1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
71
72 #define smu_max_ports(dcc_value) \
73 (\
74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76 )
77
78 #define smu_max_task_contexts(dcc_value) \
79 (\
80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82 )
83
84 #define smu_max_rncs(dcc_value) \
85 (\
86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88 )
89
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
91
92 /**
93 *
94 *
95 * The number of milliseconds to wait while a given phy is consuming power
96 * before allowing another set of phys to consume power. Ultimately, this will
97 * be specified by OEM parameter.
98 */
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100
101 /**
102 * NORMALIZE_PUT_POINTER() -
103 *
104 * This macro will normalize the completion queue put pointer so its value can
105 * be used as an array inde
106 */
107 #define NORMALIZE_PUT_POINTER(x) \
108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109
110
111 /**
112 * NORMALIZE_EVENT_POINTER() -
113 *
114 * This macro will normalize the completion queue event entry so its value can
115 * be used as an index.
116 */
117 #define NORMALIZE_EVENT_POINTER(x) \
118 (\
119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
121 )
122
123 /**
124 * NORMALIZE_GET_POINTER() -
125 *
126 * This macro will normalize the completion queue get pointer so its value can
127 * be used as an index into an array
128 */
129 #define NORMALIZE_GET_POINTER(x) \
130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131
132 /**
133 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134 *
135 * This macro will normalize the completion queue cycle pointer so it matches
136 * the completion queue cycle bit
137 */
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140
141 /**
142 * COMPLETION_QUEUE_CYCLE_BIT() -
143 *
144 * This macro will return the cycle bit of the completion queue entry
145 */
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147
148 /* Init the state machine and call the state entry function (if any) */
sci_init_sm(struct sci_base_state_machine * sm,const struct sci_base_state * state_table,u32 initial_state)149 void sci_init_sm(struct sci_base_state_machine *sm,
150 const struct sci_base_state *state_table, u32 initial_state)
151 {
152 sci_state_transition_t handler;
153
154 sm->initial_state_id = initial_state;
155 sm->previous_state_id = initial_state;
156 sm->current_state_id = initial_state;
157 sm->state_table = state_table;
158
159 handler = sm->state_table[initial_state].enter_state;
160 if (handler)
161 handler(sm);
162 }
163
164 /* Call the state exit fn, update the current state, call the state entry fn */
sci_change_state(struct sci_base_state_machine * sm,u32 next_state)165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166 {
167 sci_state_transition_t handler;
168
169 handler = sm->state_table[sm->current_state_id].exit_state;
170 if (handler)
171 handler(sm);
172
173 sm->previous_state_id = sm->current_state_id;
174 sm->current_state_id = next_state;
175
176 handler = sm->state_table[sm->current_state_id].enter_state;
177 if (handler)
178 handler(sm);
179 }
180
sci_controller_completion_queue_has_entries(struct isci_host * ihost)181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182 {
183 u32 get_value = ihost->completion_queue_get;
184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185
186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 return true;
189
190 return false;
191 }
192
sci_controller_isr(struct isci_host * ihost)193 static bool sci_controller_isr(struct isci_host *ihost)
194 {
195 if (sci_controller_completion_queue_has_entries(ihost))
196 return true;
197
198 /* we have a spurious interrupt it could be that we have already
199 * emptied the completion queue from a previous interrupt
200 * FIXME: really!?
201 */
202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204 /* There is a race in the hardware that could cause us not to be
205 * notified of an interrupt completion if we do not take this
206 * step. We will mask then unmask the interrupts so if there is
207 * another interrupt pending the clearing of the interrupt
208 * source we get the next interrupt message.
209 */
210 spin_lock(&ihost->scic_lock);
211 if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
212 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
213 writel(0, &ihost->smu_registers->interrupt_mask);
214 }
215 spin_unlock(&ihost->scic_lock);
216
217 return false;
218 }
219
isci_msix_isr(int vec,void * data)220 irqreturn_t isci_msix_isr(int vec, void *data)
221 {
222 struct isci_host *ihost = data;
223
224 if (sci_controller_isr(ihost))
225 tasklet_schedule(&ihost->completion_tasklet);
226
227 return IRQ_HANDLED;
228 }
229
sci_controller_error_isr(struct isci_host * ihost)230 static bool sci_controller_error_isr(struct isci_host *ihost)
231 {
232 u32 interrupt_status;
233
234 interrupt_status =
235 readl(&ihost->smu_registers->interrupt_status);
236 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
237
238 if (interrupt_status != 0) {
239 /*
240 * There is an error interrupt pending so let it through and handle
241 * in the callback */
242 return true;
243 }
244
245 /*
246 * There is a race in the hardware that could cause us not to be notified
247 * of an interrupt completion if we do not take this step. We will mask
248 * then unmask the error interrupts so if there was another interrupt
249 * pending we will be notified.
250 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
251 writel(0xff, &ihost->smu_registers->interrupt_mask);
252 writel(0, &ihost->smu_registers->interrupt_mask);
253
254 return false;
255 }
256
sci_controller_task_completion(struct isci_host * ihost,u32 ent)257 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
258 {
259 u32 index = SCU_GET_COMPLETION_INDEX(ent);
260 struct isci_request *ireq = ihost->reqs[index];
261
262 /* Make sure that we really want to process this IO request */
263 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
264 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
265 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
266 /* Yep this is a valid io request pass it along to the
267 * io request handler
268 */
269 sci_io_request_tc_completion(ireq, ent);
270 }
271
sci_controller_sdma_completion(struct isci_host * ihost,u32 ent)272 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
273 {
274 u32 index;
275 struct isci_request *ireq;
276 struct isci_remote_device *idev;
277
278 index = SCU_GET_COMPLETION_INDEX(ent);
279
280 switch (scu_get_command_request_type(ent)) {
281 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
282 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
283 ireq = ihost->reqs[index];
284 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
285 __func__, ent, ireq);
286 /* @todo For a post TC operation we need to fail the IO
287 * request
288 */
289 break;
290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
291 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
292 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
293 idev = ihost->device_table[index];
294 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
295 __func__, ent, idev);
296 /* @todo For a port RNC operation we need to fail the
297 * device
298 */
299 break;
300 default:
301 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
302 __func__, ent);
303 break;
304 }
305 }
306
sci_controller_unsolicited_frame(struct isci_host * ihost,u32 ent)307 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
308 {
309 u32 index;
310 u32 frame_index;
311
312 struct scu_unsolicited_frame_header *frame_header;
313 struct isci_phy *iphy;
314 struct isci_remote_device *idev;
315
316 enum sci_status result = SCI_FAILURE;
317
318 frame_index = SCU_GET_FRAME_INDEX(ent);
319
320 frame_header = ihost->uf_control.buffers.array[frame_index].header;
321 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
322
323 if (SCU_GET_FRAME_ERROR(ent)) {
324 /*
325 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
326 * / this cause a problem? We expect the phy initialization will
327 * / fail if there is an error in the frame. */
328 sci_controller_release_frame(ihost, frame_index);
329 return;
330 }
331
332 if (frame_header->is_address_frame) {
333 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
334 iphy = &ihost->phys[index];
335 result = sci_phy_frame_handler(iphy, frame_index);
336 } else {
337
338 index = SCU_GET_COMPLETION_INDEX(ent);
339
340 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
341 /*
342 * This is a signature fis or a frame from a direct attached SATA
343 * device that has not yet been created. In either case forwared
344 * the frame to the PE and let it take care of the frame data. */
345 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
346 iphy = &ihost->phys[index];
347 result = sci_phy_frame_handler(iphy, frame_index);
348 } else {
349 if (index < ihost->remote_node_entries)
350 idev = ihost->device_table[index];
351 else
352 idev = NULL;
353
354 if (idev != NULL)
355 result = sci_remote_device_frame_handler(idev, frame_index);
356 else
357 sci_controller_release_frame(ihost, frame_index);
358 }
359 }
360
361 if (result != SCI_SUCCESS) {
362 /*
363 * / @todo Is there any reason to report some additional error message
364 * / when we get this failure notifiction? */
365 }
366 }
367
sci_controller_event_completion(struct isci_host * ihost,u32 ent)368 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
369 {
370 struct isci_remote_device *idev;
371 struct isci_request *ireq;
372 struct isci_phy *iphy;
373 u32 index;
374
375 index = SCU_GET_COMPLETION_INDEX(ent);
376
377 switch (scu_get_event_type(ent)) {
378 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
379 /* / @todo The driver did something wrong and we need to fix the condtion. */
380 dev_err(&ihost->pdev->dev,
381 "%s: SCIC Controller 0x%p received SMU command error "
382 "0x%x\n",
383 __func__,
384 ihost,
385 ent);
386 break;
387
388 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
389 case SCU_EVENT_TYPE_SMU_ERROR:
390 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
391 /*
392 * / @todo This is a hardware failure and its likely that we want to
393 * / reset the controller. */
394 dev_err(&ihost->pdev->dev,
395 "%s: SCIC Controller 0x%p received fatal controller "
396 "event 0x%x\n",
397 __func__,
398 ihost,
399 ent);
400 break;
401
402 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
403 ireq = ihost->reqs[index];
404 sci_io_request_event_handler(ireq, ent);
405 break;
406
407 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
408 switch (scu_get_event_specifier(ent)) {
409 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
410 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
411 ireq = ihost->reqs[index];
412 if (ireq != NULL)
413 sci_io_request_event_handler(ireq, ent);
414 else
415 dev_warn(&ihost->pdev->dev,
416 "%s: SCIC Controller 0x%p received "
417 "event 0x%x for io request object "
418 "that doesnt exist.\n",
419 __func__,
420 ihost,
421 ent);
422
423 break;
424
425 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
426 idev = ihost->device_table[index];
427 if (idev != NULL)
428 sci_remote_device_event_handler(idev, ent);
429 else
430 dev_warn(&ihost->pdev->dev,
431 "%s: SCIC Controller 0x%p received "
432 "event 0x%x for remote device object "
433 "that doesnt exist.\n",
434 __func__,
435 ihost,
436 ent);
437
438 break;
439 }
440 break;
441
442 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
443 /*
444 * direct the broadcast change event to the phy first and then let
445 * the phy redirect the broadcast change to the port object */
446 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
447 /*
448 * direct error counter event to the phy object since that is where
449 * we get the event notification. This is a type 4 event. */
450 case SCU_EVENT_TYPE_OSSP_EVENT:
451 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
452 iphy = &ihost->phys[index];
453 sci_phy_event_handler(iphy, ent);
454 break;
455
456 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
457 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
458 case SCU_EVENT_TYPE_RNC_OPS_MISC:
459 if (index < ihost->remote_node_entries) {
460 idev = ihost->device_table[index];
461
462 if (idev != NULL)
463 sci_remote_device_event_handler(idev, ent);
464 } else
465 dev_err(&ihost->pdev->dev,
466 "%s: SCIC Controller 0x%p received event 0x%x "
467 "for remote device object 0x%0x that doesnt "
468 "exist.\n",
469 __func__,
470 ihost,
471 ent,
472 index);
473
474 break;
475
476 default:
477 dev_warn(&ihost->pdev->dev,
478 "%s: SCIC Controller received unknown event code %x\n",
479 __func__,
480 ent);
481 break;
482 }
483 }
484
sci_controller_process_completions(struct isci_host * ihost)485 static void sci_controller_process_completions(struct isci_host *ihost)
486 {
487 u32 completion_count = 0;
488 u32 ent;
489 u32 get_index;
490 u32 get_cycle;
491 u32 event_get;
492 u32 event_cycle;
493
494 dev_dbg(&ihost->pdev->dev,
495 "%s: completion queue beginning get:0x%08x\n",
496 __func__,
497 ihost->completion_queue_get);
498
499 /* Get the component parts of the completion queue */
500 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
501 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
502
503 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
504 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
505
506 while (
507 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
508 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
509 ) {
510 completion_count++;
511
512 ent = ihost->completion_queue[get_index];
513
514 /* increment the get pointer and check for rollover to toggle the cycle bit */
515 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
516 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
517 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
518
519 dev_dbg(&ihost->pdev->dev,
520 "%s: completion queue entry:0x%08x\n",
521 __func__,
522 ent);
523
524 switch (SCU_GET_COMPLETION_TYPE(ent)) {
525 case SCU_COMPLETION_TYPE_TASK:
526 sci_controller_task_completion(ihost, ent);
527 break;
528
529 case SCU_COMPLETION_TYPE_SDMA:
530 sci_controller_sdma_completion(ihost, ent);
531 break;
532
533 case SCU_COMPLETION_TYPE_UFI:
534 sci_controller_unsolicited_frame(ihost, ent);
535 break;
536
537 case SCU_COMPLETION_TYPE_EVENT:
538 sci_controller_event_completion(ihost, ent);
539 break;
540
541 case SCU_COMPLETION_TYPE_NOTIFY: {
542 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
543 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
544 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
545
546 sci_controller_event_completion(ihost, ent);
547 break;
548 }
549 default:
550 dev_warn(&ihost->pdev->dev,
551 "%s: SCIC Controller received unknown "
552 "completion type %x\n",
553 __func__,
554 ent);
555 break;
556 }
557 }
558
559 /* Update the get register if we completed one or more entries */
560 if (completion_count > 0) {
561 ihost->completion_queue_get =
562 SMU_CQGR_GEN_BIT(ENABLE) |
563 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
564 event_cycle |
565 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
566 get_cycle |
567 SMU_CQGR_GEN_VAL(POINTER, get_index);
568
569 writel(ihost->completion_queue_get,
570 &ihost->smu_registers->completion_queue_get);
571
572 }
573
574 dev_dbg(&ihost->pdev->dev,
575 "%s: completion queue ending get:0x%08x\n",
576 __func__,
577 ihost->completion_queue_get);
578
579 }
580
sci_controller_error_handler(struct isci_host * ihost)581 static void sci_controller_error_handler(struct isci_host *ihost)
582 {
583 u32 interrupt_status;
584
585 interrupt_status =
586 readl(&ihost->smu_registers->interrupt_status);
587
588 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
589 sci_controller_completion_queue_has_entries(ihost)) {
590
591 sci_controller_process_completions(ihost);
592 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
593 } else {
594 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
595 interrupt_status);
596
597 sci_change_state(&ihost->sm, SCIC_FAILED);
598
599 return;
600 }
601
602 /* If we dont process any completions I am not sure that we want to do this.
603 * We are in the middle of a hardware fault and should probably be reset.
604 */
605 writel(0, &ihost->smu_registers->interrupt_mask);
606 }
607
isci_intx_isr(int vec,void * data)608 irqreturn_t isci_intx_isr(int vec, void *data)
609 {
610 irqreturn_t ret = IRQ_NONE;
611 struct isci_host *ihost = data;
612
613 if (sci_controller_isr(ihost)) {
614 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
615 tasklet_schedule(&ihost->completion_tasklet);
616 ret = IRQ_HANDLED;
617 } else if (sci_controller_error_isr(ihost)) {
618 spin_lock(&ihost->scic_lock);
619 sci_controller_error_handler(ihost);
620 spin_unlock(&ihost->scic_lock);
621 ret = IRQ_HANDLED;
622 }
623
624 return ret;
625 }
626
isci_error_isr(int vec,void * data)627 irqreturn_t isci_error_isr(int vec, void *data)
628 {
629 struct isci_host *ihost = data;
630
631 if (sci_controller_error_isr(ihost))
632 sci_controller_error_handler(ihost);
633
634 return IRQ_HANDLED;
635 }
636
637 /**
638 * isci_host_start_complete() - This function is called by the core library,
639 * through the ISCI Module, to indicate controller start status.
640 * @isci_host: This parameter specifies the ISCI host object
641 * @completion_status: This parameter specifies the completion status from the
642 * core library.
643 *
644 */
isci_host_start_complete(struct isci_host * ihost,enum sci_status completion_status)645 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
646 {
647 if (completion_status != SCI_SUCCESS)
648 dev_info(&ihost->pdev->dev,
649 "controller start timed out, continuing...\n");
650 clear_bit(IHOST_START_PENDING, &ihost->flags);
651 wake_up(&ihost->eventq);
652 }
653
isci_host_scan_finished(struct Scsi_Host * shost,unsigned long time)654 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
655 {
656 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
657 struct isci_host *ihost = ha->lldd_ha;
658
659 if (test_bit(IHOST_START_PENDING, &ihost->flags))
660 return 0;
661
662 sas_drain_work(ha);
663
664 return 1;
665 }
666
667 /**
668 * sci_controller_get_suggested_start_timeout() - This method returns the
669 * suggested sci_controller_start() timeout amount. The user is free to
670 * use any timeout value, but this method provides the suggested minimum
671 * start timeout value. The returned value is based upon empirical
672 * information determined as a result of interoperability testing.
673 * @controller: the handle to the controller object for which to return the
674 * suggested start timeout.
675 *
676 * This method returns the number of milliseconds for the suggested start
677 * operation timeout.
678 */
sci_controller_get_suggested_start_timeout(struct isci_host * ihost)679 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
680 {
681 /* Validate the user supplied parameters. */
682 if (!ihost)
683 return 0;
684
685 /*
686 * The suggested minimum timeout value for a controller start operation:
687 *
688 * Signature FIS Timeout
689 * + Phy Start Timeout
690 * + Number of Phy Spin Up Intervals
691 * ---------------------------------
692 * Number of milliseconds for the controller start operation.
693 *
694 * NOTE: The number of phy spin up intervals will be equivalent
695 * to the number of phys divided by the number phys allowed
696 * per interval - 1 (once OEM parameters are supported).
697 * Currently we assume only 1 phy per interval. */
698
699 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
700 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
701 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
702 }
703
sci_controller_enable_interrupts(struct isci_host * ihost)704 static void sci_controller_enable_interrupts(struct isci_host *ihost)
705 {
706 set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
707 writel(0, &ihost->smu_registers->interrupt_mask);
708 }
709
sci_controller_disable_interrupts(struct isci_host * ihost)710 void sci_controller_disable_interrupts(struct isci_host *ihost)
711 {
712 clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
713 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
714 readl(&ihost->smu_registers->interrupt_mask); /* flush */
715 }
716
sci_controller_enable_port_task_scheduler(struct isci_host * ihost)717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 {
719 u32 port_task_scheduler_value;
720
721 port_task_scheduler_value =
722 readl(&ihost->scu_registers->peg0.ptsg.control);
723 port_task_scheduler_value |=
724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726 writel(port_task_scheduler_value,
727 &ihost->scu_registers->peg0.ptsg.control);
728 }
729
sci_controller_assign_task_entries(struct isci_host * ihost)730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 {
732 u32 task_assignment;
733
734 /*
735 * Assign all the TCs to function 0
736 * TODO: Do we actually need to read this register to write it back?
737 */
738
739 task_assignment =
740 readl(&ihost->smu_registers->task_context_assignment[0]);
741
742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746 writel(task_assignment,
747 &ihost->smu_registers->task_context_assignment[0]);
748
749 }
750
sci_controller_initialize_completion_queue(struct isci_host * ihost)751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 {
753 u32 index;
754 u32 completion_queue_control_value;
755 u32 completion_queue_get_value;
756 u32 completion_queue_put_value;
757
758 ihost->completion_queue_get = 0;
759
760 completion_queue_control_value =
761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764 writel(completion_queue_control_value,
765 &ihost->smu_registers->completion_queue_control);
766
767
768 /* Set the completion queue get pointer and enable the queue */
769 completion_queue_get_value = (
770 (SMU_CQGR_GEN_VAL(POINTER, 0))
771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772 | (SMU_CQGR_GEN_BIT(ENABLE))
773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774 );
775
776 writel(completion_queue_get_value,
777 &ihost->smu_registers->completion_queue_get);
778
779 /* Set the completion queue put pointer */
780 completion_queue_put_value = (
781 (SMU_CQPR_GEN_VAL(POINTER, 0))
782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783 );
784
785 writel(completion_queue_put_value,
786 &ihost->smu_registers->completion_queue_put);
787
788 /* Initialize the cycle bit of the completion queue entries */
789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 /*
791 * If get.cycle_bit != completion_queue.cycle_bit
792 * its not a valid completion queue entry
793 * so at system start all entries are invalid */
794 ihost->completion_queue[index] = 0x80000000;
795 }
796 }
797
sci_controller_initialize_unsolicited_frame_queue(struct isci_host * ihost)798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 {
800 u32 frame_queue_control_value;
801 u32 frame_queue_get_value;
802 u32 frame_queue_put_value;
803
804 /* Write the queue size */
805 frame_queue_control_value =
806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808 writel(frame_queue_control_value,
809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811 /* Setup the get pointer for the unsolicited frame queue */
812 frame_queue_get_value = (
813 SCU_UFQGP_GEN_VAL(POINTER, 0)
814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815 );
816
817 writel(frame_queue_get_value,
818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 /* Setup the put pointer for the unsolicited frame queue */
820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821 writel(frame_queue_put_value,
822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 }
824
sci_controller_transition_to_ready(struct isci_host * ihost,enum sci_status status)825 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826 {
827 if (ihost->sm.current_state_id == SCIC_STARTING) {
828 /*
829 * We move into the ready state, because some of the phys/ports
830 * may be up and operational.
831 */
832 sci_change_state(&ihost->sm, SCIC_READY);
833
834 isci_host_start_complete(ihost, status);
835 }
836 }
837
is_phy_starting(struct isci_phy * iphy)838 static bool is_phy_starting(struct isci_phy *iphy)
839 {
840 enum sci_phy_states state;
841
842 state = iphy->sm.current_state_id;
843 switch (state) {
844 case SCI_PHY_STARTING:
845 case SCI_PHY_SUB_INITIAL:
846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847 case SCI_PHY_SUB_AWAIT_IAF_UF:
848 case SCI_PHY_SUB_AWAIT_SAS_POWER:
849 case SCI_PHY_SUB_AWAIT_SATA_POWER:
850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852 case SCI_PHY_SUB_AWAIT_OSSP_EN:
853 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
854 case SCI_PHY_SUB_FINAL:
855 return true;
856 default:
857 return false;
858 }
859 }
860
is_controller_start_complete(struct isci_host * ihost)861 bool is_controller_start_complete(struct isci_host *ihost)
862 {
863 int i;
864
865 for (i = 0; i < SCI_MAX_PHYS; i++) {
866 struct isci_phy *iphy = &ihost->phys[i];
867 u32 state = iphy->sm.current_state_id;
868
869 /* in apc mode we need to check every phy, in
870 * mpc mode we only need to check phys that have
871 * been configured into a port
872 */
873 if (is_port_config_apc(ihost))
874 /* pass */;
875 else if (!phy_get_non_dummy_port(iphy))
876 continue;
877
878 /* The controller start operation is complete iff:
879 * - all links have been given an opportunity to start
880 * - have no indication of a connected device
881 * - have an indication of a connected device and it has
882 * finished the link training process.
883 */
884 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
885 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
886 (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
887 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
888 return false;
889 }
890
891 return true;
892 }
893
894 /**
895 * sci_controller_start_next_phy - start phy
896 * @scic: controller
897 *
898 * If all the phys have been started, then attempt to transition the
899 * controller to the READY state and inform the user
900 * (sci_cb_controller_start_complete()).
901 */
sci_controller_start_next_phy(struct isci_host * ihost)902 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
903 {
904 struct sci_oem_params *oem = &ihost->oem_parameters;
905 struct isci_phy *iphy;
906 enum sci_status status;
907
908 status = SCI_SUCCESS;
909
910 if (ihost->phy_startup_timer_pending)
911 return status;
912
913 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
914 if (is_controller_start_complete(ihost)) {
915 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
916 sci_del_timer(&ihost->phy_timer);
917 ihost->phy_startup_timer_pending = false;
918 }
919 } else {
920 iphy = &ihost->phys[ihost->next_phy_to_start];
921
922 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
923 if (phy_get_non_dummy_port(iphy) == NULL) {
924 ihost->next_phy_to_start++;
925
926 /* Caution recursion ahead be forwarned
927 *
928 * The PHY was never added to a PORT in MPC mode
929 * so start the next phy in sequence This phy
930 * will never go link up and will not draw power
931 * the OEM parameters either configured the phy
932 * incorrectly for the PORT or it was never
933 * assigned to a PORT
934 */
935 return sci_controller_start_next_phy(ihost);
936 }
937 }
938
939 status = sci_phy_start(iphy);
940
941 if (status == SCI_SUCCESS) {
942 sci_mod_timer(&ihost->phy_timer,
943 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
944 ihost->phy_startup_timer_pending = true;
945 } else {
946 dev_warn(&ihost->pdev->dev,
947 "%s: Controller stop operation failed "
948 "to stop phy %d because of status "
949 "%d.\n",
950 __func__,
951 ihost->phys[ihost->next_phy_to_start].phy_index,
952 status);
953 }
954
955 ihost->next_phy_to_start++;
956 }
957
958 return status;
959 }
960
phy_startup_timeout(struct timer_list * t)961 static void phy_startup_timeout(struct timer_list *t)
962 {
963 struct sci_timer *tmr = from_timer(tmr, t, timer);
964 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
965 unsigned long flags;
966 enum sci_status status;
967
968 spin_lock_irqsave(&ihost->scic_lock, flags);
969
970 if (tmr->cancel)
971 goto done;
972
973 ihost->phy_startup_timer_pending = false;
974
975 do {
976 status = sci_controller_start_next_phy(ihost);
977 } while (status != SCI_SUCCESS);
978
979 done:
980 spin_unlock_irqrestore(&ihost->scic_lock, flags);
981 }
982
isci_tci_active(struct isci_host * ihost)983 static u16 isci_tci_active(struct isci_host *ihost)
984 {
985 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
986 }
987
sci_controller_start(struct isci_host * ihost,u32 timeout)988 static enum sci_status sci_controller_start(struct isci_host *ihost,
989 u32 timeout)
990 {
991 enum sci_status result;
992 u16 index;
993
994 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
995 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
996 __func__, ihost->sm.current_state_id);
997 return SCI_FAILURE_INVALID_STATE;
998 }
999
1000 /* Build the TCi free pool */
1001 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1002 ihost->tci_head = 0;
1003 ihost->tci_tail = 0;
1004 for (index = 0; index < ihost->task_context_entries; index++)
1005 isci_tci_free(ihost, index);
1006
1007 /* Build the RNi free pool */
1008 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1009 ihost->remote_node_entries);
1010
1011 /*
1012 * Before anything else lets make sure we will not be
1013 * interrupted by the hardware.
1014 */
1015 sci_controller_disable_interrupts(ihost);
1016
1017 /* Enable the port task scheduler */
1018 sci_controller_enable_port_task_scheduler(ihost);
1019
1020 /* Assign all the task entries to ihost physical function */
1021 sci_controller_assign_task_entries(ihost);
1022
1023 /* Now initialize the completion queue */
1024 sci_controller_initialize_completion_queue(ihost);
1025
1026 /* Initialize the unsolicited frame queue for use */
1027 sci_controller_initialize_unsolicited_frame_queue(ihost);
1028
1029 /* Start all of the ports on this controller */
1030 for (index = 0; index < ihost->logical_port_entries; index++) {
1031 struct isci_port *iport = &ihost->ports[index];
1032
1033 result = sci_port_start(iport);
1034 if (result)
1035 return result;
1036 }
1037
1038 sci_controller_start_next_phy(ihost);
1039
1040 sci_mod_timer(&ihost->timer, timeout);
1041
1042 sci_change_state(&ihost->sm, SCIC_STARTING);
1043
1044 return SCI_SUCCESS;
1045 }
1046
isci_host_start(struct Scsi_Host * shost)1047 void isci_host_start(struct Scsi_Host *shost)
1048 {
1049 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1050 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1051
1052 set_bit(IHOST_START_PENDING, &ihost->flags);
1053
1054 spin_lock_irq(&ihost->scic_lock);
1055 sci_controller_start(ihost, tmo);
1056 sci_controller_enable_interrupts(ihost);
1057 spin_unlock_irq(&ihost->scic_lock);
1058 }
1059
isci_host_stop_complete(struct isci_host * ihost)1060 static void isci_host_stop_complete(struct isci_host *ihost)
1061 {
1062 sci_controller_disable_interrupts(ihost);
1063 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064 wake_up(&ihost->eventq);
1065 }
1066
sci_controller_completion_handler(struct isci_host * ihost)1067 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 {
1069 /* Empty out the completion queue */
1070 if (sci_controller_completion_queue_has_entries(ihost))
1071 sci_controller_process_completions(ihost);
1072
1073 /* Clear the interrupt and enable all interrupts again */
1074 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075 /* Could we write the value of SMU_ISR_COMPLETION? */
1076 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077 writel(0, &ihost->smu_registers->interrupt_mask);
1078 }
1079
ireq_done(struct isci_host * ihost,struct isci_request * ireq,struct sas_task * task)1080 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1081 {
1082 if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1083 !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1084 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1085 /* Normal notification (task_done) */
1086 dev_dbg(&ihost->pdev->dev,
1087 "%s: Normal - ireq/task = %p/%p\n",
1088 __func__, ireq, task);
1089 task->lldd_task = NULL;
1090 task->task_done(task);
1091 } else {
1092 dev_dbg(&ihost->pdev->dev,
1093 "%s: Error - ireq/task = %p/%p\n",
1094 __func__, ireq, task);
1095 if (sas_protocol_ata(task->task_proto))
1096 task->lldd_task = NULL;
1097 sas_task_abort(task);
1098 }
1099 } else
1100 task->lldd_task = NULL;
1101
1102 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1103 wake_up_all(&ihost->eventq);
1104
1105 if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1106 isci_free_tag(ihost, ireq->io_tag);
1107 }
1108 /**
1109 * isci_host_completion_routine() - This function is the delayed service
1110 * routine that calls the sci core library's completion handler. It's
1111 * scheduled as a tasklet from the interrupt service routine when interrupts
1112 * in use, or set as the timeout function in polled mode.
1113 * @data: This parameter specifies the ISCI host object
1114 *
1115 */
isci_host_completion_routine(unsigned long data)1116 void isci_host_completion_routine(unsigned long data)
1117 {
1118 struct isci_host *ihost = (struct isci_host *)data;
1119 u16 active;
1120
1121 spin_lock_irq(&ihost->scic_lock);
1122 sci_controller_completion_handler(ihost);
1123 spin_unlock_irq(&ihost->scic_lock);
1124
1125 /*
1126 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1127 * issued for hardware issue workaround
1128 */
1129 active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1130
1131 /*
1132 * the coalesence timeout doubles at each encoding step, so
1133 * update it based on the ilog2 value of the outstanding requests
1134 */
1135 writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1136 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1137 &ihost->smu_registers->interrupt_coalesce_control);
1138 }
1139
1140 /**
1141 * sci_controller_stop() - This method will stop an individual controller
1142 * object.This method will invoke the associated user callback upon
1143 * completion. The completion callback is called when the following
1144 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1145 * controller has been quiesced. This method will ensure that all IO
1146 * requests are quiesced, phys are stopped, and all additional operation by
1147 * the hardware is halted.
1148 * @controller: the handle to the controller object to stop.
1149 * @timeout: This parameter specifies the number of milliseconds in which the
1150 * stop operation should complete.
1151 *
1152 * The controller must be in the STARTED or STOPPED state. Indicate if the
1153 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1154 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1155 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1156 * controller is not either in the STARTED or STOPPED states.
1157 */
sci_controller_stop(struct isci_host * ihost,u32 timeout)1158 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1159 {
1160 if (ihost->sm.current_state_id != SCIC_READY) {
1161 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1162 __func__, ihost->sm.current_state_id);
1163 return SCI_FAILURE_INVALID_STATE;
1164 }
1165
1166 sci_mod_timer(&ihost->timer, timeout);
1167 sci_change_state(&ihost->sm, SCIC_STOPPING);
1168 return SCI_SUCCESS;
1169 }
1170
1171 /**
1172 * sci_controller_reset() - This method will reset the supplied core
1173 * controller regardless of the state of said controller. This operation is
1174 * considered destructive. In other words, all current operations are wiped
1175 * out. No IO completions for outstanding devices occur. Outstanding IO
1176 * requests are not aborted or completed at the actual remote device.
1177 * @controller: the handle to the controller object to reset.
1178 *
1179 * Indicate if the controller reset method succeeded or failed in some way.
1180 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1181 * the controller reset operation is unable to complete.
1182 */
sci_controller_reset(struct isci_host * ihost)1183 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1184 {
1185 switch (ihost->sm.current_state_id) {
1186 case SCIC_RESET:
1187 case SCIC_READY:
1188 case SCIC_STOPPING:
1189 case SCIC_FAILED:
1190 /*
1191 * The reset operation is not a graceful cleanup, just
1192 * perform the state transition.
1193 */
1194 sci_change_state(&ihost->sm, SCIC_RESETTING);
1195 return SCI_SUCCESS;
1196 default:
1197 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1198 __func__, ihost->sm.current_state_id);
1199 return SCI_FAILURE_INVALID_STATE;
1200 }
1201 }
1202
sci_controller_stop_phys(struct isci_host * ihost)1203 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1204 {
1205 u32 index;
1206 enum sci_status status;
1207 enum sci_status phy_status;
1208
1209 status = SCI_SUCCESS;
1210
1211 for (index = 0; index < SCI_MAX_PHYS; index++) {
1212 phy_status = sci_phy_stop(&ihost->phys[index]);
1213
1214 if (phy_status != SCI_SUCCESS &&
1215 phy_status != SCI_FAILURE_INVALID_STATE) {
1216 status = SCI_FAILURE;
1217
1218 dev_warn(&ihost->pdev->dev,
1219 "%s: Controller stop operation failed to stop "
1220 "phy %d because of status %d.\n",
1221 __func__,
1222 ihost->phys[index].phy_index, phy_status);
1223 }
1224 }
1225
1226 return status;
1227 }
1228
1229
1230 /**
1231 * isci_host_deinit - shutdown frame reception and dma
1232 * @ihost: host to take down
1233 *
1234 * This is called in either the driver shutdown or the suspend path. In
1235 * the shutdown case libsas went through port teardown and normal device
1236 * removal (i.e. physical links stayed up to service scsi_device removal
1237 * commands). In the suspend case we disable the hardware without
1238 * notifying libsas of the link down events since we want libsas to
1239 * remember the domain across the suspend/resume cycle
1240 */
isci_host_deinit(struct isci_host * ihost)1241 void isci_host_deinit(struct isci_host *ihost)
1242 {
1243 int i;
1244
1245 /* disable output data selects */
1246 for (i = 0; i < isci_gpio_count(ihost); i++)
1247 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1248
1249 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1250
1251 spin_lock_irq(&ihost->scic_lock);
1252 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1253 spin_unlock_irq(&ihost->scic_lock);
1254
1255 wait_for_stop(ihost);
1256
1257 /* phy stop is after controller stop to allow port and device to
1258 * go idle before shutting down the phys, but the expectation is
1259 * that i/o has been shut off well before we reach this
1260 * function.
1261 */
1262 sci_controller_stop_phys(ihost);
1263
1264 /* disable sgpio: where the above wait should give time for the
1265 * enclosure to sample the gpios going inactive
1266 */
1267 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1268
1269 spin_lock_irq(&ihost->scic_lock);
1270 sci_controller_reset(ihost);
1271 spin_unlock_irq(&ihost->scic_lock);
1272
1273 /* Cancel any/all outstanding port timers */
1274 for (i = 0; i < ihost->logical_port_entries; i++) {
1275 struct isci_port *iport = &ihost->ports[i];
1276 del_timer_sync(&iport->timer.timer);
1277 }
1278
1279 /* Cancel any/all outstanding phy timers */
1280 for (i = 0; i < SCI_MAX_PHYS; i++) {
1281 struct isci_phy *iphy = &ihost->phys[i];
1282 del_timer_sync(&iphy->sata_timer.timer);
1283 }
1284
1285 del_timer_sync(&ihost->port_agent.timer.timer);
1286
1287 del_timer_sync(&ihost->power_control.timer.timer);
1288
1289 del_timer_sync(&ihost->timer.timer);
1290
1291 del_timer_sync(&ihost->phy_timer.timer);
1292 }
1293
scu_base(struct isci_host * isci_host)1294 static void __iomem *scu_base(struct isci_host *isci_host)
1295 {
1296 struct pci_dev *pdev = isci_host->pdev;
1297 int id = isci_host->id;
1298
1299 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1300 }
1301
smu_base(struct isci_host * isci_host)1302 static void __iomem *smu_base(struct isci_host *isci_host)
1303 {
1304 struct pci_dev *pdev = isci_host->pdev;
1305 int id = isci_host->id;
1306
1307 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1308 }
1309
sci_controller_initial_state_enter(struct sci_base_state_machine * sm)1310 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1311 {
1312 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1313
1314 sci_change_state(&ihost->sm, SCIC_RESET);
1315 }
1316
sci_controller_starting_state_exit(struct sci_base_state_machine * sm)1317 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1318 {
1319 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1320
1321 sci_del_timer(&ihost->timer);
1322 }
1323
1324 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1325 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1326 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1327 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1328 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1329 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1330
1331 /**
1332 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1333 * configure the interrupt coalescence.
1334 * @controller: This parameter represents the handle to the controller object
1335 * for which its interrupt coalesce register is overridden.
1336 * @coalesce_number: Used to control the number of entries in the Completion
1337 * Queue before an interrupt is generated. If the number of entries exceed
1338 * this number, an interrupt will be generated. The valid range of the input
1339 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1340 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1341 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1342 * interrupt coalescing timeout.
1343 *
1344 * Indicate if the user successfully set the interrupt coalesce parameters.
1345 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1346 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1347 */
1348 static enum sci_status
sci_controller_set_interrupt_coalescence(struct isci_host * ihost,u32 coalesce_number,u32 coalesce_timeout)1349 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1350 u32 coalesce_number,
1351 u32 coalesce_timeout)
1352 {
1353 u8 timeout_encode = 0;
1354 u32 min = 0;
1355 u32 max = 0;
1356
1357 /* Check if the input parameters fall in the range. */
1358 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1359 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1360
1361 /*
1362 * Defined encoding for interrupt coalescing timeout:
1363 * Value Min Max Units
1364 * ----- --- --- -----
1365 * 0 - - Disabled
1366 * 1 13.3 20.0 ns
1367 * 2 26.7 40.0
1368 * 3 53.3 80.0
1369 * 4 106.7 160.0
1370 * 5 213.3 320.0
1371 * 6 426.7 640.0
1372 * 7 853.3 1280.0
1373 * 8 1.7 2.6 us
1374 * 9 3.4 5.1
1375 * 10 6.8 10.2
1376 * 11 13.7 20.5
1377 * 12 27.3 41.0
1378 * 13 54.6 81.9
1379 * 14 109.2 163.8
1380 * 15 218.5 327.7
1381 * 16 436.9 655.4
1382 * 17 873.8 1310.7
1383 * 18 1.7 2.6 ms
1384 * 19 3.5 5.2
1385 * 20 7.0 10.5
1386 * 21 14.0 21.0
1387 * 22 28.0 41.9
1388 * 23 55.9 83.9
1389 * 24 111.8 167.8
1390 * 25 223.7 335.5
1391 * 26 447.4 671.1
1392 * 27 894.8 1342.2
1393 * 28 1.8 2.7 s
1394 * Others Undefined */
1395
1396 /*
1397 * Use the table above to decide the encode of interrupt coalescing timeout
1398 * value for register writing. */
1399 if (coalesce_timeout == 0)
1400 timeout_encode = 0;
1401 else{
1402 /* make the timeout value in unit of (10 ns). */
1403 coalesce_timeout = coalesce_timeout * 100;
1404 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1405 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1406
1407 /* get the encode of timeout for register writing. */
1408 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1409 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1410 timeout_encode++) {
1411 if (min <= coalesce_timeout && max > coalesce_timeout)
1412 break;
1413 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1414 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1415 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1416 break;
1417 else{
1418 timeout_encode++;
1419 break;
1420 }
1421 } else {
1422 max = max * 2;
1423 min = min * 2;
1424 }
1425 }
1426
1427 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1428 /* the value is out of range. */
1429 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1430 }
1431
1432 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1433 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1434 &ihost->smu_registers->interrupt_coalesce_control);
1435
1436
1437 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1438 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1439
1440 return SCI_SUCCESS;
1441 }
1442
1443
sci_controller_ready_state_enter(struct sci_base_state_machine * sm)1444 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1445 {
1446 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1447 u32 val;
1448
1449 /* enable clock gating for power control of the scu unit */
1450 val = readl(&ihost->smu_registers->clock_gating_control);
1451 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1452 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1453 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1454 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1455 writel(val, &ihost->smu_registers->clock_gating_control);
1456
1457 /* set the default interrupt coalescence number and timeout value. */
1458 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1459 }
1460
sci_controller_ready_state_exit(struct sci_base_state_machine * sm)1461 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1462 {
1463 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1464
1465 /* disable interrupt coalescence. */
1466 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1467 }
1468
sci_controller_stop_ports(struct isci_host * ihost)1469 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1470 {
1471 u32 index;
1472 enum sci_status port_status;
1473 enum sci_status status = SCI_SUCCESS;
1474
1475 for (index = 0; index < ihost->logical_port_entries; index++) {
1476 struct isci_port *iport = &ihost->ports[index];
1477
1478 port_status = sci_port_stop(iport);
1479
1480 if ((port_status != SCI_SUCCESS) &&
1481 (port_status != SCI_FAILURE_INVALID_STATE)) {
1482 status = SCI_FAILURE;
1483
1484 dev_warn(&ihost->pdev->dev,
1485 "%s: Controller stop operation failed to "
1486 "stop port %d because of status %d.\n",
1487 __func__,
1488 iport->logical_port_index,
1489 port_status);
1490 }
1491 }
1492
1493 return status;
1494 }
1495
sci_controller_stop_devices(struct isci_host * ihost)1496 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1497 {
1498 u32 index;
1499 enum sci_status status;
1500 enum sci_status device_status;
1501
1502 status = SCI_SUCCESS;
1503
1504 for (index = 0; index < ihost->remote_node_entries; index++) {
1505 if (ihost->device_table[index] != NULL) {
1506 /* / @todo What timeout value do we want to provide to this request? */
1507 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1508
1509 if ((device_status != SCI_SUCCESS) &&
1510 (device_status != SCI_FAILURE_INVALID_STATE)) {
1511 dev_warn(&ihost->pdev->dev,
1512 "%s: Controller stop operation failed "
1513 "to stop device 0x%p because of "
1514 "status %d.\n",
1515 __func__,
1516 ihost->device_table[index], device_status);
1517 }
1518 }
1519 }
1520
1521 return status;
1522 }
1523
sci_controller_stopping_state_enter(struct sci_base_state_machine * sm)1524 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1525 {
1526 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1527
1528 sci_controller_stop_devices(ihost);
1529 sci_controller_stop_ports(ihost);
1530
1531 if (!sci_controller_has_remote_devices_stopping(ihost))
1532 isci_host_stop_complete(ihost);
1533 }
1534
sci_controller_stopping_state_exit(struct sci_base_state_machine * sm)1535 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1536 {
1537 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1538
1539 sci_del_timer(&ihost->timer);
1540 }
1541
sci_controller_reset_hardware(struct isci_host * ihost)1542 static void sci_controller_reset_hardware(struct isci_host *ihost)
1543 {
1544 /* Disable interrupts so we dont take any spurious interrupts */
1545 sci_controller_disable_interrupts(ihost);
1546
1547 /* Reset the SCU */
1548 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1549
1550 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1551 udelay(1000);
1552
1553 /* The write to the CQGR clears the CQP */
1554 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1555
1556 /* The write to the UFQGP clears the UFQPR */
1557 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1558
1559 /* clear all interrupts */
1560 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1561 }
1562
sci_controller_resetting_state_enter(struct sci_base_state_machine * sm)1563 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1564 {
1565 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1566
1567 sci_controller_reset_hardware(ihost);
1568 sci_change_state(&ihost->sm, SCIC_RESET);
1569 }
1570
1571 static const struct sci_base_state sci_controller_state_table[] = {
1572 [SCIC_INITIAL] = {
1573 .enter_state = sci_controller_initial_state_enter,
1574 },
1575 [SCIC_RESET] = {},
1576 [SCIC_INITIALIZING] = {},
1577 [SCIC_INITIALIZED] = {},
1578 [SCIC_STARTING] = {
1579 .exit_state = sci_controller_starting_state_exit,
1580 },
1581 [SCIC_READY] = {
1582 .enter_state = sci_controller_ready_state_enter,
1583 .exit_state = sci_controller_ready_state_exit,
1584 },
1585 [SCIC_RESETTING] = {
1586 .enter_state = sci_controller_resetting_state_enter,
1587 },
1588 [SCIC_STOPPING] = {
1589 .enter_state = sci_controller_stopping_state_enter,
1590 .exit_state = sci_controller_stopping_state_exit,
1591 },
1592 [SCIC_FAILED] = {}
1593 };
1594
controller_timeout(struct timer_list * t)1595 static void controller_timeout(struct timer_list *t)
1596 {
1597 struct sci_timer *tmr = from_timer(tmr, t, timer);
1598 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1599 struct sci_base_state_machine *sm = &ihost->sm;
1600 unsigned long flags;
1601
1602 spin_lock_irqsave(&ihost->scic_lock, flags);
1603
1604 if (tmr->cancel)
1605 goto done;
1606
1607 if (sm->current_state_id == SCIC_STARTING)
1608 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1609 else if (sm->current_state_id == SCIC_STOPPING) {
1610 sci_change_state(sm, SCIC_FAILED);
1611 isci_host_stop_complete(ihost);
1612 } else /* / @todo Now what do we want to do in this case? */
1613 dev_err(&ihost->pdev->dev,
1614 "%s: Controller timer fired when controller was not "
1615 "in a state being timed.\n",
1616 __func__);
1617
1618 done:
1619 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1620 }
1621
sci_controller_construct(struct isci_host * ihost,void __iomem * scu_base,void __iomem * smu_base)1622 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1623 void __iomem *scu_base,
1624 void __iomem *smu_base)
1625 {
1626 u8 i;
1627
1628 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1629
1630 ihost->scu_registers = scu_base;
1631 ihost->smu_registers = smu_base;
1632
1633 sci_port_configuration_agent_construct(&ihost->port_agent);
1634
1635 /* Construct the ports for this controller */
1636 for (i = 0; i < SCI_MAX_PORTS; i++)
1637 sci_port_construct(&ihost->ports[i], i, ihost);
1638 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1639
1640 /* Construct the phys for this controller */
1641 for (i = 0; i < SCI_MAX_PHYS; i++) {
1642 /* Add all the PHYs to the dummy port */
1643 sci_phy_construct(&ihost->phys[i],
1644 &ihost->ports[SCI_MAX_PORTS], i);
1645 }
1646
1647 ihost->invalid_phy_mask = 0;
1648
1649 sci_init_timer(&ihost->timer, controller_timeout);
1650
1651 return sci_controller_reset(ihost);
1652 }
1653
sci_oem_parameters_validate(struct sci_oem_params * oem,u8 version)1654 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1655 {
1656 int i;
1657
1658 for (i = 0; i < SCI_MAX_PORTS; i++)
1659 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1660 return -EINVAL;
1661
1662 for (i = 0; i < SCI_MAX_PHYS; i++)
1663 if (oem->phys[i].sas_address.high == 0 &&
1664 oem->phys[i].sas_address.low == 0)
1665 return -EINVAL;
1666
1667 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1668 for (i = 0; i < SCI_MAX_PHYS; i++)
1669 if (oem->ports[i].phy_mask != 0)
1670 return -EINVAL;
1671 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1672 u8 phy_mask = 0;
1673
1674 for (i = 0; i < SCI_MAX_PHYS; i++)
1675 phy_mask |= oem->ports[i].phy_mask;
1676
1677 if (phy_mask == 0)
1678 return -EINVAL;
1679 } else
1680 return -EINVAL;
1681
1682 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1683 oem->controller.max_concurr_spin_up < 1)
1684 return -EINVAL;
1685
1686 if (oem->controller.do_enable_ssc) {
1687 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1688 return -EINVAL;
1689
1690 if (version >= ISCI_ROM_VER_1_1) {
1691 u8 test = oem->controller.ssc_sata_tx_spread_level;
1692
1693 switch (test) {
1694 case 0:
1695 case 2:
1696 case 3:
1697 case 6:
1698 case 7:
1699 break;
1700 default:
1701 return -EINVAL;
1702 }
1703
1704 test = oem->controller.ssc_sas_tx_spread_level;
1705 if (oem->controller.ssc_sas_tx_type == 0) {
1706 switch (test) {
1707 case 0:
1708 case 2:
1709 case 3:
1710 break;
1711 default:
1712 return -EINVAL;
1713 }
1714 } else if (oem->controller.ssc_sas_tx_type == 1) {
1715 switch (test) {
1716 case 0:
1717 case 3:
1718 case 6:
1719 break;
1720 default:
1721 return -EINVAL;
1722 }
1723 }
1724 }
1725 }
1726
1727 return 0;
1728 }
1729
max_spin_up(struct isci_host * ihost)1730 static u8 max_spin_up(struct isci_host *ihost)
1731 {
1732 if (ihost->user_parameters.max_concurr_spinup)
1733 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1734 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1735 else
1736 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1737 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1738 }
1739
power_control_timeout(struct timer_list * t)1740 static void power_control_timeout(struct timer_list *t)
1741 {
1742 struct sci_timer *tmr = from_timer(tmr, t, timer);
1743 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1744 struct isci_phy *iphy;
1745 unsigned long flags;
1746 u8 i;
1747
1748 spin_lock_irqsave(&ihost->scic_lock, flags);
1749
1750 if (tmr->cancel)
1751 goto done;
1752
1753 ihost->power_control.phys_granted_power = 0;
1754
1755 if (ihost->power_control.phys_waiting == 0) {
1756 ihost->power_control.timer_started = false;
1757 goto done;
1758 }
1759
1760 for (i = 0; i < SCI_MAX_PHYS; i++) {
1761
1762 if (ihost->power_control.phys_waiting == 0)
1763 break;
1764
1765 iphy = ihost->power_control.requesters[i];
1766 if (iphy == NULL)
1767 continue;
1768
1769 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1770 break;
1771
1772 ihost->power_control.requesters[i] = NULL;
1773 ihost->power_control.phys_waiting--;
1774 ihost->power_control.phys_granted_power++;
1775 sci_phy_consume_power_handler(iphy);
1776
1777 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1778 u8 j;
1779
1780 for (j = 0; j < SCI_MAX_PHYS; j++) {
1781 struct isci_phy *requester = ihost->power_control.requesters[j];
1782
1783 /*
1784 * Search the power_control queue to see if there are other phys
1785 * attached to the same remote device. If found, take all of
1786 * them out of await_sas_power state.
1787 */
1788 if (requester != NULL && requester != iphy) {
1789 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1790 iphy->frame_rcvd.iaf.sas_addr,
1791 sizeof(requester->frame_rcvd.iaf.sas_addr));
1792
1793 if (other == 0) {
1794 ihost->power_control.requesters[j] = NULL;
1795 ihost->power_control.phys_waiting--;
1796 sci_phy_consume_power_handler(requester);
1797 }
1798 }
1799 }
1800 }
1801 }
1802
1803 /*
1804 * It doesn't matter if the power list is empty, we need to start the
1805 * timer in case another phy becomes ready.
1806 */
1807 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1808 ihost->power_control.timer_started = true;
1809
1810 done:
1811 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1812 }
1813
sci_controller_power_control_queue_insert(struct isci_host * ihost,struct isci_phy * iphy)1814 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1815 struct isci_phy *iphy)
1816 {
1817 BUG_ON(iphy == NULL);
1818
1819 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1820 ihost->power_control.phys_granted_power++;
1821 sci_phy_consume_power_handler(iphy);
1822
1823 /*
1824 * stop and start the power_control timer. When the timer fires, the
1825 * no_of_phys_granted_power will be set to 0
1826 */
1827 if (ihost->power_control.timer_started)
1828 sci_del_timer(&ihost->power_control.timer);
1829
1830 sci_mod_timer(&ihost->power_control.timer,
1831 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1832 ihost->power_control.timer_started = true;
1833
1834 } else {
1835 /*
1836 * There are phys, attached to the same sas address as this phy, are
1837 * already in READY state, this phy don't need wait.
1838 */
1839 u8 i;
1840 struct isci_phy *current_phy;
1841
1842 for (i = 0; i < SCI_MAX_PHYS; i++) {
1843 u8 other;
1844 current_phy = &ihost->phys[i];
1845
1846 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1847 iphy->frame_rcvd.iaf.sas_addr,
1848 sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1849
1850 if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1851 current_phy->protocol == SAS_PROTOCOL_SSP &&
1852 other == 0) {
1853 sci_phy_consume_power_handler(iphy);
1854 break;
1855 }
1856 }
1857
1858 if (i == SCI_MAX_PHYS) {
1859 /* Add the phy in the waiting list */
1860 ihost->power_control.requesters[iphy->phy_index] = iphy;
1861 ihost->power_control.phys_waiting++;
1862 }
1863 }
1864 }
1865
sci_controller_power_control_queue_remove(struct isci_host * ihost,struct isci_phy * iphy)1866 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1867 struct isci_phy *iphy)
1868 {
1869 BUG_ON(iphy == NULL);
1870
1871 if (ihost->power_control.requesters[iphy->phy_index])
1872 ihost->power_control.phys_waiting--;
1873
1874 ihost->power_control.requesters[iphy->phy_index] = NULL;
1875 }
1876
is_long_cable(int phy,unsigned char selection_byte)1877 static int is_long_cable(int phy, unsigned char selection_byte)
1878 {
1879 return !!(selection_byte & (1 << phy));
1880 }
1881
is_medium_cable(int phy,unsigned char selection_byte)1882 static int is_medium_cable(int phy, unsigned char selection_byte)
1883 {
1884 return !!(selection_byte & (1 << (phy + 4)));
1885 }
1886
decode_selection_byte(int phy,unsigned char selection_byte)1887 static enum cable_selections decode_selection_byte(
1888 int phy,
1889 unsigned char selection_byte)
1890 {
1891 return ((selection_byte & (1 << phy)) ? 1 : 0)
1892 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1893 }
1894
to_cable_select(struct isci_host * ihost)1895 static unsigned char *to_cable_select(struct isci_host *ihost)
1896 {
1897 if (is_cable_select_overridden())
1898 return ((unsigned char *)&cable_selection_override)
1899 + ihost->id;
1900 else
1901 return &ihost->oem_parameters.controller.cable_selection_mask;
1902 }
1903
decode_cable_selection(struct isci_host * ihost,int phy)1904 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1905 {
1906 return decode_selection_byte(phy, *to_cable_select(ihost));
1907 }
1908
lookup_cable_names(enum cable_selections selection)1909 char *lookup_cable_names(enum cable_selections selection)
1910 {
1911 static char *cable_names[] = {
1912 [short_cable] = "short",
1913 [long_cable] = "long",
1914 [medium_cable] = "medium",
1915 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1916 };
1917 return (selection <= undefined_cable) ? cable_names[selection]
1918 : cable_names[undefined_cable];
1919 }
1920
1921 #define AFE_REGISTER_WRITE_DELAY 10
1922
sci_controller_afe_initialization(struct isci_host * ihost)1923 static void sci_controller_afe_initialization(struct isci_host *ihost)
1924 {
1925 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1926 const struct sci_oem_params *oem = &ihost->oem_parameters;
1927 struct pci_dev *pdev = ihost->pdev;
1928 u32 afe_status;
1929 u32 phy_id;
1930 unsigned char cable_selection_mask = *to_cable_select(ihost);
1931
1932 /* Clear DFX Status registers */
1933 writel(0x0081000f, &afe->afe_dfx_master_control0);
1934 udelay(AFE_REGISTER_WRITE_DELAY);
1935
1936 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1937 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1938 * Timer, PM Stagger Timer
1939 */
1940 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1941 udelay(AFE_REGISTER_WRITE_DELAY);
1942 }
1943
1944 /* Configure bias currents to normal */
1945 if (is_a2(pdev))
1946 writel(0x00005A00, &afe->afe_bias_control);
1947 else if (is_b0(pdev) || is_c0(pdev))
1948 writel(0x00005F00, &afe->afe_bias_control);
1949 else if (is_c1(pdev))
1950 writel(0x00005500, &afe->afe_bias_control);
1951
1952 udelay(AFE_REGISTER_WRITE_DELAY);
1953
1954 /* Enable PLL */
1955 if (is_a2(pdev))
1956 writel(0x80040908, &afe->afe_pll_control0);
1957 else if (is_b0(pdev) || is_c0(pdev))
1958 writel(0x80040A08, &afe->afe_pll_control0);
1959 else if (is_c1(pdev)) {
1960 writel(0x80000B08, &afe->afe_pll_control0);
1961 udelay(AFE_REGISTER_WRITE_DELAY);
1962 writel(0x00000B08, &afe->afe_pll_control0);
1963 udelay(AFE_REGISTER_WRITE_DELAY);
1964 writel(0x80000B08, &afe->afe_pll_control0);
1965 }
1966
1967 udelay(AFE_REGISTER_WRITE_DELAY);
1968
1969 /* Wait for the PLL to lock */
1970 do {
1971 afe_status = readl(&afe->afe_common_block_status);
1972 udelay(AFE_REGISTER_WRITE_DELAY);
1973 } while ((afe_status & 0x00001000) == 0);
1974
1975 if (is_a2(pdev)) {
1976 /* Shorten SAS SNW lock time (RxLock timer value from 76
1977 * us to 50 us)
1978 */
1979 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1980 udelay(AFE_REGISTER_WRITE_DELAY);
1981 }
1982
1983 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1984 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1985 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1986 int cable_length_long =
1987 is_long_cable(phy_id, cable_selection_mask);
1988 int cable_length_medium =
1989 is_medium_cable(phy_id, cable_selection_mask);
1990
1991 if (is_a2(pdev)) {
1992 /* All defaults, except the Receive Word
1993 * Alignament/Comma Detect Enable....(0xe800)
1994 */
1995 writel(0x00004512, &xcvr->afe_xcvr_control0);
1996 udelay(AFE_REGISTER_WRITE_DELAY);
1997
1998 writel(0x0050100F, &xcvr->afe_xcvr_control1);
1999 udelay(AFE_REGISTER_WRITE_DELAY);
2000 } else if (is_b0(pdev)) {
2001 /* Configure transmitter SSC parameters */
2002 writel(0x00030000, &xcvr->afe_tx_ssc_control);
2003 udelay(AFE_REGISTER_WRITE_DELAY);
2004 } else if (is_c0(pdev)) {
2005 /* Configure transmitter SSC parameters */
2006 writel(0x00010202, &xcvr->afe_tx_ssc_control);
2007 udelay(AFE_REGISTER_WRITE_DELAY);
2008
2009 /* All defaults, except the Receive Word
2010 * Alignament/Comma Detect Enable....(0xe800)
2011 */
2012 writel(0x00014500, &xcvr->afe_xcvr_control0);
2013 udelay(AFE_REGISTER_WRITE_DELAY);
2014 } else if (is_c1(pdev)) {
2015 /* Configure transmitter SSC parameters */
2016 writel(0x00010202, &xcvr->afe_tx_ssc_control);
2017 udelay(AFE_REGISTER_WRITE_DELAY);
2018
2019 /* All defaults, except the Receive Word
2020 * Alignament/Comma Detect Enable....(0xe800)
2021 */
2022 writel(0x0001C500, &xcvr->afe_xcvr_control0);
2023 udelay(AFE_REGISTER_WRITE_DELAY);
2024 }
2025
2026 /* Power up TX and RX out from power down (PWRDNTX and
2027 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2028 */
2029 if (is_a2(pdev))
2030 writel(0x000003F0, &xcvr->afe_channel_control);
2031 else if (is_b0(pdev)) {
2032 writel(0x000003D7, &xcvr->afe_channel_control);
2033 udelay(AFE_REGISTER_WRITE_DELAY);
2034
2035 writel(0x000003D4, &xcvr->afe_channel_control);
2036 } else if (is_c0(pdev)) {
2037 writel(0x000001E7, &xcvr->afe_channel_control);
2038 udelay(AFE_REGISTER_WRITE_DELAY);
2039
2040 writel(0x000001E4, &xcvr->afe_channel_control);
2041 } else if (is_c1(pdev)) {
2042 writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2043 &xcvr->afe_channel_control);
2044 udelay(AFE_REGISTER_WRITE_DELAY);
2045
2046 writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2047 &xcvr->afe_channel_control);
2048 }
2049 udelay(AFE_REGISTER_WRITE_DELAY);
2050
2051 if (is_a2(pdev)) {
2052 /* Enable TX equalization (0xe824) */
2053 writel(0x00040000, &xcvr->afe_tx_control);
2054 udelay(AFE_REGISTER_WRITE_DELAY);
2055 }
2056
2057 if (is_a2(pdev) || is_b0(pdev))
2058 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2059 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2060 * Enabled) ....(0xe800)
2061 */
2062 writel(0x00004100, &xcvr->afe_xcvr_control0);
2063 else if (is_c0(pdev))
2064 writel(0x00014100, &xcvr->afe_xcvr_control0);
2065 else if (is_c1(pdev))
2066 writel(0x0001C100, &xcvr->afe_xcvr_control0);
2067 udelay(AFE_REGISTER_WRITE_DELAY);
2068
2069 /* Leave DFE/FFE on */
2070 if (is_a2(pdev))
2071 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072 else if (is_b0(pdev)) {
2073 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2074 udelay(AFE_REGISTER_WRITE_DELAY);
2075 /* Enable TX equalization (0xe824) */
2076 writel(0x00040000, &xcvr->afe_tx_control);
2077 } else if (is_c0(pdev)) {
2078 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2079 udelay(AFE_REGISTER_WRITE_DELAY);
2080
2081 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2082 udelay(AFE_REGISTER_WRITE_DELAY);
2083
2084 /* Enable TX equalization (0xe824) */
2085 writel(0x00040000, &xcvr->afe_tx_control);
2086 } else if (is_c1(pdev)) {
2087 writel(cable_length_long ? 0x01500C0C :
2088 cable_length_medium ? 0x01400C0D : 0x02400C0D,
2089 &xcvr->afe_xcvr_control1);
2090 udelay(AFE_REGISTER_WRITE_DELAY);
2091
2092 writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2093 udelay(AFE_REGISTER_WRITE_DELAY);
2094
2095 writel(cable_length_long ? 0x33091C1F :
2096 cable_length_medium ? 0x3315181F : 0x2B17161F,
2097 &xcvr->afe_rx_ssc_control0);
2098 udelay(AFE_REGISTER_WRITE_DELAY);
2099
2100 /* Enable TX equalization (0xe824) */
2101 writel(0x00040000, &xcvr->afe_tx_control);
2102 }
2103
2104 udelay(AFE_REGISTER_WRITE_DELAY);
2105
2106 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2107 udelay(AFE_REGISTER_WRITE_DELAY);
2108
2109 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2110 udelay(AFE_REGISTER_WRITE_DELAY);
2111
2112 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2113 udelay(AFE_REGISTER_WRITE_DELAY);
2114
2115 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2116 udelay(AFE_REGISTER_WRITE_DELAY);
2117 }
2118
2119 /* Transfer control to the PEs */
2120 writel(0x00010f00, &afe->afe_dfx_master_control0);
2121 udelay(AFE_REGISTER_WRITE_DELAY);
2122 }
2123
sci_controller_initialize_power_control(struct isci_host * ihost)2124 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2125 {
2126 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2127
2128 memset(ihost->power_control.requesters, 0,
2129 sizeof(ihost->power_control.requesters));
2130
2131 ihost->power_control.phys_waiting = 0;
2132 ihost->power_control.phys_granted_power = 0;
2133 }
2134
sci_controller_initialize(struct isci_host * ihost)2135 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2136 {
2137 struct sci_base_state_machine *sm = &ihost->sm;
2138 enum sci_status result = SCI_FAILURE;
2139 unsigned long i, state, val;
2140
2141 if (ihost->sm.current_state_id != SCIC_RESET) {
2142 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2143 __func__, ihost->sm.current_state_id);
2144 return SCI_FAILURE_INVALID_STATE;
2145 }
2146
2147 sci_change_state(sm, SCIC_INITIALIZING);
2148
2149 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2150
2151 ihost->next_phy_to_start = 0;
2152 ihost->phy_startup_timer_pending = false;
2153
2154 sci_controller_initialize_power_control(ihost);
2155
2156 /*
2157 * There is nothing to do here for B0 since we do not have to
2158 * program the AFE registers.
2159 * / @todo The AFE settings are supposed to be correct for the B0 but
2160 * / presently they seem to be wrong. */
2161 sci_controller_afe_initialization(ihost);
2162
2163
2164 /* Take the hardware out of reset */
2165 writel(0, &ihost->smu_registers->soft_reset_control);
2166
2167 /*
2168 * / @todo Provide meaningfull error code for hardware failure
2169 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2170 for (i = 100; i >= 1; i--) {
2171 u32 status;
2172
2173 /* Loop until the hardware reports success */
2174 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2175 status = readl(&ihost->smu_registers->control_status);
2176
2177 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2178 break;
2179 }
2180 if (i == 0)
2181 goto out;
2182
2183 /*
2184 * Determine what are the actaul device capacities that the
2185 * hardware will support */
2186 val = readl(&ihost->smu_registers->device_context_capacity);
2187
2188 /* Record the smaller of the two capacity values */
2189 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2190 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2191 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2192
2193 /*
2194 * Make all PEs that are unassigned match up with the
2195 * logical ports
2196 */
2197 for (i = 0; i < ihost->logical_port_entries; i++) {
2198 struct scu_port_task_scheduler_group_registers __iomem
2199 *ptsg = &ihost->scu_registers->peg0.ptsg;
2200
2201 writel(i, &ptsg->protocol_engine[i]);
2202 }
2203
2204 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2205 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2206 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2207 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2208
2209 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2210 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2211 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2212
2213 /*
2214 * Initialize the PHYs before the PORTs because the PHY registers
2215 * are accessed during the port initialization.
2216 */
2217 for (i = 0; i < SCI_MAX_PHYS; i++) {
2218 result = sci_phy_initialize(&ihost->phys[i],
2219 &ihost->scu_registers->peg0.pe[i].tl,
2220 &ihost->scu_registers->peg0.pe[i].ll);
2221 if (result != SCI_SUCCESS)
2222 goto out;
2223 }
2224
2225 for (i = 0; i < ihost->logical_port_entries; i++) {
2226 struct isci_port *iport = &ihost->ports[i];
2227
2228 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2229 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2230 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2231 }
2232
2233 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2234
2235 out:
2236 /* Advance the controller state machine */
2237 if (result == SCI_SUCCESS)
2238 state = SCIC_INITIALIZED;
2239 else
2240 state = SCIC_FAILED;
2241 sci_change_state(sm, state);
2242
2243 return result;
2244 }
2245
sci_controller_dma_alloc(struct isci_host * ihost)2246 static int sci_controller_dma_alloc(struct isci_host *ihost)
2247 {
2248 struct device *dev = &ihost->pdev->dev;
2249 size_t size;
2250 int i;
2251
2252 /* detect re-initialization */
2253 if (ihost->completion_queue)
2254 return 0;
2255
2256 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2257 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2258 GFP_KERNEL);
2259 if (!ihost->completion_queue)
2260 return -ENOMEM;
2261
2262 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2263 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2264 GFP_KERNEL);
2265
2266 if (!ihost->remote_node_context_table)
2267 return -ENOMEM;
2268
2269 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2270 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2271 GFP_KERNEL);
2272 if (!ihost->task_context_table)
2273 return -ENOMEM;
2274
2275 size = SCI_UFI_TOTAL_SIZE;
2276 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2277 if (!ihost->ufi_buf)
2278 return -ENOMEM;
2279
2280 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2281 struct isci_request *ireq;
2282 dma_addr_t dma;
2283
2284 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2285 if (!ireq)
2286 return -ENOMEM;
2287
2288 ireq->tc = &ihost->task_context_table[i];
2289 ireq->owning_controller = ihost;
2290 ireq->request_daddr = dma;
2291 ireq->isci_host = ihost;
2292 ihost->reqs[i] = ireq;
2293 }
2294
2295 return 0;
2296 }
2297
sci_controller_mem_init(struct isci_host * ihost)2298 static int sci_controller_mem_init(struct isci_host *ihost)
2299 {
2300 int err = sci_controller_dma_alloc(ihost);
2301
2302 if (err)
2303 return err;
2304
2305 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2306 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2307
2308 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2309 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2310
2311 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2312 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2313
2314 sci_unsolicited_frame_control_construct(ihost);
2315
2316 /*
2317 * Inform the silicon as to the location of the UF headers and
2318 * address table.
2319 */
2320 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2321 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2322 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2323 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2324
2325 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2326 &ihost->scu_registers->sdma.uf_address_table_lower);
2327 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2328 &ihost->scu_registers->sdma.uf_address_table_upper);
2329
2330 return 0;
2331 }
2332
2333 /**
2334 * isci_host_init - (re-)initialize hardware and internal (private) state
2335 * @ihost: host to init
2336 *
2337 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2338 * one-time initialization objects like locks and waitqueues, are
2339 * not touched (they are initialized in isci_host_alloc)
2340 */
isci_host_init(struct isci_host * ihost)2341 int isci_host_init(struct isci_host *ihost)
2342 {
2343 int i, err;
2344 enum sci_status status;
2345
2346 spin_lock_irq(&ihost->scic_lock);
2347 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2348 spin_unlock_irq(&ihost->scic_lock);
2349 if (status != SCI_SUCCESS) {
2350 dev_err(&ihost->pdev->dev,
2351 "%s: sci_controller_construct failed - status = %x\n",
2352 __func__,
2353 status);
2354 return -ENODEV;
2355 }
2356
2357 spin_lock_irq(&ihost->scic_lock);
2358 status = sci_controller_initialize(ihost);
2359 spin_unlock_irq(&ihost->scic_lock);
2360 if (status != SCI_SUCCESS) {
2361 dev_warn(&ihost->pdev->dev,
2362 "%s: sci_controller_initialize failed -"
2363 " status = 0x%x\n",
2364 __func__, status);
2365 return -ENODEV;
2366 }
2367
2368 err = sci_controller_mem_init(ihost);
2369 if (err)
2370 return err;
2371
2372 /* enable sgpio */
2373 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2374 for (i = 0; i < isci_gpio_count(ihost); i++)
2375 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2376 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2377
2378 return 0;
2379 }
2380
sci_controller_link_up(struct isci_host * ihost,struct isci_port * iport,struct isci_phy * iphy)2381 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2382 struct isci_phy *iphy)
2383 {
2384 switch (ihost->sm.current_state_id) {
2385 case SCIC_STARTING:
2386 sci_del_timer(&ihost->phy_timer);
2387 ihost->phy_startup_timer_pending = false;
2388 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2389 iport, iphy);
2390 sci_controller_start_next_phy(ihost);
2391 break;
2392 case SCIC_READY:
2393 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2394 iport, iphy);
2395 break;
2396 default:
2397 dev_dbg(&ihost->pdev->dev,
2398 "%s: SCIC Controller linkup event from phy %d in "
2399 "unexpected state %d\n", __func__, iphy->phy_index,
2400 ihost->sm.current_state_id);
2401 }
2402 }
2403
sci_controller_link_down(struct isci_host * ihost,struct isci_port * iport,struct isci_phy * iphy)2404 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2405 struct isci_phy *iphy)
2406 {
2407 switch (ihost->sm.current_state_id) {
2408 case SCIC_STARTING:
2409 case SCIC_READY:
2410 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2411 iport, iphy);
2412 break;
2413 default:
2414 dev_dbg(&ihost->pdev->dev,
2415 "%s: SCIC Controller linkdown event from phy %d in "
2416 "unexpected state %d\n",
2417 __func__,
2418 iphy->phy_index,
2419 ihost->sm.current_state_id);
2420 }
2421 }
2422
sci_controller_has_remote_devices_stopping(struct isci_host * ihost)2423 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2424 {
2425 u32 index;
2426
2427 for (index = 0; index < ihost->remote_node_entries; index++) {
2428 if ((ihost->device_table[index] != NULL) &&
2429 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2430 return true;
2431 }
2432
2433 return false;
2434 }
2435
sci_controller_remote_device_stopped(struct isci_host * ihost,struct isci_remote_device * idev)2436 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2437 struct isci_remote_device *idev)
2438 {
2439 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2440 dev_dbg(&ihost->pdev->dev,
2441 "SCIC Controller 0x%p remote device stopped event "
2442 "from device 0x%p in unexpected state %d\n",
2443 ihost, idev,
2444 ihost->sm.current_state_id);
2445 return;
2446 }
2447
2448 if (!sci_controller_has_remote_devices_stopping(ihost))
2449 isci_host_stop_complete(ihost);
2450 }
2451
sci_controller_post_request(struct isci_host * ihost,u32 request)2452 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2453 {
2454 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2455 __func__, ihost->id, request);
2456
2457 writel(request, &ihost->smu_registers->post_context_port);
2458 }
2459
sci_request_by_tag(struct isci_host * ihost,u16 io_tag)2460 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2461 {
2462 u16 task_index;
2463 u16 task_sequence;
2464
2465 task_index = ISCI_TAG_TCI(io_tag);
2466
2467 if (task_index < ihost->task_context_entries) {
2468 struct isci_request *ireq = ihost->reqs[task_index];
2469
2470 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2471 task_sequence = ISCI_TAG_SEQ(io_tag);
2472
2473 if (task_sequence == ihost->io_request_sequence[task_index])
2474 return ireq;
2475 }
2476 }
2477
2478 return NULL;
2479 }
2480
2481 /**
2482 * This method allocates remote node index and the reserves the remote node
2483 * context space for use. This method can fail if there are no more remote
2484 * node index available.
2485 * @scic: This is the controller object which contains the set of
2486 * free remote node ids
2487 * @sci_dev: This is the device object which is requesting the a remote node
2488 * id
2489 * @node_id: This is the remote node id that is assinged to the device if one
2490 * is available
2491 *
2492 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2493 * node index available.
2494 */
sci_controller_allocate_remote_node_context(struct isci_host * ihost,struct isci_remote_device * idev,u16 * node_id)2495 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2496 struct isci_remote_device *idev,
2497 u16 *node_id)
2498 {
2499 u16 node_index;
2500 u32 remote_node_count = sci_remote_device_node_count(idev);
2501
2502 node_index = sci_remote_node_table_allocate_remote_node(
2503 &ihost->available_remote_nodes, remote_node_count
2504 );
2505
2506 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2507 ihost->device_table[node_index] = idev;
2508
2509 *node_id = node_index;
2510
2511 return SCI_SUCCESS;
2512 }
2513
2514 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2515 }
2516
sci_controller_free_remote_node_context(struct isci_host * ihost,struct isci_remote_device * idev,u16 node_id)2517 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2518 struct isci_remote_device *idev,
2519 u16 node_id)
2520 {
2521 u32 remote_node_count = sci_remote_device_node_count(idev);
2522
2523 if (ihost->device_table[node_id] == idev) {
2524 ihost->device_table[node_id] = NULL;
2525
2526 sci_remote_node_table_release_remote_node_index(
2527 &ihost->available_remote_nodes, remote_node_count, node_id
2528 );
2529 }
2530 }
2531
sci_controller_copy_sata_response(void * response_buffer,void * frame_header,void * frame_buffer)2532 void sci_controller_copy_sata_response(void *response_buffer,
2533 void *frame_header,
2534 void *frame_buffer)
2535 {
2536 /* XXX type safety? */
2537 memcpy(response_buffer, frame_header, sizeof(u32));
2538
2539 memcpy(response_buffer + sizeof(u32),
2540 frame_buffer,
2541 sizeof(struct dev_to_host_fis) - sizeof(u32));
2542 }
2543
sci_controller_release_frame(struct isci_host * ihost,u32 frame_index)2544 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2545 {
2546 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2547 writel(ihost->uf_control.get,
2548 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2549 }
2550
isci_tci_free(struct isci_host * ihost,u16 tci)2551 void isci_tci_free(struct isci_host *ihost, u16 tci)
2552 {
2553 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2554
2555 ihost->tci_pool[tail] = tci;
2556 ihost->tci_tail = tail + 1;
2557 }
2558
isci_tci_alloc(struct isci_host * ihost)2559 static u16 isci_tci_alloc(struct isci_host *ihost)
2560 {
2561 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2562 u16 tci = ihost->tci_pool[head];
2563
2564 ihost->tci_head = head + 1;
2565 return tci;
2566 }
2567
isci_tci_space(struct isci_host * ihost)2568 static u16 isci_tci_space(struct isci_host *ihost)
2569 {
2570 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2571 }
2572
isci_alloc_tag(struct isci_host * ihost)2573 u16 isci_alloc_tag(struct isci_host *ihost)
2574 {
2575 if (isci_tci_space(ihost)) {
2576 u16 tci = isci_tci_alloc(ihost);
2577 u8 seq = ihost->io_request_sequence[tci];
2578
2579 return ISCI_TAG(seq, tci);
2580 }
2581
2582 return SCI_CONTROLLER_INVALID_IO_TAG;
2583 }
2584
isci_free_tag(struct isci_host * ihost,u16 io_tag)2585 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2586 {
2587 u16 tci = ISCI_TAG_TCI(io_tag);
2588 u16 seq = ISCI_TAG_SEQ(io_tag);
2589
2590 /* prevent tail from passing head */
2591 if (isci_tci_active(ihost) == 0)
2592 return SCI_FAILURE_INVALID_IO_TAG;
2593
2594 if (seq == ihost->io_request_sequence[tci]) {
2595 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2596
2597 isci_tci_free(ihost, tci);
2598
2599 return SCI_SUCCESS;
2600 }
2601 return SCI_FAILURE_INVALID_IO_TAG;
2602 }
2603
sci_controller_start_io(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2604 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2605 struct isci_remote_device *idev,
2606 struct isci_request *ireq)
2607 {
2608 enum sci_status status;
2609
2610 if (ihost->sm.current_state_id != SCIC_READY) {
2611 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2612 __func__, ihost->sm.current_state_id);
2613 return SCI_FAILURE_INVALID_STATE;
2614 }
2615
2616 status = sci_remote_device_start_io(ihost, idev, ireq);
2617 if (status != SCI_SUCCESS)
2618 return status;
2619
2620 set_bit(IREQ_ACTIVE, &ireq->flags);
2621 sci_controller_post_request(ihost, ireq->post_context);
2622 return SCI_SUCCESS;
2623 }
2624
sci_controller_terminate_request(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2625 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2626 struct isci_remote_device *idev,
2627 struct isci_request *ireq)
2628 {
2629 /* terminate an ongoing (i.e. started) core IO request. This does not
2630 * abort the IO request at the target, but rather removes the IO
2631 * request from the host controller.
2632 */
2633 enum sci_status status;
2634
2635 if (ihost->sm.current_state_id != SCIC_READY) {
2636 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2637 __func__, ihost->sm.current_state_id);
2638 return SCI_FAILURE_INVALID_STATE;
2639 }
2640 status = sci_io_request_terminate(ireq);
2641
2642 dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2643 __func__, status, ireq, ireq->flags);
2644
2645 if ((status == SCI_SUCCESS) &&
2646 !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2647 !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2648 /* Utilize the original post context command and or in the
2649 * POST_TC_ABORT request sub-type.
2650 */
2651 sci_controller_post_request(
2652 ihost, ireq->post_context |
2653 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654 }
2655 return status;
2656 }
2657
2658 /**
2659 * sci_controller_complete_io() - This method will perform core specific
2660 * completion operations for an IO request. After this method is invoked,
2661 * the user should consider the IO request as invalid until it is properly
2662 * reused (i.e. re-constructed).
2663 * @ihost: The handle to the controller object for which to complete the
2664 * IO request.
2665 * @idev: The handle to the remote device object for which to complete
2666 * the IO request.
2667 * @ireq: the handle to the io request object to complete.
2668 */
sci_controller_complete_io(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2669 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2670 struct isci_remote_device *idev,
2671 struct isci_request *ireq)
2672 {
2673 enum sci_status status;
2674
2675 switch (ihost->sm.current_state_id) {
2676 case SCIC_STOPPING:
2677 /* XXX: Implement this function */
2678 return SCI_FAILURE;
2679 case SCIC_READY:
2680 status = sci_remote_device_complete_io(ihost, idev, ireq);
2681 if (status != SCI_SUCCESS)
2682 return status;
2683
2684 clear_bit(IREQ_ACTIVE, &ireq->flags);
2685 return SCI_SUCCESS;
2686 default:
2687 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2688 __func__, ihost->sm.current_state_id);
2689 return SCI_FAILURE_INVALID_STATE;
2690 }
2691
2692 }
2693
sci_controller_continue_io(struct isci_request * ireq)2694 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2695 {
2696 struct isci_host *ihost = ireq->owning_controller;
2697
2698 if (ihost->sm.current_state_id != SCIC_READY) {
2699 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2700 __func__, ihost->sm.current_state_id);
2701 return SCI_FAILURE_INVALID_STATE;
2702 }
2703
2704 set_bit(IREQ_ACTIVE, &ireq->flags);
2705 sci_controller_post_request(ihost, ireq->post_context);
2706 return SCI_SUCCESS;
2707 }
2708
2709 /**
2710 * sci_controller_start_task() - This method is called by the SCIC user to
2711 * send/start a framework task management request.
2712 * @controller: the handle to the controller object for which to start the task
2713 * management request.
2714 * @remote_device: the handle to the remote device object for which to start
2715 * the task management request.
2716 * @task_request: the handle to the task request object to start.
2717 */
sci_controller_start_task(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)2718 enum sci_status sci_controller_start_task(struct isci_host *ihost,
2719 struct isci_remote_device *idev,
2720 struct isci_request *ireq)
2721 {
2722 enum sci_status status;
2723
2724 if (ihost->sm.current_state_id != SCIC_READY) {
2725 dev_warn(&ihost->pdev->dev,
2726 "%s: SCIC Controller starting task from invalid "
2727 "state\n",
2728 __func__);
2729 return SCI_FAILURE_INVALID_STATE;
2730 }
2731
2732 status = sci_remote_device_start_task(ihost, idev, ireq);
2733 switch (status) {
2734 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2735 set_bit(IREQ_ACTIVE, &ireq->flags);
2736
2737 /*
2738 * We will let framework know this task request started successfully,
2739 * although core is still woring on starting the request (to post tc when
2740 * RNC is resumed.)
2741 */
2742 return SCI_SUCCESS;
2743 case SCI_SUCCESS:
2744 set_bit(IREQ_ACTIVE, &ireq->flags);
2745 sci_controller_post_request(ihost, ireq->post_context);
2746 break;
2747 default:
2748 break;
2749 }
2750
2751 return status;
2752 }
2753
sci_write_gpio_tx_gp(struct isci_host * ihost,u8 reg_index,u8 reg_count,u8 * write_data)2754 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2755 {
2756 int d;
2757
2758 /* no support for TX_GP_CFG */
2759 if (reg_index == 0)
2760 return -EINVAL;
2761
2762 for (d = 0; d < isci_gpio_count(ihost); d++) {
2763 u32 val = 0x444; /* all ODx.n clear */
2764 int i;
2765
2766 for (i = 0; i < 3; i++) {
2767 int bit;
2768
2769 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2770 write_data, reg_index,
2771 reg_count);
2772 if (bit < 0)
2773 break;
2774
2775 /* if od is set, clear the 'invert' bit */
2776 val &= ~(bit << ((i << 2) + 2));
2777 }
2778
2779 if (i < 3)
2780 break;
2781 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2782 }
2783
2784 /* unless reg_index is > 1, we should always be able to write at
2785 * least one register
2786 */
2787 return d > 0;
2788 }
2789
isci_gpio_write(struct sas_ha_struct * sas_ha,u8 reg_type,u8 reg_index,u8 reg_count,u8 * write_data)2790 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2791 u8 reg_count, u8 *write_data)
2792 {
2793 struct isci_host *ihost = sas_ha->lldd_ha;
2794 int written;
2795
2796 switch (reg_type) {
2797 case SAS_GPIO_REG_TX_GP:
2798 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2799 break;
2800 default:
2801 written = -EINVAL;
2802 }
2803
2804 return written;
2805 }
2806