	if (igb_init_interrupt_scheme(adapter, true)) {
4028 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4029 		return -ENOMEM;
4030 	}
4031 
4032 	/* Explicitly disable IRQ since the NIC can be in any state. */
4033 	igb_irq_disable(adapter);
4034 
4035 	if (hw->mac.type >= e1000_i350)
4036 		adapter->flags &= ~IGB_FLAG_DMAC;
4037 
4038 	set_bit(__IGB_DOWN, &adapter->state);
4039 	return 0;
4040 }
4041 
4042 /**
4043  *  igb_open - Called when a network interface is made active
4044  *  @netdev: network interface device structure
4045  *  @resuming: indicates whether we are in a resume call
4046  *
4047  *  Returns 0 on success, negative value on failure
4048  *
4049  *  The open entry point is called when a network interface is made
4050  *  active by the system (IFF_UP).  At this point all resources needed
4051  *  for transmit and receive operations are allocated, the interrupt
4052  *  handler is registered with the OS, the watchdog timer is started,
4053  *  and the stack is notified that the interface is ready.
4054  **/
__igb_open(struct net_device * netdev,bool resuming)4055 static int __igb_open(struct net_device *netdev, bool resuming)
4056 {
4057 	struct igb_adapter *adapter = netdev_priv(netdev);
4058 	struct e1000_hw *hw = &adapter->hw;
4059 	struct pci_dev *pdev = adapter->pdev;
4060 	int err;
4061 	int i;
4062 
4063 	/* disallow open during test */
4064 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4065 		WARN_ON(resuming);
4066 		return -EBUSY;
4067 	}
4068 
4069 	if (!resuming)
4070 		pm_runtime_get_sync(&pdev->dev);
4071 
4072 	netif_carrier_off(netdev);
4073 
4074 	/* allocate transmit descriptors */
4075 	err = igb_setup_all_tx_resources(adapter);
4076 	if (err)
4077 		goto err_setup_tx;
4078 
4079 	/* allocate receive descriptors */
4080 	err = igb_setup_all_rx_resources(adapter);
4081 	if (err)
4082 		goto err_setup_rx;
4083 
4084 	igb_power_up_link(adapter);
4085 
4086 	/* before we allocate an interrupt, we must be ready to handle it.
4087 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4088 	 * as soon as we call pci_request_irq, so we have to setup our
4089 	 * clean_rx handler before we do so.
4090 	 */
4091 	igb_configure(adapter);
4092 
4093 	err = igb_request_irq(adapter);
4094 	if (err)
4095 		goto err_req_irq;
4096 
4097 	/* Notify the stack of the actual queue counts. */
4098 	err = netif_set_real_num_tx_queues(adapter->netdev,
4099 					   adapter->num_tx_queues);
4100 	if (err)
4101 		goto err_set_queues;
4102 
4103 	err = netif_set_real_num_rx_queues(adapter->netdev,
4104 					   adapter->num_rx_queues);
4105 	if (err)
4106 		goto err_set_queues;
4107 
4108 	/* From here on the code is the same as igb_up() */
4109 	clear_bit(__IGB_DOWN, &adapter->state);
4110 
4111 	for (i = 0; i < adapter->num_q_vectors; i++)
4112 		napi_enable(&(adapter->q_vector[i]->napi));
4113 
4114 	/* Clear any pending interrupts. */
4115 	rd32(E1000_TSICR);
4116 	rd32(E1000_ICR);
4117 
4118 	igb_irq_enable(adapter);
4119 
4120 	/* notify VFs that reset has been completed */
4121 	if (adapter->vfs_allocated_count) {
4122 		u32 reg_data = rd32(E1000_CTRL_EXT);
4123 
4124 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4125 		wr32(E1000_CTRL_EXT, reg_data);
4126 	}
4127 
4128 	netif_tx_start_all_queues(netdev);
4129 
4130 	if (!resuming)
4131 		pm_runtime_put(&pdev->dev);
4132 
4133 	/* start the watchdog. */
4134 	hw->mac.get_link_status = 1;
4135 	schedule_work(&adapter->watchdog_task);
4136 
4137 	return 0;
4138 
4139 err_set_queues:
4140 	igb_free_irq(adapter);
4141 err_req_irq:
4142 	igb_release_hw_control(adapter);
4143 	igb_power_down_link(adapter);
4144 	igb_free_all_rx_resources(adapter);
4145 err_setup_rx:
4146 	igb_free_all_tx_resources(adapter);
4147 err_setup_tx:
4148 	igb_reset(adapter);
4149 	if (!resuming)
4150 		pm_runtime_put(&pdev->dev);
4151 
4152 	return err;
4153 }
4154 
igb_open(struct net_device * netdev)4155 int igb_open(struct net_device *netdev)
4156 {
4157 	return __igb_open(netdev, false);
4158 }
4159 
4160 /**
4161  *  igb_close - Disables a network interface
4162  *  @netdev: network interface device structure
4163  *  @suspending: indicates we are in a suspend call
4164  *
4165  *  Returns 0, this is not allowed to fail
4166  *
4167  *  The close entry point is called when an interface is de-activated
4168  *  by the OS.  The hardware is still under the driver's control, but
4169  *  needs to be disabled.  A global MAC reset is issued to stop the
4170  *  hardware, and all transmit and receive resources are freed.
4171  **/
__igb_close(struct net_device * netdev,bool suspending)4172 static int __igb_close(struct net_device *netdev, bool suspending)
4173 {
4174 	struct igb_adapter *adapter = netdev_priv(netdev);
4175 	struct pci_dev *pdev = adapter->pdev;
4176 
4177 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4178 
4179 	if (!suspending)
4180 		pm_runtime_get_sync(&pdev->dev);
4181 
4182 	igb_down(adapter);
4183 	igb_free_irq(adapter);
4184 
4185 	igb_free_all_tx_resources(adapter);
4186 	igb_free_all_rx_resources(adapter);
4187 
4188 	if (!suspending)
4189 		pm_runtime_put_sync(&pdev->dev);
4190 	return 0;
4191 }
4192 
igb_close(struct net_device * netdev)4193 int igb_close(struct net_device *netdev)
4194 {
4195 	if (netif_device_present(netdev) || netdev->dismantle)
4196 		return __igb_close(netdev, false);
4197 	return 0;
4198 }
4199 
4200 /**
4201  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4202  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4203  *
4204  *  Return 0 on success, negative on failure
4205  **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4206 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4207 {
4208 	struct device *dev = tx_ring->dev;
4209 	int size;
4210 
4211 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4212 
4213 	tx_ring->tx_buffer_info = vmalloc(size);
4214 	if (!tx_ring->tx_buffer_info)
4215 		goto err;
4216 
4217 	/* round up to nearest 4K */
4218 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4219 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4220 
4221 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4222 					   &tx_ring->dma, GFP_KERNEL);
4223 	if (!tx_ring->desc)
4224 		goto err;
4225 
4226 	tx_ring->next_to_use = 0;
4227 	tx_ring->next_to_clean = 0;
4228 
4229 	return 0;
4230 
4231 err:
4232 	vfree(tx_ring->tx_buffer_info);
4233 	tx_ring->tx_buffer_info = NULL;
4234 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4235 	return -ENOMEM;
4236 }
4237 
4238 /**
4239  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4240  *				 (Descriptors) for all queues
4241  *  @adapter: board private structure
4242  *
4243  *  Return 0 on success, negative on failure
4244  **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4245 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4246 {
4247 	struct pci_dev *pdev = adapter->pdev;
4248 	int i, err = 0;
4249 
4250 	for (i = 0; i < adapter->num_tx_queues; i++) {
4251 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4252 		if (err) {
4253 			dev_err(&pdev->dev,
4254 				"Allocation for Tx Queue %u failed\n", i);
4255 			for (i--; i >= 0; i--)
4256 				igb_free_tx_resources(adapter->tx_ring[i]);
4257 			break;
4258 		}
4259 	}
4260 
4261 	return err;
4262 }
4263 
4264 /**
4265  *  igb_setup_tctl - configure the transmit control registers
4266  *  @adapter: Board private structure
4267  **/
igb_setup_tctl(struct igb_adapter * adapter)4268 void igb_setup_tctl(struct igb_adapter *adapter)
4269 {
4270 	struct e1000_hw *hw = &adapter->hw;
4271 	u32 tctl;
4272 
4273 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4274 	wr32(E1000_TXDCTL(0), 0);
4275 
4276 	/* Program the Transmit Control Register */
4277 	tctl = rd32(E1000_TCTL);
4278 	tctl &= ~E1000_TCTL_CT;
4279 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4280 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4281 
4282 	igb_config_collision_dist(hw);
4283 
4284 	/* Enable transmits */
4285 	tctl |= E1000_TCTL_EN;
4286 
4287 	wr32(E1000_TCTL, tctl);
4288 }
4289 
4290 /**
4291  *  igb_configure_tx_ring - Configure transmit ring after Reset
4292  *  @adapter: board private structure
4293  *  @ring: tx ring to configure
4294  *
4295  *  Configure a transmit ring after a reset.
4296  **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4297 void igb_configure_tx_ring(struct igb_adapter *adapter,
4298 			   struct igb_ring *ring)
4299 {
4300 	struct e1000_hw *hw = &adapter->hw;
4301 	u32 txdctl = 0;
4302 	u64 tdba = ring->dma;
4303 	int reg_idx = ring->reg_idx;
4304 
4305 	wr32(E1000_TDLEN(reg_idx),
4306 	     ring->count * sizeof(union e1000_adv_tx_desc));
4307 	wr32(E1000_TDBAL(reg_idx),
4308 	     tdba & 0x00000000ffffffffULL);
4309 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4310 
4311 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4312 	wr32(E1000_TDH(reg_idx), 0);
4313 	writel(0, ring->tail);
4314 
4315 	txdctl |= IGB_TX_PTHRESH;
4316 	txdctl |= IGB_TX_HTHRESH << 8;
4317 	txdctl |= IGB_TX_WTHRESH << 16;
4318 
4319 	/* reinitialize tx_buffer_info */
4320 	memset(ring->tx_buffer_info, 0,
4321 	       sizeof(struct igb_tx_buffer) * ring->count);
4322 
4323 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4324 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4325 }
4326 
4327 /**
4328  *  igb_configure_tx - Configure transmit Unit after Reset
4329  *  @adapter: board private structure
4330  *
4331  *  Configure the Tx unit of the MAC after a reset.
4332  **/
igb_configure_tx(struct igb_adapter * adapter)4333 static void igb_configure_tx(struct igb_adapter *adapter)
4334 {
4335 	struct e1000_hw *hw = &adapter->hw;
4336 	int i;
4337 
4338 	/* disable the queues */
4339 	for (i = 0; i < adapter->num_tx_queues; i++)
4340 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4341 
4342 	wrfl();
4343 	usleep_range(10000, 20000);
4344 
4345 	for (i = 0; i < adapter->num_tx_queues; i++)
4346 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4347 }
4348 
4349 /**
4350  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4351  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4352  *
4353  *  Returns 0 on success, negative on failure
4354  **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4355 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4356 {
4357 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4358 	struct device *dev = rx_ring->dev;
4359 	int size;
4360 
4361 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4362 
4363 	rx_ring->rx_buffer_info = vmalloc(size);
4364 	if (!rx_ring->rx_buffer_info)
4365 		goto err;
4366 
4367 	/* Round up to nearest 4K */
4368 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4369 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4370 
4371 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4372 					   &rx_ring->dma, GFP_KERNEL);
4373 	if (!rx_ring->desc)
4374 		goto err;
4375 
4376 	rx_ring->next_to_alloc = 0;
4377 	rx_ring->next_to_clean = 0;
4378 	rx_ring->next_to_use = 0;
4379 
4380 	rx_ring->xdp_prog = adapter->xdp_prog;
4381 
4382 	/* XDP RX-queue info */
4383 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4384 			     rx_ring->queue_index) < 0)
4385 		goto err;
4386 
4387 	return 0;
4388 
4389 err:
4390 	vfree(rx_ring->rx_buffer_info);
4391 	rx_ring->rx_buffer_info = NULL;
4392 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4393 	return -ENOMEM;
4394 }
4395 
4396 /**
4397  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4398  *				 (Descriptors) for all queues
4399  *  @adapter: board private structure
4400  *
4401  *  Return 0 on success, negative on failure
4402  **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4403 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4404 {
4405 	struct pci_dev *pdev = adapter->pdev;
4406 	int i, err = 0;
4407 
4408 	for (i = 0; i < adapter->num_rx_queues; i++) {
4409 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4410 		if (err) {
4411 			dev_err(&pdev->dev,
4412 				"Allocation for Rx Queue %u failed\n", i);
4413 			for (i--; i >= 0; i--)
4414 				igb_free_rx_resources(adapter->rx_ring[i]);
4415 			break;
4416 		}
4417 	}
4418 
4419 	return err;
4420 }
4421 
4422 /**
4423  *  igb_setup_mrqc - configure the multiple receive queue control registers
4424  *  @adapter: Board private structure
4425  **/
igb_setup_mrqc(struct igb_adapter * adapter)4426 static void igb_setup_mrqc(struct igb_adapter *adapter)
4427 {
4428 	struct e1000_hw *hw = &adapter->hw;
4429 	u32 mrqc, rxcsum;
4430 	u32 j, num_rx_queues;
4431 	u32 rss_key[10];
4432 
4433 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4434 	for (j = 0; j < 10; j++)
4435 		wr32(E1000_RSSRK(j), rss_key[j]);
4436 
4437 	num_rx_queues = adapter->rss_queues;
4438 
4439 	switch (hw->mac.type) {
4440 	case e1000_82576:
4441 		/* 82576 supports 2 RSS queues for SR-IOV */
4442 		if (adapter->vfs_allocated_count)
4443 			num_rx_queues = 2;
4444 		break;
4445 	default:
4446 		break;
4447 	}
4448 
4449 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4450 		for (j = 0; j < IGB_RETA_SIZE; j++)
4451 			adapter->rss_indir_tbl[j] =
4452 			(j * num_rx_queues) / IGB_RETA_SIZE;
4453 		adapter->rss_indir_tbl_init = num_rx_queues;
4454 	}
4455 	igb_write_rss_indir_tbl(adapter);
4456 
4457 	/* Disable raw packet checksumming so that RSS hash is placed in
4458 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4459 	 * offloads as they are enabled by default
4460 	 */
4461 	rxcsum = rd32(E1000_RXCSUM);
4462 	rxcsum |= E1000_RXCSUM_PCSD;
4463 
4464 	if (adapter->hw.mac.type >= e1000_82576)
4465 		/* Enable Receive Checksum Offload for SCTP */
4466 		rxcsum |= E1000_RXCSUM_CRCOFL;
4467 
4468 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4469 	wr32(E1000_RXCSUM, rxcsum);
4470 
4471 	/* Generate RSS hash based on packet types, TCP/UDP
4472 	 * port numbers and/or IPv4/v6 src and dst addresses
4473 	 */
4474 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4475 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4476 	       E1000_MRQC_RSS_FIELD_IPV6 |
4477 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4478 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4479 
4480 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4481 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4482 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4483 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4484 
4485 	/* If VMDq is enabled then we set the appropriate mode for that, else
4486 	 * we default to RSS so that an RSS hash is calculated per packet even
4487 	 * if we are only using one queue
4488 	 */
4489 	if (adapter->vfs_allocated_count) {
4490 		if (hw->mac.type > e1000_82575) {
4491 			/* Set the default pool for the PF's first queue */
4492 			u32 vtctl = rd32(E1000_VT_CTL);
4493 
4494 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4495 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4496 			vtctl |= adapter->vfs_allocated_count <<
4497 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4498 			wr32(E1000_VT_CTL, vtctl);
4499 		}
4500 		if (adapter->rss_queues > 1)
4501 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4502 		else
4503 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4504 	} else {
4505 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4506 	}
4507 	igb_vmm_control(adapter);
4508 
4509 	wr32(E1000_MRQC, mrqc);
4510 }
4511 
4512 /**
4513  *  igb_setup_rctl - configure the receive control registers
4514  *  @adapter: Board private structure
4515  **/
igb_setup_rctl(struct igb_adapter * adapter)4516 void igb_setup_rctl(struct igb_adapter *adapter)
4517 {
4518 	struct e1000_hw *hw = &adapter->hw;
4519 	u32 rctl;
4520 
4521 	rctl = rd32(E1000_RCTL);
4522 
4523 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4524 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4525 
4526 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4527 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4528 
4529 	/* enable stripping of CRC. It's unlikely this will break BMC
4530 	 * redirection as it did with e1000. Newer features require
4531 	 * that the HW strips the CRC.
4532 	 */
4533 	rctl |= E1000_RCTL_SECRC;
4534 
4535 	/* disable store bad packets and clear size bits. */
4536 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4537 
4538 	/* enable LPE to allow for reception of jumbo frames */
4539 	rctl |= E1000_RCTL_LPE;
4540 
4541 	/* disable queue 0 to prevent tail write w/o re-config */
4542 	wr32(E1000_RXDCTL(0), 0);
4543 
4544 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4545 	 * queue drop for all VF and PF queues to prevent head of line blocking
4546 	 * if an un-trusted VF does not provide descriptors to hardware.
4547 	 */
4548 	if (adapter->vfs_allocated_count) {
4549 		/* set all queue drop enable bits */
4550 		wr32(E1000_QDE, ALL_QUEUES);
4551 	}
4552 
4553 	/* This is useful for sniffing bad packets. */
4554 	if (adapter->netdev->features & NETIF_F_RXALL) {
4555 		/* UPE and MPE will be handled by normal PROMISC logic
4556 		 * in e1000e_set_rx_mode
4557 		 */
4558 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4559 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4560 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4561 
4562 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4563 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4564 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4565 		 * and that breaks VLANs.
4566 		 */
4567 	}
4568 
4569 	wr32(E1000_RCTL, rctl);
4570 }
4571 
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4572 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4573 				   int vfn)
4574 {
4575 	struct e1000_hw *hw = &adapter->hw;
4576 	u32 vmolr;
4577 
4578 	if (size > MAX_JUMBO_FRAME_SIZE)
4579 		size = MAX_JUMBO_FRAME_SIZE;
4580 
4581 	vmolr = rd32(E1000_VMOLR(vfn));
4582 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4583 	vmolr |= size | E1000_VMOLR_LPE;
4584 	wr32(E1000_VMOLR(vfn), vmolr);
4585 
4586 	return 0;
4587 }
4588 
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4589 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4590 					 int vfn, bool enable)
4591 {
4592 	struct e1000_hw *hw = &adapter->hw;
4593 	u32 val, reg;
4594 
4595 	if (hw->mac.type < e1000_82576)
4596 		return;
4597 
4598 	if (hw->mac.type == e1000_i350)
4599 		reg = E1000_DVMOLR(vfn);
4600 	else
4601 		reg = E1000_VMOLR(vfn);
4602 
4603 	val = rd32(reg);
4604 	if (enable)
4605 		val |= E1000_VMOLR_STRVLAN;
4606 	else
4607 		val &= ~(E1000_VMOLR_STRVLAN);
4608 	wr32(reg, val);
4609 }
4610 
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4611 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4612 				 int vfn, bool aupe)
4613 {
4614 	struct e1000_hw *hw = &adapter->hw;
4615 	u32 vmolr;
4616 
4617 	/* This register exists only on 82576 and newer so if we are older then
4618 	 * we should exit and do nothing
4619 	 */
4620 	if (hw->mac.type < e1000_82576)
4621 		return;
4622 
4623 	vmolr = rd32(E1000_VMOLR(vfn));
4624 	if (aupe)
4625 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4626 	else
4627 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4628 
4629 	/* clear all bits that might not be set */
4630 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4631 
4632 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4633 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4634 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4635 	 * multicast packets
4636 	 */
4637 	if (vfn <= adapter->vfs_allocated_count)
4638 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4639 
4640 	wr32(E1000_VMOLR(vfn), vmolr);
4641 }
4642 
4643 /**
4644  *  igb_setup_srrctl - configure the split and replication receive control
4645  *                     registers
4646  *  @adapter: Board private structure
4647  *  @ring: receive ring to be configured
4648  **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4649 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4650 {
4651 	struct e1000_hw *hw = &adapter->hw;
4652 	int reg_idx = ring->reg_idx;
4653 	u32 srrctl = 0;
4654 
4655 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4656 	if (ring_uses_large_buffer(ring))
4657 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4658 	else
4659 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4660 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4661 	if (hw->mac.type >= e1000_82580)
4662 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4663 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4664 	 * queues and rx flow control is disabled
4665 	 */
4666 	if (adapter->vfs_allocated_count ||
4667 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4668 	     adapter->num_rx_queues > 1))
4669 		srrctl |= E1000_SRRCTL_DROP_EN;
4670 
4671 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4672 }
4673 
4674 /**
4675  *  igb_configure_rx_ring - Configure a receive ring after Reset
4676  *  @adapter: board private structure
4677  *  @ring: receive ring to be configured
4678  *
4679  *  Configure the Rx unit of the MAC after a reset.
4680  **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4681 void igb_configure_rx_ring(struct igb_adapter *adapter,
4682 			   struct igb_ring *ring)
4683 {
4684 	struct e1000_hw *hw = &adapter->hw;
4685 	union e1000_adv_rx_desc *rx_desc;
4686 	u64 rdba = ring->dma;
4687 	int reg_idx = ring->reg_idx;
4688 	u32 rxdctl = 0;
4689 
4690 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4691 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4692 					   MEM_TYPE_PAGE_SHARED, NULL));
4693 
4694 	/* disable the queue */
4695 	wr32(E1000_RXDCTL(reg_idx), 0);
4696 
4697 	/* Set DMA base address registers */
4698 	wr32(E1000_RDBAL(reg_idx),
4699 	     rdba & 0x00000000ffffffffULL);
4700 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4701 	wr32(E1000_RDLEN(reg_idx),
4702 	     ring->count * sizeof(union e1000_adv_rx_desc));
4703 
4704 	/* initialize head and tail */
4705 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4706 	wr32(E1000_RDH(reg_idx), 0);
4707 	writel(0, ring->tail);
4708 
4709 	/* set descriptor configuration */
4710 	igb_setup_srrctl(adapter, ring);
4711 
4712 	/* set filtering for VMDQ pools */
4713 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4714 
4715 	rxdctl |= IGB_RX_PTHRESH;
4716 	rxdctl |= IGB_RX_HTHRESH << 8;
4717 	rxdctl |= IGB_RX_WTHRESH << 16;
4718 
4719 	/* initialize rx_buffer_info */
4720 	memset(ring->rx_buffer_info, 0,
4721 	       sizeof(struct igb_rx_buffer) * ring->count);
4722 
4723 	/* initialize Rx descriptor 0 */
4724 	rx_desc = IGB_RX_DESC(ring, 0);
4725 	rx_desc->wb.upper.length = 0;
4726 
4727 	/* enable receive descriptor fetching */
4728 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4729 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4730 }
4731 
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4732 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4733 				  struct igb_ring *rx_ring)
4734 {
4735 #if (PAGE_SIZE < 8192)
4736 	struct e1000_hw *hw = &adapter->hw;
4737 #endif
4738 
4739 	/* set build_skb and buffer size flags */
4740 	clear_ring_build_skb_enabled(rx_ring);
4741 	clear_ring_uses_large_buffer(rx_ring);
4742 
4743 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4744 		return;
4745 
4746 	set_ring_build_skb_enabled(rx_ring);
4747 
4748 #if (PAGE_SIZE < 8192)
4749 	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4750 	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
4751 		set_ring_uses_large_buffer(rx_ring);
4752 #endif
4753 }
4754 
4755 /**
4756  *  igb_configure_rx - Configure receive Unit after Reset
4757  *  @adapter: board private structure
4758  *
4759  *  Configure the Rx unit of the MAC after a reset.
4760  **/
igb_configure_rx(struct igb_adapter * adapter)4761 static void igb_configure_rx(struct igb_adapter *adapter)
4762 {
4763 	int i;
4764 
4765 	/* set the correct pool for the PF default MAC address in entry 0 */
4766 	igb_set_default_mac_filter(adapter);
4767 
4768 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4769 	 * the Base and Length of the Rx Descriptor Ring
4770 	 */
4771 	for (i = 0; i < adapter->num_rx_queues; i++) {
4772 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4773 
4774 		igb_set_rx_buffer_len(adapter, rx_ring);
4775 		igb_configure_rx_ring(adapter, rx_ring);
4776 	}
4777 }
4778 
4779 /**
4780  *  igb_free_tx_resources - Free Tx Resources per Queue
4781  *  @tx_ring: Tx descriptor ring for a specific queue
4782  *
4783  *  Free all transmit software resources
4784  **/
igb_free_tx_resources(struct igb_ring * tx_ring)4785 void igb_free_tx_resources(struct igb_ring *tx_ring)
4786 {
4787 	igb_clean_tx_ring(tx_ring);
4788 
4789 	vfree(tx_ring->tx_buffer_info);
4790 	tx_ring->tx_buffer_info = NULL;
4791 
4792 	/* if not set, then don't free */
4793 	if (!tx_ring->desc)
4794 		return;
4795 
4796 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4797 			  tx_ring->desc, tx_ring->dma);
4798 
4799 	tx_ring->desc = NULL;
4800 }
4801 
4802 /**
4803  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4804  *  @adapter: board private structure
4805  *
4806  *  Free all transmit software resources
4807  **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4808 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809 {
4810 	int i;
4811 
4812 	for (i = 0; i < adapter->num_tx_queues; i++)
4813 		if (adapter->tx_ring[i])
4814 			igb_free_tx_resources(adapter->tx_ring[i]);
4815 }
4816 
4817 /**
4818  *  igb_clean_tx_ring - Free Tx Buffers
4819  *  @tx_ring: ring to be cleaned
4820  **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4821 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822 {
4823 	u16 i = tx_ring->next_to_clean;
4824 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825 
4826 	while (i != tx_ring->next_to_use) {
4827 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828 
4829 		/* Free all the Tx ring sk_buffs or xdp frames */
4830 		if (tx_buffer->type == IGB_TYPE_SKB)
4831 			dev_kfree_skb_any(tx_buffer->skb);
4832 		else
4833 			xdp_return_frame(tx_buffer->xdpf);
4834 
4835 		/* unmap skb header data */
4836 		dma_unmap_single(tx_ring->dev,
4837 				 dma_unmap_addr(tx_buffer, dma),
4838 				 dma_unmap_len(tx_buffer, len),
4839 				 DMA_TO_DEVICE);
4840 
4841 		/* check for eop_desc to determine the end of the packet */
4842 		eop_desc = tx_buffer->next_to_watch;
4843 		tx_desc = IGB_TX_DESC(tx_ring, i);
4844 
4845 		/* unmap remaining buffers */
4846 		while (tx_desc != eop_desc) {
4847 			tx_buffer++;
4848 			tx_desc++;
4849 			i++;
4850 			if (unlikely(i == tx_ring->count)) {
4851 				i = 0;
4852 				tx_buffer = tx_ring->tx_buffer_info;
4853 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4854 			}
4855 
4856 			/* unmap any remaining paged data */
4857 			if (dma_unmap_len(tx_buffer, len))
4858 				dma_unmap_page(tx_ring->dev,
4859 					       dma_unmap_addr(tx_buffer, dma),
4860 					       dma_unmap_len(tx_buffer, len),
4861 					       DMA_TO_DEVICE);
4862 		}
4863 
4864 		tx_buffer->next_to_watch = NULL;
4865 
4866 		/* move us one more past the eop_desc for start of next pkt */
4867 		tx_buffer++;
4868 		i++;
4869 		if (unlikely(i == tx_ring->count)) {
4870 			i = 0;
4871 			tx_buffer = tx_ring->tx_buffer_info;
4872 		}
4873 	}
4874 
4875 	/* reset BQL for queue */
4876 	netdev_tx_reset_queue(txring_txq(tx_ring));
4877 
4878 	/* reset next_to_use and next_to_clean */
4879 	tx_ring->next_to_use = 0;
4880 	tx_ring->next_to_clean = 0;
4881 }
4882 
4883 /**
4884  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885  *  @adapter: board private structure
4886  **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4887 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888 {
4889 	int i;
4890 
4891 	for (i = 0; i < adapter->num_tx_queues; i++)
4892 		if (adapter->tx_ring[i])
4893 			igb_clean_tx_ring(adapter->tx_ring[i]);
4894 }
4895 
4896 /**
4897  *  igb_free_rx_resources - Free Rx Resources
4898  *  @rx_ring: ring to clean the resources from
4899  *
4900  *  Free all receive software resources
4901  **/
igb_free_rx_resources(struct igb_ring * rx_ring)4902 void igb_free_rx_resources(struct igb_ring *rx_ring)
4903 {
4904 	igb_clean_rx_ring(rx_ring);
4905 
4906 	rx_ring->xdp_prog = NULL;
4907 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908 	vfree(rx_ring->rx_buffer_info);
4909 	rx_ring->rx_buffer_info = NULL;
4910 
4911 	/* if not set, then don't free */
4912 	if (!rx_ring->desc)
4913 		return;
4914 
4915 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4916 			  rx_ring->desc, rx_ring->dma);
4917 
4918 	rx_ring->desc = NULL;
4919 }
4920 
4921 /**
4922  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4923  *  @adapter: board private structure
4924  *
4925  *  Free all receive software resources
4926  **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4927 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928 {
4929 	int i;
4930 
4931 	for (i = 0; i < adapter->num_rx_queues; i++)
4932 		if (adapter->rx_ring[i])
4933 			igb_free_rx_resources(adapter->rx_ring[i]);
4934 }
4935 
4936 /**
4937  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4938  *  @rx_ring: ring to free buffers from
4939  **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4940 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941 {
4942 	u16 i = rx_ring->next_to_clean;
4943 
4944 	dev_kfree_skb(rx_ring->skb);
4945 	rx_ring->skb = NULL;
4946 
4947 	/* Free all the Rx ring sk_buffs */
4948 	while (i != rx_ring->next_to_alloc) {
4949 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950 
4951 		/* Invalidate cache lines that may have been written to by
4952 		 * device so that we avoid corrupting memory.
4953 		 */
4954 		dma_sync_single_range_for_cpu(rx_ring->dev,
4955 					      buffer_info->dma,
4956 					      buffer_info->page_offset,
4957 					      igb_rx_bufsz(rx_ring),
4958 					      DMA_FROM_DEVICE);
4959 
4960 		/* free resources associated with mapping */
4961 		dma_unmap_page_attrs(rx_ring->dev,
4962 				     buffer_info->dma,
4963 				     igb_rx_pg_size(rx_ring),
4964 				     DMA_FROM_DEVICE,
4965 				     IGB_RX_DMA_ATTR);
4966 		__page_frag_cache_drain(buffer_info->page,
4967 					buffer_info->pagecnt_bias);
4968 
4969 		i++;
4970 		if (i == rx_ring->count)
4971 			i = 0;
4972 	}
4973 
4974 	rx_ring->next_to_alloc = 0;
4975 	rx_ring->next_to_clean = 0;
4976 	rx_ring->next_to_use = 0;
4977 }
4978 
4979 /**
4980  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981  *  @adapter: board private structure
4982  **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4983 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984 {
4985 	int i;
4986 
4987 	for (i = 0; i < adapter->num_rx_queues; i++)
4988 		if (adapter->rx_ring[i])
4989 			igb_clean_rx_ring(adapter->rx_ring[i]);
4990 }
4991 
4992 /**
4993  *  igb_set_mac - Change the Ethernet Address of the NIC
4994  *  @netdev: network interface device structure
4995  *  @p: pointer to an address structure
4996  *
4997  *  Returns 0 on success, negative on failure
4998  **/
igb_set_mac(struct net_device * netdev,void * p)4999 static int igb_set_mac(struct net_device *netdev, void *p)
5000 {
5001 	struct igb_adapter *adapter = netdev_priv(netdev);
5002 	struct e1000_hw *hw = &adapter->hw;
5003 	struct sockaddr *addr = p;
5004 
5005 	if (!is_valid_ether_addr(addr->sa_data))
5006 		return -EADDRNOTAVAIL;
5007 
5008 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
5009 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010 
5011 	/* set the correct pool for the new PF MAC address in entry 0 */
5012 	igb_set_default_mac_filter(adapter);
5013 
5014 	return 0;
5015 }
5016 
5017 /**
5018  *  igb_write_mc_addr_list - write multicast addresses to MTA
5019  *  @netdev: network interface device structure
5020  *
5021  *  Writes multicast address list to the MTA hash table.
5022  *  Returns: -ENOMEM on failure
5023  *           0 on no addresses written
5024  *           X on writing X addresses to MTA
5025  **/
igb_write_mc_addr_list(struct net_device * netdev)5026 static int igb_write_mc_addr_list(struct net_device *netdev)
5027 {
5028 	struct igb_adapter *adapter = netdev_priv(netdev);
5029 	struct e1000_hw *hw = &adapter->hw;
5030 	struct netdev_hw_addr *ha;
5031 	u8  *mta_list;
5032 	int i;
5033 
5034 	if (netdev_mc_empty(netdev)) {
5035 		/* nothing to program, so clear mc list */
5036 		igb_update_mc_addr_list(hw, NULL, 0);
5037 		igb_restore_vf_multicasts(adapter);
5038 		return 0;
5039 	}
5040 
5041 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042 	if (!mta_list)
5043 		return -ENOMEM;
5044 
5045 	/* The shared function expects a packed array of only addresses. */
5046 	i = 0;
5047 	netdev_for_each_mc_addr(ha, netdev)
5048 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049 
5050 	igb_update_mc_addr_list(hw, mta_list, i);
5051 	kfree(mta_list);
5052 
5053 	return netdev_mc_count(netdev);
5054 }
5055 
igb_vlan_promisc_enable(struct igb_adapter * adapter)5056 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057 {
5058 	struct e1000_hw *hw = &adapter->hw;
5059 	u32 i, pf_id;
5060 
5061 	switch (hw->mac.type) {
5062 	case e1000_i210:
5063 	case e1000_i211:
5064 	case e1000_i350:
5065 		/* VLAN filtering needed for VLAN prio filter */
5066 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5067 			break;
5068 		fallthrough;
5069 	case e1000_82576:
5070 	case e1000_82580:
5071 	case e1000_i354:
5072 		/* VLAN filtering needed for pool filtering */
5073 		if (adapter->vfs_allocated_count)
5074 			break;
5075 		fallthrough;
5076 	default:
5077 		return 1;
5078 	}
5079 
5080 	/* We are already in VLAN promisc, nothing to do */
5081 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082 		return 0;
5083 
5084 	if (!adapter->vfs_allocated_count)
5085 		goto set_vfta;
5086 
5087 	/* Add PF to all active pools */
5088 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089 
5090 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091 		u32 vlvf = rd32(E1000_VLVF(i));
5092 
5093 		vlvf |= BIT(pf_id);
5094 		wr32(E1000_VLVF(i), vlvf);
5095 	}
5096 
5097 set_vfta:
5098 	/* Set all bits in the VLAN filter table array */
5099 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100 		hw->mac.ops.write_vfta(hw, i, ~0U);
5101 
5102 	/* Set flag so we don't redo unnecessary work */
5103 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104 
5105 	return 0;
5106 }
5107 
5108 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5109 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110 {
5111 	struct e1000_hw *hw = &adapter->hw;
5112 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113 	u32 vid_start = vfta_offset * 32;
5114 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115 	u32 i, vid, word, bits, pf_id;
5116 
5117 	/* guarantee that we don't scrub out management VLAN */
5118 	vid = adapter->mng_vlan_id;
5119 	if (vid >= vid_start && vid < vid_end)
5120 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121 
5122 	if (!adapter->vfs_allocated_count)
5123 		goto set_vfta;
5124 
5125 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126 
5127 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128 		u32 vlvf = rd32(E1000_VLVF(i));
5129 
5130 		/* pull VLAN ID from VLVF */
5131 		vid = vlvf & VLAN_VID_MASK;
5132 
5133 		/* only concern ourselves with a certain range */
5134 		if (vid < vid_start || vid >= vid_end)
5135 			continue;
5136 
5137 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138 			/* record VLAN ID in VFTA */
5139 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140 
5141 			/* if PF is part of this then continue */
5142 			if (test_bit(vid, adapter->active_vlans))
5143 				continue;
5144 		}
5145 
5146 		/* remove PF from the pool */
5147 		bits = ~BIT(pf_id);
5148 		bits &= rd32(E1000_VLVF(i));
5149 		wr32(E1000_VLVF(i), bits);
5150 	}
5151 
5152 set_vfta:
5153 	/* extract values from active_vlans and write back to VFTA */
5154 	for (i = VFTA_BLOCK_SIZE; i--;) {
5155 		vid = (vfta_offset + i) * 32;
5156 		word = vid / BITS_PER_LONG;
5157 		bits = vid % BITS_PER_LONG;
5158 
5159 		vfta[i] |= adapter->active_vlans[word] >> bits;
5160 
5161 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162 	}
5163 }
5164 
igb_vlan_promisc_disable(struct igb_adapter * adapter)5165 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166 {
5167 	u32 i;
5168 
5169 	/* We are not in VLAN promisc, nothing to do */
5170 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171 		return;
5172 
5173 	/* Set flag so we don't redo unnecessary work */
5174 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175 
5176 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177 		igb_scrub_vfta(adapter, i);
5178 }
5179 
5180 /**
5181  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182  *  @netdev: network interface device structure
5183  *
5184  *  The set_rx_mode entry point is called whenever the unicast or multicast
5185  *  address lists or the network interface flags are updated.  This routine is
5186  *  responsible for configuring the hardware for proper unicast, multicast,
5187  *  promiscuous mode, and all-multi behavior.
5188  **/
igb_set_rx_mode(struct net_device * netdev)5189 static void igb_set_rx_mode(struct net_device *netdev)
5190 {
5191 	struct igb_adapter *adapter = netdev_priv(netdev);
5192 	struct e1000_hw *hw = &adapter->hw;
5193 	unsigned int vfn = adapter->vfs_allocated_count;
5194 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195 	int count;
5196 
5197 	/* Check for Promiscuous and All Multicast modes */
5198 	if (netdev->flags & IFF_PROMISC) {
5199 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200 		vmolr |= E1000_VMOLR_MPME;
5201 
5202 		/* enable use of UTA filter to force packets to default pool */
5203 		if (hw->mac.type == e1000_82576)
5204 			vmolr |= E1000_VMOLR_ROPE;
5205 	} else {
5206 		if (netdev->flags & IFF_ALLMULTI) {
5207 			rctl |= E1000_RCTL_MPE;
5208 			vmolr |= E1000_VMOLR_MPME;
5209 		} else {
5210 			/* Write addresses to the MTA, if the attempt fails
5211 			 * then we should just turn on promiscuous mode so
5212 			 * that we can at least receive multicast traffic
5213 			 */
5214 			count = igb_write_mc_addr_list(netdev);
5215 			if (count < 0) {
5216 				rctl |= E1000_RCTL_MPE;
5217 				vmolr |= E1000_VMOLR_MPME;
5218 			} else if (count) {
5219 				vmolr |= E1000_VMOLR_ROMPE;
5220 			}
5221 		}
5222 	}
5223 
5224 	/* Write addresses to available RAR registers, if there is not
5225 	 * sufficient space to store all the addresses then enable
5226 	 * unicast promiscuous mode
5227 	 */
5228 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229 		rctl |= E1000_RCTL_UPE;
5230 		vmolr |= E1000_VMOLR_ROPE;
5231 	}
5232 
5233 	/* enable VLAN filtering by default */
5234 	rctl |= E1000_RCTL_VFE;
5235 
5236 	/* disable VLAN filtering for modes that require it */
5237 	if ((netdev->flags & IFF_PROMISC) ||
5238 	    (netdev->features & NETIF_F_RXALL)) {
5239 		/* if we fail to set all rules then just clear VFE */
5240 		if (igb_vlan_promisc_enable(adapter))
5241 			rctl &= ~E1000_RCTL_VFE;
5242 	} else {
5243 		igb_vlan_promisc_disable(adapter);
5244 	}
5245 
5246 	/* update state of unicast, multicast, and VLAN filtering modes */
5247 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248 				     E1000_RCTL_VFE);
5249 	wr32(E1000_RCTL, rctl);
5250 
5251 #if (PAGE_SIZE < 8192)
5252 	if (!adapter->vfs_allocated_count) {
5253 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255 	}
5256 #endif
5257 	wr32(E1000_RLPML, rlpml);
5258 
5259 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5260 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5261 	 * we will have issues with VLAN tag stripping not being done for frames
5262 	 * that are only arriving because we are the default pool
5263 	 */
5264 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265 		return;
5266 
5267 	/* set UTA to appropriate mode */
5268 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269 
5270 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5271 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272 
5273 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5274 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275 #if (PAGE_SIZE < 8192)
5276 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278 	else
5279 #endif
5280 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5281 	vmolr |= E1000_VMOLR_LPE;
5282 
5283 	wr32(E1000_VMOLR(vfn), vmolr);
5284 
5285 	igb_restore_vf_multicasts(adapter);
5286 }
5287 
igb_check_wvbr(struct igb_adapter * adapter)5288 static void igb_check_wvbr(struct igb_adapter *adapter)
5289 {
5290 	struct e1000_hw *hw = &adapter->hw;
5291 	u32 wvbr = 0;
5292 
5293 	switch (hw->mac.type) {
5294 	case e1000_82576:
5295 	case e1000_i350:
5296 		wvbr = rd32(E1000_WVBR);
5297 		if (!wvbr)
5298 			return;
5299 		break;
5300 	default:
5301 		break;
5302 	}
5303 
5304 	adapter->wvbr |= wvbr;
5305 }
5306 
5307 #define IGB_STAGGERED_QUEUE_OFFSET 8
5308 
igb_spoof_check(struct igb_adapter * adapter)5309 static void igb_spoof_check(struct igb_adapter *adapter)
5310 {
5311 	int j;
5312 
5313 	if (!adapter->wvbr)
5314 		return;
5315 
5316 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317 		if (adapter->wvbr & BIT(j) ||
5318 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319 			dev_warn(&adapter->pdev->dev,
5320 				"Spoof event(s) detected on VF %d\n", j);
5321 			adapter->wvbr &=
5322 				~(BIT(j) |
5323 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324 		}
5325 	}
5326 }
5327 
5328 /* Need to wait a few seconds after link up to get diagnostic information from
5329  * the phy
5330  */
igb_update_phy_info(struct timer_list * t)5331 static void igb_update_phy_info(struct timer_list *t)
5332 {
5333 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334 	igb_get_phy_info(&adapter->hw);
5335 }
5336 
5337 /**
5338  *  igb_has_link - check shared code for link and determine up/down
5339  *  @adapter: pointer to driver private info
5340  **/
igb_has_link(struct igb_adapter * adapter)5341 bool igb_has_link(struct igb_adapter *adapter)
5342 {
5343 	struct e1000_hw *hw = &adapter->hw;
5344 	bool link_active = false;
5345 
5346 	/* get_link_status is set on LSC (link status) interrupt or
5347 	 * rx sequence error interrupt.  get_link_status will stay
5348 	 * false until the e1000_check_for_link establishes link
5349 	 * for copper adapters ONLY
5350 	 */
5351 	switch (hw->phy.media_type) {
5352 	case e1000_media_type_copper:
5353 		if (!hw->mac.get_link_status)
5354 			return true;
5355 		fallthrough;
5356 	case e1000_media_type_internal_serdes:
5357 		hw->mac.ops.check_for_link(hw);
5358 		link_active = !hw->mac.get_link_status;
5359 		break;
5360 	default:
5361 	case e1000_media_type_unknown:
5362 		break;
5363 	}
5364 
5365 	if (((hw->mac.type == e1000_i210) ||
5366 	     (hw->mac.type == e1000_i211)) &&
5367 	     (hw->phy.id == I210_I_PHY_ID)) {
5368 		if (!netif_carrier_ok(adapter->netdev)) {
5369 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372 			adapter->link_check_timeout = jiffies;
5373 		}
5374 	}
5375 
5376 	return link_active;
5377 }
5378 
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380 {
5381 	bool ret = false;
5382 	u32 ctrl_ext, thstat;
5383 
5384 	/* check for thermal sensor event on i350 copper only */
5385 	if (hw->mac.type == e1000_i350) {
5386 		thstat = rd32(E1000_THSTAT);
5387 		ctrl_ext = rd32(E1000_CTRL_EXT);
5388 
5389 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5390 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391 			ret = !!(thstat & event);
5392 	}
5393 
5394 	return ret;
5395 }
5396 
5397 /**
5398  *  igb_check_lvmmc - check for malformed packets received
5399  *  and indicated in LVMMC register
5400  *  @adapter: pointer to adapter
5401  **/
igb_check_lvmmc(struct igb_adapter * adapter)5402 static void igb_check_lvmmc(struct igb_adapter *adapter)
5403 {
5404 	struct e1000_hw *hw = &adapter->hw;
5405 	u32 lvmmc;
5406 
5407 	lvmmc = rd32(E1000_LVMMC);
5408 	if (lvmmc) {
5409 		if (unlikely(net_ratelimit())) {
5410 			netdev_warn(adapter->netdev,
5411 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412 				    lvmmc);
5413 		}
5414 	}
5415 }
5416 
5417 /**
5418  *  igb_watchdog - Timer Call-back
5419  *  @t: pointer to timer_list containing our private info pointer
5420  **/
igb_watchdog(struct timer_list * t)5421 static void igb_watchdog(struct timer_list *t)
5422 {
5423 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424 	/* Do the rest outside of interrupt context */
5425 	schedule_work(&adapter->watchdog_task);
5426 }
5427 
igb_watchdog_task(struct work_struct * work)5428 static void igb_watchdog_task(struct work_struct *work)
5429 {
5430 	struct igb_adapter *adapter = container_of(work,
5431 						   struct igb_adapter,
5432 						   watchdog_task);
5433 	struct e1000_hw *hw = &adapter->hw;
5434 	struct e1000_phy_info *phy = &hw->phy;
5435 	struct net_device *netdev = adapter->netdev;
5436 	u32 link;
5437 	int i;
5438 	u32 connsw;
5439 	u16 phy_data, retry_count = 20;
5440 
5441 	link = igb_has_link(adapter);
5442 
5443 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446 		else
5447 			link = false;
5448 	}
5449 
5450 	/* Force link down if we have fiber to swap to */
5451 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452 		if (hw->phy.media_type == e1000_media_type_copper) {
5453 			connsw = rd32(E1000_CONNSW);
5454 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455 				link = 0;
5456 		}
5457 	}
5458 	if (link) {
5459 		/* Perform a reset if the media type changed. */
5460 		if (hw->dev_spec._82575.media_changed) {
5461 			hw->dev_spec._82575.media_changed = false;
5462 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463 			igb_reset(adapter);
5464 		}
5465 		/* Cancel scheduled suspend requests. */
5466 		pm_runtime_resume(netdev->dev.parent);
5467 
5468 		if (!netif_carrier_ok(netdev)) {
5469 			u32 ctrl;
5470 
5471 			hw->mac.ops.get_speed_and_duplex(hw,
5472 							 &adapter->link_speed,
5473 							 &adapter->link_duplex);
5474 
5475 			ctrl = rd32(E1000_CTRL);
5476 			/* Links status message must follow this format */
5477 			netdev_info(netdev,
5478 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479 			       netdev->name,
5480 			       adapter->link_speed,
5481 			       adapter->link_duplex == FULL_DUPLEX ?
5482 			       "Full" : "Half",
5483 			       (ctrl & E1000_CTRL_TFCE) &&
5484 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5486 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5487 
5488 			/* disable EEE if enabled */
5489 			if ((adapter->flags & IGB_FLAG_EEE) &&
5490 				(adapter->link_duplex == HALF_DUPLEX)) {
5491 				dev_info(&adapter->pdev->dev,
5492 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493 				adapter->hw.dev_spec._82575.eee_disable = true;
5494 				adapter->flags &= ~IGB_FLAG_EEE;
5495 			}
5496 
5497 			/* check if SmartSpeed worked */
5498 			igb_check_downshift(hw);
5499 			if (phy->speed_downgraded)
5500 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501 
5502 			/* check for thermal sensor event */
5503 			if (igb_thermal_sensor_event(hw,
5504 			    E1000_THSTAT_LINK_THROTTLE))
5505 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506 
5507 			/* adjust timeout factor according to speed/duplex */
5508 			adapter->tx_timeout_factor = 1;
5509 			switch (adapter->link_speed) {
5510 			case SPEED_10:
5511 				adapter->tx_timeout_factor = 14;
5512 				break;
5513 			case SPEED_100:
5514 				/* maybe add some timeout factor ? */
5515 				break;
5516 			}
5517 
5518 			if (adapter->link_speed != SPEED_1000 ||
5519 			    !hw->phy.ops.read_reg)
5520 				goto no_wait;
5521 
5522 			/* wait for Remote receiver status OK */
5523 retry_read_status:
5524 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525 					      &phy_data)) {
5526 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527 				    retry_count) {
5528 					msleep(100);
5529 					retry_count--;
5530 					goto retry_read_status;
5531 				} else if (!retry_count) {
5532 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533 				}
5534 			} else {
5535 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536 			}
5537 no_wait:
5538 			netif_carrier_on(netdev);
5539 
5540 			igb_ping_all_vfs(adapter);
5541 			igb_check_vf_rate_limit(adapter);
5542 
5543 			/* link state has changed, schedule phy info update */
5544 			if (!test_bit(__IGB_DOWN, &adapter->state))
5545 				mod_timer(&adapter->phy_info_timer,
5546 					  round_jiffies(jiffies + 2 * HZ));
5547 		}
5548 	} else {
5549 		if (netif_carrier_ok(netdev)) {
5550 			adapter->link_speed = 0;
5551 			adapter->link_duplex = 0;
5552 
5553 			/* check for thermal sensor event */
5554 			if (igb_thermal_sensor_event(hw,
5555 			    E1000_THSTAT_PWR_DOWN)) {
5556 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557 			}
5558 
5559 			/* Links status message must follow this format */
5560 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561 			       netdev->name);
5562 			netif_carrier_off(netdev);
5563 
5564 			igb_ping_all_vfs(adapter);
5565 
5566 			/* link state has changed, schedule phy info update */
5567 			if (!test_bit(__IGB_DOWN, &adapter->state))
5568 				mod_timer(&adapter->phy_info_timer,
5569 					  round_jiffies(jiffies + 2 * HZ));
5570 
5571 			/* link is down, time to check for alternate media */
5572 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573 				igb_check_swap_media(adapter);
5574 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575 					schedule_work(&adapter->reset_task);
5576 					/* return immediately */
5577 					return;
5578 				}
5579 			}
5580 			pm_schedule_suspend(netdev->dev.parent,
5581 					    MSEC_PER_SEC * 5);
5582 
5583 		/* also check for alternate media here */
5584 		} else if (!netif_carrier_ok(netdev) &&
5585 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586 			igb_check_swap_media(adapter);
5587 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588 				schedule_work(&adapter->reset_task);
5589 				/* return immediately */
5590 				return;
5591 			}
5592 		}
5593 	}
5594 
5595 	spin_lock(&adapter->stats64_lock);
5596 	igb_update_stats(adapter);
5597 	spin_unlock(&adapter->stats64_lock);
5598 
5599 	for (i = 0; i < adapter->num_tx_queues; i++) {
5600 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5601 		if (!netif_carrier_ok(netdev)) {
5602 			/* We've lost link, so the controller stops DMA,
5603 			 * but we've got queued Tx work that's never going
5604 			 * to get done, so reset controller to flush Tx.
5605 			 * (Do the reset outside of interrupt context).
5606 			 */
5607 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608 				adapter->tx_timeout_count++;
5609 				schedule_work(&adapter->reset_task);
5610 				/* return immediately since reset is imminent */
5611 				return;
5612 			}
5613 		}
5614 
5615 		/* Force detection of hung controller every watchdog period */
5616 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617 	}
5618 
5619 	/* Cause software interrupt to ensure Rx ring is cleaned */
5620 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621 		u32 eics = 0;
5622 
5623 		for (i = 0; i < adapter->num_q_vectors; i++)
5624 			eics |= adapter->q_vector[i]->eims_value;
5625 		wr32(E1000_EICS, eics);
5626 	} else {
5627 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628 	}
5629 
5630 	igb_spoof_check(adapter);
5631 	igb_ptp_rx_hang(adapter);
5632 	igb_ptp_tx_hang(adapter);
5633 
5634 	/* Check LVMMC register on i350/i354 only */
5635 	if ((adapter->hw.mac.type == e1000_i350) ||
5636 	    (adapter->hw.mac.type == e1000_i354))
5637 		igb_check_lvmmc(adapter);
5638 
5639 	/* Reset the timer */
5640 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642 			mod_timer(&adapter->watchdog_timer,
5643 				  round_jiffies(jiffies +  HZ));
5644 		else
5645 			mod_timer(&adapter->watchdog_timer,
5646 				  round_jiffies(jiffies + 2 * HZ));
5647 	}
5648 }
5649 
5650 enum latency_range {
5651 	lowest_latency = 0,
5652 	low_latency = 1,
5653 	bulk_latency = 2,
5654 	latency_invalid = 255
5655 };
5656 
5657 /**
5658  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5659  *  @q_vector: pointer to q_vector
5660  *
5661  *  Stores a new ITR value based on strictly on packet size.  This
5662  *  algorithm is less sophisticated than that used in igb_update_itr,
5663  *  due to the difficulty of synchronizing statistics across multiple
5664  *  receive rings.  The divisors and thresholds used by this function
5665  *  were determined based on theoretical maximum wire speed and testing
5666  *  data, in order to minimize response time while increasing bulk
5667  *  throughput.
5668  *  This functionality is controlled by ethtool's coalescing settings.
5669  *  NOTE:  This function is called only when operating in a multiqueue
5670  *         receive environment.
5671  **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5672 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673 {
5674 	int new_val = q_vector->itr_val;
5675 	int avg_wire_size = 0;
5676 	struct igb_adapter *adapter = q_vector->adapter;
5677 	unsigned int packets;
5678 
5679 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5680 	 * ints/sec - ITR timer value of 120 ticks.
5681 	 */
5682 	if (adapter->link_speed != SPEED_1000) {
5683 		new_val = IGB_4K_ITR;
5684 		goto set_itr_val;
5685 	}
5686 
5687 	packets = q_vector->rx.total_packets;
5688 	if (packets)
5689 		avg_wire_size = q_vector->rx.total_bytes / packets;
5690 
5691 	packets = q_vector->tx.total_packets;
5692 	if (packets)
5693 		avg_wire_size = max_t(u32, avg_wire_size,
5694 				      q_vector->tx.total_bytes / packets);
5695 
5696 	/* if avg_wire_size isn't set no work was done */
5697 	if (!avg_wire_size)
5698 		goto clear_counts;
5699 
5700 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5701 	avg_wire_size += 24;
5702 
5703 	/* Don't starve jumbo frames */
5704 	avg_wire_size = min(avg_wire_size, 3000);
5705 
5706 	/* Give a little boost to mid-size frames */
5707 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708 		new_val = avg_wire_size / 3;
5709 	else
5710 		new_val = avg_wire_size / 2;
5711 
5712 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5713 	if (new_val < IGB_20K_ITR &&
5714 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716 		new_val = IGB_20K_ITR;
5717 
5718 set_itr_val:
5719 	if (new_val != q_vector->itr_val) {
5720 		q_vector->itr_val = new_val;
5721 		q_vector->set_itr = 1;
5722 	}
5723 clear_counts:
5724 	q_vector->rx.total_bytes = 0;
5725 	q_vector->rx.total_packets = 0;
5726 	q_vector->tx.total_bytes = 0;
5727 	q_vector->tx.total_packets = 0;
5728 }
5729 
5730 /**
5731  *  igb_update_itr - update the dynamic ITR value based on statistics
5732  *  @q_vector: pointer to q_vector
5733  *  @ring_container: ring info to update the itr for
5734  *
5735  *  Stores a new ITR value based on packets and byte
5736  *  counts during the last interrupt.  The advantage of per interrupt
5737  *  computation is faster updates and more accurate ITR for the current
5738  *  traffic pattern.  Constants in this function were computed
5739  *  based on theoretical maximum wire speed and thresholds were set based
5740  *  on testing data as well as attempting to minimize response time
5741  *  while increasing bulk throughput.
5742  *  This functionality is controlled by ethtool's coalescing settings.
5743  *  NOTE:  These calculations are only valid when operating in a single-
5744  *         queue environment.
5745  **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5746 static void igb_update_itr(struct igb_q_vector *q_vector,
5747 			   struct igb_ring_container *ring_container)
5748 {
5749 	unsigned int packets = ring_container->total_packets;
5750 	unsigned int bytes = ring_container->total_bytes;
5751 	u8 itrval = ring_container->itr;
5752 
5753 	/* no packets, exit with status unchanged */
5754 	if (packets == 0)
5755 		return;
5756 
5757 	switch (itrval) {
5758 	case lowest_latency:
5759 		/* handle TSO and jumbo frames */
5760 		if (bytes/packets > 8000)
5761 			itrval = bulk_latency;
5762 		else if ((packets < 5) && (bytes > 512))
5763 			itrval = low_latency;
5764 		break;
5765 	case low_latency:  /* 50 usec aka 20000 ints/s */
5766 		if (bytes > 10000) {
5767 			/* this if handles the TSO accounting */
5768 			if (bytes/packets > 8000)
5769 				itrval = bulk_latency;
5770 			else if ((packets < 10) || ((bytes/packets) > 1200))
5771 				itrval = bulk_latency;
5772 			else if ((packets > 35))
5773 				itrval = lowest_latency;
5774 		} else if (bytes/packets > 2000) {
5775 			itrval = bulk_latency;
5776 		} else if (packets <= 2 && bytes < 512) {
5777 			itrval = lowest_latency;
5778 		}
5779 		break;
5780 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5781 		if (bytes > 25000) {
5782 			if (packets > 35)
5783 				itrval = low_latency;
5784 		} else if (bytes < 1500) {
5785 			itrval = low_latency;
5786 		}
5787 		break;
5788 	}
5789 
5790 	/* clear work counters since we have the values we need */
5791 	ring_container->total_bytes = 0;
5792 	ring_container->total_packets = 0;
5793 
5794 	/* write updated itr to ring container */
5795 	ring_container->itr = itrval;
5796 }
5797 
igb_set_itr(struct igb_q_vector * q_vector)5798 static void igb_set_itr(struct igb_q_vector *q_vector)
5799 {
5800 	struct igb_adapter *adapter = q_vector->adapter;
5801 	u32 new_itr = q_vector->itr_val;
5802 	u8 current_itr = 0;
5803 
5804 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805 	if (adapter->link_speed != SPEED_1000) {
5806 		current_itr = 0;
5807 		new_itr = IGB_4K_ITR;
5808 		goto set_itr_now;
5809 	}
5810 
5811 	igb_update_itr(q_vector, &q_vector->tx);
5812 	igb_update_itr(q_vector, &q_vector->rx);
5813 
5814 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815 
5816 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5817 	if (current_itr == lowest_latency &&
5818 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820 		current_itr = low_latency;
5821 
5822 	switch (current_itr) {
5823 	/* counts and packets in update_itr are dependent on these numbers */
5824 	case lowest_latency:
5825 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826 		break;
5827 	case low_latency:
5828 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829 		break;
5830 	case bulk_latency:
5831 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5832 		break;
5833 	default:
5834 		break;
5835 	}
5836 
5837 set_itr_now:
5838 	if (new_itr != q_vector->itr_val) {
5839 		/* this attempts to bias the interrupt rate towards Bulk
5840 		 * by adding intermediate steps when interrupt rate is
5841 		 * increasing
5842 		 */
5843 		new_itr = new_itr > q_vector->itr_val ?
5844 			  max((new_itr * q_vector->itr_val) /
5845 			  (new_itr + (q_vector->itr_val >> 2)),
5846 			  new_itr) : new_itr;
5847 		/* Don't write the value here; it resets the adapter's
5848 		 * internal timer, and causes us to delay far longer than
5849 		 * we should between interrupts.  Instead, we write the ITR
5850 		 * value at the beginning of the next interrupt so the timing
5851 		 * ends up being correct.
5852 		 */
5853 		q_vector->itr_val = new_itr;
5854 		q_vector->set_itr = 1;
5855 	}
5856 }
5857 
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5858 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859 			    struct igb_tx_buffer *first,
5860 			    u32 vlan_macip_lens, u32 type_tucmd,
5861 			    u32 mss_l4len_idx)
5862 {
5863 	struct e1000_adv_tx_context_desc *context_desc;
5864 	u16 i = tx_ring->next_to_use;
5865 	struct timespec64 ts;
5866 
5867 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868 
5869 	i++;
5870 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871 
5872 	/* set bits to identify this as an advanced context descriptor */
5873 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874 
5875 	/* For 82575, context index must be unique per ring. */
5876 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5878 
5879 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5880 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5881 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5882 
5883 	/* We assume there is always a valid tx time available. Invalid times
5884 	 * should have been handled by the upper layers.
5885 	 */
5886 	if (tx_ring->launchtime_enable) {
5887 		ts = ktime_to_timespec64(first->skb->tstamp);
5888 		skb_txtime_consumed(first->skb);
5889 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890 	} else {
5891 		context_desc->seqnum_seed = 0;
5892 	}
5893 }
5894 
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5895 static int igb_tso(struct igb_ring *tx_ring,
5896 		   struct igb_tx_buffer *first,
5897 		   u8 *hdr_len)
5898 {
5899 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900 	struct sk_buff *skb = first->skb;
5901 	union {
5902 		struct iphdr *v4;
5903 		struct ipv6hdr *v6;
5904 		unsigned char *hdr;
5905 	} ip;
5906 	union {
5907 		struct tcphdr *tcp;
5908 		struct udphdr *udp;
5909 		unsigned char *hdr;
5910 	} l4;
5911 	u32 paylen, l4_offset;
5912 	int err;
5913 
5914 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5915 		return 0;
5916 
5917 	if (!skb_is_gso(skb))
5918 		return 0;
5919 
5920 	err = skb_cow_head(skb, 0);
5921 	if (err < 0)
5922 		return err;
5923 
5924 	ip.hdr = skb_network_header(skb);
5925 	l4.hdr = skb_checksum_start(skb);
5926 
5927 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930 
5931 	/* initialize outer IP header fields */
5932 	if (ip.v4->version == 4) {
5933 		unsigned char *csum_start = skb_checksum_start(skb);
5934 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935 
5936 		/* IP header will have to cancel out any data that
5937 		 * is not a part of the outer IP header
5938 		 */
5939 		ip.v4->check = csum_fold(csum_partial(trans_start,
5940 						      csum_start - trans_start,
5941 						      0));
5942 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943 
5944 		ip.v4->tot_len = 0;
5945 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5946 				   IGB_TX_FLAGS_CSUM |
5947 				   IGB_TX_FLAGS_IPV4;
5948 	} else {
5949 		ip.v6->payload_len = 0;
5950 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5951 				   IGB_TX_FLAGS_CSUM;
5952 	}
5953 
5954 	/* determine offset of inner transport header */
5955 	l4_offset = l4.hdr - skb->data;
5956 
5957 	/* remove payload length from inner checksum */
5958 	paylen = skb->len - l4_offset;
5959 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960 		/* compute length of segmentation header */
5961 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962 		csum_replace_by_diff(&l4.tcp->check,
5963 			(__force __wsum)htonl(paylen));
5964 	} else {
5965 		/* compute length of segmentation header */
5966 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5967 		csum_replace_by_diff(&l4.udp->check,
5968 				     (__force __wsum)htonl(paylen));
5969 	}
5970 
5971 	/* update gso size and bytecount with header size */
5972 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5973 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974 
5975 	/* MSS L4LEN IDX */
5976 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978 
5979 	/* VLAN MACLEN IPLEN */
5980 	vlan_macip_lens = l4.hdr - ip.hdr;
5981 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983 
5984 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985 			type_tucmd, mss_l4len_idx);
5986 
5987 	return 1;
5988 }
5989 
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5990 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5991 {
5992 	unsigned int offset = 0;
5993 
5994 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5995 
5996 	return offset == skb_checksum_start_offset(skb);
5997 }
5998 
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5999 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6000 {
6001 	struct sk_buff *skb = first->skb;
6002 	u32 vlan_macip_lens = 0;
6003 	u32 type_tucmd = 0;
6004 
6005 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6006 csum_failed:
6007 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6008 		    !tx_ring->launchtime_enable)
6009 			return;
6010 		goto no_csum;
6011 	}
6012 
6013 	switch (skb->csum_offset) {
6014 	case offsetof(struct tcphdr, check):
6015 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6016 		fallthrough;
6017 	case offsetof(struct udphdr, check):
6018 		break;
6019 	case offsetof(struct sctphdr, checksum):
6020 		/* validate that this is actually an SCTP request */
6021 		if (((first->protocol == htons(ETH_P_IP)) &&
6022 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6023 		    ((first->protocol == htons(ETH_P_IPV6)) &&
6024 		     igb_ipv6_csum_is_sctp(skb))) {
6025 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6026 			break;
6027 		}
6028 		fallthrough;
6029 	default:
6030 		skb_checksum_help(skb);
6031 		goto csum_failed;
6032 	}
6033 
6034 	/* update TX checksum flag */
6035 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6036 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6037 			  skb_network_offset(skb);
6038 no_csum:
6039 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6040 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6041 
6042 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6043 }
6044 
6045 #define IGB_SET_FLAG(_input, _flag, _result) \
6046 	((_flag <= _result) ? \
6047 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6048 	 ((u32)(_input & _flag) / (_flag / _result)))
6049 
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6050 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6051 {
6052 	/* set type for advanced descriptor with frame checksum insertion */
6053 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6054 		       E1000_ADVTXD_DCMD_DEXT |
6055 		       E1000_ADVTXD_DCMD_IFCS;
6056 
6057 	/* set HW vlan bit if vlan is present */
6058 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6059 				 (E1000_ADVTXD_DCMD_VLE));
6060 
6061 	/* set segmentation bits for TSO */
6062 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6063 				 (E1000_ADVTXD_DCMD_TSE));
6064 
6065 	/* set timestamp bit if present */
6066 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6067 				 (E1000_ADVTXD_MAC_TSTAMP));
6068 
6069 	/* insert frame checksum */
6070 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6071 
6072 	return cmd_type;
6073 }
6074 
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6075 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6076 				 union e1000_adv_tx_desc *tx_desc,
6077 				 u32 tx_flags, unsigned int paylen)
6078 {
6079 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6080 
6081 	/* 82575 requires a unique index per ring */
6082 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6083 		olinfo_status |= tx_ring->reg_idx << 4;
6084 
6085 	/* insert L4 checksum */
6086 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6087 				      IGB_TX_FLAGS_CSUM,
6088 				      (E1000_TXD_POPTS_TXSM << 8));
6089 
6090 	/* insert IPv4 checksum */
6091 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6092 				      IGB_TX_FLAGS_IPV4,
6093 				      (E1000_TXD_POPTS_IXSM << 8));
6094 
6095 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6096 }
6097 
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6098 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100 	struct net_device *netdev = tx_ring->netdev;
6101 
6102 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6103 
6104 	/* Herbert's original patch had:
6105 	 *  smp_mb__after_netif_stop_queue();
6106 	 * but since that doesn't exist yet, just open code it.
6107 	 */
6108 	smp_mb();
6109 
6110 	/* We need to check again in a case another CPU has just
6111 	 * made room available.
6112 	 */
6113 	if (igb_desc_unused(tx_ring) < size)
6114 		return -EBUSY;
6115 
6116 	/* A reprieve! */
6117 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6118 
6119 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6120 	tx_ring->tx_stats.restart_queue2++;
6121 	u64_stats_update_end(&tx_ring->tx_syncp2);
6122 
6123 	return 0;
6124 }
6125 
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6126 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6127 {
6128 	if (igb_desc_unused(tx_ring) >= size)
6129 		return 0;
6130 	return __igb_maybe_stop_tx(tx_ring, size);
6131 }
6132 
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6133 static int igb_tx_map(struct igb_ring *tx_ring,
6134 		      struct igb_tx_buffer *first,
6135 		      const u8 hdr_len)
6136 {
6137 	struct sk_buff *skb = first->skb;
6138 	struct igb_tx_buffer *tx_buffer;
6139 	union e1000_adv_tx_desc *tx_desc;
6140 	skb_frag_t *frag;
6141 	dma_addr_t dma;
6142 	unsigned int data_len, size;
6143 	u32 tx_flags = first->tx_flags;
6144 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6145 	u16 i = tx_ring->next_to_use;
6146 
6147 	tx_desc = IGB_TX_DESC(tx_ring, i);
6148 
6149 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6150 
6151 	size = skb_headlen(skb);
6152 	data_len = skb->data_len;
6153 
6154 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6155 
6156 	tx_buffer = first;
6157 
6158 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6159 		if (dma_mapping_error(tx_ring->dev, dma))
6160 			goto dma_error;
6161 
6162 		/* record length, and DMA address */
6163 		dma_unmap_len_set(tx_buffer, len, size);
6164 		dma_unmap_addr_set(tx_buffer, dma, dma);
6165 
6166 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6167 
6168 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6169 			tx_desc->read.cmd_type_len =
6170 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6171 
6172 			i++;
6173 			tx_desc++;
6174 			if (i == tx_ring->count) {
6175 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6176 				i = 0;
6177 			}
6178 			tx_desc->read.olinfo_status = 0;
6179 
6180 			dma += IGB_MAX_DATA_PER_TXD;
6181 			size -= IGB_MAX_DATA_PER_TXD;
6182 
6183 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6184 		}
6185 
6186 		if (likely(!data_len))
6187 			break;
6188 
6189 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6190 
6191 		i++;
6192 		tx_desc++;
6193 		if (i == tx_ring->count) {
6194 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6195 			i = 0;
6196 		}
6197 		tx_desc->read.olinfo_status = 0;
6198 
6199 		size = skb_frag_size(frag);
6200 		data_len -= size;
6201 
6202 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6203 				       size, DMA_TO_DEVICE);
6204 
6205 		tx_buffer = &tx_ring->tx_buffer_info[i];
6206 	}
6207 
6208 	/* write last descriptor with RS and EOP bits */
6209 	cmd_type |= size | IGB_TXD_DCMD;
6210 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6211 
6212 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6213 
6214 	/* set the timestamp */
6215 	first->time_stamp = jiffies;
6216 
6217 	skb_tx_timestamp(skb);
6218 
6219 	/* Force memory writes to complete before letting h/w know there
6220 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6221 	 * memory model archs, such as IA-64).
6222 	 *
6223 	 * We also need this memory barrier to make certain all of the
6224 	 * status bits have been updated before next_to_watch is written.
6225 	 */
6226 	dma_wmb();
6227 
6228 	/* set next_to_watch value indicating a packet is present */
6229 	first->next_to_watch = tx_desc;
6230 
6231 	i++;
6232 	if (i == tx_ring->count)
6233 		i = 0;
6234 
6235 	tx_ring->next_to_use = i;
6236 
6237 	/* Make sure there is space in the ring for the next send. */
6238 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6239 
6240 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6241 		writel(i, tx_ring->tail);
6242 	}
6243 	return 0;
6244 
6245 dma_error:
6246 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6247 	tx_buffer = &tx_ring->tx_buffer_info[i];
6248 
6249 	/* clear dma mappings for failed tx_buffer_info map */
6250 	while (tx_buffer != first) {
6251 		if (dma_unmap_len(tx_buffer, len))
6252 			dma_unmap_page(tx_ring->dev,
6253 				       dma_unmap_addr(tx_buffer, dma),
6254 				       dma_unmap_len(tx_buffer, len),
6255 				       DMA_TO_DEVICE);
6256 		dma_unmap_len_set(tx_buffer, len, 0);
6257 
6258 		if (i-- == 0)
6259 			i += tx_ring->count;
6260 		tx_buffer = &tx_ring->tx_buffer_info[i];
6261 	}
6262 
6263 	if (dma_unmap_len(tx_buffer, len))
6264 		dma_unmap_single(tx_ring->dev,
6265 				 dma_unmap_addr(tx_buffer, dma),
6266 				 dma_unmap_len(tx_buffer, len),
6267 				 DMA_TO_DEVICE);
6268 	dma_unmap_len_set(tx_buffer, len, 0);
6269 
6270 	dev_kfree_skb_any(tx_buffer->skb);
6271 	tx_buffer->skb = NULL;
6272 
6273 	tx_ring->next_to_use = i;
6274 
6275 	return -1;
6276 }
6277 
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6278 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6279 		      struct igb_ring *tx_ring,
6280 		      struct xdp_frame *xdpf)
6281 {
6282 	union e1000_adv_tx_desc *tx_desc;
6283 	u32 len, cmd_type, olinfo_status;
6284 	struct igb_tx_buffer *tx_buffer;
6285 	dma_addr_t dma;
6286 	u16 i;
6287 
6288 	len = xdpf->len;
6289 
6290 	if (unlikely(!igb_desc_unused(tx_ring)))
6291 		return IGB_XDP_CONSUMED;
6292 
6293 	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6294 	if (dma_mapping_error(tx_ring->dev, dma))
6295 		return IGB_XDP_CONSUMED;
6296 
6297 	/* record the location of the first descriptor for this packet */
6298 	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6299 	tx_buffer->bytecount = len;
6300 	tx_buffer->gso_segs = 1;
6301 	tx_buffer->protocol = 0;
6302 
6303 	i = tx_ring->next_to_use;
6304 	tx_desc = IGB_TX_DESC(tx_ring, i);
6305 
6306 	dma_unmap_len_set(tx_buffer, len, len);
6307 	dma_unmap_addr_set(tx_buffer, dma, dma);
6308 	tx_buffer->type = IGB_TYPE_XDP;
6309 	tx_buffer->xdpf = xdpf;
6310 
6311 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
6312 
6313 	/* put descriptor type bits */
6314 	cmd_type = E1000_ADVTXD_DTYP_DATA |
6315 		   E1000_ADVTXD_DCMD_DEXT |
6316 		   E1000_ADVTXD_DCMD_IFCS;
6317 	cmd_type |= len | IGB_TXD_DCMD;
6318 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6319 
6320 	olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6321 	/* 82575 requires a unique index per ring */
6322 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6323 		olinfo_status |= tx_ring->reg_idx << 4;
6324 
6325 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6326 
6327 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6328 
6329 	/* set the timestamp */
6330 	tx_buffer->time_stamp = jiffies;
6331 
6332 	/* Avoid any potential race with xdp_xmit and cleanup */
6333 	smp_wmb();
6334 
6335 	/* set next_to_watch value indicating a packet is present */
6336 	i++;
6337 	if (i == tx_ring->count)
6338 		i = 0;
6339 
6340 	tx_buffer->next_to_watch = tx_desc;
6341 	tx_ring->next_to_use = i;
6342 
6343 	/* Make sure there is space in the ring for the next send. */
6344 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6345 
6346 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6347 		writel(i, tx_ring->tail);
6348 
6349 	return IGB_XDP_TX;
6350 }
6351 
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6352 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6353 				struct igb_ring *tx_ring)
6354 {
6355 	struct igb_tx_buffer *first;
6356 	int tso;
6357 	u32 tx_flags = 0;
6358 	unsigned short f;
6359 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6360 	__be16 protocol = vlan_get_protocol(skb);
6361 	u8 hdr_len = 0;
6362 
6363 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6364 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6365 	 *       + 2 desc gap to keep tail from touching head,
6366 	 *       + 1 desc for context descriptor,
6367 	 * otherwise try next time
6368 	 */
6369 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6370 		count += TXD_USE_COUNT(skb_frag_size(
6371 						&skb_shinfo(skb)->frags[f]));
6372 
6373 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6374 		/* this is a hard error */
6375 		return NETDEV_TX_BUSY;
6376 	}
6377 
6378 	/* record the location of the first descriptor for this packet */
6379 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6380 	first->type = IGB_TYPE_SKB;
6381 	first->skb = skb;
6382 	first->bytecount = skb->len;
6383 	first->gso_segs = 1;
6384 
6385 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6386 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387 
6388 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6389 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6390 					   &adapter->state)) {
6391 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6392 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6393 
6394 			adapter->ptp_tx_skb = skb_get(skb);
6395 			adapter->ptp_tx_start = jiffies;
6396 			if (adapter->hw.mac.type == e1000_82576)
6397 				schedule_work(&adapter->ptp_tx_work);
6398 		} else {
6399 			adapter->tx_hwtstamp_skipped++;
6400 		}
6401 	}
6402 
6403 	if (skb_vlan_tag_present(skb)) {
6404 		tx_flags |= IGB_TX_FLAGS_VLAN;
6405 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6406 	}
6407 
6408 	/* record initial flags and protocol */
6409 	first->tx_flags = tx_flags;
6410 	first->protocol = protocol;
6411 
6412 	tso = igb_tso(tx_ring, first, &hdr_len);
6413 	if (tso < 0)
6414 		goto out_drop;
6415 	else if (!tso)
6416 		igb_tx_csum(tx_ring, first);
6417 
6418 	if (igb_tx_map(tx_ring, first, hdr_len))
6419 		goto cleanup_tx_tstamp;
6420 
6421 	return NETDEV_TX_OK;
6422 
6423 out_drop:
6424 	dev_kfree_skb_any(first->skb);
6425 	first->skb = NULL;
6426 cleanup_tx_tstamp:
6427 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6428 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6429 
6430 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6431 		adapter->ptp_tx_skb = NULL;
6432 		if (adapter->hw.mac.type == e1000_82576)
6433 			cancel_work_sync(&adapter->ptp_tx_work);
6434 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6435 	}
6436 
6437 	return NETDEV_TX_OK;
6438 }
6439 
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6440 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6441 						    struct sk_buff *skb)
6442 {
6443 	unsigned int r_idx = skb->queue_mapping;
6444 
6445 	if (r_idx >= adapter->num_tx_queues)
6446 		r_idx = r_idx % adapter->num_tx_queues;
6447 
6448 	return adapter->tx_ring[r_idx];
6449 }
6450 
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6451 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6452 				  struct net_device *netdev)
6453 {
6454 	struct igb_adapter *adapter = netdev_priv(netdev);
6455 
6456 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6457 	 * in order to meet this minimum size requirement.
6458 	 */
6459 	if (skb_put_padto(skb, 17))
6460 		return NETDEV_TX_OK;
6461 
6462 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6463 }
6464 
6465 /**
6466  *  igb_tx_timeout - Respond to a Tx Hang
6467  *  @netdev: network interface device structure
6468  *  @txqueue: number of the Tx queue that hung (unused)
6469  **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6470 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6471 {
6472 	struct igb_adapter *adapter = netdev_priv(netdev);
6473 	struct e1000_hw *hw = &adapter->hw;
6474 
6475 	/* Do the reset outside of interrupt context */
6476 	adapter->tx_timeout_count++;
6477 
6478 	if (hw->mac.type >= e1000_82580)
6479 		hw->dev_spec._82575.global_device_reset = true;
6480 
6481 	schedule_work(&adapter->reset_task);
6482 	wr32(E1000_EICS,
6483 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6484 }
6485 
igb_reset_task(struct work_struct * work)6486 static void igb_reset_task(struct work_struct *work)
6487 {
6488 	struct igb_adapter *adapter;
6489 	adapter = container_of(work, struct igb_adapter, reset_task);
6490 
6491 	rtnl_lock();
6492 	/* If we're already down or resetting, just bail */
6493 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6494 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6495 		rtnl_unlock();
6496 		return;
6497 	}
6498 
6499 	igb_dump(adapter);
6500 	netdev_err(adapter->netdev, "Reset adapter\n");
6501 	igb_reinit_locked(adapter);
6502 	rtnl_unlock();
6503 }
6504 
6505 /**
6506  *  igb_get_stats64 - Get System Network Statistics
6507  *  @netdev: network interface device structure
6508  *  @stats: rtnl_link_stats64 pointer
6509  **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6510 static void igb_get_stats64(struct net_device *netdev,
6511 			    struct rtnl_link_stats64 *stats)
6512 {
6513 	struct igb_adapter *adapter = netdev_priv(netdev);
6514 
6515 	spin_lock(&adapter->stats64_lock);
6516 	igb_update_stats(adapter);
6517 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6518 	spin_unlock(&adapter->stats64_lock);
6519 }
6520 
6521 /**
6522  *  igb_change_mtu - Change the Maximum Transfer Unit
6523  *  @netdev: network interface device structure
6524  *  @new_mtu: new value for maximum frame size
6525  *
6526  *  Returns 0 on success, negative on failure
6527  **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6528 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6529 {
6530 	struct igb_adapter *adapter = netdev_priv(netdev);
6531 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6532 
6533 	if (adapter->xdp_prog) {
6534 		int i;
6535 
6536 		for (i = 0; i < adapter->num_rx_queues; i++) {
6537 			struct igb_ring *ring = adapter->rx_ring[i];
6538 
6539 			if (max_frame > igb_rx_bufsz(ring)) {
6540 				netdev_warn(adapter->netdev,
6541 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6542 					    max_frame);
6543 				return -EINVAL;
6544 			}
6545 		}
6546 	}
6547 
6548 	/* adjust max frame to be at least the size of a standard frame */
6549 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6550 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6551 
6552 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6553 		usleep_range(1000, 2000);
6554 
6555 	/* igb_down has a dependency on max_frame_size */
6556 	adapter->max_frame_size = max_frame;
6557 
6558 	if (netif_running(netdev))
6559 		igb_down(adapter);
6560 
6561 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6562 		   netdev->mtu, new_mtu);
6563 	netdev->mtu = new_mtu;
6564 
6565 	if (netif_running(netdev))
6566 		igb_up(adapter);
6567 	else
6568 		igb_reset(adapter);
6569 
6570 	clear_bit(__IGB_RESETTING, &adapter->state);
6571 
6572 	return 0;
6573 }
6574 
6575 /**
6576  *  igb_update_stats - Update the board statistics counters
6577  *  @adapter: board private structure
6578  **/
igb_update_stats(struct igb_adapter * adapter)6579 void igb_update_stats(struct igb_adapter *adapter)
6580 {
6581 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6582 	struct e1000_hw *hw = &adapter->hw;
6583 	struct pci_dev *pdev = adapter->pdev;
6584 	u32 reg, mpc;
6585 	int i;
6586 	u64 bytes, packets;
6587 	unsigned int start;
6588 	u64 _bytes, _packets;
6589 
6590 	/* Prevent stats update while adapter is being reset, or if the pci
6591 	 * connection is down.
6592 	 */
6593 	if (adapter->link_speed == 0)
6594 		return;
6595 	if (pci_channel_offline(pdev))
6596 		return;
6597 
6598 	bytes = 0;
6599 	packets = 0;
6600 
6601 	rcu_read_lock();
6602 	for (i = 0; i < adapter->num_rx_queues; i++) {
6603 		struct igb_ring *ring = adapter->rx_ring[i];
6604 		u32 rqdpc = rd32(E1000_RQDPC(i));
6605 		if (hw->mac.type >= e1000_i210)
6606 			wr32(E1000_RQDPC(i), 0);
6607 
6608 		if (rqdpc) {
6609 			ring->rx_stats.drops += rqdpc;
6610 			net_stats->rx_fifo_errors += rqdpc;
6611 		}
6612 
6613 		do {
6614 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6615 			_bytes = ring->rx_stats.bytes;
6616 			_packets = ring->rx_stats.packets;
6617 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6618 		bytes += _bytes;
6619 		packets += _packets;
6620 	}
6621 
6622 	net_stats->rx_bytes = bytes;
6623 	net_stats->rx_packets = packets;
6624 
6625 	bytes = 0;
6626 	packets = 0;
6627 	for (i = 0; i < adapter->num_tx_queues; i++) {
6628 		struct igb_ring *ring = adapter->tx_ring[i];
6629 		do {
6630 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6631 			_bytes = ring->tx_stats.bytes;
6632 			_packets = ring->tx_stats.packets;
6633 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6634 		bytes += _bytes;
6635 		packets += _packets;
6636 	}
6637 	net_stats->tx_bytes = bytes;
6638 	net_stats->tx_packets = packets;
6639 	rcu_read_unlock();
6640 
6641 	/* read stats registers */
6642 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6643 	adapter->stats.gprc += rd32(E1000_GPRC);
6644 	adapter->stats.gorc += rd32(E1000_GORCL);
6645 	rd32(E1000_GORCH); /* clear GORCL */
6646 	adapter->stats.bprc += rd32(E1000_BPRC);
6647 	adapter->stats.mprc += rd32(E1000_MPRC);
6648 	adapter->stats.roc += rd32(E1000_ROC);
6649 
6650 	adapter->stats.prc64 += rd32(E1000_PRC64);
6651 	adapter->stats.prc127 += rd32(E1000_PRC127);
6652 	adapter->stats.prc255 += rd32(E1000_PRC255);
6653 	adapter->stats.prc511 += rd32(E1000_PRC511);
6654 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6655 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6656 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6657 	adapter->stats.sec += rd32(E1000_SEC);
6658 
6659 	mpc = rd32(E1000_MPC);
6660 	adapter->stats.mpc += mpc;
6661 	net_stats->rx_fifo_errors += mpc;
6662 	adapter->stats.scc += rd32(E1000_SCC);
6663 	adapter->stats.ecol += rd32(E1000_ECOL);
6664 	adapter->stats.mcc += rd32(E1000_MCC);
6665 	adapter->stats.latecol += rd32(E1000_LATECOL);
6666 	adapter->stats.dc += rd32(E1000_DC);
6667 	adapter->stats.rlec += rd32(E1000_RLEC);
6668 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6669 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6670 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6671 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6672 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6673 	adapter->stats.gptc += rd32(E1000_GPTC);
6674 	adapter->stats.gotc += rd32(E1000_GOTCL);
6675 	rd32(E1000_GOTCH); /* clear GOTCL */
6676 	adapter->stats.rnbc += rd32(E1000_RNBC);
6677 	adapter->stats.ruc += rd32(E1000_RUC);
6678 	adapter->stats.rfc += rd32(E1000_RFC);
6679 	adapter->stats.rjc += rd32(E1000_RJC);
6680 	adapter->stats.tor += rd32(E1000_TORH);
6681 	adapter->stats.tot += rd32(E1000_TOTH);
6682 	adapter->stats.tpr += rd32(E1000_TPR);
6683 
6684 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6685 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6686 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6687 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6688 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6689 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6690 
6691 	adapter->stats.mptc += rd32(E1000_MPTC);
6692 	adapter->stats.bptc += rd32(E1000_BPTC);
6693 
6694 	adapter->stats.tpt += rd32(E1000_TPT);
6695 	adapter->stats.colc += rd32(E1000_COLC);
6696 
6697 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6698 	/* read internal phy specific stats */
6699 	reg = rd32(E1000_CTRL_EXT);
6700 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6701 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6702 
6703 		/* this stat has invalid values on i210/i211 */
6704 		if ((hw->mac.type != e1000_i210) &&
6705 		    (hw->mac.type != e1000_i211))
6706 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6707 	}
6708 
6709 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6710 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6711 
6712 	adapter->stats.iac += rd32(E1000_IAC);
6713 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6714 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6715 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6716 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6717 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6718 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6719 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6720 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6721 
6722 	/* Fill out the OS statistics structure */
6723 	net_stats->multicast = adapter->stats.mprc;
6724 	net_stats->collisions = adapter->stats.colc;
6725 
6726 	/* Rx Errors */
6727 
6728 	/* RLEC on some newer hardware can be incorrect so build
6729 	 * our own version based on RUC and ROC
6730 	 */
6731 	net_stats->rx_errors = adapter->stats.rxerrc +
6732 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6733 		adapter->stats.ruc + adapter->stats.roc +
6734 		adapter->stats.cexterr;
6735 	net_stats->rx_length_errors = adapter->stats.ruc +
6736 				      adapter->stats.roc;
6737 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6738 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6739 	net_stats->rx_missed_errors = adapter->stats.mpc;
6740 
6741 	/* Tx Errors */
6742 	net_stats->tx_errors = adapter->stats.ecol +
6743 			       adapter->stats.latecol;
6744 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6745 	net_stats->tx_window_errors = adapter->stats.latecol;
6746 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6747 
6748 	/* Tx Dropped needs to be maintained elsewhere */
6749 
6750 	/* Management Stats */
6751 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6752 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6753 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6754 
6755 	/* OS2BMC Stats */
6756 	reg = rd32(E1000_MANC);
6757 	if (reg & E1000_MANC_EN_BMC2OS) {
6758 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6759 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6760 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6761 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6762 	}
6763 }
6764 
igb_tsync_interrupt(struct igb_adapter * adapter)6765 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6766 {
6767 	struct e1000_hw *hw = &adapter->hw;
6768 	struct ptp_clock_event event;
6769 	struct timespec64 ts;
6770 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6771 
6772 	if (tsicr & TSINTR_SYS_WRAP) {
6773 		event.type = PTP_CLOCK_PPS;
6774 		if (adapter->ptp_caps.pps)
6775 			ptp_clock_event(adapter->ptp_clock, &event);
6776 		ack |= TSINTR_SYS_WRAP;
6777 	}
6778 
6779 	if (tsicr & E1000_TSICR_TXTS) {
6780 		/* retrieve hardware timestamp */
6781 		schedule_work(&adapter->ptp_tx_work);
6782 		ack |= E1000_TSICR_TXTS;
6783 	}
6784 
6785 	if (tsicr & TSINTR_TT0) {
6786 		spin_lock(&adapter->tmreg_lock);
6787 		ts = timespec64_add(adapter->perout[0].start,
6788 				    adapter->perout[0].period);
6789 		/* u32 conversion of tv_sec is safe until y2106 */
6790 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6791 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6792 		tsauxc = rd32(E1000_TSAUXC);
6793 		tsauxc |= TSAUXC_EN_TT0;
6794 		wr32(E1000_TSAUXC, tsauxc);
6795 		adapter->perout[0].start = ts;
6796 		spin_unlock(&adapter->tmreg_lock);
6797 		ack |= TSINTR_TT0;
6798 	}
6799 
6800 	if (tsicr & TSINTR_TT1) {
6801 		spin_lock(&adapter->tmreg_lock);
6802 		ts = timespec64_add(adapter->perout[1].start,
6803 				    adapter->perout[1].period);
6804 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6805 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6806 		tsauxc = rd32(E1000_TSAUXC);
6807 		tsauxc |= TSAUXC_EN_TT1;
6808 		wr32(E1000_TSAUXC, tsauxc);
6809 		adapter->perout[1].start = ts;
6810 		spin_unlock(&adapter->tmreg_lock);
6811 		ack |= TSINTR_TT1;
6812 	}
6813 
6814 	if (tsicr & TSINTR_AUTT0) {
6815 		nsec = rd32(E1000_AUXSTMPL0);
6816 		sec  = rd32(E1000_AUXSTMPH0);
6817 		event.type = PTP_CLOCK_EXTTS;
6818 		event.index = 0;
6819 		event.timestamp = sec * 1000000000ULL + nsec;
6820 		ptp_clock_event(adapter->ptp_clock, &event);
6821 		ack |= TSINTR_AUTT0;
6822 	}
6823 
6824 	if (tsicr & TSINTR_AUTT1) {
6825 		nsec = rd32(E1000_AUXSTMPL1);
6826 		sec  = rd32(E1000_AUXSTMPH1);
6827 		event.type = PTP_CLOCK_EXTTS;
6828 		event.index = 1;
6829 		event.timestamp = sec * 1000000000ULL + nsec;
6830 		ptp_clock_event(adapter->ptp_clock, &event);
6831 		ack |= TSINTR_AUTT1;
6832 	}
6833 
6834 	/* acknowledge the interrupts */
6835 	wr32(E1000_TSICR, ack);
6836 }
6837 
igb_msix_other(int irq,void * data)6838 static irqreturn_t igb_msix_other(int irq, void *data)
6839 {
6840 	struct igb_adapter *adapter = data;
6841 	struct e1000_hw *hw = &adapter->hw;
6842 	u32 icr = rd32(E1000_ICR);
6843 	/* reading ICR causes bit 31 of EICR to be cleared */
6844 
6845 	if (icr & E1000_ICR_DRSTA)
6846 		schedule_work(&adapter->reset_task);
6847 
6848 	if (icr & E1000_ICR_DOUTSYNC) {
6849 		/* HW is reporting DMA is out of sync */
6850 		adapter->stats.doosync++;
6851 		/* The DMA Out of Sync is also indication of a spoof event
6852 		 * in IOV mode. Check the Wrong VM Behavior register to
6853 		 * see if it is really a spoof event.
6854 		 */
6855 		igb_check_wvbr(adapter);
6856 	}
6857 
6858 	/* Check for a mailbox event */
6859 	if (icr & E1000_ICR_VMMB)
6860 		igb_msg_task(adapter);
6861 
6862 	if (icr & E1000_ICR_LSC) {
6863 		hw->mac.get_link_status = 1;
6864 		/* guard against interrupt when we're going down */
6865 		if (!test_bit(__IGB_DOWN, &adapter->state))
6866 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6867 	}
6868 
6869 	if (icr & E1000_ICR_TS)
6870 		igb_tsync_interrupt(adapter);
6871 
6872 	wr32(E1000_EIMS, adapter->eims_other);
6873 
6874 	return IRQ_HANDLED;
6875 }
6876 
igb_write_itr(struct igb_q_vector * q_vector)6877 static void igb_write_itr(struct igb_q_vector *q_vector)
6878 {
6879 	struct igb_adapter *adapter = q_vector->adapter;
6880 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6881 
6882 	if (!q_vector->set_itr)
6883 		return;
6884 
6885 	if (!itr_val)
6886 		itr_val = 0x4;
6887 
6888 	if (adapter->hw.mac.type == e1000_82575)
6889 		itr_val |= itr_val << 16;
6890 	else
6891 		itr_val |= E1000_EITR_CNT_IGNR;
6892 
6893 	writel(itr_val, q_vector->itr_register);
6894 	q_vector->set_itr = 0;
6895 }
6896 
igb_msix_ring(int irq,void * data)6897 static irqreturn_t igb_msix_ring(int irq, void *data)
6898 {
6899 	struct igb_q_vector *q_vector = data;
6900 
6901 	/* Write the ITR value calculated from the previous interrupt. */
6902 	igb_write_itr(q_vector);
6903 
6904 	napi_schedule(&q_vector->napi);
6905 
6906 	return IRQ_HANDLED;
6907 }
6908 
6909 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6910 static void igb_update_tx_dca(struct igb_adapter *adapter,
6911 			      struct igb_ring *tx_ring,
6912 			      int cpu)
6913 {
6914 	struct e1000_hw *hw = &adapter->hw;
6915 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6916 
6917 	if (hw->mac.type != e1000_82575)
6918 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6919 
6920 	/* We can enable relaxed ordering for reads, but not writes when
6921 	 * DCA is enabled.  This is due to a known issue in some chipsets
6922 	 * which will cause the DCA tag to be cleared.
6923 	 */
6924 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6925 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6926 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6927 
6928 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6929 }
6930 
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6931 static void igb_update_rx_dca(struct igb_adapter *adapter,
6932 			      struct igb_ring *rx_ring,
6933 			      int cpu)
6934 {
6935 	struct e1000_hw *hw = &adapter->hw;
6936 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6937 
6938 	if (hw->mac.type != e1000_82575)
6939 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6940 
6941 	/* We can enable relaxed ordering for reads, but not writes when
6942 	 * DCA is enabled.  This is due to a known issue in some chipsets
6943 	 * which will cause the DCA tag to be cleared.
6944 	 */
6945 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6946 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6947 
6948 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6949 }
6950 
igb_update_dca(struct igb_q_vector * q_vector)6951 static void igb_update_dca(struct igb_q_vector *q_vector)
6952 {
6953 	struct igb_adapter *adapter = q_vector->adapter;
6954 	int cpu = get_cpu();
6955 
6956 	if (q_vector->cpu == cpu)
6957 		goto out_no_update;
6958 
6959 	if (q_vector->tx.ring)
6960 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6961 
6962 	if (q_vector->rx.ring)
6963 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6964 
6965 	q_vector->cpu = cpu;
6966 out_no_update:
6967 	put_cpu();
6968 }
6969 
igb_setup_dca(struct igb_adapter * adapter)6970 static void igb_setup_dca(struct igb_adapter *adapter)
6971 {
6972 	struct e1000_hw *hw = &adapter->hw;
6973 	int i;
6974 
6975 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6976 		return;
6977 
6978 	/* Always use CB2 mode, difference is masked in the CB driver. */
6979 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6980 
6981 	for (i = 0; i < adapter->num_q_vectors; i++) {
6982 		adapter->q_vector[i]->cpu = -1;
6983 		igb_update_dca(adapter->q_vector[i]);
6984 	}
6985 }
6986 
__igb_notify_dca(struct device * dev,void * data)6987 static int __igb_notify_dca(struct device *dev, void *data)
6988 {
6989 	struct net_device *netdev = dev_get_drvdata(dev);
6990 	struct igb_adapter *adapter = netdev_priv(netdev);
6991 	struct pci_dev *pdev = adapter->pdev;
6992 	struct e1000_hw *hw = &adapter->hw;
6993 	unsigned long event = *(unsigned long *)data;
6994 
6995 	switch (event) {
6996 	case DCA_PROVIDER_ADD:
6997 		/* if already enabled, don't do it again */
6998 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6999 			break;
7000 		if (dca_add_requester(dev) == 0) {
7001 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7002 			dev_info(&pdev->dev, "DCA enabled\n");
7003 			igb_setup_dca(adapter);
7004 			break;
7005 		}
7006 		fallthrough; /* since DCA is disabled. */
7007 	case DCA_PROVIDER_REMOVE:
7008 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7009 			/* without this a class_device is left
7010 			 * hanging around in the sysfs model
7011 			 */
7012 			dca_remove_requester(dev);
7013 			dev_info(&pdev->dev, "DCA disabled\n");
7014 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7015 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7016 		}
7017 		break;
7018 	}
7019 
7020 	return 0;
7021 }
7022 
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7023 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7024 			  void *p)
7025 {
7026 	int ret_val;
7027 
7028 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7029 					 __igb_notify_dca);
7030 
7031 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7032 }
7033 #endif /* CONFIG_IGB_DCA */
7034 
7035 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7036 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7037 {
7038 	unsigned char mac_addr[ETH_ALEN];
7039 
7040 	eth_zero_addr(mac_addr);
7041 	igb_set_vf_mac(adapter, vf, mac_addr);
7042 
7043 	/* By default spoof check is enabled for all VFs */
7044 	adapter->vf_data[vf].spoofchk_enabled = true;
7045 
7046 	/* By default VFs are not trusted */
7047 	adapter->vf_data[vf].trusted = false;
7048 
7049 	return 0;
7050 }
7051 
7052 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7053 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7054 {
7055 	struct e1000_hw *hw = &adapter->hw;
7056 	u32 ping;
7057 	int i;
7058 
7059 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7060 		ping = E1000_PF_CONTROL_MSG;
7061 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7062 			ping |= E1000_VT_MSGTYPE_CTS;
7063 		igb_write_mbx(hw, &ping, 1, i);
7064 	}
7065 }
7066 
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7067 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7068 {
7069 	struct e1000_hw *hw = &adapter->hw;
7070 	u32 vmolr = rd32(E1000_VMOLR(vf));
7071 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072 
7073 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7074 			    IGB_VF_FLAG_MULTI_PROMISC);
7075 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7076 
7077 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7078 		vmolr |= E1000_VMOLR_MPME;
7079 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7080 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7081 	} else {
7082 		/* if we have hashes and we are clearing a multicast promisc
7083 		 * flag we need to write the hashes to the MTA as this step
7084 		 * was previously skipped
7085 		 */
7086 		if (vf_data->num_vf_mc_hashes > 30) {
7087 			vmolr |= E1000_VMOLR_MPME;
7088 		} else if (vf_data->num_vf_mc_hashes) {
7089 			int j;
7090 
7091 			vmolr |= E1000_VMOLR_ROMPE;
7092 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7093 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7094 		}
7095 	}
7096 
7097 	wr32(E1000_VMOLR(vf), vmolr);
7098 
7099 	/* there are flags left unprocessed, likely not supported */
7100 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7101 		return -EINVAL;
7102 
7103 	return 0;
7104 }
7105 
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7106 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7107 				  u32 *msgbuf, u32 vf)
7108 {
7109 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7110 	u16 *hash_list = (u16 *)&msgbuf[1];
7111 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7112 	int i;
7113 
7114 	/* salt away the number of multicast addresses assigned
7115 	 * to this VF for later use to restore when the PF multi cast
7116 	 * list changes
7117 	 */
7118 	vf_data->num_vf_mc_hashes = n;
7119 
7120 	/* only up to 30 hash values supported */
7121 	if (n > 30)
7122 		n = 30;
7123 
7124 	/* store the hashes for later use */
7125 	for (i = 0; i < n; i++)
7126 		vf_data->vf_mc_hashes[i] = hash_list[i];
7127 
7128 	/* Flush and reset the mta with the new values */
7129 	igb_set_rx_mode(adapter->netdev);
7130 
7131 	return 0;
7132 }
7133 
igb_restore_vf_multicasts(struct igb_adapter * adapter)7134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7135 {
7136 	struct e1000_hw *hw = &adapter->hw;
7137 	struct vf_data_storage *vf_data;
7138 	int i, j;
7139 
7140 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7141 		u32 vmolr = rd32(E1000_VMOLR(i));
7142 
7143 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7144 
7145 		vf_data = &adapter->vf_data[i];
7146 
7147 		if ((vf_data->num_vf_mc_hashes > 30) ||
7148 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7149 			vmolr |= E1000_VMOLR_MPME;
7150 		} else if (vf_data->num_vf_mc_hashes) {
7151 			vmolr |= E1000_VMOLR_ROMPE;
7152 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7153 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7154 		}
7155 		wr32(E1000_VMOLR(i), vmolr);
7156 	}
7157 }
7158 
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7159 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7160 {
7161 	struct e1000_hw *hw = &adapter->hw;
7162 	u32 pool_mask, vlvf_mask, i;
7163 
7164 	/* create mask for VF and other pools */
7165 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7166 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7167 
7168 	/* drop PF from pool bits */
7169 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7170 			     adapter->vfs_allocated_count);
7171 
7172 	/* Find the vlan filter for this id */
7173 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7174 		u32 vlvf = rd32(E1000_VLVF(i));
7175 		u32 vfta_mask, vid, vfta;
7176 
7177 		/* remove the vf from the pool */
7178 		if (!(vlvf & vlvf_mask))
7179 			continue;
7180 
7181 		/* clear out bit from VLVF */
7182 		vlvf ^= vlvf_mask;
7183 
7184 		/* if other pools are present, just remove ourselves */
7185 		if (vlvf & pool_mask)
7186 			goto update_vlvfb;
7187 
7188 		/* if PF is present, leave VFTA */
7189 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7190 			goto update_vlvf;
7191 
7192 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7193 		vfta_mask = BIT(vid % 32);
7194 
7195 		/* clear bit from VFTA */
7196 		vfta = adapter->shadow_vfta[vid / 32];
7197 		if (vfta & vfta_mask)
7198 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7199 update_vlvf:
7200 		/* clear pool selection enable */
7201 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7202 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7203 		else
7204 			vlvf = 0;
7205 update_vlvfb:
7206 		/* clear pool bits */
7207 		wr32(E1000_VLVF(i), vlvf);
7208 	}
7209 }
7210 
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7211 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7212 {
7213 	u32 vlvf;
7214 	int idx;
7215 
7216 	/* short cut the special case */
7217 	if (vlan == 0)
7218 		return 0;
7219 
7220 	/* Search for the VLAN id in the VLVF entries */
7221 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7222 		vlvf = rd32(E1000_VLVF(idx));
7223 		if ((vlvf & VLAN_VID_MASK) == vlan)
7224 			break;
7225 	}
7226 
7227 	return idx;
7228 }
7229 
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7230 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7231 {
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	u32 bits, pf_id;
7234 	int idx;
7235 
7236 	idx = igb_find_vlvf_entry(hw, vid);
7237 	if (!idx)
7238 		return;
7239 
7240 	/* See if any other pools are set for this VLAN filter
7241 	 * entry other than the PF.
7242 	 */
7243 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7244 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7245 	bits &= rd32(E1000_VLVF(idx));
7246 
7247 	/* Disable the filter so this falls into the default pool. */
7248 	if (!bits) {
7249 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7250 			wr32(E1000_VLVF(idx), BIT(pf_id));
7251 		else
7252 			wr32(E1000_VLVF(idx), 0);
7253 	}
7254 }
7255 
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7256 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7257 			   bool add, u32 vf)
7258 {
7259 	int pf_id = adapter->vfs_allocated_count;
7260 	struct e1000_hw *hw = &adapter->hw;
7261 	int err;
7262 
7263 	/* If VLAN overlaps with one the PF is currently monitoring make
7264 	 * sure that we are able to allocate a VLVF entry.  This may be
7265 	 * redundant but it guarantees PF will maintain visibility to
7266 	 * the VLAN.
7267 	 */
7268 	if (add && test_bit(vid, adapter->active_vlans)) {
7269 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7270 		if (err)
7271 			return err;
7272 	}
7273 
7274 	err = igb_vfta_set(hw, vid, vf, add, false);
7275 
7276 	if (add && !err)
7277 		return err;
7278 
7279 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7280 	 * we may need to drop the PF pool bit in order to allow us to free
7281 	 * up the VLVF resources.
7282 	 */
7283 	if (test_bit(vid, adapter->active_vlans) ||
7284 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7285 		igb_update_pf_vlvf(adapter, vid);
7286 
7287 	return err;
7288 }
7289 
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7290 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7291 {
7292 	struct e1000_hw *hw = &adapter->hw;
7293 
7294 	if (vid)
7295 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7296 	else
7297 		wr32(E1000_VMVIR(vf), 0);
7298 }
7299 
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7300 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7301 				u16 vlan, u8 qos)
7302 {
7303 	int err;
7304 
7305 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7306 	if (err)
7307 		return err;
7308 
7309 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7310 	igb_set_vmolr(adapter, vf, !vlan);
7311 
7312 	/* revoke access to previous VLAN */
7313 	if (vlan != adapter->vf_data[vf].pf_vlan)
7314 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7315 				false, vf);
7316 
7317 	adapter->vf_data[vf].pf_vlan = vlan;
7318 	adapter->vf_data[vf].pf_qos = qos;
7319 	igb_set_vf_vlan_strip(adapter, vf, true);
7320 	dev_info(&adapter->pdev->dev,
7321 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7322 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7323 		dev_warn(&adapter->pdev->dev,
7324 			 "The VF VLAN has been set, but the PF device is not up.\n");
7325 		dev_warn(&adapter->pdev->dev,
7326 			 "Bring the PF device up before attempting to use the VF device.\n");
7327 	}
7328 
7329 	return err;
7330 }
7331 
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7332 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7333 {
7334 	/* Restore tagless access via VLAN 0 */
7335 	igb_set_vf_vlan(adapter, 0, true, vf);
7336 
7337 	igb_set_vmvir(adapter, 0, vf);
7338 	igb_set_vmolr(adapter, vf, true);
7339 
7340 	/* Remove any PF assigned VLAN */
7341 	if (adapter->vf_data[vf].pf_vlan)
7342 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7343 				false, vf);
7344 
7345 	adapter->vf_data[vf].pf_vlan = 0;
7346 	adapter->vf_data[vf].pf_qos = 0;
7347 	igb_set_vf_vlan_strip(adapter, vf, false);
7348 
7349 	return 0;
7350 }
7351 
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7352 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7353 			       u16 vlan, u8 qos, __be16 vlan_proto)
7354 {
7355 	struct igb_adapter *adapter = netdev_priv(netdev);
7356 
7357 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7358 		return -EINVAL;
7359 
7360 	if (vlan_proto != htons(ETH_P_8021Q))
7361 		return -EPROTONOSUPPORT;
7362 
7363 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7364 			       igb_disable_port_vlan(adapter, vf);
7365 }
7366 
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7367 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7368 {
7369 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7370 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7371 	int ret;
7372 
7373 	if (adapter->vf_data[vf].pf_vlan)
7374 		return -1;
7375 
7376 	/* VLAN 0 is a special case, don't allow it to be removed */
7377 	if (!vid && !add)
7378 		return 0;
7379 
7380 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7381 	if (!ret)
7382 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7383 	return ret;
7384 }
7385 
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7386 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7387 {
7388 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7389 
7390 	/* clear flags - except flag that indicates PF has set the MAC */
7391 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7392 	vf_data->last_nack = jiffies;
7393 
7394 	/* reset vlans for device */
7395 	igb_clear_vf_vfta(adapter, vf);
7396 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7397 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7398 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7399 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7400 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7401 
7402 	/* reset multicast table array for vf */
7403 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7404 
7405 	/* Flush and reset the mta with the new values */
7406 	igb_set_rx_mode(adapter->netdev);
7407 }
7408 
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7409 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7410 {
7411 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7412 
7413 	/* clear mac address as we were hotplug removed/added */
7414 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7415 		eth_zero_addr(vf_mac);
7416 
7417 	/* process remaining reset events */
7418 	igb_vf_reset(adapter, vf);
7419 }
7420 
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7421 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7422 {
7423 	struct e1000_hw *hw = &adapter->hw;
7424 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7425 	u32 reg, msgbuf[3] = {};
7426 	u8 *addr = (u8 *)(&msgbuf[1]);
7427 
7428 	/* process all the same items cleared in a function level reset */
7429 	igb_vf_reset(adapter, vf);
7430 
7431 	/* set vf mac address */
7432 	igb_set_vf_mac(adapter, vf, vf_mac);
7433 
7434 	/* enable transmit and receive for vf */
7435 	reg = rd32(E1000_VFTE);
7436 	wr32(E1000_VFTE, reg | BIT(vf));
7437 	reg = rd32(E1000_VFRE);
7438 	wr32(E1000_VFRE, reg | BIT(vf));
7439 
7440 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7441 
7442 	/* reply to reset with ack and vf mac address */
7443 	if (!is_zero_ether_addr(vf_mac)) {
7444 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7445 		memcpy(addr, vf_mac, ETH_ALEN);
7446 	} else {
7447 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7448 	}
7449 	igb_write_mbx(hw, msgbuf, 3, vf);
7450 }
7451 
igb_flush_mac_table(struct igb_adapter * adapter)7452 static void igb_flush_mac_table(struct igb_adapter *adapter)
7453 {
7454 	struct e1000_hw *hw = &adapter->hw;
7455 	int i;
7456 
7457 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7458 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7459 		eth_zero_addr(adapter->mac_table[i].addr);
7460 		adapter->mac_table[i].queue = 0;
7461 		igb_rar_set_index(adapter, i);
7462 	}
7463 }
7464 
igb_available_rars(struct igb_adapter * adapter,u8 queue)7465 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7466 {
7467 	struct e1000_hw *hw = &adapter->hw;
7468 	/* do not count rar entries reserved for VFs MAC addresses */
7469 	int rar_entries = hw->mac.rar_entry_count -
7470 			  adapter->vfs_allocated_count;
7471 	int i, count = 0;
7472 
7473 	for (i = 0; i < rar_entries; i++) {
7474 		/* do not count default entries */
7475 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7476 			continue;
7477 
7478 		/* do not count "in use" entries for different queues */
7479 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7480 		    (adapter->mac_table[i].queue != queue))
7481 			continue;
7482 
7483 		count++;
7484 	}
7485 
7486 	return count;
7487 }
7488 
7489 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7490 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7491 {
7492 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7493 
7494 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7495 	mac_table->queue = adapter->vfs_allocated_count;
7496 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7497 
7498 	igb_rar_set_index(adapter, 0);
7499 }
7500 
7501 /* If the filter to be added and an already existing filter express
7502  * the same address and address type, it should be possible to only
7503  * override the other configurations, for example the queue to steer
7504  * traffic.
7505  */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7506 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7507 				      const u8 *addr, const u8 flags)
7508 {
7509 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7510 		return true;
7511 
7512 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7513 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7514 		return false;
7515 
7516 	if (!ether_addr_equal(addr, entry->addr))
7517 		return false;
7518 
7519 	return true;
7520 }
7521 
7522 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7523  * 'flags' is used to indicate what kind of match is made, match is by
7524  * default for the destination address, if matching by source address
7525  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7526  */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7527 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7528 				    const u8 *addr, const u8 queue,
7529 				    const u8 flags)
7530 {
7531 	struct e1000_hw *hw = &adapter->hw;
7532 	int rar_entries = hw->mac.rar_entry_count -
7533 			  adapter->vfs_allocated_count;
7534 	int i;
7535 
7536 	if (is_zero_ether_addr(addr))
7537 		return -EINVAL;
7538 
7539 	/* Search for the first empty entry in the MAC table.
7540 	 * Do not touch entries at the end of the table reserved for the VF MAC
7541 	 * addresses.
7542 	 */
7543 	for (i = 0; i < rar_entries; i++) {
7544 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7545 					       addr, flags))
7546 			continue;
7547 
7548 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7549 		adapter->mac_table[i].queue = queue;
7550 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7551 
7552 		igb_rar_set_index(adapter, i);
7553 		return i;
7554 	}
7555 
7556 	return -ENOSPC;
7557 }
7558 
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7559 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7560 			      const u8 queue)
7561 {
7562 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7563 }
7564 
7565 /* Remove a MAC filter for 'addr' directing matching traffic to
7566  * 'queue', 'flags' is used to indicate what kind of match need to be
7567  * removed, match is by default for the destination address, if
7568  * matching by source address is to be removed the flag
7569  * IGB_MAC_STATE_SRC_ADDR can be used.
7570  */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7571 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7572 				    const u8 *addr, const u8 queue,
7573 				    const u8 flags)
7574 {
7575 	struct e1000_hw *hw = &adapter->hw;
7576 	int rar_entries = hw->mac.rar_entry_count -
7577 			  adapter->vfs_allocated_count;
7578 	int i;
7579 
7580 	if (is_zero_ether_addr(addr))
7581 		return -EINVAL;
7582 
7583 	/* Search for matching entry in the MAC table based on given address
7584 	 * and queue. Do not touch entries at the end of the table reserved
7585 	 * for the VF MAC addresses.
7586 	 */
7587 	for (i = 0; i < rar_entries; i++) {
7588 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7589 			continue;
7590 		if ((adapter->mac_table[i].state & flags) != flags)
7591 			continue;
7592 		if (adapter->mac_table[i].queue != queue)
7593 			continue;
7594 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7595 			continue;
7596 
7597 		/* When a filter for the default address is "deleted",
7598 		 * we return it to its initial configuration
7599 		 */
7600 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7601 			adapter->mac_table[i].state =
7602 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7603 			adapter->mac_table[i].queue =
7604 				adapter->vfs_allocated_count;
7605 		} else {
7606 			adapter->mac_table[i].state = 0;
7607 			adapter->mac_table[i].queue = 0;
7608 			eth_zero_addr(adapter->mac_table[i].addr);
7609 		}
7610 
7611 		igb_rar_set_index(adapter, i);
7612 		return 0;
7613 	}
7614 
7615 	return -ENOENT;
7616 }
7617 
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7618 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7619 			      const u8 queue)
7620 {
7621 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7622 }
7623 
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7624 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7625 				const u8 *addr, u8 queue, u8 flags)
7626 {
7627 	struct e1000_hw *hw = &adapter->hw;
7628 
7629 	/* In theory, this should be supported on 82575 as well, but
7630 	 * that part wasn't easily accessible during development.
7631 	 */
7632 	if (hw->mac.type != e1000_i210)
7633 		return -EOPNOTSUPP;
7634 
7635 	return igb_add_mac_filter_flags(adapter, addr, queue,
7636 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7637 }
7638 
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7639 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7640 				const u8 *addr, u8 queue, u8 flags)
7641 {
7642 	return igb_del_mac_filter_flags(adapter, addr, queue,
7643 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7644 }
7645 
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7646 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7647 {
7648 	struct igb_adapter *adapter = netdev_priv(netdev);
7649 	int ret;
7650 
7651 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7652 
7653 	return min_t(int, ret, 0);
7654 }
7655 
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7656 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7657 {
7658 	struct igb_adapter *adapter = netdev_priv(netdev);
7659 
7660 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7661 
7662 	return 0;
7663 }
7664 
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7665 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7666 				 const u32 info, const u8 *addr)
7667 {
7668 	struct pci_dev *pdev = adapter->pdev;
7669 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7670 	struct list_head *pos;
7671 	struct vf_mac_filter *entry = NULL;
7672 	int ret = 0;
7673 
7674 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7675 	    !vf_data->trusted) {
7676 		dev_warn(&pdev->dev,
7677 			 "VF %d requested MAC filter but is administratively denied\n",
7678 			  vf);
7679 		return -EINVAL;
7680 	}
7681 	if (!is_valid_ether_addr(addr)) {
7682 		dev_warn(&pdev->dev,
7683 			 "VF %d attempted to set invalid MAC filter\n",
7684 			  vf);
7685 		return -EINVAL;
7686 	}
7687 
7688 	switch (info) {
7689 	case E1000_VF_MAC_FILTER_CLR:
7690 		/* remove all unicast MAC filters related to the current VF */
7691 		list_for_each(pos, &adapter->vf_macs.l) {
7692 			entry = list_entry(pos, struct vf_mac_filter, l);
7693 			if (entry->vf == vf) {
7694 				entry->vf = -1;
7695 				entry->free = true;
7696 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7697 			}
7698 		}
7699 		break;
7700 	case E1000_VF_MAC_FILTER_ADD:
7701 		/* try to find empty slot in the list */
7702 		list_for_each(pos, &adapter->vf_macs.l) {
7703 			entry = list_entry(pos, struct vf_mac_filter, l);
7704 			if (entry->free)
7705 				break;
7706 		}
7707 
7708 		if (entry && entry->free) {
7709 			entry->free = false;
7710 			entry->vf = vf;
7711 			ether_addr_copy(entry->vf_mac, addr);
7712 
7713 			ret = igb_add_mac_filter(adapter, addr, vf);
7714 			ret = min_t(int, ret, 0);
7715 		} else {
7716 			ret = -ENOSPC;
7717 		}
7718 
7719 		if (ret == -ENOSPC)
7720 			dev_warn(&pdev->dev,
7721 				 "VF %d has requested MAC filter but there is no space for it\n",
7722 				 vf);
7723 		break;
7724 	default:
7725 		ret = -EINVAL;
7726 		break;
7727 	}
7728 
7729 	return ret;
7730 }
7731 
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7732 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7733 {
7734 	struct pci_dev *pdev = adapter->pdev;
7735 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7736 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7737 
7738 	/* The VF MAC Address is stored in a packed array of bytes
7739 	 * starting at the second 32 bit word of the msg array
7740 	 */
7741 	unsigned char *addr = (unsigned char *)&msg[1];
7742 	int ret = 0;
7743 
7744 	if (!info) {
7745 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7746 		    !vf_data->trusted) {
7747 			dev_warn(&pdev->dev,
7748 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7749 				 vf);
7750 			return -EINVAL;
7751 		}
7752 
7753 		if (!is_valid_ether_addr(addr)) {
7754 			dev_warn(&pdev->dev,
7755 				 "VF %d attempted to set invalid MAC\n",
7756 				 vf);
7757 			return -EINVAL;
7758 		}
7759 
7760 		ret = igb_set_vf_mac(adapter, vf, addr);
7761 	} else {
7762 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7763 	}
7764 
7765 	return ret;
7766 }
7767 
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7768 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7769 {
7770 	struct e1000_hw *hw = &adapter->hw;
7771 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7772 	u32 msg = E1000_VT_MSGTYPE_NACK;
7773 
7774 	/* if device isn't clear to send it shouldn't be reading either */
7775 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7776 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7777 		igb_write_mbx(hw, &msg, 1, vf);
7778 		vf_data->last_nack = jiffies;
7779 	}
7780 }
7781 
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7782 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7783 {
7784 	struct pci_dev *pdev = adapter->pdev;
7785 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7786 	struct e1000_hw *hw = &adapter->hw;
7787 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7788 	s32 retval;
7789 
7790 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7791 
7792 	if (retval) {
7793 		/* if receive failed revoke VF CTS stats and restart init */
7794 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7795 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7796 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7797 			goto unlock;
7798 		goto out;
7799 	}
7800 
7801 	/* this is a message we already processed, do nothing */
7802 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7803 		goto unlock;
7804 
7805 	/* until the vf completes a reset it should not be
7806 	 * allowed to start any configuration.
7807 	 */
7808 	if (msgbuf[0] == E1000_VF_RESET) {
7809 		/* unlocks mailbox */
7810 		igb_vf_reset_msg(adapter, vf);
7811 		return;
7812 	}
7813 
7814 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7815 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7816 			goto unlock;
7817 		retval = -1;
7818 		goto out;
7819 	}
7820 
7821 	switch ((msgbuf[0] & 0xFFFF)) {
7822 	case E1000_VF_SET_MAC_ADDR:
7823 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7824 		break;
7825 	case E1000_VF_SET_PROMISC:
7826 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7827 		break;
7828 	case E1000_VF_SET_MULTICAST:
7829 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7830 		break;
7831 	case E1000_VF_SET_LPE:
7832 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7833 		break;
7834 	case E1000_VF_SET_VLAN:
7835 		retval = -1;
7836 		if (vf_data->pf_vlan)
7837 			dev_warn(&pdev->dev,
7838 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7839 				 vf);
7840 		else
7841 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7842 		break;
7843 	default:
7844 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7845 		retval = -1;
7846 		break;
7847 	}
7848 
7849 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7850 out:
7851 	/* notify the VF of the results of what it sent us */
7852 	if (retval)
7853 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7854 	else
7855 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7856 
7857 	/* unlocks mailbox */
7858 	igb_write_mbx(hw, msgbuf, 1, vf);
7859 	return;
7860 
7861 unlock:
7862 	igb_unlock_mbx(hw, vf);
7863 }
7864 
igb_msg_task(struct igb_adapter * adapter)7865 static void igb_msg_task(struct igb_adapter *adapter)
7866 {
7867 	struct e1000_hw *hw = &adapter->hw;
7868 	unsigned long flags;
7869 	u32 vf;
7870 
7871 	spin_lock_irqsave(&adapter->vfs_lock, flags);
7872 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7873 		/* process any reset requests */
7874 		if (!igb_check_for_rst(hw, vf))
7875 			igb_vf_reset_event(adapter, vf);
7876 
7877 		/* process any messages pending */
7878 		if (!igb_check_for_msg(hw, vf))
7879 			igb_rcv_msg_from_vf(adapter, vf);
7880 
7881 		/* process any acks */
7882 		if (!igb_check_for_ack(hw, vf))
7883 			igb_rcv_ack_from_vf(adapter, vf);
7884 	}
7885 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7886 }
7887 
7888 /**
7889  *  igb_set_uta - Set unicast filter table address
7890  *  @adapter: board private structure
7891  *  @set: boolean indicating if we are setting or clearing bits
7892  *
7893  *  The unicast table address is a register array of 32-bit registers.
7894  *  The table is meant to be used in a way similar to how the MTA is used
7895  *  however due to certain limitations in the hardware it is necessary to
7896  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7897  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7898  **/
igb_set_uta(struct igb_adapter * adapter,bool set)7899 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7900 {
7901 	struct e1000_hw *hw = &adapter->hw;
7902 	u32 uta = set ? ~0 : 0;
7903 	int i;
7904 
7905 	/* we only need to do this if VMDq is enabled */
7906 	if (!adapter->vfs_allocated_count)
7907 		return;
7908 
7909 	for (i = hw->mac.uta_reg_count; i--;)
7910 		array_wr32(E1000_UTA, i, uta);
7911 }
7912 
7913 /**
7914  *  igb_intr_msi - Interrupt Handler
7915  *  @irq: interrupt number
7916  *  @data: pointer to a network interface device structure
7917  **/
igb_intr_msi(int irq,void * data)7918 static irqreturn_t igb_intr_msi(int irq, void *data)
7919 {
7920 	struct igb_adapter *adapter = data;
7921 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7922 	struct e1000_hw *hw = &adapter->hw;
7923 	/* read ICR disables interrupts using IAM */
7924 	u32 icr = rd32(E1000_ICR);
7925 
7926 	igb_write_itr(q_vector);
7927 
7928 	if (icr & E1000_ICR_DRSTA)
7929 		schedule_work(&adapter->reset_task);
7930 
7931 	if (icr & E1000_ICR_DOUTSYNC) {
7932 		/* HW is reporting DMA is out of sync */
7933 		adapter->stats.doosync++;
7934 	}
7935 
7936 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7937 		hw->mac.get_link_status = 1;
7938 		if (!test_bit(__IGB_DOWN, &adapter->state))
7939 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7940 	}
7941 
7942 	if (icr & E1000_ICR_TS)
7943 		igb_tsync_interrupt(adapter);
7944 
7945 	napi_schedule(&q_vector->napi);
7946 
7947 	return IRQ_HANDLED;
7948 }
7949 
7950 /**
7951  *  igb_intr - Legacy Interrupt Handler
7952  *  @irq: interrupt number
7953  *  @data: pointer to a network interface device structure
7954  **/
igb_intr(int irq,void * data)7955 static irqreturn_t igb_intr(int irq, void *data)
7956 {
7957 	struct igb_adapter *adapter = data;
7958 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7959 	struct e1000_hw *hw = &adapter->hw;
7960 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7961 	 * need for the IMC write
7962 	 */
7963 	u32 icr = rd32(E1000_ICR);
7964 
7965 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7966 	 * not set, then the adapter didn't send an interrupt
7967 	 */
7968 	if (!(icr & E1000_ICR_INT_ASSERTED))
7969 		return IRQ_NONE;
7970 
7971 	igb_write_itr(q_vector);
7972 
7973 	if (icr & E1000_ICR_DRSTA)
7974 		schedule_work(&adapter->reset_task);
7975 
7976 	if (icr & E1000_ICR_DOUTSYNC) {
7977 		/* HW is reporting DMA is out of sync */
7978 		adapter->stats.doosync++;
7979 	}
7980 
7981 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7982 		hw->mac.get_link_status = 1;
7983 		/* guard against interrupt when we're going down */
7984 		if (!test_bit(__IGB_DOWN, &adapter->state))
7985 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7986 	}
7987 
7988 	if (icr & E1000_ICR_TS)
7989 		igb_tsync_interrupt(adapter);
7990 
7991 	napi_schedule(&q_vector->napi);
7992 
7993 	return IRQ_HANDLED;
7994 }
7995 
igb_ring_irq_enable(struct igb_q_vector * q_vector)7996 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7997 {
7998 	struct igb_adapter *adapter = q_vector->adapter;
7999 	struct e1000_hw *hw = &adapter->hw;
8000 
8001 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8002 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8003 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8004 			igb_set_itr(q_vector);
8005 		else
8006 			igb_update_ring_itr(q_vector);
8007 	}
8008 
8009 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8010 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8011 			wr32(E1000_EIMS, q_vector->eims_value);
8012 		else
8013 			igb_irq_enable(adapter);
8014 	}
8015 }
8016 
8017 /**
8018  *  igb_poll - NAPI Rx polling callback
8019  *  @napi: napi polling structure
8020  *  @budget: count of how many packets we should handle
8021  **/
igb_poll(struct napi_struct * napi,int budget)8022 static int igb_poll(struct napi_struct *napi, int budget)
8023 {
8024 	struct igb_q_vector *q_vector = container_of(napi,
8025 						     struct igb_q_vector,
8026 						     napi);
8027 	bool clean_complete = true;
8028 	int work_done = 0;
8029 
8030 #ifdef CONFIG_IGB_DCA
8031 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8032 		igb_update_dca(q_vector);
8033 #endif
8034 	if (q_vector->tx.ring)
8035 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8036 
8037 	if (q_vector->rx.ring) {
8038 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8039 
8040 		work_done += cleaned;
8041 		if (cleaned >= budget)
8042 			clean_complete = false;
8043 	}
8044 
8045 	/* If all work not completed, return budget and keep polling */
8046 	if (!clean_complete)
8047 		return budget;
8048 
8049 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8050 	 * poll us due to busy-polling
8051 	 */
8052 	if (likely(napi_complete_done(napi, work_done)))
8053 		igb_ring_irq_enable(q_vector);
8054 
8055 	return work_done;
8056 }
8057 
8058 /**
8059  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8060  *  @q_vector: pointer to q_vector containing needed info
8061  *  @napi_budget: Used to determine if we are in netpoll
8062  *
8063  *  returns true if ring is completely cleaned
8064  **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8065 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8066 {
8067 	struct igb_adapter *adapter = q_vector->adapter;
8068 	struct igb_ring *tx_ring = q_vector->tx.ring;
8069 	struct igb_tx_buffer *tx_buffer;
8070 	union e1000_adv_tx_desc *tx_desc;
8071 	unsigned int total_bytes = 0, total_packets = 0;
8072 	unsigned int budget = q_vector->tx.work_limit;
8073 	unsigned int i = tx_ring->next_to_clean;
8074 
8075 	if (test_bit(__IGB_DOWN, &adapter->state))
8076 		return true;
8077 
8078 	tx_buffer = &tx_ring->tx_buffer_info[i];
8079 	tx_desc = IGB_TX_DESC(tx_ring, i);
8080 	i -= tx_ring->count;
8081 
8082 	do {
8083 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8084 
8085 		/* if next_to_watch is not set then there is no work pending */
8086 		if (!eop_desc)
8087 			break;
8088 
8089 		/* prevent any other reads prior to eop_desc */
8090 		smp_rmb();
8091 
8092 		/* if DD is not set pending work has not been completed */
8093 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8094 			break;
8095 
8096 		/* clear next_to_watch to prevent false hangs */
8097 		tx_buffer->next_to_watch = NULL;
8098 
8099 		/* update the statistics for this packet */
8100 		total_bytes += tx_buffer->bytecount;
8101 		total_packets += tx_buffer->gso_segs;
8102 
8103 		/* free the skb */
8104 		if (tx_buffer->type == IGB_TYPE_SKB)
8105 			napi_consume_skb(tx_buffer->skb, napi_budget);
8106 		else
8107 			xdp_return_frame(tx_buffer->xdpf);
8108 
8109 		/* unmap skb header data */
8110 		dma_unmap_single(tx_ring->dev,
8111 				 dma_unmap_addr(tx_buffer, dma),
8112 				 dma_unmap_len(tx_buffer, len),
8113 				 DMA_TO_DEVICE);
8114 
8115 		/* clear tx_buffer data */
8116 		dma_unmap_len_set(tx_buffer, len, 0);
8117 
8118 		/* clear last DMA location and unmap remaining buffers */
8119 		while (tx_desc != eop_desc) {
8120 			tx_buffer++;
8121 			tx_desc++;
8122 			i++;
8123 			if (unlikely(!i)) {
8124 				i -= tx_ring->count;
8125 				tx_buffer = tx_ring->tx_buffer_info;
8126 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8127 			}
8128 
8129 			/* unmap any remaining paged data */
8130 			if (dma_unmap_len(tx_buffer, len)) {
8131 				dma_unmap_page(tx_ring->dev,
8132 					       dma_unmap_addr(tx_buffer, dma),
8133 					       dma_unmap_len(tx_buffer, len),
8134 					       DMA_TO_DEVICE);
8135 				dma_unmap_len_set(tx_buffer, len, 0);
8136 			}
8137 		}
8138 
8139 		/* move us one more past the eop_desc for start of next pkt */
8140 		tx_buffer++;
8141 		tx_desc++;
8142 		i++;
8143 		if (unlikely(!i)) {
8144 			i -= tx_ring->count;
8145 			tx_buffer = tx_ring->tx_buffer_info;
8146 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8147 		}
8148 
8149 		/* issue prefetch for next Tx descriptor */
8150 		prefetch(tx_desc);
8151 
8152 		/* update budget accounting */
8153 		budget--;
8154 	} while (likely(budget));
8155 
8156 	netdev_tx_completed_queue(txring_txq(tx_ring),
8157 				  total_packets, total_bytes);
8158 	i += tx_ring->count;
8159 	tx_ring->next_to_clean = i;
8160 	u64_stats_update_begin(&tx_ring->tx_syncp);
8161 	tx_ring->tx_stats.bytes += total_bytes;
8162 	tx_ring->tx_stats.packets += total_packets;
8163 	u64_stats_update_end(&tx_ring->tx_syncp);
8164 	q_vector->tx.total_bytes += total_bytes;
8165 	q_vector->tx.total_packets += total_packets;
8166 
8167 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8168 		struct e1000_hw *hw = &adapter->hw;
8169 
8170 		/* Detect a transmit hang in hardware, this serializes the
8171 		 * check with the clearing of time_stamp and movement of i
8172 		 */
8173 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8174 		if (tx_buffer->next_to_watch &&
8175 		    time_after(jiffies, tx_buffer->time_stamp +
8176 			       (adapter->tx_timeout_factor * HZ)) &&
8177 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8178 
8179 			/* detected Tx unit hang */
8180 			dev_err(tx_ring->dev,
8181 				"Detected Tx Unit Hang\n"
8182 				"  Tx Queue             <%d>\n"
8183 				"  TDH                  <%x>\n"
8184 				"  TDT                  <%x>\n"
8185 				"  next_to_use          <%x>\n"
8186 				"  next_to_clean        <%x>\n"
8187 				"buffer_info[next_to_clean]\n"
8188 				"  time_stamp           <%lx>\n"
8189 				"  next_to_watch        <%p>\n"
8190 				"  jiffies              <%lx>\n"
8191 				"  desc.status          <%x>\n",
8192 				tx_ring->queue_index,
8193 				rd32(E1000_TDH(tx_ring->reg_idx)),
8194 				readl(tx_ring->tail),
8195 				tx_ring->next_to_use,
8196 				tx_ring->next_to_clean,
8197 				tx_buffer->time_stamp,
8198 				tx_buffer->next_to_watch,
8199 				jiffies,
8200 				tx_buffer->next_to_watch->wb.status);
8201 			netif_stop_subqueue(tx_ring->netdev,
8202 					    tx_ring->queue_index);
8203 
8204 			/* we are about to reset, no point in enabling stuff */
8205 			return true;
8206 		}
8207 	}
8208 
8209 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8210 	if (unlikely(total_packets &&
8211 	    netif_carrier_ok(tx_ring->netdev) &&
8212 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8213 		/* Make sure that anybody stopping the queue after this
8214 		 * sees the new next_to_clean.
8215 		 */
8216 		smp_mb();
8217 		if (__netif_subqueue_stopped(tx_ring->netdev,
8218 					     tx_ring->queue_index) &&
8219 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8220 			netif_wake_subqueue(tx_ring->netdev,
8221 					    tx_ring->queue_index);
8222 
8223 			u64_stats_update_begin(&tx_ring->tx_syncp);
8224 			tx_ring->tx_stats.restart_queue++;
8225 			u64_stats_update_end(&tx_ring->tx_syncp);
8226 		}
8227 	}
8228 
8229 	return !!budget;
8230 }
8231 
8232 /**
8233  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8234  *  @rx_ring: rx descriptor ring to store buffers on
8235  *  @old_buff: donor buffer to have page reused
8236  *
8237  *  Synchronizes page for reuse by the adapter
8238  **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8239 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8240 			      struct igb_rx_buffer *old_buff)
8241 {
8242 	struct igb_rx_buffer *new_buff;
8243 	u16 nta = rx_ring->next_to_alloc;
8244 
8245 	new_buff = &rx_ring->rx_buffer_info[nta];
8246 
8247 	/* update, and store next to alloc */
8248 	nta++;
8249 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8250 
8251 	/* Transfer page from old buffer to new buffer.
8252 	 * Move each member individually to avoid possible store
8253 	 * forwarding stalls.
8254 	 */
8255 	new_buff->dma		= old_buff->dma;
8256 	new_buff->page		= old_buff->page;
8257 	new_buff->page_offset	= old_buff->page_offset;
8258 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8259 }
8260 
igb_page_is_reserved(struct page * page)8261 static inline bool igb_page_is_reserved(struct page *page)
8262 {
8263 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8264 }
8265 
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8266 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8267 				  int rx_buf_pgcnt)
8268 {
8269 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8270 	struct page *page = rx_buffer->page;
8271 
8272 	/* avoid re-using remote pages */
8273 	if (unlikely(igb_page_is_reserved(page)))
8274 		return false;
8275 
8276 #if (PAGE_SIZE < 8192)
8277 	/* if we are only owner of page we can reuse it */
8278 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8279 		return false;
8280 #else
8281 #define IGB_LAST_OFFSET \
8282 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8283 
8284 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8285 		return false;
8286 #endif
8287 
8288 	/* If we have drained the page fragment pool we need to update
8289 	 * the pagecnt_bias and page count so that we fully restock the
8290 	 * number of references the driver holds.
8291 	 */
8292 	if (unlikely(pagecnt_bias == 1)) {
8293 		page_ref_add(page, USHRT_MAX - 1);
8294 		rx_buffer->pagecnt_bias = USHRT_MAX;
8295 	}
8296 
8297 	return true;
8298 }
8299 
8300 /**
8301  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8302  *  @rx_ring: rx descriptor ring to transact packets on
8303  *  @rx_buffer: buffer containing page to add
8304  *  @skb: sk_buff to place the data into
8305  *  @size: size of buffer to be added
8306  *
8307  *  This function will add the data contained in rx_buffer->page to the skb.
8308  **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8309 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8310 			    struct igb_rx_buffer *rx_buffer,
8311 			    struct sk_buff *skb,
8312 			    unsigned int size)
8313 {
8314 #if (PAGE_SIZE < 8192)
8315 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8316 #else
8317 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8318 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8319 				SKB_DATA_ALIGN(size);
8320 #endif
8321 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8322 			rx_buffer->page_offset, size, truesize);
8323 #if (PAGE_SIZE < 8192)
8324 	rx_buffer->page_offset ^= truesize;
8325 #else
8326 	rx_buffer->page_offset += truesize;
8327 #endif
8328 }
8329 
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8330 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8331 					 struct igb_rx_buffer *rx_buffer,
8332 					 struct xdp_buff *xdp,
8333 					 union e1000_adv_rx_desc *rx_desc)
8334 {
8335 #if (PAGE_SIZE < 8192)
8336 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8337 #else
8338 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8339 					       xdp->data_hard_start);
8340 #endif
8341 	unsigned int size = xdp->data_end - xdp->data;
8342 	unsigned int headlen;
8343 	struct sk_buff *skb;
8344 
8345 	/* prefetch first cache line of first page */
8346 	net_prefetch(xdp->data);
8347 
8348 	/* allocate a skb to store the frags */
8349 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8350 	if (unlikely(!skb))
8351 		return NULL;
8352 
8353 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8354 		if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8355 			xdp->data += IGB_TS_HDR_LEN;
8356 			size -= IGB_TS_HDR_LEN;
8357 		}
8358 	}
8359 
8360 	/* Determine available headroom for copy */
8361 	headlen = size;
8362 	if (headlen > IGB_RX_HDR_LEN)
8363 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8364 
8365 	/* align pull length to size of long to optimize memcpy performance */
8366 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8367 
8368 	/* update all of the pointers */
8369 	size -= headlen;
8370 	if (size) {
8371 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8372 				(xdp->data + headlen) - page_address(rx_buffer->page),
8373 				size, truesize);
8374 #if (PAGE_SIZE < 8192)
8375 		rx_buffer->page_offset ^= truesize;
8376 #else
8377 		rx_buffer->page_offset += truesize;
8378 #endif
8379 	} else {
8380 		rx_buffer->pagecnt_bias++;
8381 	}
8382 
8383 	return skb;
8384 }
8385 
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8386 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8387 				     struct igb_rx_buffer *rx_buffer,
8388 				     struct xdp_buff *xdp,
8389 				     union e1000_adv_rx_desc *rx_desc)
8390 {
8391 #if (PAGE_SIZE < 8192)
8392 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8393 #else
8394 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8395 				SKB_DATA_ALIGN(xdp->data_end -
8396 					       xdp->data_hard_start);
8397 #endif
8398 	unsigned int metasize = xdp->data - xdp->data_meta;
8399 	struct sk_buff *skb;
8400 
8401 	/* prefetch first cache line of first page */
8402 	net_prefetch(xdp->data_meta);
8403 
8404 	/* build an skb around the page buffer */
8405 	skb = build_skb(xdp->data_hard_start, truesize);
8406 	if (unlikely(!skb))
8407 		return NULL;
8408 
8409 	/* update pointers within the skb to store the data */
8410 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8411 	__skb_put(skb, xdp->data_end - xdp->data);
8412 
8413 	if (metasize)
8414 		skb_metadata_set(skb, metasize);
8415 
8416 	/* pull timestamp out of packet data */
8417 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8418 		if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8419 			__skb_pull(skb, IGB_TS_HDR_LEN);
8420 	}
8421 
8422 	/* update buffer offset */
8423 #if (PAGE_SIZE < 8192)
8424 	rx_buffer->page_offset ^= truesize;
8425 #else
8426 	rx_buffer->page_offset += truesize;
8427 #endif
8428 
8429 	return skb;
8430 }
8431 
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8432 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8433 				   struct igb_ring *rx_ring,
8434 				   struct xdp_buff *xdp)
8435 {
8436 	int err, result = IGB_XDP_PASS;
8437 	struct bpf_prog *xdp_prog;
8438 	u32 act;
8439 
8440 	rcu_read_lock();
8441 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8442 
8443 	if (!xdp_prog)
8444 		goto xdp_out;
8445 
8446 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8447 
8448 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8449 	switch (act) {
8450 	case XDP_PASS:
8451 		break;
8452 	case XDP_TX:
8453 		result = igb_xdp_xmit_back(adapter, xdp);
8454 		if (result == IGB_XDP_CONSUMED)
8455 			goto out_failure;
8456 		break;
8457 	case XDP_REDIRECT:
8458 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8459 		if (err)
8460 			goto out_failure;
8461 		result = IGB_XDP_REDIR;
8462 		break;
8463 	default:
8464 		bpf_warn_invalid_xdp_action(act);
8465 		fallthrough;
8466 	case XDP_ABORTED:
8467 out_failure:
8468 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8469 		fallthrough;
8470 	case XDP_DROP:
8471 		result = IGB_XDP_CONSUMED;
8472 		break;
8473 	}
8474 xdp_out:
8475 	rcu_read_unlock();
8476 	return ERR_PTR(-result);
8477 }
8478 
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8479 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8480 					  unsigned int size)
8481 {
8482 	unsigned int truesize;
8483 
8484 #if (PAGE_SIZE < 8192)
8485 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8486 #else
8487 	truesize = ring_uses_build_skb(rx_ring) ?
8488 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8489 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8490 		SKB_DATA_ALIGN(size);
8491 #endif
8492 	return truesize;
8493 }
8494 
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8495 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8496 			       struct igb_rx_buffer *rx_buffer,
8497 			       unsigned int size)
8498 {
8499 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8500 #if (PAGE_SIZE < 8192)
8501 	rx_buffer->page_offset ^= truesize;
8502 #else
8503 	rx_buffer->page_offset += truesize;
8504 #endif
8505 }
8506 
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8507 static inline void igb_rx_checksum(struct igb_ring *ring,
8508 				   union e1000_adv_rx_desc *rx_desc,
8509 				   struct sk_buff *skb)
8510 {
8511 	skb_checksum_none_assert(skb);
8512 
8513 	/* Ignore Checksum bit is set */
8514 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8515 		return;
8516 
8517 	/* Rx checksum disabled via ethtool */
8518 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8519 		return;
8520 
8521 	/* TCP/UDP checksum error bit is set */
8522 	if (igb_test_staterr(rx_desc,
8523 			     E1000_RXDEXT_STATERR_TCPE |
8524 			     E1000_RXDEXT_STATERR_IPE)) {
8525 		/* work around errata with sctp packets where the TCPE aka
8526 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8527 		 * packets, (aka let the stack check the crc32c)
8528 		 */
8529 		if (!((skb->len == 60) &&
8530 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8531 			u64_stats_update_begin(&ring->rx_syncp);
8532 			ring->rx_stats.csum_err++;
8533 			u64_stats_update_end(&ring->rx_syncp);
8534 		}
8535 		/* let the stack verify checksum errors */
8536 		return;
8537 	}
8538 	/* It must be a TCP or UDP packet with a valid checksum */
8539 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8540 				      E1000_RXD_STAT_UDPCS))
8541 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8542 
8543 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8544 		le32_to_cpu(rx_desc->wb.upper.status_error));
8545 }
8546 
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8547 static inline void igb_rx_hash(struct igb_ring *ring,
8548 			       union e1000_adv_rx_desc *rx_desc,
8549 			       struct sk_buff *skb)
8550 {
8551 	if (ring->netdev->features & NETIF_F_RXHASH)
8552 		skb_set_hash(skb,
8553 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8554 			     PKT_HASH_TYPE_L3);
8555 }
8556 
8557 /**
8558  *  igb_is_non_eop - process handling of non-EOP buffers
8559  *  @rx_ring: Rx ring being processed
8560  *  @rx_desc: Rx descriptor for current buffer
8561  *
8562  *  This function updates next to clean.  If the buffer is an EOP buffer
8563  *  this function exits returning false, otherwise it will place the
8564  *  sk_buff in the next buffer to be chained and return true indicating
8565  *  that this is in fact a non-EOP buffer.
8566  **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8567 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8568 			   union e1000_adv_rx_desc *rx_desc)
8569 {
8570 	u32 ntc = rx_ring->next_to_clean + 1;
8571 
8572 	/* fetch, update, and store next to clean */
8573 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8574 	rx_ring->next_to_clean = ntc;
8575 
8576 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8577 
8578 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8579 		return false;
8580 
8581 	return true;
8582 }
8583 
8584 /**
8585  *  igb_cleanup_headers - Correct corrupted or empty headers
8586  *  @rx_ring: rx descriptor ring packet is being transacted on
8587  *  @rx_desc: pointer to the EOP Rx descriptor
8588  *  @skb: pointer to current skb being fixed
8589  *
8590  *  Address the case where we are pulling data in on pages only
8591  *  and as such no data is present in the skb header.
8592  *
8593  *  In addition if skb is not at least 60 bytes we need to pad it so that
8594  *  it is large enough to qualify as a valid Ethernet frame.
8595  *
8596  *  Returns true if an error was encountered and skb was freed.
8597  **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8598 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8599 				union e1000_adv_rx_desc *rx_desc,
8600 				struct sk_buff *skb)
8601 {
8602 	/* XDP packets use error pointer so abort at this point */
8603 	if (IS_ERR(skb))
8604 		return true;
8605 
8606 	if (unlikely((igb_test_staterr(rx_desc,
8607 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8608 		struct net_device *netdev = rx_ring->netdev;
8609 		if (!(netdev->features & NETIF_F_RXALL)) {
8610 			dev_kfree_skb_any(skb);
8611 			return true;
8612 		}
8613 	}
8614 
8615 	/* if eth_skb_pad returns an error the skb was freed */
8616 	if (eth_skb_pad(skb))
8617 		return true;
8618 
8619 	return false;
8620 }
8621 
8622 /**
8623  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8624  *  @rx_ring: rx descriptor ring packet is being transacted on
8625  *  @rx_desc: pointer to the EOP Rx descriptor
8626  *  @skb: pointer to current skb being populated
8627  *
8628  *  This function checks the ring, descriptor, and packet information in
8629  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8630  *  other fields within the skb.
8631  **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8632 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8633 				   union e1000_adv_rx_desc *rx_desc,
8634 				   struct sk_buff *skb)
8635 {
8636 	struct net_device *dev = rx_ring->netdev;
8637 
8638 	igb_rx_hash(rx_ring, rx_desc, skb);
8639 
8640 	igb_rx_checksum(rx_ring, rx_desc, skb);
8641 
8642 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8643 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8644 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8645 
8646 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8647 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8648 		u16 vid;
8649 
8650 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8651 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8652 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8653 		else
8654 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8655 
8656 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8657 	}
8658 
8659 	skb_record_rx_queue(skb, rx_ring->queue_index);
8660 
8661 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8662 }
8663 
igb_rx_offset(struct igb_ring * rx_ring)8664 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8665 {
8666 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8667 }
8668 
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8669 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8670 					       const unsigned int size, int *rx_buf_pgcnt)
8671 {
8672 	struct igb_rx_buffer *rx_buffer;
8673 
8674 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8675 	*rx_buf_pgcnt =
8676 #if (PAGE_SIZE < 8192)
8677 		page_count(rx_buffer->page);
8678 #else
8679 		0;
8680 #endif
8681 	prefetchw(rx_buffer->page);
8682 
8683 	/* we are reusing so sync this buffer for CPU use */
8684 	dma_sync_single_range_for_cpu(rx_ring->dev,
8685 				      rx_buffer->dma,
8686 				      rx_buffer->page_offset,
8687 				      size,
8688 				      DMA_FROM_DEVICE);
8689 
8690 	rx_buffer->pagecnt_bias--;
8691 
8692 	return rx_buffer;
8693 }
8694 
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8695 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8696 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8697 {
8698 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8699 		/* hand second half of page back to the ring */
8700 		igb_reuse_rx_page(rx_ring, rx_buffer);
8701 	} else {
8702 		/* We are not reusing the buffer so unmap it and free
8703 		 * any references we are holding to it
8704 		 */
8705 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8706 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8707 				     IGB_RX_DMA_ATTR);
8708 		__page_frag_cache_drain(rx_buffer->page,
8709 					rx_buffer->pagecnt_bias);
8710 	}
8711 
8712 	/* clear contents of rx_buffer */
8713 	rx_buffer->page = NULL;
8714 }
8715 
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8716 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8717 {
8718 	struct igb_adapter *adapter = q_vector->adapter;
8719 	struct igb_ring *rx_ring = q_vector->rx.ring;
8720 	struct sk_buff *skb = rx_ring->skb;
8721 	unsigned int total_bytes = 0, total_packets = 0;
8722 	u16 cleaned_count = igb_desc_unused(rx_ring);
8723 	unsigned int xdp_xmit = 0;
8724 	struct xdp_buff xdp;
8725 	int rx_buf_pgcnt;
8726 
8727 	xdp.rxq = &rx_ring->xdp_rxq;
8728 
8729 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8730 #if (PAGE_SIZE < 8192)
8731 	xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8732 #endif
8733 
8734 	while (likely(total_packets < budget)) {
8735 		union e1000_adv_rx_desc *rx_desc;
8736 		struct igb_rx_buffer *rx_buffer;
8737 		unsigned int size;
8738 
8739 		/* return some buffers to hardware, one at a time is too slow */
8740 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8741 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8742 			cleaned_count = 0;
8743 		}
8744 
8745 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8746 		size = le16_to_cpu(rx_desc->wb.upper.length);
8747 		if (!size)
8748 			break;
8749 
8750 		/* This memory barrier is needed to keep us from reading
8751 		 * any other fields out of the rx_desc until we know the
8752 		 * descriptor has been written back
8753 		 */
8754 		dma_rmb();
8755 
8756 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8757 
8758 		/* retrieve a buffer from the ring */
8759 		if (!skb) {
8760 			xdp.data = page_address(rx_buffer->page) +
8761 				   rx_buffer->page_offset;
8762 			xdp.data_meta = xdp.data;
8763 			xdp.data_hard_start = xdp.data -
8764 					      igb_rx_offset(rx_ring);
8765 			xdp.data_end = xdp.data + size;
8766 #if (PAGE_SIZE > 4096)
8767 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8768 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8769 #endif
8770 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8771 		}
8772 
8773 		if (IS_ERR(skb)) {
8774 			unsigned int xdp_res = -PTR_ERR(skb);
8775 
8776 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8777 				xdp_xmit |= xdp_res;
8778 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8779 			} else {
8780 				rx_buffer->pagecnt_bias++;
8781 			}
8782 			total_packets++;
8783 			total_bytes += size;
8784 		} else if (skb)
8785 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8786 		else if (ring_uses_build_skb(rx_ring))
8787 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8788 		else
8789 			skb = igb_construct_skb(rx_ring, rx_buffer,
8790 						&xdp, rx_desc);
8791 
8792 		/* exit if we failed to retrieve a buffer */
8793 		if (!skb) {
8794 			rx_ring->rx_stats.alloc_failed++;
8795 			rx_buffer->pagecnt_bias++;
8796 			break;
8797 		}
8798 
8799 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8800 		cleaned_count++;
8801 
8802 		/* fetch next buffer in frame if non-eop */
8803 		if (igb_is_non_eop(rx_ring, rx_desc))
8804 			continue;
8805 
8806 		/* verify the packet layout is correct */
8807 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8808 			skb = NULL;
8809 			continue;
8810 		}
8811 
8812 		/* probably a little skewed due to removing CRC */
8813 		total_bytes += skb->len;
8814 
8815 		/* populate checksum, timestamp, VLAN, and protocol */
8816 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8817 
8818 		napi_gro_receive(&q_vector->napi, skb);
8819 
8820 		/* reset skb pointer */
8821 		skb = NULL;
8822 
8823 		/* update budget accounting */
8824 		total_packets++;
8825 	}
8826 
8827 	/* place incomplete frames back on ring for completion */
8828 	rx_ring->skb = skb;
8829 
8830 	if (xdp_xmit & IGB_XDP_REDIR)
8831 		xdp_do_flush();
8832 
8833 	if (xdp_xmit & IGB_XDP_TX) {
8834 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8835 
8836 		igb_xdp_ring_update_tail(tx_ring);
8837 	}
8838 
8839 	u64_stats_update_begin(&rx_ring->rx_syncp);
8840 	rx_ring->rx_stats.packets += total_packets;
8841 	rx_ring->rx_stats.bytes += total_bytes;
8842 	u64_stats_update_end(&rx_ring->rx_syncp);
8843 	q_vector->rx.total_packets += total_packets;
8844 	q_vector->rx.total_bytes += total_bytes;
8845 
8846 	if (cleaned_count)
8847 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8848 
8849 	return total_packets;
8850 }
8851 
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8852 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8853 				  struct igb_rx_buffer *bi)
8854 {
8855 	struct page *page = bi->page;
8856 	dma_addr_t dma;
8857 
8858 	/* since we are recycling buffers we should seldom need to alloc */
8859 	if (likely(page))
8860 		return true;
8861 
8862 	/* alloc new page for storage */
8863 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8864 	if (unlikely(!page)) {
8865 		rx_ring->rx_stats.alloc_failed++;
8866 		return false;
8867 	}
8868 
8869 	/* map page for use */
8870 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8871 				 igb_rx_pg_size(rx_ring),
8872 				 DMA_FROM_DEVICE,
8873 				 IGB_RX_DMA_ATTR);
8874 
8875 	/* if mapping failed free memory back to system since
8876 	 * there isn't much point in holding memory we can't use
8877 	 */
8878 	if (dma_mapping_error(rx_ring->dev, dma)) {
8879 		__free_pages(page, igb_rx_pg_order(rx_ring));
8880 
8881 		rx_ring->rx_stats.alloc_failed++;
8882 		return false;
8883 	}
8884 
8885 	bi->dma = dma;
8886 	bi->page = page;
8887 	bi->page_offset = igb_rx_offset(rx_ring);
8888 	page_ref_add(page, USHRT_MAX - 1);
8889 	bi->pagecnt_bias = USHRT_MAX;
8890 
8891 	return true;
8892 }
8893 
8894 /**
8895  *  igb_alloc_rx_buffers - Replace used receive buffers
8896  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8897  *  @cleaned_count: count of buffers to allocate
8898  **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8899 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8900 {
8901 	union e1000_adv_rx_desc *rx_desc;
8902 	struct igb_rx_buffer *bi;
8903 	u16 i = rx_ring->next_to_use;
8904 	u16 bufsz;
8905 
8906 	/* nothing to do */
8907 	if (!cleaned_count)
8908 		return;
8909 
8910 	rx_desc = IGB_RX_DESC(rx_ring, i);
8911 	bi = &rx_ring->rx_buffer_info[i];
8912 	i -= rx_ring->count;
8913 
8914 	bufsz = igb_rx_bufsz(rx_ring);
8915 
8916 	do {
8917 		if (!igb_alloc_mapped_page(rx_ring, bi))
8918 			break;
8919 
8920 		/* sync the buffer for use by the device */
8921 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8922 						 bi->page_offset, bufsz,
8923 						 DMA_FROM_DEVICE);
8924 
8925 		/* Refresh the desc even if buffer_addrs didn't change
8926 		 * because each write-back erases this info.
8927 		 */
8928 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8929 
8930 		rx_desc++;
8931 		bi++;
8932 		i++;
8933 		if (unlikely(!i)) {
8934 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8935 			bi = rx_ring->rx_buffer_info;
8936 			i -= rx_ring->count;
8937 		}
8938 
8939 		/* clear the length for the next_to_use descriptor */
8940 		rx_desc->wb.upper.length = 0;
8941 
8942 		cleaned_count--;
8943 	} while (cleaned_count);
8944 
8945 	i += rx_ring->count;
8946 
8947 	if (rx_ring->next_to_use != i) {
8948 		/* record the next descriptor to use */
8949 		rx_ring->next_to_use = i;
8950 
8951 		/* update next to alloc since we have filled the ring */
8952 		rx_ring->next_to_alloc = i;
8953 
8954 		/* Force memory writes to complete before letting h/w
8955 		 * know there are new descriptors to fetch.  (Only
8956 		 * applicable for weak-ordered memory model archs,
8957 		 * such as IA-64).
8958 		 */
8959 		dma_wmb();
8960 		writel(i, rx_ring->tail);
8961 	}
8962 }
8963 
8964 /**
8965  * igb_mii_ioctl -
8966  * @netdev: pointer to netdev struct
8967  * @ifr: interface structure
8968  * @cmd: ioctl command to execute
8969  **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8970 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8971 {
8972 	struct igb_adapter *adapter = netdev_priv(netdev);
8973 	struct mii_ioctl_data *data = if_mii(ifr);
8974 
8975 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8976 		return -EOPNOTSUPP;
8977 
8978 	switch (cmd) {
8979 	case SIOCGMIIPHY:
8980 		data->phy_id = adapter->hw.phy.addr;
8981 		break;
8982 	case SIOCGMIIREG:
8983 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8984 				     &data->val_out))
8985 			return -EIO;
8986 		break;
8987 	case SIOCSMIIREG:
8988 	default:
8989 		return -EOPNOTSUPP;
8990 	}
8991 	return 0;
8992 }
8993 
8994 /**
8995  * igb_ioctl -
8996  * @netdev: pointer to netdev struct
8997  * @ifr: interface structure
8998  * @cmd: ioctl command to execute
8999  **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9000 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9001 {
9002 	switch (cmd) {
9003 	case SIOCGMIIPHY:
9004 	case SIOCGMIIREG:
9005 	case SIOCSMIIREG:
9006 		return igb_mii_ioctl(netdev, ifr, cmd);
9007 	case SIOCGHWTSTAMP:
9008 		return igb_ptp_get_ts_config(netdev, ifr);
9009 	case SIOCSHWTSTAMP:
9010 		return igb_ptp_set_ts_config(netdev, ifr);
9011 	default:
9012 		return -EOPNOTSUPP;
9013 	}
9014 }
9015 
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9016 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9017 {
9018 	struct igb_adapter *adapter = hw->back;
9019 
9020 	pci_read_config_word(adapter->pdev, reg, value);
9021 }
9022 
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9023 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9024 {
9025 	struct igb_adapter *adapter = hw->back;
9026 
9027 	pci_write_config_word(adapter->pdev, reg, *value);
9028 }
9029 
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9030 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9031 {
9032 	struct igb_adapter *adapter = hw->back;
9033 
9034 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9035 		return -E1000_ERR_CONFIG;
9036 
9037 	return 0;
9038 }
9039 
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9040 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9041 {
9042 	struct igb_adapter *adapter = hw->back;
9043 
9044 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9045 		return -E1000_ERR_CONFIG;
9046 
9047 	return 0;
9048 }
9049 
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9050 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9051 {
9052 	struct igb_adapter *adapter = netdev_priv(netdev);
9053 	struct e1000_hw *hw = &adapter->hw;
9054 	u32 ctrl, rctl;
9055 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9056 
9057 	if (enable) {
9058 		/* enable VLAN tag insert/strip */
9059 		ctrl = rd32(E1000_CTRL);
9060 		ctrl |= E1000_CTRL_VME;
9061 		wr32(E1000_CTRL, ctrl);
9062 
9063 		/* Disable CFI check */
9064 		rctl = rd32(E1000_RCTL);
9065 		rctl &= ~E1000_RCTL_CFIEN;
9066 		wr32(E1000_RCTL, rctl);
9067 	} else {
9068 		/* disable VLAN tag insert/strip */
9069 		ctrl = rd32(E1000_CTRL);
9070 		ctrl &= ~E1000_CTRL_VME;
9071 		wr32(E1000_CTRL, ctrl);
9072 	}
9073 
9074 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9075 }
9076 
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9077 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9078 			       __be16 proto, u16 vid)
9079 {
9080 	struct igb_adapter *adapter = netdev_priv(netdev);
9081 	struct e1000_hw *hw = &adapter->hw;
9082 	int pf_id = adapter->vfs_allocated_count;
9083 
9084 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9085 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9086 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9087 
9088 	set_bit(vid, adapter->active_vlans);
9089 
9090 	return 0;
9091 }
9092 
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9093 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9094 				__be16 proto, u16 vid)
9095 {
9096 	struct igb_adapter *adapter = netdev_priv(netdev);
9097 	int pf_id = adapter->vfs_allocated_count;
9098 	struct e1000_hw *hw = &adapter->hw;
9099 
9100 	/* remove VID from filter table */
9101 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9102 		igb_vfta_set(hw, vid, pf_id, false, true);
9103 
9104 	clear_bit(vid, adapter->active_vlans);
9105 
9106 	return 0;
9107 }
9108 
igb_restore_vlan(struct igb_adapter * adapter)9109 static void igb_restore_vlan(struct igb_adapter *adapter)
9110 {
9111 	u16 vid = 1;
9112 
9113 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9114 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9115 
9116 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9117 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9118 }
9119 
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9120 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9121 {
9122 	struct pci_dev *pdev = adapter->pdev;
9123 	struct e1000_mac_info *mac = &adapter->hw.mac;
9124 
9125 	mac->autoneg = 0;
9126 
9127 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9128 	 * for the switch() below to work
9129 	 */
9130 	if ((spd & 1) || (dplx & ~1))
9131 		goto err_inval;
9132 
9133 	/* Fiber NIC's only allow 1000 gbps Full duplex
9134 	 * and 100Mbps Full duplex for 100baseFx sfp
9135 	 */
9136 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9137 		switch (spd + dplx) {
9138 		case SPEED_10 + DUPLEX_HALF:
9139 		case SPEED_10 + DUPLEX_FULL:
9140 		case SPEED_100 + DUPLEX_HALF:
9141 			goto err_inval;
9142 		default:
9143 			break;
9144 		}
9145 	}
9146 
9147 	switch (spd + dplx) {
9148 	case SPEED_10 + DUPLEX_HALF:
9149 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9150 		break;
9151 	case SPEED_10 + DUPLEX_FULL:
9152 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9153 		break;
9154 	case SPEED_100 + DUPLEX_HALF:
9155 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9156 		break;
9157 	case SPEED_100 + DUPLEX_FULL:
9158 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9159 		break;
9160 	case SPEED_1000 + DUPLEX_FULL:
9161 		mac->autoneg = 1;
9162 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9163 		break;
9164 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9165 	default:
9166 		goto err_inval;
9167 	}
9168 
9169 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9170 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9171 
9172 	return 0;
9173 
9174 err_inval:
9175 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9176 	return -EINVAL;
9177 }
9178 
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9179 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9180 			  bool runtime)
9181 {
9182 	struct net_device *netdev = pci_get_drvdata(pdev);
9183 	struct igb_adapter *adapter = netdev_priv(netdev);
9184 	struct e1000_hw *hw = &adapter->hw;
9185 	u32 ctrl, rctl, status;
9186 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9187 	bool wake;
9188 
9189 	rtnl_lock();
9190 	netif_device_detach(netdev);
9191 
9192 	if (netif_running(netdev))
9193 		__igb_close(netdev, true);
9194 
9195 	igb_ptp_suspend(adapter);
9196 
9197 	igb_clear_interrupt_scheme(adapter);
9198 	rtnl_unlock();
9199 
9200 	status = rd32(E1000_STATUS);
9201 	if (status & E1000_STATUS_LU)
9202 		wufc &= ~E1000_WUFC_LNKC;
9203 
9204 	if (wufc) {
9205 		igb_setup_rctl(adapter);
9206 		igb_set_rx_mode(netdev);
9207 
9208 		/* turn on all-multi mode if wake on multicast is enabled */
9209 		if (wufc & E1000_WUFC_MC) {
9210 			rctl = rd32(E1000_RCTL);
9211 			rctl |= E1000_RCTL_MPE;
9212 			wr32(E1000_RCTL, rctl);
9213 		}
9214 
9215 		ctrl = rd32(E1000_CTRL);
9216 		ctrl |= E1000_CTRL_ADVD3WUC;
9217 		wr32(E1000_CTRL, ctrl);
9218 
9219 		/* Allow time for pending master requests to run */
9220 		igb_disable_pcie_master(hw);
9221 
9222 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9223 		wr32(E1000_WUFC, wufc);
9224 	} else {
9225 		wr32(E1000_WUC, 0);
9226 		wr32(E1000_WUFC, 0);
9227 	}
9228 
9229 	wake = wufc || adapter->en_mng_pt;
9230 	if (!wake)
9231 		igb_power_down_link(adapter);
9232 	else
9233 		igb_power_up_link(adapter);
9234 
9235 	if (enable_wake)
9236 		*enable_wake = wake;
9237 
9238 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9239 	 * would have already happened in close and is redundant.
9240 	 */
9241 	igb_release_hw_control(adapter);
9242 
9243 	pci_disable_device(pdev);
9244 
9245 	return 0;
9246 }
9247 
igb_deliver_wake_packet(struct net_device * netdev)9248 static void igb_deliver_wake_packet(struct net_device *netdev)
9249 {
9250 	struct igb_adapter *adapter = netdev_priv(netdev);
9251 	struct e1000_hw *hw = &adapter->hw;
9252 	struct sk_buff *skb;
9253 	u32 wupl;
9254 
9255 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9256 
9257 	/* WUPM stores only the first 128 bytes of the wake packet.
9258 	 * Read the packet only if we have the whole thing.
9259 	 */
9260 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9261 		return;
9262 
9263 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9264 	if (!skb)
9265 		return;
9266 
9267 	skb_put(skb, wupl);
9268 
9269 	/* Ensure reads are 32-bit aligned */
9270 	wupl = roundup(wupl, 4);
9271 
9272 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9273 
9274 	skb->protocol = eth_type_trans(skb, netdev);
9275 	netif_rx(skb);
9276 }
9277 
igb_suspend(struct device * dev)9278 static int __maybe_unused igb_suspend(struct device *dev)
9279 {
9280 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9281 }
9282 
__igb_resume(struct device * dev,bool rpm)9283 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9284 {
9285 	struct pci_dev *pdev = to_pci_dev(dev);
9286 	struct net_device *netdev = pci_get_drvdata(pdev);
9287 	struct igb_adapter *adapter = netdev_priv(netdev);
9288 	struct e1000_hw *hw = &adapter->hw;
9289 	u32 err, val;
9290 
9291 	pci_set_power_state(pdev, PCI_D0);
9292 	pci_restore_state(pdev);
9293 	pci_save_state(pdev);
9294 
9295 	if (!pci_device_is_present(pdev))
9296 		return -ENODEV;
9297 	err = pci_enable_device_mem(pdev);
9298 	if (err) {
9299 		dev_err(&pdev->dev,
9300 			"igb: Cannot enable PCI device from suspend\n");
9301 		return err;
9302 	}
9303 	pci_set_master(pdev);
9304 
9305 	pci_enable_wake(pdev, PCI_D3hot, 0);
9306 	pci_enable_wake(pdev, PCI_D3cold, 0);
9307 
9308 	if (igb_init_interrupt_scheme(adapter, true)) {
9309 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9310 		return -ENOMEM;
9311 	}
9312 
9313 	igb_reset(adapter);
9314 
9315 	/* let the f/w know that the h/w is now under the control of the
9316 	 * driver.
9317 	 */
9318 	igb_get_hw_control(adapter);
9319 
9320 	val = rd32(E1000_WUS);
9321 	if (val & WAKE_PKT_WUS)
9322 		igb_deliver_wake_packet(netdev);
9323 
9324 	wr32(E1000_WUS, ~0);
9325 
9326 	if (!rpm)
9327 		rtnl_lock();
9328 	if (!err && netif_running(netdev))
9329 		err = __igb_open(netdev, true);
9330 
9331 	if (!err)
9332 		netif_device_attach(netdev);
9333 	if (!rpm)
9334 		rtnl_unlock();
9335 
9336 	return err;
9337 }
9338 
igb_resume(struct device * dev)9339 static int __maybe_unused igb_resume(struct device *dev)
9340 {
9341 	return __igb_resume(dev, false);
9342 }
9343 
igb_runtime_idle(struct device * dev)9344 static int __maybe_unused igb_runtime_idle(struct device *dev)
9345 {
9346 	struct net_device *netdev = dev_get_drvdata(dev);
9347 	struct igb_adapter *adapter = netdev_priv(netdev);
9348 
9349 	if (!igb_has_link(adapter))
9350 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9351 
9352 	return -EBUSY;
9353 }
9354 
igb_runtime_suspend(struct device * dev)9355 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9356 {
9357 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9358 }
9359 
igb_runtime_resume(struct device * dev)9360 static int __maybe_unused igb_runtime_resume(struct device *dev)
9361 {
9362 	return __igb_resume(dev, true);
9363 }
9364 
igb_shutdown(struct pci_dev * pdev)9365 static void igb_shutdown(struct pci_dev *pdev)
9366 {
9367 	bool wake;
9368 
9369 	__igb_shutdown(pdev, &wake, 0);
9370 
9371 	if (system_state == SYSTEM_POWER_OFF) {
9372 		pci_wake_from_d3(pdev, wake);
9373 		pci_set_power_state(pdev, PCI_D3hot);
9374 	}
9375 }
9376 
9377 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9378 static int igb_sriov_reinit(struct pci_dev *dev)
9379 {
9380 	struct net_device *netdev = pci_get_drvdata(dev);
9381 	struct igb_adapter *adapter = netdev_priv(netdev);
9382 	struct pci_dev *pdev = adapter->pdev;
9383 
9384 	rtnl_lock();
9385 
9386 	if (netif_running(netdev))
9387 		igb_close(netdev);
9388 	else
9389 		igb_reset(adapter);
9390 
9391 	igb_clear_interrupt_scheme(adapter);
9392 
9393 	igb_init_queue_configuration(adapter);
9394 
9395 	if (igb_init_interrupt_scheme(adapter, true)) {
9396 		rtnl_unlock();
9397 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9398 		return -ENOMEM;
9399 	}
9400 
9401 	if (netif_running(netdev))
9402 		igb_open(netdev);
9403 
9404 	rtnl_unlock();
9405 
9406 	return 0;
9407 }
9408 
igb_pci_disable_sriov(struct pci_dev * dev)9409 static int igb_pci_disable_sriov(struct pci_dev *dev)
9410 {
9411 	int err = igb_disable_sriov(dev);
9412 
9413 	if (!err)
9414 		err = igb_sriov_reinit(dev);
9415 
9416 	return err;
9417 }
9418 
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9419 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9420 {
9421 	int err = igb_enable_sriov(dev, num_vfs);
9422 
9423 	if (err)
9424 		goto out;
9425 
9426 	err = igb_sriov_reinit(dev);
9427 	if (!err)
9428 		return num_vfs;
9429 
9430 out:
9431 	return err;
9432 }
9433 
9434 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9435 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9436 {
9437 #ifdef CONFIG_PCI_IOV
9438 	if (num_vfs == 0)
9439 		return igb_pci_disable_sriov(dev);
9440 	else
9441 		return igb_pci_enable_sriov(dev, num_vfs);
9442 #endif
9443 	return 0;
9444 }
9445 
9446 /**
9447  *  igb_io_error_detected - called when PCI error is detected
9448  *  @pdev: Pointer to PCI device
9449  *  @state: The current pci connection state
9450  *
9451  *  This function is called after a PCI bus error affecting
9452  *  this device has been detected.
9453  **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9454 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9455 					      pci_channel_state_t state)
9456 {
9457 	struct net_device *netdev = pci_get_drvdata(pdev);
9458 	struct igb_adapter *adapter = netdev_priv(netdev);
9459 
9460 	if (state == pci_channel_io_normal) {
9461 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9462 		return PCI_ERS_RESULT_CAN_RECOVER;
9463 	}
9464 
9465 	netif_device_detach(netdev);
9466 
9467 	if (state == pci_channel_io_perm_failure)
9468 		return PCI_ERS_RESULT_DISCONNECT;
9469 
9470 	if (netif_running(netdev))
9471 		igb_down(adapter);
9472 	pci_disable_device(pdev);
9473 
9474 	/* Request a slot slot reset. */
9475 	return PCI_ERS_RESULT_NEED_RESET;
9476 }
9477 
9478 /**
9479  *  igb_io_slot_reset - called after the pci bus has been reset.
9480  *  @pdev: Pointer to PCI device
9481  *
9482  *  Restart the card from scratch, as if from a cold-boot. Implementation
9483  *  resembles the first-half of the __igb_resume routine.
9484  **/
igb_io_slot_reset(struct pci_dev * pdev)9485 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9486 {
9487 	struct net_device *netdev = pci_get_drvdata(pdev);
9488 	struct igb_adapter *adapter = netdev_priv(netdev);
9489 	struct e1000_hw *hw = &adapter->hw;
9490 	pci_ers_result_t result;
9491 
9492 	if (pci_enable_device_mem(pdev)) {
9493 		dev_err(&pdev->dev,
9494 			"Cannot re-enable PCI device after reset.\n");
9495 		result = PCI_ERS_RESULT_DISCONNECT;
9496 	} else {
9497 		pci_set_master(pdev);
9498 		pci_restore_state(pdev);
9499 		pci_save_state(pdev);
9500 
9501 		pci_enable_wake(pdev, PCI_D3hot, 0);
9502 		pci_enable_wake(pdev, PCI_D3cold, 0);
9503 
9504 		/* In case of PCI error, adapter lose its HW address
9505 		 * so we should re-assign it here.
9506 		 */
9507 		hw->hw_addr = adapter->io_addr;
9508 
9509 		igb_reset(adapter);
9510 		wr32(E1000_WUS, ~0);
9511 		result = PCI_ERS_RESULT_RECOVERED;
9512 	}
9513 
9514 	return result;
9515 }
9516 
9517 /**
9518  *  igb_io_resume - called when traffic can start flowing again.
9519  *  @pdev: Pointer to PCI device
9520  *
9521  *  This callback is called when the error recovery driver tells us that
9522  *  its OK to resume normal operation. Implementation resembles the
9523  *  second-half of the __igb_resume routine.
9524  */
igb_io_resume(struct pci_dev * pdev)9525 static void igb_io_resume(struct pci_dev *pdev)
9526 {
9527 	struct net_device *netdev = pci_get_drvdata(pdev);
9528 	struct igb_adapter *adapter = netdev_priv(netdev);
9529 
9530 	if (netif_running(netdev)) {
9531 		if (igb_up(adapter)) {
9532 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9533 			return;
9534 		}
9535 	}
9536 
9537 	netif_device_attach(netdev);
9538 
9539 	/* let the f/w know that the h/w is now under the control of the
9540 	 * driver.
9541 	 */
9542 	igb_get_hw_control(adapter);
9543 }
9544 
9545 /**
9546  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9547  *  @adapter: Pointer to adapter structure
9548  *  @index: Index of the RAR entry which need to be synced with MAC table
9549  **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9550 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9551 {
9552 	struct e1000_hw *hw = &adapter->hw;
9553 	u32 rar_low, rar_high;
9554 	u8 *addr = adapter->mac_table[index].addr;
9555 
9556 	/* HW expects these to be in network order when they are plugged
9557 	 * into the registers which are little endian.  In order to guarantee
9558 	 * that ordering we need to do an leXX_to_cpup here in order to be
9559 	 * ready for the byteswap that occurs with writel
9560 	 */
9561 	rar_low = le32_to_cpup((__le32 *)(addr));
9562 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9563 
9564 	/* Indicate to hardware the Address is Valid. */
9565 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9566 		if (is_valid_ether_addr(addr))
9567 			rar_high |= E1000_RAH_AV;
9568 
9569 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9570 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9571 
9572 		switch (hw->mac.type) {
9573 		case e1000_82575:
9574 		case e1000_i210:
9575 			if (adapter->mac_table[index].state &
9576 			    IGB_MAC_STATE_QUEUE_STEERING)
9577 				rar_high |= E1000_RAH_QSEL_ENABLE;
9578 
9579 			rar_high |= E1000_RAH_POOL_1 *
9580 				    adapter->mac_table[index].queue;
9581 			break;
9582 		default:
9583 			rar_high |= E1000_RAH_POOL_1 <<
9584 				    adapter->mac_table[index].queue;
9585 			break;
9586 		}
9587 	}
9588 
9589 	wr32(E1000_RAL(index), rar_low);
9590 	wrfl();
9591 	wr32(E1000_RAH(index), rar_high);
9592 	wrfl();
9593 }
9594 
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9595 static int igb_set_vf_mac(struct igb_adapter *adapter,
9596 			  int vf, unsigned char *mac_addr)
9597 {
9598 	struct e1000_hw *hw = &adapter->hw;
9599 	/* VF MAC addresses start at end of receive addresses and moves
9600 	 * towards the first, as a result a collision should not be possible
9601 	 */
9602 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9603 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9604 
9605 	ether_addr_copy(vf_mac_addr, mac_addr);
9606 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9607 	adapter->mac_table[rar_entry].queue = vf;
9608 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9609 	igb_rar_set_index(adapter, rar_entry);
9610 
9611 	return 0;
9612 }
9613 
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9614 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9615 {
9616 	struct igb_adapter *adapter = netdev_priv(netdev);
9617 
9618 	if (vf >= adapter->vfs_allocated_count)
9619 		return -EINVAL;
9620 
9621 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9622 	 * flag and allows to overwrite the MAC via VF netdev.  This
9623 	 * is necessary to allow libvirt a way to restore the original
9624 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9625 	 * down a VM.
9626 	 */
9627 	if (is_zero_ether_addr(mac)) {
9628 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9629 		dev_info(&adapter->pdev->dev,
9630 			 "remove administratively set MAC on VF %d\n",
9631 			 vf);
9632 	} else if (is_valid_ether_addr(mac)) {
9633 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9634 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9635 			 mac, vf);
9636 		dev_info(&adapter->pdev->dev,
9637 			 "Reload the VF driver to make this change effective.");
9638 		/* Generate additional warning if PF is down */
9639 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9640 			dev_warn(&adapter->pdev->dev,
9641 				 "The VF MAC address has been set, but the PF device is not up.\n");
9642 			dev_warn(&adapter->pdev->dev,
9643 				 "Bring the PF device up before attempting to use the VF device.\n");
9644 		}
9645 	} else {
9646 		return -EINVAL;
9647 	}
9648 	return igb_set_vf_mac(adapter, vf, mac);
9649 }
9650 
igb_link_mbps(int internal_link_speed)9651 static int igb_link_mbps(int internal_link_speed)
9652 {
9653 	switch (internal_link_speed) {
9654 	case SPEED_100:
9655 		return 100;
9656 	case SPEED_1000:
9657 		return 1000;
9658 	default:
9659 		return 0;
9660 	}
9661 }
9662 
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9663 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9664 				  int link_speed)
9665 {
9666 	int rf_dec, rf_int;
9667 	u32 bcnrc_val;
9668 
9669 	if (tx_rate != 0) {
9670 		/* Calculate the rate factor values to set */
9671 		rf_int = link_speed / tx_rate;
9672 		rf_dec = (link_speed - (rf_int * tx_rate));
9673 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9674 			 tx_rate;
9675 
9676 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9677 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9678 			      E1000_RTTBCNRC_RF_INT_MASK);
9679 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9680 	} else {
9681 		bcnrc_val = 0;
9682 	}
9683 
9684 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9685 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9686 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9687 	 */
9688 	wr32(E1000_RTTBCNRM, 0x14);
9689 	wr32(E1000_RTTBCNRC, bcnrc_val);
9690 }
9691 
igb_check_vf_rate_limit(struct igb_adapter * adapter)9692 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9693 {
9694 	int actual_link_speed, i;
9695 	bool reset_rate = false;
9696 
9697 	/* VF TX rate limit was not set or not supported */
9698 	if ((adapter->vf_rate_link_speed == 0) ||
9699 	    (adapter->hw.mac.type != e1000_82576))
9700 		return;
9701 
9702 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9703 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9704 		reset_rate = true;
9705 		adapter->vf_rate_link_speed = 0;
9706 		dev_info(&adapter->pdev->dev,
9707 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9708 	}
9709 
9710 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9711 		if (reset_rate)
9712 			adapter->vf_data[i].tx_rate = 0;
9713 
9714 		igb_set_vf_rate_limit(&adapter->hw, i,
9715 				      adapter->vf_data[i].tx_rate,
9716 				      actual_link_speed);
9717 	}
9718 }
9719 
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9720 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9721 			     int min_tx_rate, int max_tx_rate)
9722 {
9723 	struct igb_adapter *adapter = netdev_priv(netdev);
9724 	struct e1000_hw *hw = &adapter->hw;
9725 	int actual_link_speed;
9726 
9727 	if (hw->mac.type != e1000_82576)
9728 		return -EOPNOTSUPP;
9729 
9730 	if (min_tx_rate)
9731 		return -EINVAL;
9732 
9733 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9734 	if ((vf >= adapter->vfs_allocated_count) ||
9735 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9736 	    (max_tx_rate < 0) ||
9737 	    (max_tx_rate > actual_link_speed))
9738 		return -EINVAL;
9739 
9740 	adapter->vf_rate_link_speed = actual_link_speed;
9741 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9742 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9743 
9744 	return 0;
9745 }
9746 
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9747 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9748 				   bool setting)
9749 {
9750 	struct igb_adapter *adapter = netdev_priv(netdev);
9751 	struct e1000_hw *hw = &adapter->hw;
9752 	u32 reg_val, reg_offset;
9753 
9754 	if (!adapter->vfs_allocated_count)
9755 		return -EOPNOTSUPP;
9756 
9757 	if (vf >= adapter->vfs_allocated_count)
9758 		return -EINVAL;
9759 
9760 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9761 	reg_val = rd32(reg_offset);
9762 	if (setting)
9763 		reg_val |= (BIT(vf) |
9764 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9765 	else
9766 		reg_val &= ~(BIT(vf) |
9767 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9768 	wr32(reg_offset, reg_val);
9769 
9770 	adapter->vf_data[vf].spoofchk_enabled = setting;
9771 	return 0;
9772 }
9773 
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9774 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9775 {
9776 	struct igb_adapter *adapter = netdev_priv(netdev);
9777 
9778 	if (vf >= adapter->vfs_allocated_count)
9779 		return -EINVAL;
9780 	if (adapter->vf_data[vf].trusted == setting)
9781 		return 0;
9782 
9783 	adapter->vf_data[vf].trusted = setting;
9784 
9785 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9786 		 vf, setting ? "" : "not ");
9787 	return 0;
9788 }
9789 
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9790 static int igb_ndo_get_vf_config(struct net_device *netdev,
9791 				 int vf, struct ifla_vf_info *ivi)
9792 {
9793 	struct igb_adapter *adapter = netdev_priv(netdev);
9794 	if (vf >= adapter->vfs_allocated_count)
9795 		return -EINVAL;
9796 	ivi->vf = vf;
9797 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9798 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9799 	ivi->min_tx_rate = 0;
9800 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9801 	ivi->qos = adapter->vf_data[vf].pf_qos;
9802 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9803 	ivi->trusted = adapter->vf_data[vf].trusted;
9804 	return 0;
9805 }
9806 
igb_vmm_control(struct igb_adapter * adapter)9807 static void igb_vmm_control(struct igb_adapter *adapter)
9808 {
9809 	struct e1000_hw *hw = &adapter->hw;
9810 	u32 reg;
9811 
9812 	switch (hw->mac.type) {
9813 	case e1000_82575:
9814 	case e1000_i210:
9815 	case e1000_i211:
9816 	case e1000_i354:
9817 	default:
9818 		/* replication is not supported for 82575 */
9819 		return;
9820 	case e1000_82576:
9821 		/* notify HW that the MAC is adding vlan tags */
9822 		reg = rd32(E1000_DTXCTL);
9823 		reg |= E1000_DTXCTL_VLAN_ADDED;
9824 		wr32(E1000_DTXCTL, reg);
9825 		fallthrough;
9826 	case e1000_82580:
9827 		/* enable replication vlan tag stripping */
9828 		reg = rd32(E1000_RPLOLR);
9829 		reg |= E1000_RPLOLR_STRVLAN;
9830 		wr32(E1000_RPLOLR, reg);
9831 		fallthrough;
9832 	case e1000_i350:
9833 		/* none of the above registers are supported by i350 */
9834 		break;
9835 	}
9836 
9837 	if (adapter->vfs_allocated_count) {
9838 		igb_vmdq_set_loopback_pf(hw, true);
9839 		igb_vmdq_set_replication_pf(hw, true);
9840 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9841 					      adapter->vfs_allocated_count);
9842 	} else {
9843 		igb_vmdq_set_loopback_pf(hw, false);
9844 		igb_vmdq_set_replication_pf(hw, false);
9845 	}
9846 }
9847 
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9848 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9849 {
9850 	struct e1000_hw *hw = &adapter->hw;
9851 	u32 dmac_thr;
9852 	u16 hwm;
9853 	u32 reg;
9854 
9855 	if (hw->mac.type > e1000_82580) {
9856 		if (adapter->flags & IGB_FLAG_DMAC) {
9857 			/* force threshold to 0. */
9858 			wr32(E1000_DMCTXTH, 0);
9859 
9860 			/* DMA Coalescing high water mark needs to be greater
9861 			 * than the Rx threshold. Set hwm to PBA - max frame
9862 			 * size in 16B units, capping it at PBA - 6KB.
9863 			 */
9864 			hwm = 64 * (pba - 6);
9865 			reg = rd32(E1000_FCRTC);
9866 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9867 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9868 				& E1000_FCRTC_RTH_COAL_MASK);
9869 			wr32(E1000_FCRTC, reg);
9870 
9871 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9872 			 * frame size, capping it at PBA - 10KB.
9873 			 */
9874 			dmac_thr = pba - 10;
9875 			reg = rd32(E1000_DMACR);
9876 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9877 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9878 				& E1000_DMACR_DMACTHR_MASK);
9879 
9880 			/* transition to L0x or L1 if available..*/
9881 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9882 
9883 			/* watchdog timer= +-1000 usec in 32usec intervals */
9884 			reg |= (1000 >> 5);
9885 
9886 			/* Disable BMC-to-OS Watchdog Enable */
9887 			if (hw->mac.type != e1000_i354)
9888 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9889 			wr32(E1000_DMACR, reg);
9890 
9891 			/* no lower threshold to disable
9892 			 * coalescing(smart fifb)-UTRESH=0
9893 			 */
9894 			wr32(E1000_DMCRTRH, 0);
9895 
9896 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9897 
9898 			wr32(E1000_DMCTLX, reg);
9899 
9900 			/* free space in tx packet buffer to wake from
9901 			 * DMA coal
9902 			 */
9903 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9904 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9905 		}
9906 
9907 		if (hw->mac.type >= e1000_i210 ||
9908 		    (adapter->flags & IGB_FLAG_DMAC)) {
9909 			reg = rd32(E1000_PCIEMISC);
9910 			reg |= E1000_PCIEMISC_LX_DECISION;
9911 			wr32(E1000_PCIEMISC, reg);
9912 		} /* endif adapter->dmac is not disabled */
9913 	} else if (hw->mac.type == e1000_82580) {
9914 		u32 reg = rd32(E1000_PCIEMISC);
9915 
9916 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9917 		wr32(E1000_DMACR, 0);
9918 	}
9919 }
9920 
9921 /**
9922  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9923  *  @hw: pointer to hardware structure
9924  *  @byte_offset: byte offset to read
9925  *  @dev_addr: device address
9926  *  @data: value read
9927  *
9928  *  Performs byte read operation over I2C interface at
9929  *  a specified device address.
9930  **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9931 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9932 		      u8 dev_addr, u8 *data)
9933 {
9934 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9935 	struct i2c_client *this_client = adapter->i2c_client;
9936 	s32 status;
9937 	u16 swfw_mask = 0;
9938 
9939 	if (!this_client)
9940 		return E1000_ERR_I2C;
9941 
9942 	swfw_mask = E1000_SWFW_PHY0_SM;
9943 
9944 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9945 		return E1000_ERR_SWFW_SYNC;
9946 
9947 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9948 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9949 
9950 	if (status < 0)
9951 		return E1000_ERR_I2C;
9952 	else {
9953 		*data = status;
9954 		return 0;
9955 	}
9956 }
9957 
9958 /**
9959  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9960  *  @hw: pointer to hardware structure
9961  *  @byte_offset: byte offset to write
9962  *  @dev_addr: device address
9963  *  @data: value to write
9964  *
9965  *  Performs byte write operation over I2C interface at
9966  *  a specified device address.
9967  **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9968 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9969 		       u8 dev_addr, u8 data)
9970 {
9971 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9972 	struct i2c_client *this_client = adapter->i2c_client;
9973 	s32 status;
9974 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9975 
9976 	if (!this_client)
9977 		return E1000_ERR_I2C;
9978 
9979 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9980 		return E1000_ERR_SWFW_SYNC;
9981 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9982 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9983 
9984 	if (status)
9985 		return E1000_ERR_I2C;
9986 	else
9987 		return 0;
9988 
9989 }
9990 
igb_reinit_queues(struct igb_adapter * adapter)9991 int igb_reinit_queues(struct igb_adapter *adapter)
9992 {
9993 	struct net_device *netdev = adapter->netdev;
9994 	struct pci_dev *pdev = adapter->pdev;
9995 	int err = 0;
9996 
9997 	if (netif_running(netdev))
9998 		igb_close(netdev);
9999 
10000 	igb_reset_interrupt_capability(adapter);
10001 
10002 	if (igb_init_interrupt_scheme(adapter, true)) {
10003 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10004 		return -ENOMEM;
10005 	}
10006 
10007 	if (netif_running(netdev))
10008 		err = igb_open(netdev);
10009 
10010 	return err;
10011 }
10012 
igb_nfc_filter_exit(struct igb_adapter * adapter)10013 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10014 {
10015 	struct igb_nfc_filter *rule;
10016 
10017 	spin_lock(&adapter->nfc_lock);
10018 
10019 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10020 		igb_erase_filter(adapter, rule);
10021 
10022 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10023 		igb_erase_filter(adapter, rule);
10024 
10025 	spin_unlock(&adapter->nfc_lock);
10026 }
10027 
igb_nfc_filter_restore(struct igb_adapter * adapter)10028 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10029 {
10030 	struct igb_nfc_filter *rule;
10031 
10032 	spin_lock(&adapter->nfc_lock);
10033 
10034 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10035 		igb_add_filter(adapter, rule);
10036 
10037 	spin_unlock(&adapter->nfc_lock);
10038 }
10039 /* igb_main.c */
10040