1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include "igc_phy.h"
5
6 /**
7 * igc_check_reset_block - Check if PHY reset is blocked
8 * @hw: pointer to the HW structure
9 *
10 * Read the PHY management control register and check whether a PHY reset
11 * is blocked. If a reset is not blocked return 0, otherwise
12 * return IGC_ERR_BLK_PHY_RESET (12).
13 */
igc_check_reset_block(struct igc_hw * hw)14 s32 igc_check_reset_block(struct igc_hw *hw)
15 {
16 u32 manc;
17
18 manc = rd32(IGC_MANC);
19
20 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
21 IGC_ERR_BLK_PHY_RESET : 0;
22 }
23
24 /**
25 * igc_get_phy_id - Retrieve the PHY ID and revision
26 * @hw: pointer to the HW structure
27 *
28 * Reads the PHY registers and stores the PHY ID and possibly the PHY
29 * revision in the hardware structure.
30 */
igc_get_phy_id(struct igc_hw * hw)31 s32 igc_get_phy_id(struct igc_hw *hw)
32 {
33 struct igc_phy_info *phy = &hw->phy;
34 s32 ret_val = 0;
35 u16 phy_id;
36
37 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
38 if (ret_val)
39 goto out;
40
41 phy->id = (u32)(phy_id << 16);
42 usleep_range(200, 500);
43 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
44 if (ret_val)
45 goto out;
46
47 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
48 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
49
50 out:
51 return ret_val;
52 }
53
54 /**
55 * igc_phy_has_link - Polls PHY for link
56 * @hw: pointer to the HW structure
57 * @iterations: number of times to poll for link
58 * @usec_interval: delay between polling attempts
59 * @success: pointer to whether polling was successful or not
60 *
61 * Polls the PHY status register for link, 'iterations' number of times.
62 */
igc_phy_has_link(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)63 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
64 u32 usec_interval, bool *success)
65 {
66 u16 i, phy_status;
67 s32 ret_val = 0;
68
69 for (i = 0; i < iterations; i++) {
70 /* Some PHYs require the PHY_STATUS register to be read
71 * twice due to the link bit being sticky. No harm doing
72 * it across the board.
73 */
74 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
75 if (ret_val && usec_interval > 0) {
76 /* If the first read fails, another entity may have
77 * ownership of the resources, wait and try again to
78 * see if they have relinquished the resources yet.
79 */
80 if (usec_interval >= 1000)
81 mdelay(usec_interval / 1000);
82 else
83 udelay(usec_interval);
84 }
85 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
86 if (ret_val)
87 break;
88 if (phy_status & MII_SR_LINK_STATUS)
89 break;
90 if (usec_interval >= 1000)
91 mdelay(usec_interval / 1000);
92 else
93 udelay(usec_interval);
94 }
95
96 *success = (i < iterations) ? true : false;
97
98 return ret_val;
99 }
100
101 /**
102 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
103 * @hw: pointer to the HW structure
104 *
105 * In the case of a PHY power down to save power, or to turn off link during a
106 * driver unload, restore the link to previous settings.
107 */
igc_power_up_phy_copper(struct igc_hw * hw)108 void igc_power_up_phy_copper(struct igc_hw *hw)
109 {
110 u16 mii_reg = 0;
111
112 /* The PHY will retain its settings across a power down/up cycle */
113 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
114 mii_reg &= ~MII_CR_POWER_DOWN;
115 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
116 }
117
118 /**
119 * igc_power_down_phy_copper - Power down copper PHY
120 * @hw: pointer to the HW structure
121 *
122 * Power down PHY to save power when interface is down and wake on lan
123 * is not enabled.
124 */
igc_power_down_phy_copper(struct igc_hw * hw)125 void igc_power_down_phy_copper(struct igc_hw *hw)
126 {
127 u16 mii_reg = 0;
128
129 /* The PHY will retain its settings across a power down/up cycle */
130 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
131 mii_reg |= MII_CR_POWER_DOWN;
132
133 /* Temporary workaround - should be removed when PHY will implement
134 * IEEE registers as properly
135 */
136 /* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
137 usleep_range(1000, 2000);
138 }
139
140 /**
141 * igc_check_downshift - Checks whether a downshift in speed occurred
142 * @hw: pointer to the HW structure
143 *
144 * Success returns 0, Failure returns 1
145 *
146 * A downshift is detected by querying the PHY link health.
147 */
igc_check_downshift(struct igc_hw * hw)148 s32 igc_check_downshift(struct igc_hw *hw)
149 {
150 struct igc_phy_info *phy = &hw->phy;
151 s32 ret_val;
152
153 switch (phy->type) {
154 case igc_phy_i225:
155 default:
156 /* speed downshift not supported */
157 phy->speed_downgraded = false;
158 ret_val = 0;
159 }
160
161 return ret_val;
162 }
163
164 /**
165 * igc_phy_hw_reset - PHY hardware reset
166 * @hw: pointer to the HW structure
167 *
168 * Verify the reset block is not blocking us from resetting. Acquire
169 * semaphore (if necessary) and read/set/write the device control reset
170 * bit in the PHY. Wait the appropriate delay time for the device to
171 * reset and release the semaphore (if necessary).
172 */
igc_phy_hw_reset(struct igc_hw * hw)173 s32 igc_phy_hw_reset(struct igc_hw *hw)
174 {
175 struct igc_phy_info *phy = &hw->phy;
176 u32 phpm = 0, timeout = 10000;
177 s32 ret_val;
178 u32 ctrl;
179
180 ret_val = igc_check_reset_block(hw);
181 if (ret_val) {
182 ret_val = 0;
183 goto out;
184 }
185
186 ret_val = phy->ops.acquire(hw);
187 if (ret_val)
188 goto out;
189
190 phpm = rd32(IGC_I225_PHPM);
191
192 ctrl = rd32(IGC_CTRL);
193 wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
194 wrfl();
195
196 udelay(phy->reset_delay_us);
197
198 wr32(IGC_CTRL, ctrl);
199 wrfl();
200
201 /* SW should guarantee 100us for the completion of the PHY reset */
202 usleep_range(100, 150);
203 do {
204 phpm = rd32(IGC_I225_PHPM);
205 timeout--;
206 udelay(1);
207 } while (!(phpm & IGC_PHY_RST_COMP) && timeout);
208
209 if (!timeout)
210 hw_dbg("Timeout is expired after a phy reset\n");
211
212 usleep_range(100, 150);
213
214 phy->ops.release(hw);
215
216 out:
217 return ret_val;
218 }
219
220 /**
221 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
222 * @hw: pointer to the HW structure
223 *
224 * Reads the MII auto-neg advertisement register and/or the 1000T control
225 * register and if the PHY is already setup for auto-negotiation, then
226 * return successful. Otherwise, setup advertisement and flow control to
227 * the appropriate values for the wanted auto-negotiation.
228 */
igc_phy_setup_autoneg(struct igc_hw * hw)229 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
230 {
231 struct igc_phy_info *phy = &hw->phy;
232 u16 aneg_multigbt_an_ctrl = 0;
233 u16 mii_1000t_ctrl_reg = 0;
234 u16 mii_autoneg_adv_reg;
235 s32 ret_val;
236
237 phy->autoneg_advertised &= phy->autoneg_mask;
238
239 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
240 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
241 if (ret_val)
242 return ret_val;
243
244 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
245 /* Read the MII 1000Base-T Control Register (Address 9). */
246 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
247 &mii_1000t_ctrl_reg);
248 if (ret_val)
249 return ret_val;
250 }
251
252 if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
253 /* Read the MULTI GBT AN Control Register - reg 7.32 */
254 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
255 MMD_DEVADDR_SHIFT) |
256 ANEG_MULTIGBT_AN_CTRL,
257 &aneg_multigbt_an_ctrl);
258
259 if (ret_val)
260 return ret_val;
261 }
262
263 /* Need to parse both autoneg_advertised and fc and set up
264 * the appropriate PHY registers. First we will parse for
265 * autoneg_advertised software override. Since we can advertise
266 * a plethora of combinations, we need to check each bit
267 * individually.
268 */
269
270 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
271 * Advertisement Register (Address 4) and the 1000 mb speed bits in
272 * the 1000Base-T Control Register (Address 9).
273 */
274 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
275 NWAY_AR_100TX_HD_CAPS |
276 NWAY_AR_10T_FD_CAPS |
277 NWAY_AR_10T_HD_CAPS);
278 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
279
280 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
281
282 /* Do we want to advertise 10 Mb Half Duplex? */
283 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
284 hw_dbg("Advertise 10mb Half duplex\n");
285 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
286 }
287
288 /* Do we want to advertise 10 Mb Full Duplex? */
289 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
290 hw_dbg("Advertise 10mb Full duplex\n");
291 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
292 }
293
294 /* Do we want to advertise 100 Mb Half Duplex? */
295 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
296 hw_dbg("Advertise 100mb Half duplex\n");
297 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
298 }
299
300 /* Do we want to advertise 100 Mb Full Duplex? */
301 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
302 hw_dbg("Advertise 100mb Full duplex\n");
303 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
304 }
305
306 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
307 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
308 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
309
310 /* Do we want to advertise 1000 Mb Full Duplex? */
311 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
312 hw_dbg("Advertise 1000mb Full duplex\n");
313 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
314 }
315
316 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
317 if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
318 hw_dbg("Advertise 2500mb Half duplex request denied!\n");
319
320 /* Do we want to advertise 2500 Mb Full Duplex? */
321 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
322 hw_dbg("Advertise 2500mb Full duplex\n");
323 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
324 } else {
325 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
326 }
327
328 /* Check for a software override of the flow control settings, and
329 * setup the PHY advertisement registers accordingly. If
330 * auto-negotiation is enabled, then software will have to set the
331 * "PAUSE" bits to the correct value in the Auto-Negotiation
332 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
333 * negotiation.
334 *
335 * The possible values of the "fc" parameter are:
336 * 0: Flow control is completely disabled
337 * 1: Rx flow control is enabled (we can receive pause frames
338 * but not send pause frames).
339 * 2: Tx flow control is enabled (we can send pause frames
340 * but we do not support receiving pause frames).
341 * 3: Both Rx and Tx flow control (symmetric) are enabled.
342 * other: No software override. The flow control configuration
343 * in the EEPROM is used.
344 */
345 switch (hw->fc.current_mode) {
346 case igc_fc_none:
347 /* Flow control (Rx & Tx) is completely disabled by a
348 * software over-ride.
349 */
350 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
351 break;
352 case igc_fc_rx_pause:
353 /* Rx Flow control is enabled, and Tx Flow control is
354 * disabled, by a software over-ride.
355 *
356 * Since there really isn't a way to advertise that we are
357 * capable of Rx Pause ONLY, we will advertise that we
358 * support both symmetric and asymmetric Rx PAUSE. Later
359 * (in igc_config_fc_after_link_up) we will disable the
360 * hw's ability to send PAUSE frames.
361 */
362 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363 break;
364 case igc_fc_tx_pause:
365 /* Tx Flow control is enabled, and Rx Flow control is
366 * disabled, by a software over-ride.
367 */
368 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
369 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
370 break;
371 case igc_fc_full:
372 /* Flow control (both Rx and Tx) is enabled by a software
373 * over-ride.
374 */
375 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
376 break;
377 default:
378 hw_dbg("Flow control param set incorrectly\n");
379 return -IGC_ERR_CONFIG;
380 }
381
382 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
383 if (ret_val)
384 return ret_val;
385
386 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
387
388 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
389 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
390 mii_1000t_ctrl_reg);
391
392 if (phy->autoneg_mask & ADVERTISE_2500_FULL)
393 ret_val = phy->ops.write_reg(hw,
394 (STANDARD_AN_REG_MASK <<
395 MMD_DEVADDR_SHIFT) |
396 ANEG_MULTIGBT_AN_CTRL,
397 aneg_multigbt_an_ctrl);
398
399 return ret_val;
400 }
401
402 /**
403 * igc_wait_autoneg - Wait for auto-neg completion
404 * @hw: pointer to the HW structure
405 *
406 * Waits for auto-negotiation to complete or for the auto-negotiation time
407 * limit to expire, which ever happens first.
408 */
igc_wait_autoneg(struct igc_hw * hw)409 static s32 igc_wait_autoneg(struct igc_hw *hw)
410 {
411 u16 i, phy_status;
412 s32 ret_val = 0;
413
414 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
415 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
416 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
417 if (ret_val)
418 break;
419 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
420 if (ret_val)
421 break;
422 if (phy_status & MII_SR_AUTONEG_COMPLETE)
423 break;
424 msleep(100);
425 }
426
427 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
428 * has completed.
429 */
430 return ret_val;
431 }
432
433 /**
434 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
435 * @hw: pointer to the HW structure
436 *
437 * Performs initial bounds checking on autoneg advertisement parameter, then
438 * configure to advertise the full capability. Setup the PHY to autoneg
439 * and restart the negotiation process between the link partner. If
440 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
441 */
igc_copper_link_autoneg(struct igc_hw * hw)442 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
443 {
444 struct igc_phy_info *phy = &hw->phy;
445 u16 phy_ctrl;
446 s32 ret_val;
447
448 /* Perform some bounds checking on the autoneg advertisement
449 * parameter.
450 */
451 phy->autoneg_advertised &= phy->autoneg_mask;
452
453 /* If autoneg_advertised is zero, we assume it was not defaulted
454 * by the calling code so we set to advertise full capability.
455 */
456 if (phy->autoneg_advertised == 0)
457 phy->autoneg_advertised = phy->autoneg_mask;
458
459 hw_dbg("Reconfiguring auto-neg advertisement params\n");
460 ret_val = igc_phy_setup_autoneg(hw);
461 if (ret_val) {
462 hw_dbg("Error Setting up Auto-Negotiation\n");
463 goto out;
464 }
465 hw_dbg("Restarting Auto-Neg\n");
466
467 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
468 * the Auto Neg Restart bit in the PHY control register.
469 */
470 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
471 if (ret_val)
472 goto out;
473
474 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
475 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
476 if (ret_val)
477 goto out;
478
479 /* Does the user want to wait for Auto-Neg to complete here, or
480 * check at a later time (for example, callback routine).
481 */
482 if (phy->autoneg_wait_to_complete) {
483 ret_val = igc_wait_autoneg(hw);
484 if (ret_val) {
485 hw_dbg("Error while waiting for autoneg to complete\n");
486 goto out;
487 }
488 }
489
490 hw->mac.get_link_status = true;
491
492 out:
493 return ret_val;
494 }
495
496 /**
497 * igc_setup_copper_link - Configure copper link settings
498 * @hw: pointer to the HW structure
499 *
500 * Calls the appropriate function to configure the link for auto-neg or forced
501 * speed and duplex. Then we check for link, once link is established calls
502 * to configure collision distance and flow control are called. If link is
503 * not established, we return -IGC_ERR_PHY (-2).
504 */
igc_setup_copper_link(struct igc_hw * hw)505 s32 igc_setup_copper_link(struct igc_hw *hw)
506 {
507 s32 ret_val = 0;
508 bool link;
509
510 if (hw->mac.autoneg) {
511 /* Setup autoneg and flow control advertisement and perform
512 * autonegotiation.
513 */
514 ret_val = igc_copper_link_autoneg(hw);
515 if (ret_val)
516 goto out;
517 } else {
518 /* PHY will be set to 10H, 10F, 100H or 100F
519 * depending on user settings.
520 */
521 hw_dbg("Forcing Speed and Duplex\n");
522 ret_val = hw->phy.ops.force_speed_duplex(hw);
523 if (ret_val) {
524 hw_dbg("Error Forcing Speed and Duplex\n");
525 goto out;
526 }
527 }
528
529 /* Check link status. Wait up to 100 microseconds for link to become
530 * valid.
531 */
532 ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
533 if (ret_val)
534 goto out;
535
536 if (link) {
537 hw_dbg("Valid link established!!!\n");
538 igc_config_collision_dist(hw);
539 ret_val = igc_config_fc_after_link_up(hw);
540 } else {
541 hw_dbg("Unable to establish link!!!\n");
542 }
543
544 out:
545 return ret_val;
546 }
547
548 /**
549 * igc_read_phy_reg_mdic - Read MDI control register
550 * @hw: pointer to the HW structure
551 * @offset: register offset to be read
552 * @data: pointer to the read data
553 *
554 * Reads the MDI control register in the PHY at offset and stores the
555 * information read to data.
556 */
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)557 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
558 {
559 struct igc_phy_info *phy = &hw->phy;
560 u32 i, mdic = 0;
561 s32 ret_val = 0;
562
563 if (offset > MAX_PHY_REG_ADDRESS) {
564 hw_dbg("PHY Address %d is out of range\n", offset);
565 ret_val = -IGC_ERR_PARAM;
566 goto out;
567 }
568
569 /* Set up Op-code, Phy Address, and register offset in the MDI
570 * Control register. The MAC will take care of interfacing with the
571 * PHY to retrieve the desired data.
572 */
573 mdic = ((offset << IGC_MDIC_REG_SHIFT) |
574 (phy->addr << IGC_MDIC_PHY_SHIFT) |
575 (IGC_MDIC_OP_READ));
576
577 wr32(IGC_MDIC, mdic);
578
579 /* Poll the ready bit to see if the MDI read completed
580 * Increasing the time out as testing showed failures with
581 * the lower time out
582 */
583 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
584 udelay(50);
585 mdic = rd32(IGC_MDIC);
586 if (mdic & IGC_MDIC_READY)
587 break;
588 }
589 if (!(mdic & IGC_MDIC_READY)) {
590 hw_dbg("MDI Read did not complete\n");
591 ret_val = -IGC_ERR_PHY;
592 goto out;
593 }
594 if (mdic & IGC_MDIC_ERROR) {
595 hw_dbg("MDI Error\n");
596 ret_val = -IGC_ERR_PHY;
597 goto out;
598 }
599 *data = (u16)mdic;
600
601 out:
602 return ret_val;
603 }
604
605 /**
606 * igc_write_phy_reg_mdic - Write MDI control register
607 * @hw: pointer to the HW structure
608 * @offset: register offset to write to
609 * @data: data to write to register at offset
610 *
611 * Writes data to MDI control register in the PHY at offset.
612 */
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)613 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
614 {
615 struct igc_phy_info *phy = &hw->phy;
616 u32 i, mdic = 0;
617 s32 ret_val = 0;
618
619 if (offset > MAX_PHY_REG_ADDRESS) {
620 hw_dbg("PHY Address %d is out of range\n", offset);
621 ret_val = -IGC_ERR_PARAM;
622 goto out;
623 }
624
625 /* Set up Op-code, Phy Address, and register offset in the MDI
626 * Control register. The MAC will take care of interfacing with the
627 * PHY to write the desired data.
628 */
629 mdic = (((u32)data) |
630 (offset << IGC_MDIC_REG_SHIFT) |
631 (phy->addr << IGC_MDIC_PHY_SHIFT) |
632 (IGC_MDIC_OP_WRITE));
633
634 wr32(IGC_MDIC, mdic);
635
636 /* Poll the ready bit to see if the MDI read completed
637 * Increasing the time out as testing showed failures with
638 * the lower time out
639 */
640 for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
641 udelay(50);
642 mdic = rd32(IGC_MDIC);
643 if (mdic & IGC_MDIC_READY)
644 break;
645 }
646 if (!(mdic & IGC_MDIC_READY)) {
647 hw_dbg("MDI Write did not complete\n");
648 ret_val = -IGC_ERR_PHY;
649 goto out;
650 }
651 if (mdic & IGC_MDIC_ERROR) {
652 hw_dbg("MDI Error\n");
653 ret_val = -IGC_ERR_PHY;
654 goto out;
655 }
656
657 out:
658 return ret_val;
659 }
660
661 /**
662 * __igc_access_xmdio_reg - Read/write XMDIO register
663 * @hw: pointer to the HW structure
664 * @address: XMDIO address to program
665 * @dev_addr: device address to program
666 * @data: pointer to value to read/write from/to the XMDIO address
667 * @read: boolean flag to indicate read or write
668 */
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)669 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
670 u8 dev_addr, u16 *data, bool read)
671 {
672 s32 ret_val;
673
674 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
675 if (ret_val)
676 return ret_val;
677
678 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
679 if (ret_val)
680 return ret_val;
681
682 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
683 dev_addr);
684 if (ret_val)
685 return ret_val;
686
687 if (read)
688 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
689 else
690 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
691 if (ret_val)
692 return ret_val;
693
694 /* Recalibrate the device back to 0 */
695 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
696 if (ret_val)
697 return ret_val;
698
699 return ret_val;
700 }
701
702 /**
703 * igc_read_xmdio_reg - Read XMDIO register
704 * @hw: pointer to the HW structure
705 * @addr: XMDIO address to program
706 * @dev_addr: device address to program
707 * @data: value to be read from the EMI address
708 */
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)709 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
710 u8 dev_addr, u16 *data)
711 {
712 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
713 }
714
715 /**
716 * igc_write_xmdio_reg - Write XMDIO register
717 * @hw: pointer to the HW structure
718 * @addr: XMDIO address to program
719 * @dev_addr: device address to program
720 * @data: value to be written to the XMDIO address
721 */
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)722 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
723 u8 dev_addr, u16 data)
724 {
725 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
726 }
727
728 /**
729 * igc_write_phy_reg_gpy - Write GPY PHY register
730 * @hw: pointer to the HW structure
731 * @offset: register offset to write to
732 * @data: data to write at register offset
733 *
734 * Acquires semaphore, if necessary, then writes the data to PHY register
735 * at the offset. Release any acquired semaphores before exiting.
736 */
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)737 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
738 {
739 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
740 s32 ret_val;
741
742 offset = offset & GPY_REG_MASK;
743
744 if (!dev_addr) {
745 ret_val = hw->phy.ops.acquire(hw);
746 if (ret_val)
747 return ret_val;
748 ret_val = igc_write_phy_reg_mdic(hw, offset, data);
749 hw->phy.ops.release(hw);
750 } else {
751 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
752 data);
753 }
754
755 return ret_val;
756 }
757
758 /**
759 * igc_read_phy_reg_gpy - Read GPY PHY register
760 * @hw: pointer to the HW structure
761 * @offset: lower half is register offset to read to
762 * upper half is MMD to use.
763 * @data: data to read at register offset
764 *
765 * Acquires semaphore, if necessary, then reads the data in the PHY register
766 * at the offset. Release any acquired semaphores before exiting.
767 */
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)768 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
769 {
770 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
771 s32 ret_val;
772
773 offset = offset & GPY_REG_MASK;
774
775 if (!dev_addr) {
776 ret_val = hw->phy.ops.acquire(hw);
777 if (ret_val)
778 return ret_val;
779 ret_val = igc_read_phy_reg_mdic(hw, offset, data);
780 hw->phy.ops.release(hw);
781 } else {
782 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
783 data);
784 }
785
786 return ret_val;
787 }
788