• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * smc91x.c
4  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5  *
6  * Copyright (C) 1996 by Erik Stahlman
7  * Copyright (C) 2001 Standard Microsystems Corporation
8  *	Developed by Simple Network Magic Corporation
9  * Copyright (C) 2003 Monta Vista Software, Inc.
10  *	Unified SMC91x driver by Nicolas Pitre
11  *
12  * Arguments:
13  * 	io	= for the base address
14  *	irq	= for the IRQ
15  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16  *
17  * original author:
18  * 	Erik Stahlman <erik@vt.edu>
19  *
20  * hardware multicast code:
21  *    Peter Cammaert <pc@denkart.be>
22  *
23  * contributors:
24  * 	Daris A Nevil <dnevil@snmc.com>
25  *      Nicolas Pitre <nico@fluxnic.net>
26  *	Russell King <rmk@arm.linux.org.uk>
27  *
28  * History:
29  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36  *                                more bus abstraction, big cleanup, etc.
37  *   29/09/03  Russell King       - add driver model support
38  *                                - ethtool support
39  *                                - convert to use generic MII interface
40  *                                - add link up/down notification
41  *                                - don't try to handle full negotiation in
42  *                                  smc_phy_configure
43  *                                - clean up (and fix stack overrun) in PHY
44  *                                  MII read/write functions
45  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46  */
47 static const char version[] =
48 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49 
50 /* Debugging level */
51 #ifndef SMC_DEBUG
52 #define SMC_DEBUG		0
53 #endif
54 
55 
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/sched.h>
59 #include <linux/delay.h>
60 #include <linux/interrupt.h>
61 #include <linux/irq.h>
62 #include <linux/errno.h>
63 #include <linux/ioport.h>
64 #include <linux/crc32.h>
65 #include <linux/platform_device.h>
66 #include <linux/spinlock.h>
67 #include <linux/ethtool.h>
68 #include <linux/mii.h>
69 #include <linux/workqueue.h>
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/of_gpio.h>
73 
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 
78 #include <asm/io.h>
79 
80 #include "smc91x.h"
81 
82 #if defined(CONFIG_ASSABET_NEPONSET)
83 #include <mach/assabet.h>
84 #include <mach/neponset.h>
85 #endif
86 
87 #ifndef SMC_NOWAIT
88 # define SMC_NOWAIT		0
89 #endif
90 static int nowait = SMC_NOWAIT;
91 module_param(nowait, int, 0400);
92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93 
94 /*
95  * Transmit timeout, default 5 seconds.
96  */
97 static int watchdog = 1000;
98 module_param(watchdog, int, 0400);
99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100 
101 MODULE_LICENSE("GPL");
102 MODULE_ALIAS("platform:smc91x");
103 
104 /*
105  * The internal workings of the driver.  If you are changing anything
106  * here with the SMC stuff, you should have the datasheet and know
107  * what you are doing.
108  */
109 #define CARDNAME "smc91x"
110 
111 /*
112  * Use power-down feature of the chip
113  */
114 #define POWER_DOWN		1
115 
116 /*
117  * Wait time for memory to be free.  This probably shouldn't be
118  * tuned that much, as waiting for this means nothing else happens
119  * in the system
120  */
121 #define MEMORY_WAIT_TIME	16
122 
123 /*
124  * The maximum number of processing loops allowed for each call to the
125  * IRQ handler.
126  */
127 #define MAX_IRQ_LOOPS		8
128 
129 /*
130  * This selects whether TX packets are sent one by one to the SMC91x internal
131  * memory and throttled until transmission completes.  This may prevent
132  * RX overruns a litle by keeping much of the memory free for RX packets
133  * but to the expense of reduced TX throughput and increased IRQ overhead.
134  * Note this is not a cure for a too slow data bus or too high IRQ latency.
135  */
136 #define THROTTLE_TX_PKTS	0
137 
138 /*
139  * The MII clock high/low times.  2x this number gives the MII clock period
140  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
141  */
142 #define MII_DELAY		1
143 
144 #define DBG(n, dev, fmt, ...)					\
145 	do {							\
146 		if (SMC_DEBUG >= (n))				\
147 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
148 	} while (0)
149 
150 #define PRINTK(dev, fmt, ...)					\
151 	do {							\
152 		if (SMC_DEBUG > 0)				\
153 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
154 		else						\
155 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
156 	} while (0)
157 
158 #if SMC_DEBUG > 3
PRINT_PKT(u_char * buf,int length)159 static void PRINT_PKT(u_char *buf, int length)
160 {
161 	int i;
162 	int remainder;
163 	int lines;
164 
165 	lines = length / 16;
166 	remainder = length % 16;
167 
168 	for (i = 0; i < lines ; i ++) {
169 		int cur;
170 		printk(KERN_DEBUG);
171 		for (cur = 0; cur < 8; cur++) {
172 			u_char a, b;
173 			a = *buf++;
174 			b = *buf++;
175 			pr_cont("%02x%02x ", a, b);
176 		}
177 		pr_cont("\n");
178 	}
179 	printk(KERN_DEBUG);
180 	for (i = 0; i < remainder/2 ; i++) {
181 		u_char a, b;
182 		a = *buf++;
183 		b = *buf++;
184 		pr_cont("%02x%02x ", a, b);
185 	}
186 	pr_cont("\n");
187 }
188 #else
PRINT_PKT(u_char * buf,int length)189 static inline void PRINT_PKT(u_char *buf, int length) { }
190 #endif
191 
192 
193 /* this enables an interrupt in the interrupt mask register */
194 #define SMC_ENABLE_INT(lp, x) do {					\
195 	unsigned char mask;						\
196 	unsigned long smc_enable_flags;					\
197 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
198 	mask = SMC_GET_INT_MASK(lp);					\
199 	mask |= (x);							\
200 	SMC_SET_INT_MASK(lp, mask);					\
201 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
202 } while (0)
203 
204 /* this disables an interrupt from the interrupt mask register */
205 #define SMC_DISABLE_INT(lp, x) do {					\
206 	unsigned char mask;						\
207 	unsigned long smc_disable_flags;				\
208 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
209 	mask = SMC_GET_INT_MASK(lp);					\
210 	mask &= ~(x);							\
211 	SMC_SET_INT_MASK(lp, mask);					\
212 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
213 } while (0)
214 
215 /*
216  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
217  * if at all, but let's avoid deadlocking the system if the hardware
218  * decides to go south.
219  */
220 #define SMC_WAIT_MMU_BUSY(lp) do {					\
221 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
222 		unsigned long timeout = jiffies + 2;			\
223 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
224 			if (time_after(jiffies, timeout)) {		\
225 				netdev_dbg(dev, "timeout %s line %d\n",	\
226 					   __FILE__, __LINE__);		\
227 				break;					\
228 			}						\
229 			cpu_relax();					\
230 		}							\
231 	}								\
232 } while (0)
233 
234 
235 /*
236  * this does a soft reset on the device
237  */
smc_reset(struct net_device * dev)238 static void smc_reset(struct net_device *dev)
239 {
240 	struct smc_local *lp = netdev_priv(dev);
241 	void __iomem *ioaddr = lp->base;
242 	unsigned int ctl, cfg;
243 	struct sk_buff *pending_skb;
244 
245 	DBG(2, dev, "%s\n", __func__);
246 
247 	/* Disable all interrupts, block TX tasklet */
248 	spin_lock_irq(&lp->lock);
249 	SMC_SELECT_BANK(lp, 2);
250 	SMC_SET_INT_MASK(lp, 0);
251 	pending_skb = lp->pending_tx_skb;
252 	lp->pending_tx_skb = NULL;
253 	spin_unlock_irq(&lp->lock);
254 
255 	/* free any pending tx skb */
256 	if (pending_skb) {
257 		dev_kfree_skb(pending_skb);
258 		dev->stats.tx_errors++;
259 		dev->stats.tx_aborted_errors++;
260 	}
261 
262 	/*
263 	 * This resets the registers mostly to defaults, but doesn't
264 	 * affect EEPROM.  That seems unnecessary
265 	 */
266 	SMC_SELECT_BANK(lp, 0);
267 	SMC_SET_RCR(lp, RCR_SOFTRST);
268 
269 	/*
270 	 * Setup the Configuration Register
271 	 * This is necessary because the CONFIG_REG is not affected
272 	 * by a soft reset
273 	 */
274 	SMC_SELECT_BANK(lp, 1);
275 
276 	cfg = CONFIG_DEFAULT;
277 
278 	/*
279 	 * Setup for fast accesses if requested.  If the card/system
280 	 * can't handle it then there will be no recovery except for
281 	 * a hard reset or power cycle
282 	 */
283 	if (lp->cfg.flags & SMC91X_NOWAIT)
284 		cfg |= CONFIG_NO_WAIT;
285 
286 	/*
287 	 * Release from possible power-down state
288 	 * Configuration register is not affected by Soft Reset
289 	 */
290 	cfg |= CONFIG_EPH_POWER_EN;
291 
292 	SMC_SET_CONFIG(lp, cfg);
293 
294 	/* this should pause enough for the chip to be happy */
295 	/*
296 	 * elaborate?  What does the chip _need_? --jgarzik
297 	 *
298 	 * This seems to be undocumented, but something the original
299 	 * driver(s) have always done.  Suspect undocumented timing
300 	 * info/determined empirically. --rmk
301 	 */
302 	udelay(1);
303 
304 	/* Disable transmit and receive functionality */
305 	SMC_SELECT_BANK(lp, 0);
306 	SMC_SET_RCR(lp, RCR_CLEAR);
307 	SMC_SET_TCR(lp, TCR_CLEAR);
308 
309 	SMC_SELECT_BANK(lp, 1);
310 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
311 
312 	/*
313 	 * Set the control register to automatically release successfully
314 	 * transmitted packets, to make the best use out of our limited
315 	 * memory
316 	 */
317 	if(!THROTTLE_TX_PKTS)
318 		ctl |= CTL_AUTO_RELEASE;
319 	else
320 		ctl &= ~CTL_AUTO_RELEASE;
321 	SMC_SET_CTL(lp, ctl);
322 
323 	/* Reset the MMU */
324 	SMC_SELECT_BANK(lp, 2);
325 	SMC_SET_MMU_CMD(lp, MC_RESET);
326 	SMC_WAIT_MMU_BUSY(lp);
327 }
328 
329 /*
330  * Enable Interrupts, Receive, and Transmit
331  */
smc_enable(struct net_device * dev)332 static void smc_enable(struct net_device *dev)
333 {
334 	struct smc_local *lp = netdev_priv(dev);
335 	void __iomem *ioaddr = lp->base;
336 	int mask;
337 
338 	DBG(2, dev, "%s\n", __func__);
339 
340 	/* see the header file for options in TCR/RCR DEFAULT */
341 	SMC_SELECT_BANK(lp, 0);
342 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
343 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
344 
345 	SMC_SELECT_BANK(lp, 1);
346 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
347 
348 	/* now, enable interrupts */
349 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
350 	if (lp->version >= (CHIP_91100 << 4))
351 		mask |= IM_MDINT;
352 	SMC_SELECT_BANK(lp, 2);
353 	SMC_SET_INT_MASK(lp, mask);
354 
355 	/*
356 	 * From this point the register bank must _NOT_ be switched away
357 	 * to something else than bank 2 without proper locking against
358 	 * races with any tasklet or interrupt handlers until smc_shutdown()
359 	 * or smc_reset() is called.
360 	 */
361 }
362 
363 /*
364  * this puts the device in an inactive state
365  */
smc_shutdown(struct net_device * dev)366 static void smc_shutdown(struct net_device *dev)
367 {
368 	struct smc_local *lp = netdev_priv(dev);
369 	void __iomem *ioaddr = lp->base;
370 	struct sk_buff *pending_skb;
371 
372 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
373 
374 	/* no more interrupts for me */
375 	spin_lock_irq(&lp->lock);
376 	SMC_SELECT_BANK(lp, 2);
377 	SMC_SET_INT_MASK(lp, 0);
378 	pending_skb = lp->pending_tx_skb;
379 	lp->pending_tx_skb = NULL;
380 	spin_unlock_irq(&lp->lock);
381 	dev_kfree_skb(pending_skb);
382 
383 	/* and tell the card to stay away from that nasty outside world */
384 	SMC_SELECT_BANK(lp, 0);
385 	SMC_SET_RCR(lp, RCR_CLEAR);
386 	SMC_SET_TCR(lp, TCR_CLEAR);
387 
388 #ifdef POWER_DOWN
389 	/* finally, shut the chip down */
390 	SMC_SELECT_BANK(lp, 1);
391 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
392 #endif
393 }
394 
395 /*
396  * This is the procedure to handle the receipt of a packet.
397  */
smc_rcv(struct net_device * dev)398 static inline void  smc_rcv(struct net_device *dev)
399 {
400 	struct smc_local *lp = netdev_priv(dev);
401 	void __iomem *ioaddr = lp->base;
402 	unsigned int packet_number, status, packet_len;
403 
404 	DBG(3, dev, "%s\n", __func__);
405 
406 	packet_number = SMC_GET_RXFIFO(lp);
407 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
408 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
409 		return;
410 	}
411 
412 	/* read from start of packet */
413 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
414 
415 	/* First two words are status and packet length */
416 	SMC_GET_PKT_HDR(lp, status, packet_len);
417 	packet_len &= 0x07ff;  /* mask off top bits */
418 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
419 	    packet_number, status, packet_len, packet_len);
420 
421 	back:
422 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
423 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
424 			/* accept VLAN packets */
425 			status &= ~RS_TOOLONG;
426 			goto back;
427 		}
428 		if (packet_len < 6) {
429 			/* bloody hardware */
430 			netdev_err(dev, "fubar (rxlen %u status %x\n",
431 				   packet_len, status);
432 			status |= RS_TOOSHORT;
433 		}
434 		SMC_WAIT_MMU_BUSY(lp);
435 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
436 		dev->stats.rx_errors++;
437 		if (status & RS_ALGNERR)
438 			dev->stats.rx_frame_errors++;
439 		if (status & (RS_TOOSHORT | RS_TOOLONG))
440 			dev->stats.rx_length_errors++;
441 		if (status & RS_BADCRC)
442 			dev->stats.rx_crc_errors++;
443 	} else {
444 		struct sk_buff *skb;
445 		unsigned char *data;
446 		unsigned int data_len;
447 
448 		/* set multicast stats */
449 		if (status & RS_MULTICAST)
450 			dev->stats.multicast++;
451 
452 		/*
453 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
454 		 * We want skb_reserve(2) and the final ctrl word
455 		 * (2 bytes, possibly containing the payload odd byte).
456 		 * Furthermore, we add 2 bytes to allow rounding up to
457 		 * multiple of 4 bytes on 32 bit buses.
458 		 * Hence packet_len - 6 + 2 + 2 + 2.
459 		 */
460 		skb = netdev_alloc_skb(dev, packet_len);
461 		if (unlikely(skb == NULL)) {
462 			SMC_WAIT_MMU_BUSY(lp);
463 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
464 			dev->stats.rx_dropped++;
465 			return;
466 		}
467 
468 		/* Align IP header to 32 bits */
469 		skb_reserve(skb, 2);
470 
471 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
472 		if (lp->version == 0x90)
473 			status |= RS_ODDFRAME;
474 
475 		/*
476 		 * If odd length: packet_len - 5,
477 		 * otherwise packet_len - 6.
478 		 * With the trailing ctrl byte it's packet_len - 4.
479 		 */
480 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
481 		data = skb_put(skb, data_len);
482 		SMC_PULL_DATA(lp, data, packet_len - 4);
483 
484 		SMC_WAIT_MMU_BUSY(lp);
485 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
486 
487 		PRINT_PKT(data, packet_len - 4);
488 
489 		skb->protocol = eth_type_trans(skb, dev);
490 		netif_rx(skb);
491 		dev->stats.rx_packets++;
492 		dev->stats.rx_bytes += data_len;
493 	}
494 }
495 
496 #ifdef CONFIG_SMP
497 /*
498  * On SMP we have the following problem:
499  *
500  * 	A = smc_hardware_send_pkt()
501  * 	B = smc_hard_start_xmit()
502  * 	C = smc_interrupt()
503  *
504  * A and B can never be executed simultaneously.  However, at least on UP,
505  * it is possible (and even desirable) for C to interrupt execution of
506  * A or B in order to have better RX reliability and avoid overruns.
507  * C, just like A and B, must have exclusive access to the chip and
508  * each of them must lock against any other concurrent access.
509  * Unfortunately this is not possible to have C suspend execution of A or
510  * B taking place on another CPU. On UP this is no an issue since A and B
511  * are run from softirq context and C from hard IRQ context, and there is
512  * no other CPU where concurrent access can happen.
513  * If ever there is a way to force at least B and C to always be executed
514  * on the same CPU then we could use read/write locks to protect against
515  * any other concurrent access and C would always interrupt B. But life
516  * isn't that easy in a SMP world...
517  */
518 #define smc_special_trylock(lock, flags)				\
519 ({									\
520 	int __ret;							\
521 	local_irq_save(flags);						\
522 	__ret = spin_trylock(lock);					\
523 	if (!__ret)							\
524 		local_irq_restore(flags);				\
525 	__ret;								\
526 })
527 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
528 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
529 #else
530 #define smc_special_trylock(lock, flags)	((void)flags, true)
531 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
532 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
533 #endif
534 
535 /*
536  * This is called to actually send a packet to the chip.
537  */
smc_hardware_send_pkt(struct tasklet_struct * t)538 static void smc_hardware_send_pkt(struct tasklet_struct *t)
539 {
540 	struct smc_local *lp = from_tasklet(lp, t, tx_task);
541 	struct net_device *dev = lp->dev;
542 	void __iomem *ioaddr = lp->base;
543 	struct sk_buff *skb;
544 	unsigned int packet_no, len;
545 	unsigned char *buf;
546 	unsigned long flags;
547 
548 	DBG(3, dev, "%s\n", __func__);
549 
550 	if (!smc_special_trylock(&lp->lock, flags)) {
551 		netif_stop_queue(dev);
552 		tasklet_schedule(&lp->tx_task);
553 		return;
554 	}
555 
556 	skb = lp->pending_tx_skb;
557 	if (unlikely(!skb)) {
558 		smc_special_unlock(&lp->lock, flags);
559 		return;
560 	}
561 	lp->pending_tx_skb = NULL;
562 
563 	packet_no = SMC_GET_AR(lp);
564 	if (unlikely(packet_no & AR_FAILED)) {
565 		netdev_err(dev, "Memory allocation failed.\n");
566 		dev->stats.tx_errors++;
567 		dev->stats.tx_fifo_errors++;
568 		smc_special_unlock(&lp->lock, flags);
569 		goto done;
570 	}
571 
572 	/* point to the beginning of the packet */
573 	SMC_SET_PN(lp, packet_no);
574 	SMC_SET_PTR(lp, PTR_AUTOINC);
575 
576 	buf = skb->data;
577 	len = skb->len;
578 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
579 	    packet_no, len, len, buf);
580 	PRINT_PKT(buf, len);
581 
582 	/*
583 	 * Send the packet length (+6 for status words, length, and ctl.
584 	 * The card will pad to 64 bytes with zeroes if packet is too small.
585 	 */
586 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
587 
588 	/* send the actual data */
589 	SMC_PUSH_DATA(lp, buf, len & ~1);
590 
591 	/* Send final ctl word with the last byte if there is one */
592 	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
593 		 DATA_REG(lp));
594 
595 	/*
596 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
597 	 * have the effect of having at most one packet queued for TX
598 	 * in the chip's memory at all time.
599 	 *
600 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
601 	 * when memory allocation (MC_ALLOC) does not succeed right away.
602 	 */
603 	if (THROTTLE_TX_PKTS)
604 		netif_stop_queue(dev);
605 
606 	/* queue the packet for TX */
607 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
608 	smc_special_unlock(&lp->lock, flags);
609 
610 	netif_trans_update(dev);
611 	dev->stats.tx_packets++;
612 	dev->stats.tx_bytes += len;
613 
614 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
615 
616 done:	if (!THROTTLE_TX_PKTS)
617 		netif_wake_queue(dev);
618 
619 	dev_consume_skb_any(skb);
620 }
621 
622 /*
623  * Since I am not sure if I will have enough room in the chip's ram
624  * to store the packet, I call this routine which either sends it
625  * now, or set the card to generates an interrupt when ready
626  * for the packet.
627  */
628 static netdev_tx_t
smc_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)629 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
630 {
631 	struct smc_local *lp = netdev_priv(dev);
632 	void __iomem *ioaddr = lp->base;
633 	unsigned int numPages, poll_count, status;
634 	unsigned long flags;
635 
636 	DBG(3, dev, "%s\n", __func__);
637 
638 	BUG_ON(lp->pending_tx_skb != NULL);
639 
640 	/*
641 	 * The MMU wants the number of pages to be the number of 256 bytes
642 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
643 	 *
644 	 * The 91C111 ignores the size bits, but earlier models don't.
645 	 *
646 	 * Pkt size for allocating is data length +6 (for additional status
647 	 * words, length and ctl)
648 	 *
649 	 * If odd size then last byte is included in ctl word.
650 	 */
651 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
652 	if (unlikely(numPages > 7)) {
653 		netdev_warn(dev, "Far too big packet error.\n");
654 		dev->stats.tx_errors++;
655 		dev->stats.tx_dropped++;
656 		dev_kfree_skb_any(skb);
657 		return NETDEV_TX_OK;
658 	}
659 
660 	smc_special_lock(&lp->lock, flags);
661 
662 	/* now, try to allocate the memory */
663 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
664 
665 	/*
666 	 * Poll the chip for a short amount of time in case the
667 	 * allocation succeeds quickly.
668 	 */
669 	poll_count = MEMORY_WAIT_TIME;
670 	do {
671 		status = SMC_GET_INT(lp);
672 		if (status & IM_ALLOC_INT) {
673 			SMC_ACK_INT(lp, IM_ALLOC_INT);
674   			break;
675 		}
676    	} while (--poll_count);
677 
678 	smc_special_unlock(&lp->lock, flags);
679 
680 	lp->pending_tx_skb = skb;
681    	if (!poll_count) {
682 		/* oh well, wait until the chip finds memory later */
683 		netif_stop_queue(dev);
684 		DBG(2, dev, "TX memory allocation deferred.\n");
685 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
686    	} else {
687 		/*
688 		 * Allocation succeeded: push packet to the chip's own memory
689 		 * immediately.
690 		 */
691 		smc_hardware_send_pkt(&lp->tx_task);
692 	}
693 
694 	return NETDEV_TX_OK;
695 }
696 
697 /*
698  * This handles a TX interrupt, which is only called when:
699  * - a TX error occurred, or
700  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
701  */
smc_tx(struct net_device * dev)702 static void smc_tx(struct net_device *dev)
703 {
704 	struct smc_local *lp = netdev_priv(dev);
705 	void __iomem *ioaddr = lp->base;
706 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
707 
708 	DBG(3, dev, "%s\n", __func__);
709 
710 	/* If the TX FIFO is empty then nothing to do */
711 	packet_no = SMC_GET_TXFIFO(lp);
712 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
713 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
714 		return;
715 	}
716 
717 	/* select packet to read from */
718 	saved_packet = SMC_GET_PN(lp);
719 	SMC_SET_PN(lp, packet_no);
720 
721 	/* read the first word (status word) from this packet */
722 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
723 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
724 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
725 	    tx_status, packet_no);
726 
727 	if (!(tx_status & ES_TX_SUC))
728 		dev->stats.tx_errors++;
729 
730 	if (tx_status & ES_LOSTCARR)
731 		dev->stats.tx_carrier_errors++;
732 
733 	if (tx_status & (ES_LATCOL | ES_16COL)) {
734 		PRINTK(dev, "%s occurred on last xmit\n",
735 		       (tx_status & ES_LATCOL) ?
736 			"late collision" : "too many collisions");
737 		dev->stats.tx_window_errors++;
738 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
739 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
740 		}
741 	}
742 
743 	/* kill the packet */
744 	SMC_WAIT_MMU_BUSY(lp);
745 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
746 
747 	/* Don't restore Packet Number Reg until busy bit is cleared */
748 	SMC_WAIT_MMU_BUSY(lp);
749 	SMC_SET_PN(lp, saved_packet);
750 
751 	/* re-enable transmit */
752 	SMC_SELECT_BANK(lp, 0);
753 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
754 	SMC_SELECT_BANK(lp, 2);
755 }
756 
757 
758 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
759 
smc_mii_out(struct net_device * dev,unsigned int val,int bits)760 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
761 {
762 	struct smc_local *lp = netdev_priv(dev);
763 	void __iomem *ioaddr = lp->base;
764 	unsigned int mii_reg, mask;
765 
766 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
767 	mii_reg |= MII_MDOE;
768 
769 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
770 		if (val & mask)
771 			mii_reg |= MII_MDO;
772 		else
773 			mii_reg &= ~MII_MDO;
774 
775 		SMC_SET_MII(lp, mii_reg);
776 		udelay(MII_DELAY);
777 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
778 		udelay(MII_DELAY);
779 	}
780 }
781 
smc_mii_in(struct net_device * dev,int bits)782 static unsigned int smc_mii_in(struct net_device *dev, int bits)
783 {
784 	struct smc_local *lp = netdev_priv(dev);
785 	void __iomem *ioaddr = lp->base;
786 	unsigned int mii_reg, mask, val;
787 
788 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
789 	SMC_SET_MII(lp, mii_reg);
790 
791 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
792 		if (SMC_GET_MII(lp) & MII_MDI)
793 			val |= mask;
794 
795 		SMC_SET_MII(lp, mii_reg);
796 		udelay(MII_DELAY);
797 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
798 		udelay(MII_DELAY);
799 	}
800 
801 	return val;
802 }
803 
804 /*
805  * Reads a register from the MII Management serial interface
806  */
smc_phy_read(struct net_device * dev,int phyaddr,int phyreg)807 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
808 {
809 	struct smc_local *lp = netdev_priv(dev);
810 	void __iomem *ioaddr = lp->base;
811 	unsigned int phydata;
812 
813 	SMC_SELECT_BANK(lp, 3);
814 
815 	/* Idle - 32 ones */
816 	smc_mii_out(dev, 0xffffffff, 32);
817 
818 	/* Start code (01) + read (10) + phyaddr + phyreg */
819 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
820 
821 	/* Turnaround (2bits) + phydata */
822 	phydata = smc_mii_in(dev, 18);
823 
824 	/* Return to idle state */
825 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
826 
827 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
828 	    __func__, phyaddr, phyreg, phydata);
829 
830 	SMC_SELECT_BANK(lp, 2);
831 	return phydata;
832 }
833 
834 /*
835  * Writes a register to the MII Management serial interface
836  */
smc_phy_write(struct net_device * dev,int phyaddr,int phyreg,int phydata)837 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
838 			  int phydata)
839 {
840 	struct smc_local *lp = netdev_priv(dev);
841 	void __iomem *ioaddr = lp->base;
842 
843 	SMC_SELECT_BANK(lp, 3);
844 
845 	/* Idle - 32 ones */
846 	smc_mii_out(dev, 0xffffffff, 32);
847 
848 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
849 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
850 
851 	/* Return to idle state */
852 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
853 
854 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
855 	    __func__, phyaddr, phyreg, phydata);
856 
857 	SMC_SELECT_BANK(lp, 2);
858 }
859 
860 /*
861  * Finds and reports the PHY address
862  */
smc_phy_detect(struct net_device * dev)863 static void smc_phy_detect(struct net_device *dev)
864 {
865 	struct smc_local *lp = netdev_priv(dev);
866 	int phyaddr;
867 
868 	DBG(2, dev, "%s\n", __func__);
869 
870 	lp->phy_type = 0;
871 
872 	/*
873 	 * Scan all 32 PHY addresses if necessary, starting at
874 	 * PHY#1 to PHY#31, and then PHY#0 last.
875 	 */
876 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
877 		unsigned int id1, id2;
878 
879 		/* Read the PHY identifiers */
880 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
881 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
882 
883 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
884 		    id1, id2);
885 
886 		/* Make sure it is a valid identifier */
887 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
888 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
889 			/* Save the PHY's address */
890 			lp->mii.phy_id = phyaddr & 31;
891 			lp->phy_type = id1 << 16 | id2;
892 			break;
893 		}
894 	}
895 }
896 
897 /*
898  * Sets the PHY to a configuration as determined by the user
899  */
smc_phy_fixed(struct net_device * dev)900 static int smc_phy_fixed(struct net_device *dev)
901 {
902 	struct smc_local *lp = netdev_priv(dev);
903 	void __iomem *ioaddr = lp->base;
904 	int phyaddr = lp->mii.phy_id;
905 	int bmcr, cfg1;
906 
907 	DBG(3, dev, "%s\n", __func__);
908 
909 	/* Enter Link Disable state */
910 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
911 	cfg1 |= PHY_CFG1_LNKDIS;
912 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
913 
914 	/*
915 	 * Set our fixed capabilities
916 	 * Disable auto-negotiation
917 	 */
918 	bmcr = 0;
919 
920 	if (lp->ctl_rfduplx)
921 		bmcr |= BMCR_FULLDPLX;
922 
923 	if (lp->ctl_rspeed == 100)
924 		bmcr |= BMCR_SPEED100;
925 
926 	/* Write our capabilities to the phy control register */
927 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
928 
929 	/* Re-Configure the Receive/Phy Control register */
930 	SMC_SELECT_BANK(lp, 0);
931 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
932 	SMC_SELECT_BANK(lp, 2);
933 
934 	return 1;
935 }
936 
937 /**
938  * smc_phy_reset - reset the phy
939  * @dev: net device
940  * @phy: phy address
941  *
942  * Issue a software reset for the specified PHY and
943  * wait up to 100ms for the reset to complete.  We should
944  * not access the PHY for 50ms after issuing the reset.
945  *
946  * The time to wait appears to be dependent on the PHY.
947  *
948  * Must be called with lp->lock locked.
949  */
smc_phy_reset(struct net_device * dev,int phy)950 static int smc_phy_reset(struct net_device *dev, int phy)
951 {
952 	struct smc_local *lp = netdev_priv(dev);
953 	unsigned int bmcr;
954 	int timeout;
955 
956 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
957 
958 	for (timeout = 2; timeout; timeout--) {
959 		spin_unlock_irq(&lp->lock);
960 		msleep(50);
961 		spin_lock_irq(&lp->lock);
962 
963 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
964 		if (!(bmcr & BMCR_RESET))
965 			break;
966 	}
967 
968 	return bmcr & BMCR_RESET;
969 }
970 
971 /**
972  * smc_phy_powerdown - powerdown phy
973  * @dev: net device
974  *
975  * Power down the specified PHY
976  */
smc_phy_powerdown(struct net_device * dev)977 static void smc_phy_powerdown(struct net_device *dev)
978 {
979 	struct smc_local *lp = netdev_priv(dev);
980 	unsigned int bmcr;
981 	int phy = lp->mii.phy_id;
982 
983 	if (lp->phy_type == 0)
984 		return;
985 
986 	/* We need to ensure that no calls to smc_phy_configure are
987 	   pending.
988 	*/
989 	cancel_work_sync(&lp->phy_configure);
990 
991 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
992 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
993 }
994 
995 /**
996  * smc_phy_check_media - check the media status and adjust TCR
997  * @dev: net device
998  * @init: set true for initialisation
999  *
1000  * Select duplex mode depending on negotiation state.  This
1001  * also updates our carrier state.
1002  */
smc_phy_check_media(struct net_device * dev,int init)1003 static void smc_phy_check_media(struct net_device *dev, int init)
1004 {
1005 	struct smc_local *lp = netdev_priv(dev);
1006 	void __iomem *ioaddr = lp->base;
1007 
1008 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1009 		/* duplex state has changed */
1010 		if (lp->mii.full_duplex) {
1011 			lp->tcr_cur_mode |= TCR_SWFDUP;
1012 		} else {
1013 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1014 		}
1015 
1016 		SMC_SELECT_BANK(lp, 0);
1017 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1018 	}
1019 }
1020 
1021 /*
1022  * Configures the specified PHY through the MII management interface
1023  * using Autonegotiation.
1024  * Calls smc_phy_fixed() if the user has requested a certain config.
1025  * If RPC ANEG bit is set, the media selection is dependent purely on
1026  * the selection by the MII (either in the MII BMCR reg or the result
1027  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1028  * is controlled by the RPC SPEED and RPC DPLX bits.
1029  */
smc_phy_configure(struct work_struct * work)1030 static void smc_phy_configure(struct work_struct *work)
1031 {
1032 	struct smc_local *lp =
1033 		container_of(work, struct smc_local, phy_configure);
1034 	struct net_device *dev = lp->dev;
1035 	void __iomem *ioaddr = lp->base;
1036 	int phyaddr = lp->mii.phy_id;
1037 	int my_phy_caps; /* My PHY capabilities */
1038 	int my_ad_caps; /* My Advertised capabilities */
1039 
1040 	DBG(3, dev, "smc_program_phy()\n");
1041 
1042 	spin_lock_irq(&lp->lock);
1043 
1044 	/*
1045 	 * We should not be called if phy_type is zero.
1046 	 */
1047 	if (lp->phy_type == 0)
1048 		goto smc_phy_configure_exit;
1049 
1050 	if (smc_phy_reset(dev, phyaddr)) {
1051 		netdev_info(dev, "PHY reset timed out\n");
1052 		goto smc_phy_configure_exit;
1053 	}
1054 
1055 	/*
1056 	 * Enable PHY Interrupts (for register 18)
1057 	 * Interrupts listed here are disabled
1058 	 */
1059 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1060 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1061 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1062 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1063 
1064 	/* Configure the Receive/Phy Control register */
1065 	SMC_SELECT_BANK(lp, 0);
1066 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1067 
1068 	/* If the user requested no auto neg, then go set his request */
1069 	if (lp->mii.force_media) {
1070 		smc_phy_fixed(dev);
1071 		goto smc_phy_configure_exit;
1072 	}
1073 
1074 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1075 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1076 
1077 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1078 		netdev_info(dev, "Auto negotiation NOT supported\n");
1079 		smc_phy_fixed(dev);
1080 		goto smc_phy_configure_exit;
1081 	}
1082 
1083 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1084 
1085 	if (my_phy_caps & BMSR_100BASE4)
1086 		my_ad_caps |= ADVERTISE_100BASE4;
1087 	if (my_phy_caps & BMSR_100FULL)
1088 		my_ad_caps |= ADVERTISE_100FULL;
1089 	if (my_phy_caps & BMSR_100HALF)
1090 		my_ad_caps |= ADVERTISE_100HALF;
1091 	if (my_phy_caps & BMSR_10FULL)
1092 		my_ad_caps |= ADVERTISE_10FULL;
1093 	if (my_phy_caps & BMSR_10HALF)
1094 		my_ad_caps |= ADVERTISE_10HALF;
1095 
1096 	/* Disable capabilities not selected by our user */
1097 	if (lp->ctl_rspeed != 100)
1098 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1099 
1100 	if (!lp->ctl_rfduplx)
1101 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1102 
1103 	/* Update our Auto-Neg Advertisement Register */
1104 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1105 	lp->mii.advertising = my_ad_caps;
1106 
1107 	/*
1108 	 * Read the register back.  Without this, it appears that when
1109 	 * auto-negotiation is restarted, sometimes it isn't ready and
1110 	 * the link does not come up.
1111 	 */
1112 	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1113 
1114 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1115 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1116 
1117 	/* Restart auto-negotiation process in order to advertise my caps */
1118 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1119 
1120 	smc_phy_check_media(dev, 1);
1121 
1122 smc_phy_configure_exit:
1123 	SMC_SELECT_BANK(lp, 2);
1124 	spin_unlock_irq(&lp->lock);
1125 }
1126 
1127 /*
1128  * smc_phy_interrupt
1129  *
1130  * Purpose:  Handle interrupts relating to PHY register 18. This is
1131  *  called from the "hard" interrupt handler under our private spinlock.
1132  */
smc_phy_interrupt(struct net_device * dev)1133 static void smc_phy_interrupt(struct net_device *dev)
1134 {
1135 	struct smc_local *lp = netdev_priv(dev);
1136 	int phyaddr = lp->mii.phy_id;
1137 	int phy18;
1138 
1139 	DBG(2, dev, "%s\n", __func__);
1140 
1141 	if (lp->phy_type == 0)
1142 		return;
1143 
1144 	for(;;) {
1145 		smc_phy_check_media(dev, 0);
1146 
1147 		/* Read PHY Register 18, Status Output */
1148 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1149 		if ((phy18 & PHY_INT_INT) == 0)
1150 			break;
1151 	}
1152 }
1153 
1154 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1155 
smc_10bt_check_media(struct net_device * dev,int init)1156 static void smc_10bt_check_media(struct net_device *dev, int init)
1157 {
1158 	struct smc_local *lp = netdev_priv(dev);
1159 	void __iomem *ioaddr = lp->base;
1160 	unsigned int old_carrier, new_carrier;
1161 
1162 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1163 
1164 	SMC_SELECT_BANK(lp, 0);
1165 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1166 	SMC_SELECT_BANK(lp, 2);
1167 
1168 	if (init || (old_carrier != new_carrier)) {
1169 		if (!new_carrier) {
1170 			netif_carrier_off(dev);
1171 		} else {
1172 			netif_carrier_on(dev);
1173 		}
1174 		if (netif_msg_link(lp))
1175 			netdev_info(dev, "link %s\n",
1176 				    new_carrier ? "up" : "down");
1177 	}
1178 }
1179 
smc_eph_interrupt(struct net_device * dev)1180 static void smc_eph_interrupt(struct net_device *dev)
1181 {
1182 	struct smc_local *lp = netdev_priv(dev);
1183 	void __iomem *ioaddr = lp->base;
1184 	unsigned int ctl;
1185 
1186 	smc_10bt_check_media(dev, 0);
1187 
1188 	SMC_SELECT_BANK(lp, 1);
1189 	ctl = SMC_GET_CTL(lp);
1190 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1191 	SMC_SET_CTL(lp, ctl);
1192 	SMC_SELECT_BANK(lp, 2);
1193 }
1194 
1195 /*
1196  * This is the main routine of the driver, to handle the device when
1197  * it needs some attention.
1198  */
smc_interrupt(int irq,void * dev_id)1199 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1200 {
1201 	struct net_device *dev = dev_id;
1202 	struct smc_local *lp = netdev_priv(dev);
1203 	void __iomem *ioaddr = lp->base;
1204 	int status, mask, timeout, card_stats;
1205 	int saved_pointer;
1206 
1207 	DBG(3, dev, "%s\n", __func__);
1208 
1209 	spin_lock(&lp->lock);
1210 
1211 	/* A preamble may be used when there is a potential race
1212 	 * between the interruptible transmit functions and this
1213 	 * ISR. */
1214 	SMC_INTERRUPT_PREAMBLE;
1215 
1216 	saved_pointer = SMC_GET_PTR(lp);
1217 	mask = SMC_GET_INT_MASK(lp);
1218 	SMC_SET_INT_MASK(lp, 0);
1219 
1220 	/* set a timeout value, so I don't stay here forever */
1221 	timeout = MAX_IRQ_LOOPS;
1222 
1223 	do {
1224 		status = SMC_GET_INT(lp);
1225 
1226 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1227 		    status, mask,
1228 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1229 		       meminfo = SMC_GET_MIR(lp);
1230 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1231 		    SMC_GET_FIFO(lp));
1232 
1233 		status &= mask;
1234 		if (!status)
1235 			break;
1236 
1237 		if (status & IM_TX_INT) {
1238 			/* do this before RX as it will free memory quickly */
1239 			DBG(3, dev, "TX int\n");
1240 			smc_tx(dev);
1241 			SMC_ACK_INT(lp, IM_TX_INT);
1242 			if (THROTTLE_TX_PKTS)
1243 				netif_wake_queue(dev);
1244 		} else if (status & IM_RCV_INT) {
1245 			DBG(3, dev, "RX irq\n");
1246 			smc_rcv(dev);
1247 		} else if (status & IM_ALLOC_INT) {
1248 			DBG(3, dev, "Allocation irq\n");
1249 			tasklet_hi_schedule(&lp->tx_task);
1250 			mask &= ~IM_ALLOC_INT;
1251 		} else if (status & IM_TX_EMPTY_INT) {
1252 			DBG(3, dev, "TX empty\n");
1253 			mask &= ~IM_TX_EMPTY_INT;
1254 
1255 			/* update stats */
1256 			SMC_SELECT_BANK(lp, 0);
1257 			card_stats = SMC_GET_COUNTER(lp);
1258 			SMC_SELECT_BANK(lp, 2);
1259 
1260 			/* single collisions */
1261 			dev->stats.collisions += card_stats & 0xF;
1262 			card_stats >>= 4;
1263 
1264 			/* multiple collisions */
1265 			dev->stats.collisions += card_stats & 0xF;
1266 		} else if (status & IM_RX_OVRN_INT) {
1267 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1268 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1269 			       eph_st = SMC_GET_EPH_STATUS(lp);
1270 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1271 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1272 			dev->stats.rx_errors++;
1273 			dev->stats.rx_fifo_errors++;
1274 		} else if (status & IM_EPH_INT) {
1275 			smc_eph_interrupt(dev);
1276 		} else if (status & IM_MDINT) {
1277 			SMC_ACK_INT(lp, IM_MDINT);
1278 			smc_phy_interrupt(dev);
1279 		} else if (status & IM_ERCV_INT) {
1280 			SMC_ACK_INT(lp, IM_ERCV_INT);
1281 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1282 		}
1283 	} while (--timeout);
1284 
1285 	/* restore register states */
1286 	SMC_SET_PTR(lp, saved_pointer);
1287 	SMC_SET_INT_MASK(lp, mask);
1288 	spin_unlock(&lp->lock);
1289 
1290 #ifndef CONFIG_NET_POLL_CONTROLLER
1291 	if (timeout == MAX_IRQ_LOOPS)
1292 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1293 		       mask);
1294 #endif
1295 	DBG(3, dev, "Interrupt done (%d loops)\n",
1296 	    MAX_IRQ_LOOPS - timeout);
1297 
1298 	/*
1299 	 * We return IRQ_HANDLED unconditionally here even if there was
1300 	 * nothing to do.  There is a possibility that a packet might
1301 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1302 	 * but just before the CPU acknowledges the IRQ.
1303 	 * Better take an unneeded IRQ in some occasions than complexifying
1304 	 * the code for all cases.
1305 	 */
1306 	return IRQ_HANDLED;
1307 }
1308 
1309 #ifdef CONFIG_NET_POLL_CONTROLLER
1310 /*
1311  * Polling receive - used by netconsole and other diagnostic tools
1312  * to allow network i/o with interrupts disabled.
1313  */
smc_poll_controller(struct net_device * dev)1314 static void smc_poll_controller(struct net_device *dev)
1315 {
1316 	disable_irq(dev->irq);
1317 	smc_interrupt(dev->irq, dev);
1318 	enable_irq(dev->irq);
1319 }
1320 #endif
1321 
1322 /* Our watchdog timed out. Called by the networking layer */
smc_timeout(struct net_device * dev,unsigned int txqueue)1323 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1324 {
1325 	struct smc_local *lp = netdev_priv(dev);
1326 	void __iomem *ioaddr = lp->base;
1327 	int status, mask, eph_st, meminfo, fifo;
1328 
1329 	DBG(2, dev, "%s\n", __func__);
1330 
1331 	spin_lock_irq(&lp->lock);
1332 	status = SMC_GET_INT(lp);
1333 	mask = SMC_GET_INT_MASK(lp);
1334 	fifo = SMC_GET_FIFO(lp);
1335 	SMC_SELECT_BANK(lp, 0);
1336 	eph_st = SMC_GET_EPH_STATUS(lp);
1337 	meminfo = SMC_GET_MIR(lp);
1338 	SMC_SELECT_BANK(lp, 2);
1339 	spin_unlock_irq(&lp->lock);
1340 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1341 	       status, mask, meminfo, fifo, eph_st);
1342 
1343 	smc_reset(dev);
1344 	smc_enable(dev);
1345 
1346 	/*
1347 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1348 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1349 	 * which calls schedule().  Hence we use a work queue.
1350 	 */
1351 	if (lp->phy_type != 0)
1352 		schedule_work(&lp->phy_configure);
1353 
1354 	/* We can accept TX packets again */
1355 	netif_trans_update(dev); /* prevent tx timeout */
1356 	netif_wake_queue(dev);
1357 }
1358 
1359 /*
1360  * This routine will, depending on the values passed to it,
1361  * either make it accept multicast packets, go into
1362  * promiscuous mode (for TCPDUMP and cousins) or accept
1363  * a select set of multicast packets
1364  */
smc_set_multicast_list(struct net_device * dev)1365 static void smc_set_multicast_list(struct net_device *dev)
1366 {
1367 	struct smc_local *lp = netdev_priv(dev);
1368 	void __iomem *ioaddr = lp->base;
1369 	unsigned char multicast_table[8];
1370 	int update_multicast = 0;
1371 
1372 	DBG(2, dev, "%s\n", __func__);
1373 
1374 	if (dev->flags & IFF_PROMISC) {
1375 		DBG(2, dev, "RCR_PRMS\n");
1376 		lp->rcr_cur_mode |= RCR_PRMS;
1377 	}
1378 
1379 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1380    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1381    when promiscuous mode is turned on.
1382 */
1383 
1384 	/*
1385 	 * Here, I am setting this to accept all multicast packets.
1386 	 * I don't need to zero the multicast table, because the flag is
1387 	 * checked before the table is
1388 	 */
1389 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1390 		DBG(2, dev, "RCR_ALMUL\n");
1391 		lp->rcr_cur_mode |= RCR_ALMUL;
1392 	}
1393 
1394 	/*
1395 	 * This sets the internal hardware table to filter out unwanted
1396 	 * multicast packets before they take up memory.
1397 	 *
1398 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1399 	 * address are the offset into the table.  If that bit is 1, then the
1400 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1401 	 *
1402 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1403 	 * the number of the 8 bit register, while the low 3 bits are the bit
1404 	 * within that register.
1405 	 */
1406 	else if (!netdev_mc_empty(dev)) {
1407 		struct netdev_hw_addr *ha;
1408 
1409 		/* table for flipping the order of 3 bits */
1410 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1411 
1412 		/* start with a table of all zeros: reject all */
1413 		memset(multicast_table, 0, sizeof(multicast_table));
1414 
1415 		netdev_for_each_mc_addr(ha, dev) {
1416 			int position;
1417 
1418 			/* only use the low order bits */
1419 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1420 
1421 			/* do some messy swapping to put the bit in the right spot */
1422 			multicast_table[invert3[position&7]] |=
1423 				(1<<invert3[(position>>3)&7]);
1424 		}
1425 
1426 		/* be sure I get rid of flags I might have set */
1427 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1428 
1429 		/* now, the table can be loaded into the chipset */
1430 		update_multicast = 1;
1431 	} else  {
1432 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1433 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1434 
1435 		/*
1436 		 * since I'm disabling all multicast entirely, I need to
1437 		 * clear the multicast list
1438 		 */
1439 		memset(multicast_table, 0, sizeof(multicast_table));
1440 		update_multicast = 1;
1441 	}
1442 
1443 	spin_lock_irq(&lp->lock);
1444 	SMC_SELECT_BANK(lp, 0);
1445 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1446 	if (update_multicast) {
1447 		SMC_SELECT_BANK(lp, 3);
1448 		SMC_SET_MCAST(lp, multicast_table);
1449 	}
1450 	SMC_SELECT_BANK(lp, 2);
1451 	spin_unlock_irq(&lp->lock);
1452 }
1453 
1454 
1455 /*
1456  * Open and Initialize the board
1457  *
1458  * Set up everything, reset the card, etc..
1459  */
1460 static int
smc_open(struct net_device * dev)1461 smc_open(struct net_device *dev)
1462 {
1463 	struct smc_local *lp = netdev_priv(dev);
1464 
1465 	DBG(2, dev, "%s\n", __func__);
1466 
1467 	/* Setup the default Register Modes */
1468 	lp->tcr_cur_mode = TCR_DEFAULT;
1469 	lp->rcr_cur_mode = RCR_DEFAULT;
1470 	lp->rpc_cur_mode = RPC_DEFAULT |
1471 				lp->cfg.leda << RPC_LSXA_SHFT |
1472 				lp->cfg.ledb << RPC_LSXB_SHFT;
1473 
1474 	/*
1475 	 * If we are not using a MII interface, we need to
1476 	 * monitor our own carrier signal to detect faults.
1477 	 */
1478 	if (lp->phy_type == 0)
1479 		lp->tcr_cur_mode |= TCR_MON_CSN;
1480 
1481 	/* reset the hardware */
1482 	smc_reset(dev);
1483 	smc_enable(dev);
1484 
1485 	/* Configure the PHY, initialize the link state */
1486 	if (lp->phy_type != 0)
1487 		smc_phy_configure(&lp->phy_configure);
1488 	else {
1489 		spin_lock_irq(&lp->lock);
1490 		smc_10bt_check_media(dev, 1);
1491 		spin_unlock_irq(&lp->lock);
1492 	}
1493 
1494 	netif_start_queue(dev);
1495 	return 0;
1496 }
1497 
1498 /*
1499  * smc_close
1500  *
1501  * this makes the board clean up everything that it can
1502  * and not talk to the outside world.   Caused by
1503  * an 'ifconfig ethX down'
1504  */
smc_close(struct net_device * dev)1505 static int smc_close(struct net_device *dev)
1506 {
1507 	struct smc_local *lp = netdev_priv(dev);
1508 
1509 	DBG(2, dev, "%s\n", __func__);
1510 
1511 	netif_stop_queue(dev);
1512 	netif_carrier_off(dev);
1513 
1514 	/* clear everything */
1515 	smc_shutdown(dev);
1516 	tasklet_kill(&lp->tx_task);
1517 	smc_phy_powerdown(dev);
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Ethtool support
1523  */
1524 static int
smc_ethtool_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1525 smc_ethtool_get_link_ksettings(struct net_device *dev,
1526 			       struct ethtool_link_ksettings *cmd)
1527 {
1528 	struct smc_local *lp = netdev_priv(dev);
1529 
1530 	if (lp->phy_type != 0) {
1531 		spin_lock_irq(&lp->lock);
1532 		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1533 		spin_unlock_irq(&lp->lock);
1534 	} else {
1535 		u32 supported = SUPPORTED_10baseT_Half |
1536 				 SUPPORTED_10baseT_Full |
1537 				 SUPPORTED_TP | SUPPORTED_AUI;
1538 
1539 		if (lp->ctl_rspeed == 10)
1540 			cmd->base.speed = SPEED_10;
1541 		else if (lp->ctl_rspeed == 100)
1542 			cmd->base.speed = SPEED_100;
1543 
1544 		cmd->base.autoneg = AUTONEG_DISABLE;
1545 		cmd->base.port = 0;
1546 		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1547 			DUPLEX_FULL : DUPLEX_HALF;
1548 
1549 		ethtool_convert_legacy_u32_to_link_mode(
1550 			cmd->link_modes.supported, supported);
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static int
smc_ethtool_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1557 smc_ethtool_set_link_ksettings(struct net_device *dev,
1558 			       const struct ethtool_link_ksettings *cmd)
1559 {
1560 	struct smc_local *lp = netdev_priv(dev);
1561 	int ret;
1562 
1563 	if (lp->phy_type != 0) {
1564 		spin_lock_irq(&lp->lock);
1565 		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1566 		spin_unlock_irq(&lp->lock);
1567 	} else {
1568 		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1569 		    cmd->base.speed != SPEED_10 ||
1570 		    (cmd->base.duplex != DUPLEX_HALF &&
1571 		     cmd->base.duplex != DUPLEX_FULL) ||
1572 		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1573 			return -EINVAL;
1574 
1575 //		lp->port = cmd->base.port;
1576 		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1577 
1578 //		if (netif_running(dev))
1579 //			smc_set_port(dev);
1580 
1581 		ret = 0;
1582 	}
1583 
1584 	return ret;
1585 }
1586 
1587 static void
smc_ethtool_getdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1588 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1589 {
1590 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1591 	strlcpy(info->version, version, sizeof(info->version));
1592 	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1593 		sizeof(info->bus_info));
1594 }
1595 
smc_ethtool_nwayreset(struct net_device * dev)1596 static int smc_ethtool_nwayreset(struct net_device *dev)
1597 {
1598 	struct smc_local *lp = netdev_priv(dev);
1599 	int ret = -EINVAL;
1600 
1601 	if (lp->phy_type != 0) {
1602 		spin_lock_irq(&lp->lock);
1603 		ret = mii_nway_restart(&lp->mii);
1604 		spin_unlock_irq(&lp->lock);
1605 	}
1606 
1607 	return ret;
1608 }
1609 
smc_ethtool_getmsglevel(struct net_device * dev)1610 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1611 {
1612 	struct smc_local *lp = netdev_priv(dev);
1613 	return lp->msg_enable;
1614 }
1615 
smc_ethtool_setmsglevel(struct net_device * dev,u32 level)1616 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1617 {
1618 	struct smc_local *lp = netdev_priv(dev);
1619 	lp->msg_enable = level;
1620 }
1621 
smc_write_eeprom_word(struct net_device * dev,u16 addr,u16 word)1622 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1623 {
1624 	u16 ctl;
1625 	struct smc_local *lp = netdev_priv(dev);
1626 	void __iomem *ioaddr = lp->base;
1627 
1628 	spin_lock_irq(&lp->lock);
1629 	/* load word into GP register */
1630 	SMC_SELECT_BANK(lp, 1);
1631 	SMC_SET_GP(lp, word);
1632 	/* set the address to put the data in EEPROM */
1633 	SMC_SELECT_BANK(lp, 2);
1634 	SMC_SET_PTR(lp, addr);
1635 	/* tell it to write */
1636 	SMC_SELECT_BANK(lp, 1);
1637 	ctl = SMC_GET_CTL(lp);
1638 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1639 	/* wait for it to finish */
1640 	do {
1641 		udelay(1);
1642 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1643 	/* clean up */
1644 	SMC_SET_CTL(lp, ctl);
1645 	SMC_SELECT_BANK(lp, 2);
1646 	spin_unlock_irq(&lp->lock);
1647 	return 0;
1648 }
1649 
smc_read_eeprom_word(struct net_device * dev,u16 addr,u16 * word)1650 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1651 {
1652 	u16 ctl;
1653 	struct smc_local *lp = netdev_priv(dev);
1654 	void __iomem *ioaddr = lp->base;
1655 
1656 	spin_lock_irq(&lp->lock);
1657 	/* set the EEPROM address to get the data from */
1658 	SMC_SELECT_BANK(lp, 2);
1659 	SMC_SET_PTR(lp, addr | PTR_READ);
1660 	/* tell it to load */
1661 	SMC_SELECT_BANK(lp, 1);
1662 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1663 	ctl = SMC_GET_CTL(lp);
1664 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1665 	/* wait for it to finish */
1666 	do {
1667 		udelay(1);
1668 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1669 	/* read word from GP register */
1670 	*word = SMC_GET_GP(lp);
1671 	/* clean up */
1672 	SMC_SET_CTL(lp, ctl);
1673 	SMC_SELECT_BANK(lp, 2);
1674 	spin_unlock_irq(&lp->lock);
1675 	return 0;
1676 }
1677 
smc_ethtool_geteeprom_len(struct net_device * dev)1678 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1679 {
1680 	return 0x23 * 2;
1681 }
1682 
smc_ethtool_geteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1683 static int smc_ethtool_geteeprom(struct net_device *dev,
1684 		struct ethtool_eeprom *eeprom, u8 *data)
1685 {
1686 	int i;
1687 	int imax;
1688 
1689 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1690 		eeprom->len, eeprom->offset, eeprom->offset);
1691 	imax = smc_ethtool_geteeprom_len(dev);
1692 	for (i = 0; i < eeprom->len; i += 2) {
1693 		int ret;
1694 		u16 wbuf;
1695 		int offset = i + eeprom->offset;
1696 		if (offset > imax)
1697 			break;
1698 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1699 		if (ret != 0)
1700 			return ret;
1701 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1702 		data[i] = (wbuf >> 8) & 0xff;
1703 		data[i+1] = wbuf & 0xff;
1704 	}
1705 	return 0;
1706 }
1707 
smc_ethtool_seteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1708 static int smc_ethtool_seteeprom(struct net_device *dev,
1709 		struct ethtool_eeprom *eeprom, u8 *data)
1710 {
1711 	int i;
1712 	int imax;
1713 
1714 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1715 	    eeprom->len, eeprom->offset, eeprom->offset);
1716 	imax = smc_ethtool_geteeprom_len(dev);
1717 	for (i = 0; i < eeprom->len; i += 2) {
1718 		int ret;
1719 		u16 wbuf;
1720 		int offset = i + eeprom->offset;
1721 		if (offset > imax)
1722 			break;
1723 		wbuf = (data[i] << 8) | data[i + 1];
1724 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1725 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1726 		if (ret != 0)
1727 			return ret;
1728 	}
1729 	return 0;
1730 }
1731 
1732 
1733 static const struct ethtool_ops smc_ethtool_ops = {
1734 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1735 
1736 	.get_msglevel	= smc_ethtool_getmsglevel,
1737 	.set_msglevel	= smc_ethtool_setmsglevel,
1738 	.nway_reset	= smc_ethtool_nwayreset,
1739 	.get_link	= ethtool_op_get_link,
1740 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1741 	.get_eeprom	= smc_ethtool_geteeprom,
1742 	.set_eeprom	= smc_ethtool_seteeprom,
1743 	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1744 	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1745 };
1746 
1747 static const struct net_device_ops smc_netdev_ops = {
1748 	.ndo_open		= smc_open,
1749 	.ndo_stop		= smc_close,
1750 	.ndo_start_xmit		= smc_hard_start_xmit,
1751 	.ndo_tx_timeout		= smc_timeout,
1752 	.ndo_set_rx_mode	= smc_set_multicast_list,
1753 	.ndo_validate_addr	= eth_validate_addr,
1754 	.ndo_set_mac_address 	= eth_mac_addr,
1755 #ifdef CONFIG_NET_POLL_CONTROLLER
1756 	.ndo_poll_controller	= smc_poll_controller,
1757 #endif
1758 };
1759 
1760 /*
1761  * smc_findirq
1762  *
1763  * This routine has a simple purpose -- make the SMC chip generate an
1764  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1765  */
1766 /*
1767  * does this still work?
1768  *
1769  * I just deleted auto_irq.c, since it was never built...
1770  *   --jgarzik
1771  */
smc_findirq(struct smc_local * lp)1772 static int smc_findirq(struct smc_local *lp)
1773 {
1774 	void __iomem *ioaddr = lp->base;
1775 	int timeout = 20;
1776 	unsigned long cookie;
1777 
1778 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1779 
1780 	cookie = probe_irq_on();
1781 
1782 	/*
1783 	 * What I try to do here is trigger an ALLOC_INT. This is done
1784 	 * by allocating a small chunk of memory, which will give an interrupt
1785 	 * when done.
1786 	 */
1787 	/* enable ALLOCation interrupts ONLY */
1788 	SMC_SELECT_BANK(lp, 2);
1789 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1790 
1791 	/*
1792  	 * Allocate 512 bytes of memory.  Note that the chip was just
1793 	 * reset so all the memory is available
1794 	 */
1795 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1796 
1797 	/*
1798 	 * Wait until positive that the interrupt has been generated
1799 	 */
1800 	do {
1801 		int int_status;
1802 		udelay(10);
1803 		int_status = SMC_GET_INT(lp);
1804 		if (int_status & IM_ALLOC_INT)
1805 			break;		/* got the interrupt */
1806 	} while (--timeout);
1807 
1808 	/*
1809 	 * there is really nothing that I can do here if timeout fails,
1810 	 * as autoirq_report will return a 0 anyway, which is what I
1811 	 * want in this case.   Plus, the clean up is needed in both
1812 	 * cases.
1813 	 */
1814 
1815 	/* and disable all interrupts again */
1816 	SMC_SET_INT_MASK(lp, 0);
1817 
1818 	/* and return what I found */
1819 	return probe_irq_off(cookie);
1820 }
1821 
1822 /*
1823  * Function: smc_probe(unsigned long ioaddr)
1824  *
1825  * Purpose:
1826  *	Tests to see if a given ioaddr points to an SMC91x chip.
1827  *	Returns a 0 on success
1828  *
1829  * Algorithm:
1830  *	(1) see if the high byte of BANK_SELECT is 0x33
1831  * 	(2) compare the ioaddr with the base register's address
1832  *	(3) see if I recognize the chip ID in the appropriate register
1833  *
1834  * Here I do typical initialization tasks.
1835  *
1836  * o  Initialize the structure if needed
1837  * o  print out my vanity message if not done so already
1838  * o  print out what type of hardware is detected
1839  * o  print out the ethernet address
1840  * o  find the IRQ
1841  * o  set up my private data
1842  * o  configure the dev structure with my subroutines
1843  * o  actually GRAB the irq.
1844  * o  GRAB the region
1845  */
smc_probe(struct net_device * dev,void __iomem * ioaddr,unsigned long irq_flags)1846 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1847 		     unsigned long irq_flags)
1848 {
1849 	struct smc_local *lp = netdev_priv(dev);
1850 	int retval;
1851 	unsigned int val, revision_register;
1852 	const char *version_string;
1853 
1854 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1855 
1856 	/* First, see if the high byte is 0x33 */
1857 	val = SMC_CURRENT_BANK(lp);
1858 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1859 	    CARDNAME, val);
1860 	if ((val & 0xFF00) != 0x3300) {
1861 		if ((val & 0xFF) == 0x33) {
1862 			netdev_warn(dev,
1863 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1864 				    CARDNAME, ioaddr);
1865 		}
1866 		retval = -ENODEV;
1867 		goto err_out;
1868 	}
1869 
1870 	/*
1871 	 * The above MIGHT indicate a device, but I need to write to
1872 	 * further test this.
1873 	 */
1874 	SMC_SELECT_BANK(lp, 0);
1875 	val = SMC_CURRENT_BANK(lp);
1876 	if ((val & 0xFF00) != 0x3300) {
1877 		retval = -ENODEV;
1878 		goto err_out;
1879 	}
1880 
1881 	/*
1882 	 * well, we've already written once, so hopefully another
1883 	 * time won't hurt.  This time, I need to switch the bank
1884 	 * register to bank 1, so I can access the base address
1885 	 * register
1886 	 */
1887 	SMC_SELECT_BANK(lp, 1);
1888 	val = SMC_GET_BASE(lp);
1889 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1890 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1891 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1892 			    CARDNAME, ioaddr, val);
1893 	}
1894 
1895 	/*
1896 	 * check if the revision register is something that I
1897 	 * recognize.  These might need to be added to later,
1898 	 * as future revisions could be added.
1899 	 */
1900 	SMC_SELECT_BANK(lp, 3);
1901 	revision_register = SMC_GET_REV(lp);
1902 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1903 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1904 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1905 		/* I don't recognize this chip, so... */
1906 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1907 			    CARDNAME, ioaddr, revision_register);
1908 
1909 		retval = -ENODEV;
1910 		goto err_out;
1911 	}
1912 
1913 	/* At this point I'll assume that the chip is an SMC91x. */
1914 	pr_info_once("%s\n", version);
1915 
1916 	/* fill in some of the fields */
1917 	dev->base_addr = (unsigned long)ioaddr;
1918 	lp->base = ioaddr;
1919 	lp->version = revision_register & 0xff;
1920 	spin_lock_init(&lp->lock);
1921 
1922 	/* Get the MAC address */
1923 	SMC_SELECT_BANK(lp, 1);
1924 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1925 
1926 	/* now, reset the chip, and put it into a known state */
1927 	smc_reset(dev);
1928 
1929 	/*
1930 	 * If dev->irq is 0, then the device has to be banged on to see
1931 	 * what the IRQ is.
1932 	 *
1933 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 	 * a workaround is to reset the chip and try again.
1935 	 *
1936 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 	 * be what is requested on the command line.   I don't do that, mostly
1938 	 * because the card that I have uses a non-standard method of accessing
1939 	 * the IRQs, and because this _should_ work in most configurations.
1940 	 *
1941 	 * Specifying an IRQ is done with the assumption that the user knows
1942 	 * what (s)he is doing.  No checking is done!!!!
1943 	 */
1944 	if (dev->irq < 1) {
1945 		int trials;
1946 
1947 		trials = 3;
1948 		while (trials--) {
1949 			dev->irq = smc_findirq(lp);
1950 			if (dev->irq)
1951 				break;
1952 			/* kick the card and try again */
1953 			smc_reset(dev);
1954 		}
1955 	}
1956 	if (dev->irq == 0) {
1957 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1958 		retval = -ENODEV;
1959 		goto err_out;
1960 	}
1961 	dev->irq = irq_canonicalize(dev->irq);
1962 
1963 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1964 	dev->netdev_ops = &smc_netdev_ops;
1965 	dev->ethtool_ops = &smc_ethtool_ops;
1966 
1967 	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1968 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1969 	lp->dev = dev;
1970 	lp->mii.phy_id_mask = 0x1f;
1971 	lp->mii.reg_num_mask = 0x1f;
1972 	lp->mii.force_media = 0;
1973 	lp->mii.full_duplex = 0;
1974 	lp->mii.dev = dev;
1975 	lp->mii.mdio_read = smc_phy_read;
1976 	lp->mii.mdio_write = smc_phy_write;
1977 
1978 	/*
1979 	 * Locate the phy, if any.
1980 	 */
1981 	if (lp->version >= (CHIP_91100 << 4))
1982 		smc_phy_detect(dev);
1983 
1984 	/* then shut everything down to save power */
1985 	smc_shutdown(dev);
1986 	smc_phy_powerdown(dev);
1987 
1988 	/* Set default parameters */
1989 	lp->msg_enable = NETIF_MSG_LINK;
1990 	lp->ctl_rfduplx = 0;
1991 	lp->ctl_rspeed = 10;
1992 
1993 	if (lp->version >= (CHIP_91100 << 4)) {
1994 		lp->ctl_rfduplx = 1;
1995 		lp->ctl_rspeed = 100;
1996 	}
1997 
1998 	/* Grab the IRQ */
1999 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2000       	if (retval)
2001       		goto err_out;
2002 
2003 #ifdef CONFIG_ARCH_PXA
2004 #  ifdef SMC_USE_PXA_DMA
2005 	lp->cfg.flags |= SMC91X_USE_DMA;
2006 #  endif
2007 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2008 		dma_cap_mask_t mask;
2009 
2010 		dma_cap_zero(mask);
2011 		dma_cap_set(DMA_SLAVE, mask);
2012 		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2013 	}
2014 #endif
2015 
2016 	retval = register_netdev(dev);
2017 	if (retval == 0) {
2018 		/* now, print out the card info, in a short format.. */
2019 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2020 			    version_string, revision_register & 0x0f,
2021 			    lp->base, dev->irq);
2022 
2023 		if (lp->dma_chan)
2024 			pr_cont(" DMA %p", lp->dma_chan);
2025 
2026 		pr_cont("%s%s\n",
2027 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2028 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2029 
2030 		if (!is_valid_ether_addr(dev->dev_addr)) {
2031 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2032 		} else {
2033 			/* Print the Ethernet address */
2034 			netdev_info(dev, "Ethernet addr: %pM\n",
2035 				    dev->dev_addr);
2036 		}
2037 
2038 		if (lp->phy_type == 0) {
2039 			PRINTK(dev, "No PHY found\n");
2040 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2041 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2042 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2043 			PRINTK(dev, "PHY LAN83C180\n");
2044 		}
2045 	}
2046 
2047 err_out:
2048 #ifdef CONFIG_ARCH_PXA
2049 	if (retval && lp->dma_chan)
2050 		dma_release_channel(lp->dma_chan);
2051 #endif
2052 	return retval;
2053 }
2054 
smc_enable_device(struct platform_device * pdev)2055 static int smc_enable_device(struct platform_device *pdev)
2056 {
2057 	struct net_device *ndev = platform_get_drvdata(pdev);
2058 	struct smc_local *lp = netdev_priv(ndev);
2059 	unsigned long flags;
2060 	unsigned char ecor, ecsr;
2061 	void __iomem *addr;
2062 	struct resource * res;
2063 
2064 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2065 	if (!res)
2066 		return 0;
2067 
2068 	/*
2069 	 * Map the attribute space.  This is overkill, but clean.
2070 	 */
2071 	addr = ioremap(res->start, ATTRIB_SIZE);
2072 	if (!addr)
2073 		return -ENOMEM;
2074 
2075 	/*
2076 	 * Reset the device.  We must disable IRQs around this
2077 	 * since a reset causes the IRQ line become active.
2078 	 */
2079 	local_irq_save(flags);
2080 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2081 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2082 	readb(addr + (ECOR << SMC_IO_SHIFT));
2083 
2084 	/*
2085 	 * Wait 100us for the chip to reset.
2086 	 */
2087 	udelay(100);
2088 
2089 	/*
2090 	 * The device will ignore all writes to the enable bit while
2091 	 * reset is asserted, even if the reset bit is cleared in the
2092 	 * same write.  Must clear reset first, then enable the device.
2093 	 */
2094 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2095 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2096 
2097 	/*
2098 	 * Set the appropriate byte/word mode.
2099 	 */
2100 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2101 	if (!SMC_16BIT(lp))
2102 		ecsr |= ECSR_IOIS8;
2103 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2104 	local_irq_restore(flags);
2105 
2106 	iounmap(addr);
2107 
2108 	/*
2109 	 * Wait for the chip to wake up.  We could poll the control
2110 	 * register in the main register space, but that isn't mapped
2111 	 * yet.  We know this is going to take 750us.
2112 	 */
2113 	msleep(1);
2114 
2115 	return 0;
2116 }
2117 
smc_request_attrib(struct platform_device * pdev,struct net_device * ndev)2118 static int smc_request_attrib(struct platform_device *pdev,
2119 			      struct net_device *ndev)
2120 {
2121 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2122 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2123 
2124 	if (!res)
2125 		return 0;
2126 
2127 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128 		return -EBUSY;
2129 
2130 	return 0;
2131 }
2132 
smc_release_attrib(struct platform_device * pdev,struct net_device * ndev)2133 static void smc_release_attrib(struct platform_device *pdev,
2134 			       struct net_device *ndev)
2135 {
2136 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138 
2139 	if (res)
2140 		release_mem_region(res->start, ATTRIB_SIZE);
2141 }
2142 
smc_request_datacs(struct platform_device * pdev,struct net_device * ndev)2143 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2144 {
2145 	if (SMC_CAN_USE_DATACS) {
2146 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2147 		struct smc_local *lp = netdev_priv(ndev);
2148 
2149 		if (!res)
2150 			return;
2151 
2152 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2153 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2154 				    CARDNAME);
2155 			return;
2156 		}
2157 
2158 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2159 	}
2160 }
2161 
smc_release_datacs(struct platform_device * pdev,struct net_device * ndev)2162 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2163 {
2164 	if (SMC_CAN_USE_DATACS) {
2165 		struct smc_local *lp = netdev_priv(ndev);
2166 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167 
2168 		if (lp->datacs)
2169 			iounmap(lp->datacs);
2170 
2171 		lp->datacs = NULL;
2172 
2173 		if (res)
2174 			release_mem_region(res->start, SMC_DATA_EXTENT);
2175 	}
2176 }
2177 
2178 static const struct acpi_device_id smc91x_acpi_match[] = {
2179 	{ "LNRO0003", 0 },
2180 	{ }
2181 };
2182 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2183 
2184 #if IS_BUILTIN(CONFIG_OF)
2185 static const struct of_device_id smc91x_match[] = {
2186 	{ .compatible = "smsc,lan91c94", },
2187 	{ .compatible = "smsc,lan91c111", },
2188 	{},
2189 };
2190 MODULE_DEVICE_TABLE(of, smc91x_match);
2191 
2192 /**
2193  * of_try_set_control_gpio - configure a gpio if it exists
2194  */
try_toggle_control_gpio(struct device * dev,struct gpio_desc ** desc,const char * name,int index,int value,unsigned int nsdelay)2195 static int try_toggle_control_gpio(struct device *dev,
2196 				   struct gpio_desc **desc,
2197 				   const char *name, int index,
2198 				   int value, unsigned int nsdelay)
2199 {
2200 	struct gpio_desc *gpio = *desc;
2201 	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2202 
2203 	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2204 	if (IS_ERR(gpio))
2205 		return PTR_ERR(gpio);
2206 
2207 	if (gpio) {
2208 		if (nsdelay)
2209 			usleep_range(nsdelay, 2 * nsdelay);
2210 		gpiod_set_value_cansleep(gpio, value);
2211 	}
2212 	*desc = gpio;
2213 
2214 	return 0;
2215 }
2216 #endif
2217 
2218 /*
2219  * smc_init(void)
2220  *   Input parameters:
2221  *	dev->base_addr == 0, try to find all possible locations
2222  *	dev->base_addr > 0x1ff, this is the address to check
2223  *	dev->base_addr == <anything else>, return failure code
2224  *
2225  *   Output:
2226  *	0 --> there is a device
2227  *	anything else, error
2228  */
smc_drv_probe(struct platform_device * pdev)2229 static int smc_drv_probe(struct platform_device *pdev)
2230 {
2231 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2232 	const struct of_device_id *match = NULL;
2233 	struct smc_local *lp;
2234 	struct net_device *ndev;
2235 	struct resource *res;
2236 	unsigned int __iomem *addr;
2237 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2238 	unsigned long irq_resflags;
2239 	int ret;
2240 
2241 	ndev = alloc_etherdev(sizeof(struct smc_local));
2242 	if (!ndev) {
2243 		ret = -ENOMEM;
2244 		goto out;
2245 	}
2246 	SET_NETDEV_DEV(ndev, &pdev->dev);
2247 
2248 	/* get configuration from platform data, only allow use of
2249 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2250 	 */
2251 
2252 	lp = netdev_priv(ndev);
2253 	lp->cfg.flags = 0;
2254 
2255 	if (pd) {
2256 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2257 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2258 
2259 		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2260 			dev_err(&pdev->dev,
2261 				"at least one of 8-bit or 16-bit access support is required.\n");
2262 			ret = -ENXIO;
2263 			goto out_free_netdev;
2264 		}
2265 	}
2266 
2267 #if IS_BUILTIN(CONFIG_OF)
2268 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2269 	if (match) {
2270 		u32 val;
2271 
2272 		/* Optional pwrdwn GPIO configured? */
2273 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2274 					      "power", 0, 0, 100);
2275 		if (ret)
2276 			goto out_free_netdev;
2277 
2278 		/*
2279 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2280 		 * according to LAN91C96 datasheet page 14.
2281 		 */
2282 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2283 					      "reset", 0, 0, 100);
2284 		if (ret)
2285 			goto out_free_netdev;
2286 
2287 		/*
2288 		 * Need to wait for optional EEPROM to load, max 750 us according
2289 		 * to LAN91C96 datasheet page 55.
2290 		 */
2291 		if (lp->reset_gpio)
2292 			usleep_range(750, 1000);
2293 
2294 		/* Combination of IO widths supported, default to 16-bit */
2295 		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2296 					      &val)) {
2297 			if (val & 1)
2298 				lp->cfg.flags |= SMC91X_USE_8BIT;
2299 			if ((val == 0) || (val & 2))
2300 				lp->cfg.flags |= SMC91X_USE_16BIT;
2301 			if (val & 4)
2302 				lp->cfg.flags |= SMC91X_USE_32BIT;
2303 		} else {
2304 			lp->cfg.flags |= SMC91X_USE_16BIT;
2305 		}
2306 		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2307 					      &val))
2308 			lp->io_shift = val;
2309 		lp->cfg.pxa_u16_align4 =
2310 			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2311 	}
2312 #endif
2313 
2314 	if (!pd && !match) {
2315 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2316 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2317 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2318 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2319 	}
2320 
2321 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2322 		lp->cfg.leda = RPC_LSA_DEFAULT;
2323 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2324 	}
2325 
2326 	ndev->dma = (unsigned char)-1;
2327 
2328 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2329 	if (!res)
2330 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2331 	if (!res) {
2332 		ret = -ENODEV;
2333 		goto out_free_netdev;
2334 	}
2335 
2336 
2337 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2338 		ret = -EBUSY;
2339 		goto out_free_netdev;
2340 	}
2341 
2342 	ndev->irq = platform_get_irq(pdev, 0);
2343 	if (ndev->irq < 0) {
2344 		ret = ndev->irq;
2345 		goto out_release_io;
2346 	}
2347 	/*
2348 	 * If this platform does not specify any special irqflags, or if
2349 	 * the resource supplies a trigger, override the irqflags with
2350 	 * the trigger flags from the resource.
2351 	 */
2352 	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2353 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2354 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2355 
2356 	ret = smc_request_attrib(pdev, ndev);
2357 	if (ret)
2358 		goto out_release_io;
2359 #if defined(CONFIG_ASSABET_NEPONSET)
2360 	if (machine_is_assabet() && machine_has_neponset())
2361 		neponset_ncr_set(NCR_ENET_OSC_EN);
2362 #endif
2363 	platform_set_drvdata(pdev, ndev);
2364 	ret = smc_enable_device(pdev);
2365 	if (ret)
2366 		goto out_release_attrib;
2367 
2368 	addr = ioremap(res->start, SMC_IO_EXTENT);
2369 	if (!addr) {
2370 		ret = -ENOMEM;
2371 		goto out_release_attrib;
2372 	}
2373 
2374 #ifdef CONFIG_ARCH_PXA
2375 	{
2376 		struct smc_local *lp = netdev_priv(ndev);
2377 		lp->device = &pdev->dev;
2378 		lp->physaddr = res->start;
2379 
2380 	}
2381 #endif
2382 
2383 	ret = smc_probe(ndev, addr, irq_flags);
2384 	if (ret != 0)
2385 		goto out_iounmap;
2386 
2387 	smc_request_datacs(pdev, ndev);
2388 
2389 	return 0;
2390 
2391  out_iounmap:
2392 	iounmap(addr);
2393  out_release_attrib:
2394 	smc_release_attrib(pdev, ndev);
2395  out_release_io:
2396 	release_mem_region(res->start, SMC_IO_EXTENT);
2397  out_free_netdev:
2398 	free_netdev(ndev);
2399  out:
2400 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2401 
2402 	return ret;
2403 }
2404 
smc_drv_remove(struct platform_device * pdev)2405 static int smc_drv_remove(struct platform_device *pdev)
2406 {
2407 	struct net_device *ndev = platform_get_drvdata(pdev);
2408 	struct smc_local *lp = netdev_priv(ndev);
2409 	struct resource *res;
2410 
2411 	unregister_netdev(ndev);
2412 
2413 	free_irq(ndev->irq, ndev);
2414 
2415 #ifdef CONFIG_ARCH_PXA
2416 	if (lp->dma_chan)
2417 		dma_release_channel(lp->dma_chan);
2418 #endif
2419 	iounmap(lp->base);
2420 
2421 	smc_release_datacs(pdev,ndev);
2422 	smc_release_attrib(pdev,ndev);
2423 
2424 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2425 	if (!res)
2426 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2427 	release_mem_region(res->start, SMC_IO_EXTENT);
2428 
2429 	free_netdev(ndev);
2430 
2431 	return 0;
2432 }
2433 
smc_drv_suspend(struct device * dev)2434 static int smc_drv_suspend(struct device *dev)
2435 {
2436 	struct net_device *ndev = dev_get_drvdata(dev);
2437 
2438 	if (ndev) {
2439 		if (netif_running(ndev)) {
2440 			netif_device_detach(ndev);
2441 			smc_shutdown(ndev);
2442 			smc_phy_powerdown(ndev);
2443 		}
2444 	}
2445 	return 0;
2446 }
2447 
smc_drv_resume(struct device * dev)2448 static int smc_drv_resume(struct device *dev)
2449 {
2450 	struct platform_device *pdev = to_platform_device(dev);
2451 	struct net_device *ndev = platform_get_drvdata(pdev);
2452 
2453 	if (ndev) {
2454 		struct smc_local *lp = netdev_priv(ndev);
2455 		smc_enable_device(pdev);
2456 		if (netif_running(ndev)) {
2457 			smc_reset(ndev);
2458 			smc_enable(ndev);
2459 			if (lp->phy_type != 0)
2460 				smc_phy_configure(&lp->phy_configure);
2461 			netif_device_attach(ndev);
2462 		}
2463 	}
2464 	return 0;
2465 }
2466 
2467 static const struct dev_pm_ops smc_drv_pm_ops = {
2468 	.suspend	= smc_drv_suspend,
2469 	.resume		= smc_drv_resume,
2470 };
2471 
2472 static struct platform_driver smc_driver = {
2473 	.probe		= smc_drv_probe,
2474 	.remove		= smc_drv_remove,
2475 	.driver		= {
2476 		.name	= CARDNAME,
2477 		.pm	= &smc_drv_pm_ops,
2478 		.of_match_table   = of_match_ptr(smc91x_match),
2479 		.acpi_match_table = smc91x_acpi_match,
2480 	},
2481 };
2482 
2483 module_platform_driver(smc_driver);
2484