• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
nvme_set_disk_name(char * disk_name,struct nvme_ns * ns,struct nvme_ctrl * ctrl,int * flags)53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
54 			struct nvme_ctrl *ctrl, int *flags)
55 {
56 	if (!multipath) {
57 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
58 	} else if (ns->head->disk) {
59 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
60 				ctrl->instance, ns->head->instance);
61 		*flags = GENHD_FL_HIDDEN;
62 	} else {
63 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
64 				ns->head->instance);
65 	}
66 }
67 
nvme_failover_req(struct request * req)68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 
74 	nvme_mpath_clear_current_path(ns);
75 
76 	/*
77 	 * If we got back an ANA error, we know the controller is alive but not
78 	 * ready to serve this namespace.  Kick of a re-read of the ANA
79 	 * information page, and just try any other available path for now.
80 	 */
81 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
82 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
83 		queue_work(nvme_wq, &ns->ctrl->ana_work);
84 	}
85 
86 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
87 	blk_steal_bios(&ns->head->requeue_list, req);
88 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
89 
90 	blk_mq_end_request(req, 0);
91 	kblockd_schedule_work(&ns->head->requeue_work);
92 }
93 
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)94 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
95 {
96 	struct nvme_ns *ns;
97 
98 	down_read(&ctrl->namespaces_rwsem);
99 	list_for_each_entry(ns, &ctrl->namespaces, list) {
100 		if (ns->head->disk)
101 			kblockd_schedule_work(&ns->head->requeue_work);
102 	}
103 	up_read(&ctrl->namespaces_rwsem);
104 }
105 
106 static const char *nvme_ana_state_names[] = {
107 	[0]				= "invalid state",
108 	[NVME_ANA_OPTIMIZED]		= "optimized",
109 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
110 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
111 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
112 	[NVME_ANA_CHANGE]		= "change",
113 };
114 
nvme_mpath_clear_current_path(struct nvme_ns * ns)115 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
116 {
117 	struct nvme_ns_head *head = ns->head;
118 	bool changed = false;
119 	int node;
120 
121 	if (!head)
122 		goto out;
123 
124 	for_each_node(node) {
125 		if (ns == rcu_access_pointer(head->current_path[node])) {
126 			rcu_assign_pointer(head->current_path[node], NULL);
127 			changed = true;
128 		}
129 	}
130 out:
131 	return changed;
132 }
133 
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)134 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
135 {
136 	struct nvme_ns *ns;
137 
138 	down_read(&ctrl->namespaces_rwsem);
139 	list_for_each_entry(ns, &ctrl->namespaces, list) {
140 		nvme_mpath_clear_current_path(ns);
141 		kblockd_schedule_work(&ns->head->requeue_work);
142 	}
143 	up_read(&ctrl->namespaces_rwsem);
144 }
145 
nvme_path_is_disabled(struct nvme_ns * ns)146 static bool nvme_path_is_disabled(struct nvme_ns *ns)
147 {
148 	/*
149 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
150 	 * still be able to complete assuming that the controller is connected.
151 	 * Otherwise it will fail immediately and return to the requeue list.
152 	 */
153 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
154 	    ns->ctrl->state != NVME_CTRL_DELETING)
155 		return true;
156 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
157 	    test_bit(NVME_NS_REMOVING, &ns->flags))
158 		return true;
159 	return false;
160 }
161 
__nvme_find_path(struct nvme_ns_head * head,int node)162 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
163 {
164 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
165 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
166 
167 	list_for_each_entry_rcu(ns, &head->list, siblings) {
168 		if (nvme_path_is_disabled(ns))
169 			continue;
170 
171 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
172 			distance = node_distance(node, ns->ctrl->numa_node);
173 		else
174 			distance = LOCAL_DISTANCE;
175 
176 		switch (ns->ana_state) {
177 		case NVME_ANA_OPTIMIZED:
178 			if (distance < found_distance) {
179 				found_distance = distance;
180 				found = ns;
181 			}
182 			break;
183 		case NVME_ANA_NONOPTIMIZED:
184 			if (distance < fallback_distance) {
185 				fallback_distance = distance;
186 				fallback = ns;
187 			}
188 			break;
189 		default:
190 			break;
191 		}
192 	}
193 
194 	if (!found)
195 		found = fallback;
196 	if (found)
197 		rcu_assign_pointer(head->current_path[node], found);
198 	return found;
199 }
200 
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)201 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
202 		struct nvme_ns *ns)
203 {
204 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
205 			siblings);
206 	if (ns)
207 		return ns;
208 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
209 }
210 
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)211 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
212 		int node, struct nvme_ns *old)
213 {
214 	struct nvme_ns *ns, *found = NULL;
215 
216 	if (list_is_singular(&head->list)) {
217 		if (nvme_path_is_disabled(old))
218 			return NULL;
219 		return old;
220 	}
221 
222 	for (ns = nvme_next_ns(head, old);
223 	     ns && ns != old;
224 	     ns = nvme_next_ns(head, ns)) {
225 		if (nvme_path_is_disabled(ns))
226 			continue;
227 
228 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
229 			found = ns;
230 			goto out;
231 		}
232 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
233 			found = ns;
234 	}
235 
236 	/*
237 	 * The loop above skips the current path for round-robin semantics.
238 	 * Fall back to the current path if either:
239 	 *  - no other optimized path found and current is optimized,
240 	 *  - no other usable path found and current is usable.
241 	 */
242 	if (!nvme_path_is_disabled(old) &&
243 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
244 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
245 		return old;
246 
247 	if (!found)
248 		return NULL;
249 out:
250 	rcu_assign_pointer(head->current_path[node], found);
251 	return found;
252 }
253 
nvme_path_is_optimized(struct nvme_ns * ns)254 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
255 {
256 	return ns->ctrl->state == NVME_CTRL_LIVE &&
257 		ns->ana_state == NVME_ANA_OPTIMIZED;
258 }
259 
nvme_find_path(struct nvme_ns_head * head)260 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
261 {
262 	int node = numa_node_id();
263 	struct nvme_ns *ns;
264 
265 	ns = srcu_dereference(head->current_path[node], &head->srcu);
266 	if (unlikely(!ns))
267 		return __nvme_find_path(head, node);
268 
269 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
270 		return nvme_round_robin_path(head, node, ns);
271 	if (unlikely(!nvme_path_is_optimized(ns)))
272 		return __nvme_find_path(head, node);
273 	return ns;
274 }
275 
nvme_available_path(struct nvme_ns_head * head)276 static bool nvme_available_path(struct nvme_ns_head *head)
277 {
278 	struct nvme_ns *ns;
279 
280 	list_for_each_entry_rcu(ns, &head->list, siblings) {
281 		switch (ns->ctrl->state) {
282 		case NVME_CTRL_LIVE:
283 		case NVME_CTRL_RESETTING:
284 		case NVME_CTRL_CONNECTING:
285 			/* fallthru */
286 			return true;
287 		default:
288 			break;
289 		}
290 	}
291 	return false;
292 }
293 
nvme_ns_head_submit_bio(struct bio * bio)294 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
295 {
296 	struct nvme_ns_head *head = bio->bi_disk->private_data;
297 	struct device *dev = disk_to_dev(head->disk);
298 	struct nvme_ns *ns;
299 	blk_qc_t ret = BLK_QC_T_NONE;
300 	int srcu_idx;
301 
302 	/*
303 	 * The namespace might be going away and the bio might be moved to a
304 	 * different queue via blk_steal_bios(), so we need to use the bio_split
305 	 * pool from the original queue to allocate the bvecs from.
306 	 */
307 	blk_queue_split(&bio);
308 
309 	srcu_idx = srcu_read_lock(&head->srcu);
310 	ns = nvme_find_path(head);
311 	if (likely(ns)) {
312 		bio->bi_disk = ns->disk;
313 		bio->bi_opf |= REQ_NVME_MPATH;
314 		trace_block_bio_remap(bio->bi_disk->queue, bio,
315 				      disk_devt(ns->head->disk),
316 				      bio->bi_iter.bi_sector);
317 		ret = submit_bio_noacct(bio);
318 	} else if (nvme_available_path(head)) {
319 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
320 
321 		spin_lock_irq(&head->requeue_lock);
322 		bio_list_add(&head->requeue_list, bio);
323 		spin_unlock_irq(&head->requeue_lock);
324 	} else {
325 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
326 
327 		bio->bi_status = BLK_STS_IOERR;
328 		bio_endio(bio);
329 	}
330 
331 	srcu_read_unlock(&head->srcu, srcu_idx);
332 	return ret;
333 }
334 
nvme_requeue_work(struct work_struct * work)335 static void nvme_requeue_work(struct work_struct *work)
336 {
337 	struct nvme_ns_head *head =
338 		container_of(work, struct nvme_ns_head, requeue_work);
339 	struct bio *bio, *next;
340 
341 	spin_lock_irq(&head->requeue_lock);
342 	next = bio_list_get(&head->requeue_list);
343 	spin_unlock_irq(&head->requeue_lock);
344 
345 	while ((bio = next) != NULL) {
346 		next = bio->bi_next;
347 		bio->bi_next = NULL;
348 
349 		/*
350 		 * Reset disk to the mpath node and resubmit to select a new
351 		 * path.
352 		 */
353 		bio->bi_disk = head->disk;
354 		submit_bio_noacct(bio);
355 	}
356 }
357 
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)358 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
359 {
360 	struct request_queue *q;
361 	bool vwc = false;
362 
363 	mutex_init(&head->lock);
364 	bio_list_init(&head->requeue_list);
365 	spin_lock_init(&head->requeue_lock);
366 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
367 
368 	/*
369 	 * Add a multipath node if the subsystems supports multiple controllers.
370 	 * We also do this for private namespaces as the namespace sharing data could
371 	 * change after a rescan.
372 	 */
373 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
374 		return 0;
375 
376 	q = blk_alloc_queue(ctrl->numa_node);
377 	if (!q)
378 		goto out;
379 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
380 	/* set to a default value for 512 until disk is validated */
381 	blk_queue_logical_block_size(q, 512);
382 	blk_set_stacking_limits(&q->limits);
383 
384 	/* we need to propagate up the VMC settings */
385 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
386 		vwc = true;
387 	blk_queue_write_cache(q, vwc, vwc);
388 
389 	head->disk = alloc_disk(0);
390 	if (!head->disk)
391 		goto out_cleanup_queue;
392 	head->disk->fops = &nvme_ns_head_ops;
393 	head->disk->private_data = head;
394 	head->disk->queue = q;
395 	head->disk->flags = GENHD_FL_EXT_DEVT;
396 	sprintf(head->disk->disk_name, "nvme%dn%d",
397 			ctrl->subsys->instance, head->instance);
398 	return 0;
399 
400 out_cleanup_queue:
401 	blk_cleanup_queue(q);
402 out:
403 	return -ENOMEM;
404 }
405 
nvme_mpath_set_live(struct nvme_ns * ns)406 static void nvme_mpath_set_live(struct nvme_ns *ns)
407 {
408 	struct nvme_ns_head *head = ns->head;
409 
410 	if (!head->disk)
411 		return;
412 
413 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
414 		device_add_disk(&head->subsys->dev, head->disk,
415 				nvme_ns_id_attr_groups);
416 
417 	mutex_lock(&head->lock);
418 	if (nvme_path_is_optimized(ns)) {
419 		int node, srcu_idx;
420 
421 		srcu_idx = srcu_read_lock(&head->srcu);
422 		for_each_node(node)
423 			__nvme_find_path(head, node);
424 		srcu_read_unlock(&head->srcu, srcu_idx);
425 	}
426 	mutex_unlock(&head->lock);
427 
428 	synchronize_srcu(&head->srcu);
429 	kblockd_schedule_work(&head->requeue_work);
430 }
431 
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))432 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
433 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
434 			void *))
435 {
436 	void *base = ctrl->ana_log_buf;
437 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
438 	int error, i;
439 
440 	lockdep_assert_held(&ctrl->ana_lock);
441 
442 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
443 		struct nvme_ana_group_desc *desc = base + offset;
444 		u32 nr_nsids;
445 		size_t nsid_buf_size;
446 
447 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
448 			return -EINVAL;
449 
450 		nr_nsids = le32_to_cpu(desc->nnsids);
451 		nsid_buf_size = nr_nsids * sizeof(__le32);
452 
453 		if (WARN_ON_ONCE(desc->grpid == 0))
454 			return -EINVAL;
455 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
456 			return -EINVAL;
457 		if (WARN_ON_ONCE(desc->state == 0))
458 			return -EINVAL;
459 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
460 			return -EINVAL;
461 
462 		offset += sizeof(*desc);
463 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
464 			return -EINVAL;
465 
466 		error = cb(ctrl, desc, data);
467 		if (error)
468 			return error;
469 
470 		offset += nsid_buf_size;
471 	}
472 
473 	return 0;
474 }
475 
nvme_state_is_live(enum nvme_ana_state state)476 static inline bool nvme_state_is_live(enum nvme_ana_state state)
477 {
478 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
479 }
480 
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)481 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
482 		struct nvme_ns *ns)
483 {
484 	ns->ana_grpid = le32_to_cpu(desc->grpid);
485 	ns->ana_state = desc->state;
486 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
487 	/*
488 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
489 	 * and in turn to this path device.  However we cannot accept this I/O
490 	 * if the controller is not live.  This may deadlock if called from
491 	 * nvme_mpath_init_identify() and the ctrl will never complete
492 	 * initialization, preventing I/O from completing.  For this case we
493 	 * will reprocess the ANA log page in nvme_mpath_update() once the
494 	 * controller is ready.
495 	 */
496 	if (nvme_state_is_live(ns->ana_state) &&
497 	    ns->ctrl->state == NVME_CTRL_LIVE)
498 		nvme_mpath_set_live(ns);
499 }
500 
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)501 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
502 		struct nvme_ana_group_desc *desc, void *data)
503 {
504 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
505 	unsigned *nr_change_groups = data;
506 	struct nvme_ns *ns;
507 
508 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
509 			le32_to_cpu(desc->grpid),
510 			nvme_ana_state_names[desc->state]);
511 
512 	if (desc->state == NVME_ANA_CHANGE)
513 		(*nr_change_groups)++;
514 
515 	if (!nr_nsids)
516 		return 0;
517 
518 	down_read(&ctrl->namespaces_rwsem);
519 	list_for_each_entry(ns, &ctrl->namespaces, list) {
520 		unsigned nsid;
521 again:
522 		nsid = le32_to_cpu(desc->nsids[n]);
523 		if (ns->head->ns_id < nsid)
524 			continue;
525 		if (ns->head->ns_id == nsid)
526 			nvme_update_ns_ana_state(desc, ns);
527 		if (++n == nr_nsids)
528 			break;
529 		if (ns->head->ns_id > nsid)
530 			goto again;
531 	}
532 	up_read(&ctrl->namespaces_rwsem);
533 	return 0;
534 }
535 
nvme_read_ana_log(struct nvme_ctrl * ctrl)536 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
537 {
538 	u32 nr_change_groups = 0;
539 	int error;
540 
541 	mutex_lock(&ctrl->ana_lock);
542 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
543 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
544 	if (error) {
545 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
546 		goto out_unlock;
547 	}
548 
549 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
550 			nvme_update_ana_state);
551 	if (error)
552 		goto out_unlock;
553 
554 	/*
555 	 * In theory we should have an ANATT timer per group as they might enter
556 	 * the change state at different times.  But that is a lot of overhead
557 	 * just to protect against a target that keeps entering new changes
558 	 * states while never finishing previous ones.  But we'll still
559 	 * eventually time out once all groups are in change state, so this
560 	 * isn't a big deal.
561 	 *
562 	 * We also double the ANATT value to provide some slack for transports
563 	 * or AEN processing overhead.
564 	 */
565 	if (nr_change_groups)
566 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
567 	else
568 		del_timer_sync(&ctrl->anatt_timer);
569 out_unlock:
570 	mutex_unlock(&ctrl->ana_lock);
571 	return error;
572 }
573 
nvme_ana_work(struct work_struct * work)574 static void nvme_ana_work(struct work_struct *work)
575 {
576 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
577 
578 	if (ctrl->state != NVME_CTRL_LIVE)
579 		return;
580 
581 	nvme_read_ana_log(ctrl);
582 }
583 
nvme_mpath_update(struct nvme_ctrl * ctrl)584 void nvme_mpath_update(struct nvme_ctrl *ctrl)
585 {
586 	u32 nr_change_groups = 0;
587 
588 	if (!ctrl->ana_log_buf)
589 		return;
590 
591 	mutex_lock(&ctrl->ana_lock);
592 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
593 	mutex_unlock(&ctrl->ana_lock);
594 }
595 
nvme_anatt_timeout(struct timer_list * t)596 static void nvme_anatt_timeout(struct timer_list *t)
597 {
598 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
599 
600 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
601 	nvme_reset_ctrl(ctrl);
602 }
603 
nvme_mpath_stop(struct nvme_ctrl * ctrl)604 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
605 {
606 	if (!nvme_ctrl_use_ana(ctrl))
607 		return;
608 	del_timer_sync(&ctrl->anatt_timer);
609 	cancel_work_sync(&ctrl->ana_work);
610 }
611 
612 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
613 	struct device_attribute subsys_attr_##_name =	\
614 		__ATTR(_name, _mode, _show, _store)
615 
616 static const char *nvme_iopolicy_names[] = {
617 	[NVME_IOPOLICY_NUMA]	= "numa",
618 	[NVME_IOPOLICY_RR]	= "round-robin",
619 };
620 
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)621 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
622 		struct device_attribute *attr, char *buf)
623 {
624 	struct nvme_subsystem *subsys =
625 		container_of(dev, struct nvme_subsystem, dev);
626 
627 	return sysfs_emit(buf, "%s\n",
628 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
629 }
630 
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)631 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
632 		struct device_attribute *attr, const char *buf, size_t count)
633 {
634 	struct nvme_subsystem *subsys =
635 		container_of(dev, struct nvme_subsystem, dev);
636 	int i;
637 
638 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
639 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
640 			WRITE_ONCE(subsys->iopolicy, i);
641 			return count;
642 		}
643 	}
644 
645 	return -EINVAL;
646 }
647 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
648 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
649 
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)650 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
651 		char *buf)
652 {
653 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
654 }
655 DEVICE_ATTR_RO(ana_grpid);
656 
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)657 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
658 		char *buf)
659 {
660 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
661 
662 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
663 }
664 DEVICE_ATTR_RO(ana_state);
665 
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)666 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
667 		struct nvme_ana_group_desc *desc, void *data)
668 {
669 	struct nvme_ana_group_desc *dst = data;
670 
671 	if (desc->grpid != dst->grpid)
672 		return 0;
673 
674 	*dst = *desc;
675 	return -ENXIO; /* just break out of the loop */
676 }
677 
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)678 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
679 {
680 	if (nvme_ctrl_use_ana(ns->ctrl)) {
681 		struct nvme_ana_group_desc desc = {
682 			.grpid = id->anagrpid,
683 			.state = 0,
684 		};
685 
686 		mutex_lock(&ns->ctrl->ana_lock);
687 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
688 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
689 		mutex_unlock(&ns->ctrl->ana_lock);
690 		if (desc.state) {
691 			/* found the group desc: update */
692 			nvme_update_ns_ana_state(&desc, ns);
693 		} else {
694 			/* group desc not found: trigger a re-read */
695 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
696 			queue_work(nvme_wq, &ns->ctrl->ana_work);
697 		}
698 	} else {
699 		ns->ana_state = NVME_ANA_OPTIMIZED;
700 		nvme_mpath_set_live(ns);
701 	}
702 
703 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
704 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
705 				   ns->head->disk->queue);
706 #ifdef CONFIG_BLK_DEV_ZONED
707 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
708 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
709 #endif
710 }
711 
nvme_mpath_remove_disk(struct nvme_ns_head * head)712 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
713 {
714 	if (!head->disk)
715 		return;
716 	if (head->disk->flags & GENHD_FL_UP)
717 		del_gendisk(head->disk);
718 	blk_set_queue_dying(head->disk->queue);
719 	/* make sure all pending bios are cleaned up */
720 	kblockd_schedule_work(&head->requeue_work);
721 	flush_work(&head->requeue_work);
722 	blk_cleanup_queue(head->disk->queue);
723 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
724 		/*
725 		 * if device_add_disk wasn't called, prevent
726 		 * disk release to put a bogus reference on the
727 		 * request queue
728 		 */
729 		head->disk->queue = NULL;
730 	}
731 	put_disk(head->disk);
732 }
733 
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)734 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
735 {
736 	mutex_init(&ctrl->ana_lock);
737 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
738 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
739 }
740 
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)741 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
742 {
743 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
744 	size_t ana_log_size;
745 	int error = 0;
746 
747 	/* check if multipath is enabled and we have the capability */
748 	if (!multipath || !ctrl->subsys ||
749 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
750 		return 0;
751 
752 	ctrl->anacap = id->anacap;
753 	ctrl->anatt = id->anatt;
754 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
755 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
756 
757 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
758 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
759 		ctrl->max_namespaces * sizeof(__le32);
760 	if (ana_log_size > max_transfer_size) {
761 		dev_err(ctrl->device,
762 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
763 			ana_log_size, max_transfer_size);
764 		dev_err(ctrl->device, "disabling ANA support.\n");
765 		goto out_uninit;
766 	}
767 	if (ana_log_size > ctrl->ana_log_size) {
768 		nvme_mpath_stop(ctrl);
769 		kfree(ctrl->ana_log_buf);
770 		ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
771 		if (!ctrl->ana_log_buf)
772 			return -ENOMEM;
773 	}
774 	ctrl->ana_log_size = ana_log_size;
775 	error = nvme_read_ana_log(ctrl);
776 	if (error)
777 		goto out_uninit;
778 	return 0;
779 
780 out_uninit:
781 	nvme_mpath_uninit(ctrl);
782 	return error;
783 }
784 
nvme_mpath_uninit(struct nvme_ctrl * ctrl)785 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
786 {
787 	kfree(ctrl->ana_log_buf);
788 	ctrl->ana_log_buf = NULL;
789 }
790 
791