1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 "turn on native support for multiple controllers per subsystem");
15
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 struct nvme_ns_head *h;
19
20 lockdep_assert_held(&subsys->lock);
21 list_for_each_entry(h, &subsys->nsheads, entry)
22 if (h->disk)
23 blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 struct nvme_ns_head *h;
29
30 lockdep_assert_held(&subsys->lock);
31 list_for_each_entry(h, &subsys->nsheads, entry)
32 if (h->disk)
33 blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 struct nvme_ns_head *h;
39
40 lockdep_assert_held(&subsys->lock);
41 list_for_each_entry(h, &subsys->nsheads, entry)
42 if (h->disk)
43 blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47 * If multipathing is enabled we need to always use the subsystem instance
48 * number for numbering our devices to avoid conflicts between subsystems that
49 * have multiple controllers and thus use the multipath-aware subsystem node
50 * and those that have a single controller and use the controller node
51 * directly.
52 */
nvme_set_disk_name(char * disk_name,struct nvme_ns * ns,struct nvme_ctrl * ctrl,int * flags)53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
54 struct nvme_ctrl *ctrl, int *flags)
55 {
56 if (!multipath) {
57 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
58 } else if (ns->head->disk) {
59 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
60 ctrl->instance, ns->head->instance);
61 *flags = GENHD_FL_HIDDEN;
62 } else {
63 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
64 ns->head->instance);
65 }
66 }
67
nvme_failover_req(struct request * req)68 void nvme_failover_req(struct request *req)
69 {
70 struct nvme_ns *ns = req->q->queuedata;
71 u16 status = nvme_req(req)->status & 0x7ff;
72 unsigned long flags;
73
74 nvme_mpath_clear_current_path(ns);
75
76 /*
77 * If we got back an ANA error, we know the controller is alive but not
78 * ready to serve this namespace. Kick of a re-read of the ANA
79 * information page, and just try any other available path for now.
80 */
81 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
82 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
83 queue_work(nvme_wq, &ns->ctrl->ana_work);
84 }
85
86 spin_lock_irqsave(&ns->head->requeue_lock, flags);
87 blk_steal_bios(&ns->head->requeue_list, req);
88 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
89
90 blk_mq_end_request(req, 0);
91 kblockd_schedule_work(&ns->head->requeue_work);
92 }
93
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)94 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
95 {
96 struct nvme_ns *ns;
97
98 down_read(&ctrl->namespaces_rwsem);
99 list_for_each_entry(ns, &ctrl->namespaces, list) {
100 if (ns->head->disk)
101 kblockd_schedule_work(&ns->head->requeue_work);
102 }
103 up_read(&ctrl->namespaces_rwsem);
104 }
105
106 static const char *nvme_ana_state_names[] = {
107 [0] = "invalid state",
108 [NVME_ANA_OPTIMIZED] = "optimized",
109 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
110 [NVME_ANA_INACCESSIBLE] = "inaccessible",
111 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
112 [NVME_ANA_CHANGE] = "change",
113 };
114
nvme_mpath_clear_current_path(struct nvme_ns * ns)115 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
116 {
117 struct nvme_ns_head *head = ns->head;
118 bool changed = false;
119 int node;
120
121 if (!head)
122 goto out;
123
124 for_each_node(node) {
125 if (ns == rcu_access_pointer(head->current_path[node])) {
126 rcu_assign_pointer(head->current_path[node], NULL);
127 changed = true;
128 }
129 }
130 out:
131 return changed;
132 }
133
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)134 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
135 {
136 struct nvme_ns *ns;
137
138 down_read(&ctrl->namespaces_rwsem);
139 list_for_each_entry(ns, &ctrl->namespaces, list) {
140 nvme_mpath_clear_current_path(ns);
141 kblockd_schedule_work(&ns->head->requeue_work);
142 }
143 up_read(&ctrl->namespaces_rwsem);
144 }
145
nvme_path_is_disabled(struct nvme_ns * ns)146 static bool nvme_path_is_disabled(struct nvme_ns *ns)
147 {
148 /*
149 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
150 * still be able to complete assuming that the controller is connected.
151 * Otherwise it will fail immediately and return to the requeue list.
152 */
153 if (ns->ctrl->state != NVME_CTRL_LIVE &&
154 ns->ctrl->state != NVME_CTRL_DELETING)
155 return true;
156 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
157 test_bit(NVME_NS_REMOVING, &ns->flags))
158 return true;
159 return false;
160 }
161
__nvme_find_path(struct nvme_ns_head * head,int node)162 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
163 {
164 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
165 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
166
167 list_for_each_entry_rcu(ns, &head->list, siblings) {
168 if (nvme_path_is_disabled(ns))
169 continue;
170
171 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
172 distance = node_distance(node, ns->ctrl->numa_node);
173 else
174 distance = LOCAL_DISTANCE;
175
176 switch (ns->ana_state) {
177 case NVME_ANA_OPTIMIZED:
178 if (distance < found_distance) {
179 found_distance = distance;
180 found = ns;
181 }
182 break;
183 case NVME_ANA_NONOPTIMIZED:
184 if (distance < fallback_distance) {
185 fallback_distance = distance;
186 fallback = ns;
187 }
188 break;
189 default:
190 break;
191 }
192 }
193
194 if (!found)
195 found = fallback;
196 if (found)
197 rcu_assign_pointer(head->current_path[node], found);
198 return found;
199 }
200
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)201 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
202 struct nvme_ns *ns)
203 {
204 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
205 siblings);
206 if (ns)
207 return ns;
208 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
209 }
210
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)211 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
212 int node, struct nvme_ns *old)
213 {
214 struct nvme_ns *ns, *found = NULL;
215
216 if (list_is_singular(&head->list)) {
217 if (nvme_path_is_disabled(old))
218 return NULL;
219 return old;
220 }
221
222 for (ns = nvme_next_ns(head, old);
223 ns && ns != old;
224 ns = nvme_next_ns(head, ns)) {
225 if (nvme_path_is_disabled(ns))
226 continue;
227
228 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
229 found = ns;
230 goto out;
231 }
232 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
233 found = ns;
234 }
235
236 /*
237 * The loop above skips the current path for round-robin semantics.
238 * Fall back to the current path if either:
239 * - no other optimized path found and current is optimized,
240 * - no other usable path found and current is usable.
241 */
242 if (!nvme_path_is_disabled(old) &&
243 (old->ana_state == NVME_ANA_OPTIMIZED ||
244 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
245 return old;
246
247 if (!found)
248 return NULL;
249 out:
250 rcu_assign_pointer(head->current_path[node], found);
251 return found;
252 }
253
nvme_path_is_optimized(struct nvme_ns * ns)254 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
255 {
256 return ns->ctrl->state == NVME_CTRL_LIVE &&
257 ns->ana_state == NVME_ANA_OPTIMIZED;
258 }
259
nvme_find_path(struct nvme_ns_head * head)260 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
261 {
262 int node = numa_node_id();
263 struct nvme_ns *ns;
264
265 ns = srcu_dereference(head->current_path[node], &head->srcu);
266 if (unlikely(!ns))
267 return __nvme_find_path(head, node);
268
269 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
270 return nvme_round_robin_path(head, node, ns);
271 if (unlikely(!nvme_path_is_optimized(ns)))
272 return __nvme_find_path(head, node);
273 return ns;
274 }
275
nvme_available_path(struct nvme_ns_head * head)276 static bool nvme_available_path(struct nvme_ns_head *head)
277 {
278 struct nvme_ns *ns;
279
280 list_for_each_entry_rcu(ns, &head->list, siblings) {
281 switch (ns->ctrl->state) {
282 case NVME_CTRL_LIVE:
283 case NVME_CTRL_RESETTING:
284 case NVME_CTRL_CONNECTING:
285 /* fallthru */
286 return true;
287 default:
288 break;
289 }
290 }
291 return false;
292 }
293
nvme_ns_head_submit_bio(struct bio * bio)294 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
295 {
296 struct nvme_ns_head *head = bio->bi_disk->private_data;
297 struct device *dev = disk_to_dev(head->disk);
298 struct nvme_ns *ns;
299 blk_qc_t ret = BLK_QC_T_NONE;
300 int srcu_idx;
301
302 /*
303 * The namespace might be going away and the bio might be moved to a
304 * different queue via blk_steal_bios(), so we need to use the bio_split
305 * pool from the original queue to allocate the bvecs from.
306 */
307 blk_queue_split(&bio);
308
309 srcu_idx = srcu_read_lock(&head->srcu);
310 ns = nvme_find_path(head);
311 if (likely(ns)) {
312 bio->bi_disk = ns->disk;
313 bio->bi_opf |= REQ_NVME_MPATH;
314 trace_block_bio_remap(bio->bi_disk->queue, bio,
315 disk_devt(ns->head->disk),
316 bio->bi_iter.bi_sector);
317 ret = submit_bio_noacct(bio);
318 } else if (nvme_available_path(head)) {
319 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
320
321 spin_lock_irq(&head->requeue_lock);
322 bio_list_add(&head->requeue_list, bio);
323 spin_unlock_irq(&head->requeue_lock);
324 } else {
325 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
326
327 bio->bi_status = BLK_STS_IOERR;
328 bio_endio(bio);
329 }
330
331 srcu_read_unlock(&head->srcu, srcu_idx);
332 return ret;
333 }
334
nvme_requeue_work(struct work_struct * work)335 static void nvme_requeue_work(struct work_struct *work)
336 {
337 struct nvme_ns_head *head =
338 container_of(work, struct nvme_ns_head, requeue_work);
339 struct bio *bio, *next;
340
341 spin_lock_irq(&head->requeue_lock);
342 next = bio_list_get(&head->requeue_list);
343 spin_unlock_irq(&head->requeue_lock);
344
345 while ((bio = next) != NULL) {
346 next = bio->bi_next;
347 bio->bi_next = NULL;
348
349 /*
350 * Reset disk to the mpath node and resubmit to select a new
351 * path.
352 */
353 bio->bi_disk = head->disk;
354 submit_bio_noacct(bio);
355 }
356 }
357
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)358 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
359 {
360 struct request_queue *q;
361 bool vwc = false;
362
363 mutex_init(&head->lock);
364 bio_list_init(&head->requeue_list);
365 spin_lock_init(&head->requeue_lock);
366 INIT_WORK(&head->requeue_work, nvme_requeue_work);
367
368 /*
369 * Add a multipath node if the subsystems supports multiple controllers.
370 * We also do this for private namespaces as the namespace sharing data could
371 * change after a rescan.
372 */
373 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
374 return 0;
375
376 q = blk_alloc_queue(ctrl->numa_node);
377 if (!q)
378 goto out;
379 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
380 /* set to a default value for 512 until disk is validated */
381 blk_queue_logical_block_size(q, 512);
382 blk_set_stacking_limits(&q->limits);
383
384 /* we need to propagate up the VMC settings */
385 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
386 vwc = true;
387 blk_queue_write_cache(q, vwc, vwc);
388
389 head->disk = alloc_disk(0);
390 if (!head->disk)
391 goto out_cleanup_queue;
392 head->disk->fops = &nvme_ns_head_ops;
393 head->disk->private_data = head;
394 head->disk->queue = q;
395 head->disk->flags = GENHD_FL_EXT_DEVT;
396 sprintf(head->disk->disk_name, "nvme%dn%d",
397 ctrl->subsys->instance, head->instance);
398 return 0;
399
400 out_cleanup_queue:
401 blk_cleanup_queue(q);
402 out:
403 return -ENOMEM;
404 }
405
nvme_mpath_set_live(struct nvme_ns * ns)406 static void nvme_mpath_set_live(struct nvme_ns *ns)
407 {
408 struct nvme_ns_head *head = ns->head;
409
410 if (!head->disk)
411 return;
412
413 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
414 device_add_disk(&head->subsys->dev, head->disk,
415 nvme_ns_id_attr_groups);
416
417 mutex_lock(&head->lock);
418 if (nvme_path_is_optimized(ns)) {
419 int node, srcu_idx;
420
421 srcu_idx = srcu_read_lock(&head->srcu);
422 for_each_node(node)
423 __nvme_find_path(head, node);
424 srcu_read_unlock(&head->srcu, srcu_idx);
425 }
426 mutex_unlock(&head->lock);
427
428 synchronize_srcu(&head->srcu);
429 kblockd_schedule_work(&head->requeue_work);
430 }
431
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))432 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
433 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
434 void *))
435 {
436 void *base = ctrl->ana_log_buf;
437 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
438 int error, i;
439
440 lockdep_assert_held(&ctrl->ana_lock);
441
442 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
443 struct nvme_ana_group_desc *desc = base + offset;
444 u32 nr_nsids;
445 size_t nsid_buf_size;
446
447 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
448 return -EINVAL;
449
450 nr_nsids = le32_to_cpu(desc->nnsids);
451 nsid_buf_size = nr_nsids * sizeof(__le32);
452
453 if (WARN_ON_ONCE(desc->grpid == 0))
454 return -EINVAL;
455 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
456 return -EINVAL;
457 if (WARN_ON_ONCE(desc->state == 0))
458 return -EINVAL;
459 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
460 return -EINVAL;
461
462 offset += sizeof(*desc);
463 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
464 return -EINVAL;
465
466 error = cb(ctrl, desc, data);
467 if (error)
468 return error;
469
470 offset += nsid_buf_size;
471 }
472
473 return 0;
474 }
475
nvme_state_is_live(enum nvme_ana_state state)476 static inline bool nvme_state_is_live(enum nvme_ana_state state)
477 {
478 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
479 }
480
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)481 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
482 struct nvme_ns *ns)
483 {
484 ns->ana_grpid = le32_to_cpu(desc->grpid);
485 ns->ana_state = desc->state;
486 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
487 /*
488 * nvme_mpath_set_live() will trigger I/O to the multipath path device
489 * and in turn to this path device. However we cannot accept this I/O
490 * if the controller is not live. This may deadlock if called from
491 * nvme_mpath_init_identify() and the ctrl will never complete
492 * initialization, preventing I/O from completing. For this case we
493 * will reprocess the ANA log page in nvme_mpath_update() once the
494 * controller is ready.
495 */
496 if (nvme_state_is_live(ns->ana_state) &&
497 ns->ctrl->state == NVME_CTRL_LIVE)
498 nvme_mpath_set_live(ns);
499 }
500
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)501 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
502 struct nvme_ana_group_desc *desc, void *data)
503 {
504 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
505 unsigned *nr_change_groups = data;
506 struct nvme_ns *ns;
507
508 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
509 le32_to_cpu(desc->grpid),
510 nvme_ana_state_names[desc->state]);
511
512 if (desc->state == NVME_ANA_CHANGE)
513 (*nr_change_groups)++;
514
515 if (!nr_nsids)
516 return 0;
517
518 down_read(&ctrl->namespaces_rwsem);
519 list_for_each_entry(ns, &ctrl->namespaces, list) {
520 unsigned nsid;
521 again:
522 nsid = le32_to_cpu(desc->nsids[n]);
523 if (ns->head->ns_id < nsid)
524 continue;
525 if (ns->head->ns_id == nsid)
526 nvme_update_ns_ana_state(desc, ns);
527 if (++n == nr_nsids)
528 break;
529 if (ns->head->ns_id > nsid)
530 goto again;
531 }
532 up_read(&ctrl->namespaces_rwsem);
533 return 0;
534 }
535
nvme_read_ana_log(struct nvme_ctrl * ctrl)536 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
537 {
538 u32 nr_change_groups = 0;
539 int error;
540
541 mutex_lock(&ctrl->ana_lock);
542 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
543 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
544 if (error) {
545 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
546 goto out_unlock;
547 }
548
549 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
550 nvme_update_ana_state);
551 if (error)
552 goto out_unlock;
553
554 /*
555 * In theory we should have an ANATT timer per group as they might enter
556 * the change state at different times. But that is a lot of overhead
557 * just to protect against a target that keeps entering new changes
558 * states while never finishing previous ones. But we'll still
559 * eventually time out once all groups are in change state, so this
560 * isn't a big deal.
561 *
562 * We also double the ANATT value to provide some slack for transports
563 * or AEN processing overhead.
564 */
565 if (nr_change_groups)
566 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
567 else
568 del_timer_sync(&ctrl->anatt_timer);
569 out_unlock:
570 mutex_unlock(&ctrl->ana_lock);
571 return error;
572 }
573
nvme_ana_work(struct work_struct * work)574 static void nvme_ana_work(struct work_struct *work)
575 {
576 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
577
578 if (ctrl->state != NVME_CTRL_LIVE)
579 return;
580
581 nvme_read_ana_log(ctrl);
582 }
583
nvme_mpath_update(struct nvme_ctrl * ctrl)584 void nvme_mpath_update(struct nvme_ctrl *ctrl)
585 {
586 u32 nr_change_groups = 0;
587
588 if (!ctrl->ana_log_buf)
589 return;
590
591 mutex_lock(&ctrl->ana_lock);
592 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
593 mutex_unlock(&ctrl->ana_lock);
594 }
595
nvme_anatt_timeout(struct timer_list * t)596 static void nvme_anatt_timeout(struct timer_list *t)
597 {
598 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
599
600 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
601 nvme_reset_ctrl(ctrl);
602 }
603
nvme_mpath_stop(struct nvme_ctrl * ctrl)604 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
605 {
606 if (!nvme_ctrl_use_ana(ctrl))
607 return;
608 del_timer_sync(&ctrl->anatt_timer);
609 cancel_work_sync(&ctrl->ana_work);
610 }
611
612 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
613 struct device_attribute subsys_attr_##_name = \
614 __ATTR(_name, _mode, _show, _store)
615
616 static const char *nvme_iopolicy_names[] = {
617 [NVME_IOPOLICY_NUMA] = "numa",
618 [NVME_IOPOLICY_RR] = "round-robin",
619 };
620
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)621 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
623 {
624 struct nvme_subsystem *subsys =
625 container_of(dev, struct nvme_subsystem, dev);
626
627 return sysfs_emit(buf, "%s\n",
628 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
629 }
630
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)631 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
632 struct device_attribute *attr, const char *buf, size_t count)
633 {
634 struct nvme_subsystem *subsys =
635 container_of(dev, struct nvme_subsystem, dev);
636 int i;
637
638 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
639 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
640 WRITE_ONCE(subsys->iopolicy, i);
641 return count;
642 }
643 }
644
645 return -EINVAL;
646 }
647 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
648 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
649
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)650 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
651 char *buf)
652 {
653 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
654 }
655 DEVICE_ATTR_RO(ana_grpid);
656
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)657 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
658 char *buf)
659 {
660 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
661
662 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
663 }
664 DEVICE_ATTR_RO(ana_state);
665
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)666 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
667 struct nvme_ana_group_desc *desc, void *data)
668 {
669 struct nvme_ana_group_desc *dst = data;
670
671 if (desc->grpid != dst->grpid)
672 return 0;
673
674 *dst = *desc;
675 return -ENXIO; /* just break out of the loop */
676 }
677
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)678 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
679 {
680 if (nvme_ctrl_use_ana(ns->ctrl)) {
681 struct nvme_ana_group_desc desc = {
682 .grpid = id->anagrpid,
683 .state = 0,
684 };
685
686 mutex_lock(&ns->ctrl->ana_lock);
687 ns->ana_grpid = le32_to_cpu(id->anagrpid);
688 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
689 mutex_unlock(&ns->ctrl->ana_lock);
690 if (desc.state) {
691 /* found the group desc: update */
692 nvme_update_ns_ana_state(&desc, ns);
693 } else {
694 /* group desc not found: trigger a re-read */
695 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
696 queue_work(nvme_wq, &ns->ctrl->ana_work);
697 }
698 } else {
699 ns->ana_state = NVME_ANA_OPTIMIZED;
700 nvme_mpath_set_live(ns);
701 }
702
703 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
704 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
705 ns->head->disk->queue);
706 #ifdef CONFIG_BLK_DEV_ZONED
707 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
708 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
709 #endif
710 }
711
nvme_mpath_remove_disk(struct nvme_ns_head * head)712 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
713 {
714 if (!head->disk)
715 return;
716 if (head->disk->flags & GENHD_FL_UP)
717 del_gendisk(head->disk);
718 blk_set_queue_dying(head->disk->queue);
719 /* make sure all pending bios are cleaned up */
720 kblockd_schedule_work(&head->requeue_work);
721 flush_work(&head->requeue_work);
722 blk_cleanup_queue(head->disk->queue);
723 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
724 /*
725 * if device_add_disk wasn't called, prevent
726 * disk release to put a bogus reference on the
727 * request queue
728 */
729 head->disk->queue = NULL;
730 }
731 put_disk(head->disk);
732 }
733
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)734 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
735 {
736 mutex_init(&ctrl->ana_lock);
737 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
738 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
739 }
740
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)741 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
742 {
743 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
744 size_t ana_log_size;
745 int error = 0;
746
747 /* check if multipath is enabled and we have the capability */
748 if (!multipath || !ctrl->subsys ||
749 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
750 return 0;
751
752 ctrl->anacap = id->anacap;
753 ctrl->anatt = id->anatt;
754 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
755 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
756
757 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
758 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
759 ctrl->max_namespaces * sizeof(__le32);
760 if (ana_log_size > max_transfer_size) {
761 dev_err(ctrl->device,
762 "ANA log page size (%zd) larger than MDTS (%zd).\n",
763 ana_log_size, max_transfer_size);
764 dev_err(ctrl->device, "disabling ANA support.\n");
765 goto out_uninit;
766 }
767 if (ana_log_size > ctrl->ana_log_size) {
768 nvme_mpath_stop(ctrl);
769 kfree(ctrl->ana_log_buf);
770 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
771 if (!ctrl->ana_log_buf)
772 return -ENOMEM;
773 }
774 ctrl->ana_log_size = ana_log_size;
775 error = nvme_read_ana_log(ctrl);
776 if (error)
777 goto out_uninit;
778 return 0;
779
780 out_uninit:
781 nvme_mpath_uninit(ctrl);
782 return error;
783 }
784
nvme_mpath_uninit(struct nvme_ctrl * ctrl)785 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
786 {
787 kfree(ctrl->ana_log_buf);
788 ctrl->ana_log_buf = NULL;
789 }
790
791