1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61
62 #undef C
63 #define C(a) (#a)
phy_state_name(enum sci_phy_states state)64 static const char *phy_state_name(enum sci_phy_states state)
65 {
66 static const char * const strings[] = PHY_STATES;
67
68 return strings[state];
69 }
70 #undef C
71
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
74
sci_phy_linkrate(struct isci_phy * iphy)75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76 {
77 return iphy->max_negotiated_speed;
78 }
79
phy_to_host(struct isci_phy * iphy)80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
81 {
82 struct isci_phy *table = iphy - iphy->phy_index;
83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84
85 return ihost;
86 }
87
sciphy_to_dev(struct isci_phy * iphy)88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
89 {
90 return &phy_to_host(iphy)->pdev->dev;
91 }
92
93 static enum sci_status
sci_phy_transport_layer_initialization(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * reg)94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 struct scu_transport_layer_registers __iomem *reg)
96 {
97 u32 tl_control;
98
99 iphy->transport_layer_registers = reg;
100
101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 &iphy->transport_layer_registers->stp_rni);
103
104 /*
105 * Hardware team recommends that we enable the STP prefetch for all
106 * transports
107 */
108 tl_control = readl(&iphy->transport_layer_registers->control);
109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 writel(tl_control, &iphy->transport_layer_registers->control);
111
112 return SCI_SUCCESS;
113 }
114
115 static enum sci_status
sci_phy_link_layer_initialization(struct isci_phy * iphy,struct scu_link_layer_registers __iomem * llr)116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 struct scu_link_layer_registers __iomem *llr)
118 {
119 struct isci_host *ihost = iphy->owning_port->owning_controller;
120 struct sci_phy_user_params *phy_user;
121 struct sci_phy_oem_params *phy_oem;
122 int phy_idx = iphy->phy_index;
123 struct sci_phy_cap phy_cap;
124 u32 phy_configuration;
125 u32 parity_check = 0;
126 u32 parity_count = 0;
127 u32 llctl, link_rate;
128 u32 clksm_value = 0;
129 u32 sp_timeouts = 0;
130
131 phy_user = &ihost->user_parameters.phys[phy_idx];
132 phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 iphy->link_layer_registers = llr;
134
135 /* Set our IDENTIFY frame data */
136 #define SCI_END_DEVICE 0x01
137
138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 &llr->transmit_identification);
144
145 /* Write the device SAS Address */
146 writel(0xFEDCBA98, &llr->sas_device_name_high);
147 writel(phy_idx, &llr->sas_device_name_low);
148
149 /* Write the source SAS Address */
150 writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152
153 /* Clear and Set the PHY Identifier */
154 writel(0, &llr->identify_frame_phy_id);
155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156
157 /* Change the initial state of the phy configuration register */
158 phy_configuration = readl(&llr->phy_configuration);
159
160 /* Hold OOB state machine in reset */
161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 writel(phy_configuration, &llr->phy_configuration);
163
164 /* Configure the SNW capabilities */
165 phy_cap.all = 0;
166 phy_cap.start = 1;
167 phy_cap.gen3_no_ssc = 1;
168 phy_cap.gen2_no_ssc = 1;
169 phy_cap.gen1_no_ssc = 1;
170 if (ihost->oem_parameters.controller.do_enable_ssc) {
171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 bool en_sas = false;
175 bool en_sata = false;
176 u32 sas_type = 0;
177 u32 sata_spread = 0x2;
178 u32 sas_spread = 0x2;
179
180 phy_cap.gen3_ssc = 1;
181 phy_cap.gen2_ssc = 1;
182 phy_cap.gen1_ssc = 1;
183
184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 en_sas = en_sata = true;
186 else {
187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189
190 if (sata_spread)
191 en_sata = true;
192
193 if (sas_spread) {
194 en_sas = true;
195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 }
197
198 }
199
200 if (en_sas) {
201 u32 reg;
202
203 reg = readl(&xcvr->afe_xcvr_control0);
204 reg |= (0x00100000 | (sas_type << 19));
205 writel(reg, &xcvr->afe_xcvr_control0);
206
207 reg = readl(&xcvr->afe_tx_ssc_control);
208 reg |= sas_spread << 8;
209 writel(reg, &xcvr->afe_tx_ssc_control);
210 }
211
212 if (en_sata) {
213 u32 reg;
214
215 reg = readl(&xcvr->afe_tx_ssc_control);
216 reg |= sata_spread;
217 writel(reg, &xcvr->afe_tx_ssc_control);
218
219 reg = readl(&llr->stp_control);
220 reg |= 1 << 12;
221 writel(reg, &llr->stp_control);
222 }
223 }
224
225 /* The SAS specification indicates that the phy_capabilities that
226 * are transmitted shall have an even parity. Calculate the parity.
227 */
228 parity_check = phy_cap.all;
229 while (parity_check != 0) {
230 if (parity_check & 0x1)
231 parity_count++;
232 parity_check >>= 1;
233 }
234
235 /* If parity indicates there are an odd number of bits set, then
236 * set the parity bit to 1 in the phy capabilities.
237 */
238 if ((parity_count % 2) != 0)
239 phy_cap.parity = 1;
240
241 writel(phy_cap.all, &llr->phy_capabilities);
242
243 /* Set the enable spinup period but disable the ability to send
244 * notify enable spinup
245 */
246 writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 phy_user->notify_enable_spin_up_insertion_frequency),
248 &llr->notify_enable_spinup_control);
249
250 /* Write the ALIGN Insertion Ferequency for connected phy and
251 * inpendent of connected state
252 */
253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 phy_user->in_connection_align_insertion_frequency);
255
256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 phy_user->align_insertion_frequency);
258
259 writel(clksm_value, &llr->clock_skew_management);
260
261 if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 writel(0x04210400, &llr->afe_lookup_table_control);
263 writel(0x020A7C05, &llr->sas_primitive_timeout);
264 } else
265 writel(0x02108421, &llr->afe_lookup_table_control);
266
267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 (u8)ihost->user_parameters.no_outbound_task_timeout);
269
270 switch (phy_user->max_speed_generation) {
271 case SCIC_SDS_PARM_GEN3_SPEED:
272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 break;
274 case SCIC_SDS_PARM_GEN2_SPEED:
275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 break;
277 default:
278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 break;
280 }
281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 writel(llctl, &llr->link_layer_control);
283
284 sp_timeouts = readl(&llr->sas_phy_timeouts);
285
286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288
289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 */
292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293
294 writel(sp_timeouts, &llr->sas_phy_timeouts);
295
296 if (is_a2(ihost->pdev)) {
297 /* Program the max ARB time for the PHY to 700us so we
298 * inter-operate with the PMC expander which shuts down
299 * PHYs if the expander PHY generates too many breaks.
300 * This time value will guarantee that the initiator PHY
301 * will generate the break.
302 */
303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 &llr->maximum_arbitration_wait_timer_timeout);
305 }
306
307 /* Disable link layer hang detection, rely on the OS timeout for
308 * I/O timeouts.
309 */
310 writel(0, &llr->link_layer_hang_detection_timeout);
311
312 /* We can exit the initial state to the stopped state */
313 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314
315 return SCI_SUCCESS;
316 }
317
phy_sata_timeout(struct timer_list * t)318 static void phy_sata_timeout(struct timer_list *t)
319 {
320 struct sci_timer *tmr = from_timer(tmr, t, timer);
321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 struct isci_host *ihost = iphy->owning_port->owning_controller;
323 unsigned long flags;
324
325 spin_lock_irqsave(&ihost->scic_lock, flags);
326
327 if (tmr->cancel)
328 goto done;
329
330 dev_dbg(sciphy_to_dev(iphy),
331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 "timeout.\n",
333 __func__,
334 iphy);
335
336 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338 spin_unlock_irqrestore(&ihost->scic_lock, flags);
339 }
340
341 /**
342 * This method returns the port currently containing this phy. If the phy is
343 * currently contained by the dummy port, then the phy is considered to not
344 * be part of a port.
345 * @sci_phy: This parameter specifies the phy for which to retrieve the
346 * containing port.
347 *
348 * This method returns a handle to a port that contains the supplied phy.
349 * NULL This value is returned if the phy is not part of a real
350 * port (i.e. it's contained in the dummy port). !NULL All other
351 * values indicate a handle/pointer to the port containing the phy.
352 */
phy_get_non_dummy_port(struct isci_phy * iphy)353 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
354 {
355 struct isci_port *iport = iphy->owning_port;
356
357 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358 return NULL;
359
360 return iphy->owning_port;
361 }
362
363 /**
364 * This method will assign a port to the phy object.
365 * @out]: iphy This parameter specifies the phy for which to assign a port
366 * object.
367 *
368 *
369 */
sci_phy_set_port(struct isci_phy * iphy,struct isci_port * iport)370 void sci_phy_set_port(
371 struct isci_phy *iphy,
372 struct isci_port *iport)
373 {
374 iphy->owning_port = iport;
375
376 if (iphy->bcn_received_while_port_unassigned) {
377 iphy->bcn_received_while_port_unassigned = false;
378 sci_port_broadcast_change_received(iphy->owning_port, iphy);
379 }
380 }
381
sci_phy_initialize(struct isci_phy * iphy,struct scu_transport_layer_registers __iomem * tl,struct scu_link_layer_registers __iomem * ll)382 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383 struct scu_transport_layer_registers __iomem *tl,
384 struct scu_link_layer_registers __iomem *ll)
385 {
386 /* Perfrom the initialization of the TL hardware */
387 sci_phy_transport_layer_initialization(iphy, tl);
388
389 /* Perofrm the initialization of the PE hardware */
390 sci_phy_link_layer_initialization(iphy, ll);
391
392 /* There is nothing that needs to be done in this state just
393 * transition to the stopped state
394 */
395 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396
397 return SCI_SUCCESS;
398 }
399
400 /**
401 * This method assigns the direct attached device ID for this phy.
402 *
403 * @iphy The phy for which the direct attached device id is to
404 * be assigned.
405 * @device_id The direct attached device ID to assign to the phy.
406 * This will either be the RNi for the device or an invalid RNi if there
407 * is no current device assigned to the phy.
408 */
sci_phy_setup_transport(struct isci_phy * iphy,u32 device_id)409 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
410 {
411 u32 tl_control;
412
413 writel(device_id, &iphy->transport_layer_registers->stp_rni);
414
415 /*
416 * The read should guarantee that the first write gets posted
417 * before the next write
418 */
419 tl_control = readl(&iphy->transport_layer_registers->control);
420 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421 writel(tl_control, &iphy->transport_layer_registers->control);
422 }
423
sci_phy_suspend(struct isci_phy * iphy)424 static void sci_phy_suspend(struct isci_phy *iphy)
425 {
426 u32 scu_sas_pcfg_value;
427
428 scu_sas_pcfg_value =
429 readl(&iphy->link_layer_registers->phy_configuration);
430 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431 writel(scu_sas_pcfg_value,
432 &iphy->link_layer_registers->phy_configuration);
433
434 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
435 }
436
sci_phy_resume(struct isci_phy * iphy)437 void sci_phy_resume(struct isci_phy *iphy)
438 {
439 u32 scu_sas_pcfg_value;
440
441 scu_sas_pcfg_value =
442 readl(&iphy->link_layer_registers->phy_configuration);
443 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444 writel(scu_sas_pcfg_value,
445 &iphy->link_layer_registers->phy_configuration);
446 }
447
sci_phy_get_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449 {
450 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452 }
453
sci_phy_get_attached_sas_address(struct isci_phy * iphy,struct sci_sas_address * sas)454 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
455 {
456 struct sas_identify_frame *iaf;
457
458 iaf = &iphy->frame_rcvd.iaf;
459 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460 }
461
sci_phy_get_protocols(struct isci_phy * iphy,struct sci_phy_proto * proto)462 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
463 {
464 proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465 }
466
sci_phy_start(struct isci_phy * iphy)467 enum sci_status sci_phy_start(struct isci_phy *iphy)
468 {
469 enum sci_phy_states state = iphy->sm.current_state_id;
470
471 if (state != SCI_PHY_STOPPED) {
472 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473 __func__, phy_state_name(state));
474 return SCI_FAILURE_INVALID_STATE;
475 }
476
477 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478 return SCI_SUCCESS;
479 }
480
sci_phy_stop(struct isci_phy * iphy)481 enum sci_status sci_phy_stop(struct isci_phy *iphy)
482 {
483 enum sci_phy_states state = iphy->sm.current_state_id;
484
485 switch (state) {
486 case SCI_PHY_SUB_INITIAL:
487 case SCI_PHY_SUB_AWAIT_OSSP_EN:
488 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489 case SCI_PHY_SUB_AWAIT_SAS_POWER:
490 case SCI_PHY_SUB_AWAIT_SATA_POWER:
491 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494 case SCI_PHY_SUB_FINAL:
495 case SCI_PHY_READY:
496 break;
497 default:
498 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499 __func__, phy_state_name(state));
500 return SCI_FAILURE_INVALID_STATE;
501 }
502
503 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504 return SCI_SUCCESS;
505 }
506
sci_phy_reset(struct isci_phy * iphy)507 enum sci_status sci_phy_reset(struct isci_phy *iphy)
508 {
509 enum sci_phy_states state = iphy->sm.current_state_id;
510
511 if (state != SCI_PHY_READY) {
512 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513 __func__, phy_state_name(state));
514 return SCI_FAILURE_INVALID_STATE;
515 }
516
517 sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518 return SCI_SUCCESS;
519 }
520
sci_phy_consume_power_handler(struct isci_phy * iphy)521 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
522 {
523 enum sci_phy_states state = iphy->sm.current_state_id;
524
525 switch (state) {
526 case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527 u32 enable_spinup;
528
529 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532
533 /* Change state to the final state this substate machine has run to completion */
534 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535
536 return SCI_SUCCESS;
537 }
538 case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539 u32 scu_sas_pcfg_value;
540
541 /* Release the spinup hold state and reset the OOB state machine */
542 scu_sas_pcfg_value =
543 readl(&iphy->link_layer_registers->phy_configuration);
544 scu_sas_pcfg_value &=
545 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547 writel(scu_sas_pcfg_value,
548 &iphy->link_layer_registers->phy_configuration);
549
550 /* Now restart the OOB operation */
551 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553 writel(scu_sas_pcfg_value,
554 &iphy->link_layer_registers->phy_configuration);
555
556 /* Change state to the final state this substate machine has run to completion */
557 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558
559 return SCI_SUCCESS;
560 }
561 default:
562 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563 __func__, phy_state_name(state));
564 return SCI_FAILURE_INVALID_STATE;
565 }
566 }
567
sci_phy_start_sas_link_training(struct isci_phy * iphy)568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569 {
570 /* continue the link training for the phy as if it were a SAS PHY
571 * instead of a SATA PHY. This is done because the completion queue had a SAS
572 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573 */
574 u32 phy_control;
575
576 phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578 writel(phy_control,
579 &iphy->link_layer_registers->phy_configuration);
580
581 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582
583 iphy->protocol = SAS_PROTOCOL_SSP;
584 }
585
sci_phy_start_sata_link_training(struct isci_phy * iphy)586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587 {
588 /* This method continues the link training for the phy as if it were a SATA PHY
589 * instead of a SAS PHY. This is done because the completion queue had a SATA
590 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591 */
592 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593
594 iphy->protocol = SAS_PROTOCOL_SATA;
595 }
596
597 /**
598 * sci_phy_complete_link_training - perform processing common to
599 * all protocols upon completion of link training.
600 * @sci_phy: This parameter specifies the phy object for which link training
601 * has completed.
602 * @max_link_rate: This parameter specifies the maximum link rate to be
603 * associated with this phy.
604 * @next_state: This parameter specifies the next state for the phy's starting
605 * sub-state machine.
606 *
607 */
sci_phy_complete_link_training(struct isci_phy * iphy,enum sas_linkrate max_link_rate,u32 next_state)608 static void sci_phy_complete_link_training(struct isci_phy *iphy,
609 enum sas_linkrate max_link_rate,
610 u32 next_state)
611 {
612 iphy->max_negotiated_speed = max_link_rate;
613
614 sci_change_state(&iphy->sm, next_state);
615 }
616
phy_event_name(u32 event_code)617 static const char *phy_event_name(u32 event_code)
618 {
619 switch (scu_get_event_code(event_code)) {
620 case SCU_EVENT_PORT_SELECTOR_DETECTED:
621 return "port selector";
622 case SCU_EVENT_SENT_PORT_SELECTION:
623 return "port selection";
624 case SCU_EVENT_HARD_RESET_TRANSMITTED:
625 return "tx hard reset";
626 case SCU_EVENT_HARD_RESET_RECEIVED:
627 return "rx hard reset";
628 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629 return "identify timeout";
630 case SCU_EVENT_LINK_FAILURE:
631 return "link fail";
632 case SCU_EVENT_SATA_SPINUP_HOLD:
633 return "sata spinup hold";
634 case SCU_EVENT_SAS_15_SSC:
635 case SCU_EVENT_SAS_15:
636 return "sas 1.5";
637 case SCU_EVENT_SAS_30_SSC:
638 case SCU_EVENT_SAS_30:
639 return "sas 3.0";
640 case SCU_EVENT_SAS_60_SSC:
641 case SCU_EVENT_SAS_60:
642 return "sas 6.0";
643 case SCU_EVENT_SATA_15_SSC:
644 case SCU_EVENT_SATA_15:
645 return "sata 1.5";
646 case SCU_EVENT_SATA_30_SSC:
647 case SCU_EVENT_SATA_30:
648 return "sata 3.0";
649 case SCU_EVENT_SATA_60_SSC:
650 case SCU_EVENT_SATA_60:
651 return "sata 6.0";
652 case SCU_EVENT_SAS_PHY_DETECTED:
653 return "sas detect";
654 case SCU_EVENT_SATA_PHY_DETECTED:
655 return "sata detect";
656 default:
657 return "unknown";
658 }
659 }
660
661 #define phy_event_dbg(iphy, state, code) \
662 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663 phy_to_host(iphy)->id, iphy->phy_index, \
664 phy_state_name(state), phy_event_name(code), code)
665
666 #define phy_event_warn(iphy, state, code) \
667 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668 phy_to_host(iphy)->id, iphy->phy_index, \
669 phy_state_name(state), phy_event_name(code), code)
670
671
scu_link_layer_set_txcomsas_timeout(struct isci_phy * iphy,u32 timeout)672 static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
673 {
674 u32 val;
675
676 /* Extend timeout */
677 val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
678 val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
679 val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
680
681 writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
682 }
683
sci_phy_event_handler(struct isci_phy * iphy,u32 event_code)684 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
685 {
686 enum sci_phy_states state = iphy->sm.current_state_id;
687
688 switch (state) {
689 case SCI_PHY_SUB_AWAIT_OSSP_EN:
690 switch (scu_get_event_code(event_code)) {
691 case SCU_EVENT_SAS_PHY_DETECTED:
692 sci_phy_start_sas_link_training(iphy);
693 iphy->is_in_link_training = true;
694 break;
695 case SCU_EVENT_SATA_SPINUP_HOLD:
696 sci_phy_start_sata_link_training(iphy);
697 iphy->is_in_link_training = true;
698 break;
699 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
700 /* Extend timeout value */
701 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
702
703 /* Start the oob/sn state machine over again */
704 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705 break;
706 default:
707 phy_event_dbg(iphy, state, event_code);
708 return SCI_FAILURE;
709 }
710 return SCI_SUCCESS;
711 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712 switch (scu_get_event_code(event_code)) {
713 case SCU_EVENT_SAS_PHY_DETECTED:
714 /*
715 * Why is this being reported again by the controller?
716 * We would re-enter this state so just stay here */
717 break;
718 case SCU_EVENT_SAS_15:
719 case SCU_EVENT_SAS_15_SSC:
720 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721 SCI_PHY_SUB_AWAIT_IAF_UF);
722 break;
723 case SCU_EVENT_SAS_30:
724 case SCU_EVENT_SAS_30_SSC:
725 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726 SCI_PHY_SUB_AWAIT_IAF_UF);
727 break;
728 case SCU_EVENT_SAS_60:
729 case SCU_EVENT_SAS_60_SSC:
730 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731 SCI_PHY_SUB_AWAIT_IAF_UF);
732 break;
733 case SCU_EVENT_SATA_SPINUP_HOLD:
734 /*
735 * We were doing SAS PHY link training and received a SATA PHY event
736 * continue OOB/SN as if this were a SATA PHY */
737 sci_phy_start_sata_link_training(iphy);
738 break;
739 case SCU_EVENT_LINK_FAILURE:
740 /* Change the timeout value to default */
741 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
742
743 /* Link failure change state back to the starting state */
744 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745 break;
746 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
747 /* Extend the timeout value */
748 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
749
750 /* Start the oob/sn state machine over again */
751 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752 break;
753 default:
754 phy_event_warn(iphy, state, event_code);
755 return SCI_FAILURE;
756 break;
757 }
758 return SCI_SUCCESS;
759 case SCI_PHY_SUB_AWAIT_IAF_UF:
760 switch (scu_get_event_code(event_code)) {
761 case SCU_EVENT_SAS_PHY_DETECTED:
762 /* Backup the state machine */
763 sci_phy_start_sas_link_training(iphy);
764 break;
765 case SCU_EVENT_SATA_SPINUP_HOLD:
766 /* We were doing SAS PHY link training and received a
767 * SATA PHY event continue OOB/SN as if this were a
768 * SATA PHY
769 */
770 sci_phy_start_sata_link_training(iphy);
771 break;
772 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
773 /* Extend the timeout value */
774 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
775
776 /* Start the oob/sn state machine over again */
777 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
778 break;
779 case SCU_EVENT_LINK_FAILURE:
780 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
781 fallthrough;
782 case SCU_EVENT_HARD_RESET_RECEIVED:
783 /* Start the oob/sn state machine over again */
784 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
785 break;
786 default:
787 phy_event_warn(iphy, state, event_code);
788 return SCI_FAILURE;
789 }
790 return SCI_SUCCESS;
791 case SCI_PHY_SUB_AWAIT_SAS_POWER:
792 switch (scu_get_event_code(event_code)) {
793 case SCU_EVENT_LINK_FAILURE:
794 /* Change the timeout value to default */
795 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
796
797 /* Link failure change state back to the starting state */
798 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
799 break;
800 default:
801 phy_event_warn(iphy, state, event_code);
802 return SCI_FAILURE;
803 }
804 return SCI_SUCCESS;
805 case SCI_PHY_SUB_AWAIT_SATA_POWER:
806 switch (scu_get_event_code(event_code)) {
807 case SCU_EVENT_LINK_FAILURE:
808 /* Change the timeout value to default */
809 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
810
811 /* Link failure change state back to the starting state */
812 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
813 break;
814 case SCU_EVENT_SATA_SPINUP_HOLD:
815 /* These events are received every 10ms and are
816 * expected while in this state
817 */
818 break;
819
820 case SCU_EVENT_SAS_PHY_DETECTED:
821 /* There has been a change in the phy type before OOB/SN for the
822 * SATA finished start down the SAS link traning path.
823 */
824 sci_phy_start_sas_link_training(iphy);
825 break;
826
827 default:
828 phy_event_warn(iphy, state, event_code);
829 return SCI_FAILURE;
830 }
831 return SCI_SUCCESS;
832 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
833 switch (scu_get_event_code(event_code)) {
834 case SCU_EVENT_LINK_FAILURE:
835 /* Change the timeout value to default */
836 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
837
838 /* Link failure change state back to the starting state */
839 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
840 break;
841 case SCU_EVENT_SATA_SPINUP_HOLD:
842 /* These events might be received since we dont know how many may be in
843 * the completion queue while waiting for power
844 */
845 break;
846 case SCU_EVENT_SATA_PHY_DETECTED:
847 iphy->protocol = SAS_PROTOCOL_SATA;
848
849 /* We have received the SATA PHY notification change state */
850 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
851 break;
852 case SCU_EVENT_SAS_PHY_DETECTED:
853 /* There has been a change in the phy type before OOB/SN for the
854 * SATA finished start down the SAS link traning path.
855 */
856 sci_phy_start_sas_link_training(iphy);
857 break;
858 default:
859 phy_event_warn(iphy, state, event_code);
860 return SCI_FAILURE;
861 }
862 return SCI_SUCCESS;
863 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
864 switch (scu_get_event_code(event_code)) {
865 case SCU_EVENT_SATA_PHY_DETECTED:
866 /*
867 * The hardware reports multiple SATA PHY detected events
868 * ignore the extras */
869 break;
870 case SCU_EVENT_SATA_15:
871 case SCU_EVENT_SATA_15_SSC:
872 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
873 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
874 break;
875 case SCU_EVENT_SATA_30:
876 case SCU_EVENT_SATA_30_SSC:
877 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
878 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
879 break;
880 case SCU_EVENT_SATA_60:
881 case SCU_EVENT_SATA_60_SSC:
882 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
883 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
884 break;
885 case SCU_EVENT_LINK_FAILURE:
886 /* Change the timeout value to default */
887 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
888
889 /* Link failure change state back to the starting state */
890 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
891 break;
892 case SCU_EVENT_SAS_PHY_DETECTED:
893 /*
894 * There has been a change in the phy type before OOB/SN for the
895 * SATA finished start down the SAS link traning path. */
896 sci_phy_start_sas_link_training(iphy);
897 break;
898 default:
899 phy_event_warn(iphy, state, event_code);
900 return SCI_FAILURE;
901 }
902
903 return SCI_SUCCESS;
904 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
905 switch (scu_get_event_code(event_code)) {
906 case SCU_EVENT_SATA_PHY_DETECTED:
907 /* Backup the state machine */
908 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
909 break;
910
911 case SCU_EVENT_LINK_FAILURE:
912 /* Change the timeout value to default */
913 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
914
915 /* Link failure change state back to the starting state */
916 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
917 break;
918
919 default:
920 phy_event_warn(iphy, state, event_code);
921 return SCI_FAILURE;
922 }
923 return SCI_SUCCESS;
924 case SCI_PHY_READY:
925 switch (scu_get_event_code(event_code)) {
926 case SCU_EVENT_LINK_FAILURE:
927 /* Set default timeout */
928 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
929
930 /* Link failure change state back to the starting state */
931 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
932 break;
933 case SCU_EVENT_BROADCAST_CHANGE:
934 case SCU_EVENT_BROADCAST_SES:
935 case SCU_EVENT_BROADCAST_RESERVED0:
936 case SCU_EVENT_BROADCAST_RESERVED1:
937 case SCU_EVENT_BROADCAST_EXPANDER:
938 case SCU_EVENT_BROADCAST_AEN:
939 /* Broadcast change received. Notify the port. */
940 if (phy_get_non_dummy_port(iphy) != NULL)
941 sci_port_broadcast_change_received(iphy->owning_port, iphy);
942 else
943 iphy->bcn_received_while_port_unassigned = true;
944 break;
945 case SCU_EVENT_BROADCAST_RESERVED3:
946 case SCU_EVENT_BROADCAST_RESERVED4:
947 default:
948 phy_event_warn(iphy, state, event_code);
949 return SCI_FAILURE_INVALID_STATE;
950 }
951 return SCI_SUCCESS;
952 case SCI_PHY_RESETTING:
953 switch (scu_get_event_code(event_code)) {
954 case SCU_EVENT_HARD_RESET_TRANSMITTED:
955 /* Link failure change state back to the starting state */
956 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
957 break;
958 default:
959 phy_event_warn(iphy, state, event_code);
960 return SCI_FAILURE_INVALID_STATE;
961 break;
962 }
963 return SCI_SUCCESS;
964 default:
965 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
966 __func__, phy_state_name(state));
967 return SCI_FAILURE_INVALID_STATE;
968 }
969 }
970
sci_phy_frame_handler(struct isci_phy * iphy,u32 frame_index)971 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
972 {
973 enum sci_phy_states state = iphy->sm.current_state_id;
974 struct isci_host *ihost = iphy->owning_port->owning_controller;
975 enum sci_status result;
976 unsigned long flags;
977
978 switch (state) {
979 case SCI_PHY_SUB_AWAIT_IAF_UF: {
980 u32 *frame_words;
981 struct sas_identify_frame iaf;
982
983 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
984 frame_index,
985 (void **)&frame_words);
986
987 if (result != SCI_SUCCESS)
988 return result;
989
990 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
991 if (iaf.frame_type == 0) {
992 u32 state;
993
994 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
995 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
996 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
997 if (iaf.smp_tport) {
998 /* We got the IAF for an expander PHY go to the final
999 * state since there are no power requirements for
1000 * expander phys.
1001 */
1002 state = SCI_PHY_SUB_FINAL;
1003 } else {
1004 /* We got the IAF we can now go to the await spinup
1005 * semaphore state
1006 */
1007 state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1008 }
1009 sci_change_state(&iphy->sm, state);
1010 result = SCI_SUCCESS;
1011 } else
1012 dev_warn(sciphy_to_dev(iphy),
1013 "%s: PHY starting substate machine received "
1014 "unexpected frame id %x\n",
1015 __func__, frame_index);
1016
1017 sci_controller_release_frame(ihost, frame_index);
1018 return result;
1019 }
1020 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1021 struct dev_to_host_fis *frame_header;
1022 u32 *fis_frame_data;
1023
1024 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1025 frame_index,
1026 (void **)&frame_header);
1027
1028 if (result != SCI_SUCCESS)
1029 return result;
1030
1031 if ((frame_header->fis_type == FIS_REGD2H) &&
1032 !(frame_header->status & ATA_BUSY)) {
1033 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1034 frame_index,
1035 (void **)&fis_frame_data);
1036
1037 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1038 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1039 frame_header,
1040 fis_frame_data);
1041 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1042
1043 /* got IAF we can now go to the await spinup semaphore state */
1044 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1045
1046 result = SCI_SUCCESS;
1047 } else
1048 dev_warn(sciphy_to_dev(iphy),
1049 "%s: PHY starting substate machine received "
1050 "unexpected frame id %x\n",
1051 __func__, frame_index);
1052
1053 /* Regardless of the result we are done with this frame with it */
1054 sci_controller_release_frame(ihost, frame_index);
1055
1056 return result;
1057 }
1058 default:
1059 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1060 __func__, phy_state_name(state));
1061 return SCI_FAILURE_INVALID_STATE;
1062 }
1063
1064 }
1065
sci_phy_starting_initial_substate_enter(struct sci_base_state_machine * sm)1066 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1067 {
1068 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1069
1070 /* This is just an temporary state go off to the starting state */
1071 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1072 }
1073
sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine * sm)1074 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1075 {
1076 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1077 struct isci_host *ihost = iphy->owning_port->owning_controller;
1078
1079 sci_controller_power_control_queue_insert(ihost, iphy);
1080 }
1081
sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine * sm)1082 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1083 {
1084 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1085 struct isci_host *ihost = iphy->owning_port->owning_controller;
1086
1087 sci_controller_power_control_queue_remove(ihost, iphy);
1088 }
1089
sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine * sm)1090 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1091 {
1092 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1093 struct isci_host *ihost = iphy->owning_port->owning_controller;
1094
1095 sci_controller_power_control_queue_insert(ihost, iphy);
1096 }
1097
sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine * sm)1098 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1099 {
1100 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1101 struct isci_host *ihost = iphy->owning_port->owning_controller;
1102
1103 sci_controller_power_control_queue_remove(ihost, iphy);
1104 }
1105
sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine * sm)1106 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1107 {
1108 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1109
1110 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1111 }
1112
sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine * sm)1113 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1114 {
1115 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1116
1117 sci_del_timer(&iphy->sata_timer);
1118 }
1119
sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine * sm)1120 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1121 {
1122 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1123
1124 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1125 }
1126
sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine * sm)1127 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1128 {
1129 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1130
1131 sci_del_timer(&iphy->sata_timer);
1132 }
1133
sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine * sm)1134 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1135 {
1136 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1137
1138 if (sci_port_link_detected(iphy->owning_port, iphy)) {
1139
1140 /*
1141 * Clear the PE suspend condition so we can actually
1142 * receive SIG FIS
1143 * The hardware will not respond to the XRDY until the PE
1144 * suspend condition is cleared.
1145 */
1146 sci_phy_resume(iphy);
1147
1148 sci_mod_timer(&iphy->sata_timer,
1149 SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1150 } else
1151 iphy->is_in_link_training = false;
1152 }
1153
sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine * sm)1154 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1155 {
1156 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1157
1158 sci_del_timer(&iphy->sata_timer);
1159 }
1160
sci_phy_starting_final_substate_enter(struct sci_base_state_machine * sm)1161 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1162 {
1163 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1164
1165 /* State machine has run to completion so exit out and change
1166 * the base state machine to the ready state
1167 */
1168 sci_change_state(&iphy->sm, SCI_PHY_READY);
1169 }
1170
1171 /**
1172 *
1173 * @sci_phy: This is the struct isci_phy object to stop.
1174 *
1175 * This method will stop the struct isci_phy object. This does not reset the
1176 * protocol engine it just suspends it and places it in a state where it will
1177 * not cause the end device to power up. none
1178 */
scu_link_layer_stop_protocol_engine(struct isci_phy * iphy)1179 static void scu_link_layer_stop_protocol_engine(
1180 struct isci_phy *iphy)
1181 {
1182 u32 scu_sas_pcfg_value;
1183 u32 enable_spinup_value;
1184
1185 /* Suspend the protocol engine and place it in a sata spinup hold state */
1186 scu_sas_pcfg_value =
1187 readl(&iphy->link_layer_registers->phy_configuration);
1188 scu_sas_pcfg_value |=
1189 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1190 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1191 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1192 writel(scu_sas_pcfg_value,
1193 &iphy->link_layer_registers->phy_configuration);
1194
1195 /* Disable the notify enable spinup primitives */
1196 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1197 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1198 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1199 }
1200
scu_link_layer_start_oob(struct isci_phy * iphy)1201 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1202 {
1203 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1204 u32 val;
1205
1206 /** Reset OOB sequence - start */
1207 val = readl(&ll->phy_configuration);
1208 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1209 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1210 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1211 writel(val, &ll->phy_configuration);
1212 readl(&ll->phy_configuration); /* flush */
1213 /** Reset OOB sequence - end */
1214
1215 /** Start OOB sequence - start */
1216 val = readl(&ll->phy_configuration);
1217 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1218 writel(val, &ll->phy_configuration);
1219 readl(&ll->phy_configuration); /* flush */
1220 /** Start OOB sequence - end */
1221 }
1222
1223 /**
1224 *
1225 *
1226 * This method will transmit a hard reset request on the specified phy. The SCU
1227 * hardware requires that we reset the OOB state machine and set the hard reset
1228 * bit in the phy configuration register. We then must start OOB over with the
1229 * hard reset bit set.
1230 */
scu_link_layer_tx_hard_reset(struct isci_phy * iphy)1231 static void scu_link_layer_tx_hard_reset(
1232 struct isci_phy *iphy)
1233 {
1234 u32 phy_configuration_value;
1235
1236 /*
1237 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1238 * to the starting state. */
1239 phy_configuration_value =
1240 readl(&iphy->link_layer_registers->phy_configuration);
1241 phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1242 phy_configuration_value |=
1243 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1244 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1245 writel(phy_configuration_value,
1246 &iphy->link_layer_registers->phy_configuration);
1247
1248 /* Now take the OOB state machine out of reset */
1249 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1250 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1251 writel(phy_configuration_value,
1252 &iphy->link_layer_registers->phy_configuration);
1253 }
1254
sci_phy_stopped_state_enter(struct sci_base_state_machine * sm)1255 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1256 {
1257 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1258 struct isci_port *iport = iphy->owning_port;
1259 struct isci_host *ihost = iport->owning_controller;
1260
1261 /*
1262 * @todo We need to get to the controller to place this PE in a
1263 * reset state
1264 */
1265 sci_del_timer(&iphy->sata_timer);
1266
1267 scu_link_layer_stop_protocol_engine(iphy);
1268
1269 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1270 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1271 }
1272
sci_phy_starting_state_enter(struct sci_base_state_machine * sm)1273 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1274 {
1275 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1276 struct isci_port *iport = iphy->owning_port;
1277 struct isci_host *ihost = iport->owning_controller;
1278
1279 scu_link_layer_stop_protocol_engine(iphy);
1280 scu_link_layer_start_oob(iphy);
1281
1282 /* We don't know what kind of phy we are going to be just yet */
1283 iphy->protocol = SAS_PROTOCOL_NONE;
1284 iphy->bcn_received_while_port_unassigned = false;
1285
1286 if (iphy->sm.previous_state_id == SCI_PHY_READY)
1287 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1288
1289 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1290 }
1291
sci_phy_ready_state_enter(struct sci_base_state_machine * sm)1292 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1293 {
1294 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1295 struct isci_port *iport = iphy->owning_port;
1296 struct isci_host *ihost = iport->owning_controller;
1297
1298 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1299 }
1300
sci_phy_ready_state_exit(struct sci_base_state_machine * sm)1301 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1302 {
1303 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1304
1305 sci_phy_suspend(iphy);
1306 }
1307
sci_phy_resetting_state_enter(struct sci_base_state_machine * sm)1308 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1309 {
1310 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1311
1312 /* The phy is being reset, therefore deactivate it from the port. In
1313 * the resetting state we don't notify the user regarding link up and
1314 * link down notifications
1315 */
1316 sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1317
1318 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1319 scu_link_layer_tx_hard_reset(iphy);
1320 } else {
1321 /* The SCU does not need to have a discrete reset state so
1322 * just go back to the starting state.
1323 */
1324 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1325 }
1326 }
1327
1328 static const struct sci_base_state sci_phy_state_table[] = {
1329 [SCI_PHY_INITIAL] = { },
1330 [SCI_PHY_STOPPED] = {
1331 .enter_state = sci_phy_stopped_state_enter,
1332 },
1333 [SCI_PHY_STARTING] = {
1334 .enter_state = sci_phy_starting_state_enter,
1335 },
1336 [SCI_PHY_SUB_INITIAL] = {
1337 .enter_state = sci_phy_starting_initial_substate_enter,
1338 },
1339 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1340 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1341 [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1342 [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1343 .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1344 .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1345 },
1346 [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1347 .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1348 .exit_state = sci_phy_starting_await_sata_power_substate_exit
1349 },
1350 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1351 .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1352 .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1353 },
1354 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1355 .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1356 .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1357 },
1358 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1359 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1360 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1361 },
1362 [SCI_PHY_SUB_FINAL] = {
1363 .enter_state = sci_phy_starting_final_substate_enter,
1364 },
1365 [SCI_PHY_READY] = {
1366 .enter_state = sci_phy_ready_state_enter,
1367 .exit_state = sci_phy_ready_state_exit,
1368 },
1369 [SCI_PHY_RESETTING] = {
1370 .enter_state = sci_phy_resetting_state_enter,
1371 },
1372 [SCI_PHY_FINAL] = { },
1373 };
1374
sci_phy_construct(struct isci_phy * iphy,struct isci_port * iport,u8 phy_index)1375 void sci_phy_construct(struct isci_phy *iphy,
1376 struct isci_port *iport, u8 phy_index)
1377 {
1378 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1379
1380 /* Copy the rest of the input data to our locals */
1381 iphy->owning_port = iport;
1382 iphy->phy_index = phy_index;
1383 iphy->bcn_received_while_port_unassigned = false;
1384 iphy->protocol = SAS_PROTOCOL_NONE;
1385 iphy->link_layer_registers = NULL;
1386 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1387
1388 /* Create the SIGNATURE FIS Timeout timer for this phy */
1389 sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1390 }
1391
isci_phy_init(struct isci_phy * iphy,struct isci_host * ihost,int index)1392 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1393 {
1394 struct sci_oem_params *oem = &ihost->oem_parameters;
1395 u64 sci_sas_addr;
1396 __be64 sas_addr;
1397
1398 sci_sas_addr = oem->phys[index].sas_address.high;
1399 sci_sas_addr <<= 32;
1400 sci_sas_addr |= oem->phys[index].sas_address.low;
1401 sas_addr = cpu_to_be64(sci_sas_addr);
1402 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1403
1404 iphy->sas_phy.enabled = 0;
1405 iphy->sas_phy.id = index;
1406 iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1407 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1408 iphy->sas_phy.ha = &ihost->sas_ha;
1409 iphy->sas_phy.lldd_phy = iphy;
1410 iphy->sas_phy.enabled = 1;
1411 iphy->sas_phy.class = SAS;
1412 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1413 iphy->sas_phy.tproto = 0;
1414 iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1415 iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1416 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1417 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1418 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1419 }
1420
1421
1422 /**
1423 * isci_phy_control() - This function is one of the SAS Domain Template
1424 * functions. This is a phy management function.
1425 * @phy: This parameter specifies the sphy being controlled.
1426 * @func: This parameter specifies the phy control function being invoked.
1427 * @buf: This parameter is specific to the phy function being invoked.
1428 *
1429 * status, zero indicates success.
1430 */
isci_phy_control(struct asd_sas_phy * sas_phy,enum phy_func func,void * buf)1431 int isci_phy_control(struct asd_sas_phy *sas_phy,
1432 enum phy_func func,
1433 void *buf)
1434 {
1435 int ret = 0;
1436 struct isci_phy *iphy = sas_phy->lldd_phy;
1437 struct asd_sas_port *port = sas_phy->port;
1438 struct isci_host *ihost = sas_phy->ha->lldd_ha;
1439 unsigned long flags;
1440
1441 dev_dbg(&ihost->pdev->dev,
1442 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1443 __func__, sas_phy, func, buf, iphy, port);
1444
1445 switch (func) {
1446 case PHY_FUNC_DISABLE:
1447 spin_lock_irqsave(&ihost->scic_lock, flags);
1448 scu_link_layer_start_oob(iphy);
1449 sci_phy_stop(iphy);
1450 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1451 break;
1452
1453 case PHY_FUNC_LINK_RESET:
1454 spin_lock_irqsave(&ihost->scic_lock, flags);
1455 scu_link_layer_start_oob(iphy);
1456 sci_phy_stop(iphy);
1457 sci_phy_start(iphy);
1458 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1459 break;
1460
1461 case PHY_FUNC_HARD_RESET:
1462 if (!port)
1463 return -ENODEV;
1464
1465 ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1466
1467 break;
1468 case PHY_FUNC_GET_EVENTS: {
1469 struct scu_link_layer_registers __iomem *r;
1470 struct sas_phy *phy = sas_phy->phy;
1471
1472 r = iphy->link_layer_registers;
1473 phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1474 phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1475 phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1476 phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1477 break;
1478 }
1479
1480 default:
1481 dev_dbg(&ihost->pdev->dev,
1482 "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1483 __func__, sas_phy, func);
1484 ret = -ENOSYS;
1485 break;
1486 }
1487 return ret;
1488 }
1489