1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS 16
102 #else
103 #define SD_MINORS 0
104 #endif
105
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int sd_probe(struct device *);
111 static int sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume_system(struct device *);
116 static int sd_resume_runtime(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
sd_set_flush_flag(struct scsi_disk * sdkp)142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 sdkp->max_retries, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 /*
209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 * received mode parameter buffer before doing MODE SELECT.
211 */
212 data.device_specific = 0;
213
214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 sdkp->max_retries, &data, &sshdr)) {
216 if (scsi_sense_valid(&sshdr))
217 sd_print_sense_hdr(sdkp, &sshdr);
218 return -EINVAL;
219 }
220 sd_revalidate_disk(sdkp->disk);
221 return count;
222 }
223
224 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 char *buf)
227 {
228 struct scsi_disk *sdkp = to_scsi_disk(dev);
229 struct scsi_device *sdp = sdkp->device;
230
231 return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233
234 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 const char *buf, size_t count)
237 {
238 struct scsi_disk *sdkp = to_scsi_disk(dev);
239 struct scsi_device *sdp = sdkp->device;
240 bool v;
241
242 if (!capable(CAP_SYS_ADMIN))
243 return -EACCES;
244
245 if (kstrtobool(buf, &v))
246 return -EINVAL;
247
248 sdp->manage_start_stop = v;
249
250 return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253
254 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 struct scsi_disk *sdkp = to_scsi_disk(dev);
258
259 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261
262 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 const char *buf, size_t count)
265 {
266 bool v;
267 struct scsi_disk *sdkp = to_scsi_disk(dev);
268 struct scsi_device *sdp = sdkp->device;
269
270 if (!capable(CAP_SYS_ADMIN))
271 return -EACCES;
272
273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 return -EINVAL;
275
276 if (kstrtobool(buf, &v))
277 return -EINVAL;
278
279 sdp->allow_restart = v;
280
281 return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284
285 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289 int ct = sdkp->RCD + 2*sdkp->WCE;
290
291 return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294
295 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303
304 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309
310 return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312
313 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 const char *buf, size_t count)
316 {
317 struct scsi_disk *sdkp = to_scsi_disk(dev);
318 unsigned int val;
319 int err;
320
321 if (!capable(CAP_SYS_ADMIN))
322 return -EACCES;
323
324 err = kstrtouint(buf, 10, &val);
325
326 if (err)
327 return err;
328
329 if (val <= T10_PI_TYPE3_PROTECTION)
330 sdkp->protection_type = val;
331
332 return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335
336 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 char *buf)
339 {
340 struct scsi_disk *sdkp = to_scsi_disk(dev);
341 struct scsi_device *sdp = sdkp->device;
342 unsigned int dif, dix;
343
344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346
347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 dif = 0;
349 dix = 1;
350 }
351
352 if (!dif && !dix)
353 return sprintf(buf, "none\n");
354
355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358
359 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367
368 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 char *buf)
371 {
372 struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374 return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 [SD_LBP_FULL] = "full",
381 [SD_LBP_UNMAP] = "unmap",
382 [SD_LBP_WS16] = "writesame_16",
383 [SD_LBP_WS10] = "writesame_10",
384 [SD_LBP_ZERO] = "writesame_zero",
385 [SD_LBP_DISABLE] = "disabled",
386 };
387
388 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 char *buf)
391 {
392 struct scsi_disk *sdkp = to_scsi_disk(dev);
393
394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396
397 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 const char *buf, size_t count)
400 {
401 struct scsi_disk *sdkp = to_scsi_disk(dev);
402 struct scsi_device *sdp = sdkp->device;
403 int mode;
404
405 if (!capable(CAP_SYS_ADMIN))
406 return -EACCES;
407
408 if (sd_is_zoned(sdkp)) {
409 sd_config_discard(sdkp, SD_LBP_DISABLE);
410 return count;
411 }
412
413 if (sdp->type != TYPE_DISK)
414 return -EINVAL;
415
416 mode = sysfs_match_string(lbp_mode, buf);
417 if (mode < 0)
418 return -EINVAL;
419
420 sd_config_discard(sdkp, mode);
421
422 return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 [SD_ZERO_WRITE] = "write",
429 [SD_ZERO_WS] = "writesame",
430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
432 };
433
434 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 char *buf)
437 {
438 struct scsi_disk *sdkp = to_scsi_disk(dev);
439
440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442
443 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 const char *buf, size_t count)
446 {
447 struct scsi_disk *sdkp = to_scsi_disk(dev);
448 int mode;
449
450 if (!capable(CAP_SYS_ADMIN))
451 return -EACCES;
452
453 mode = sysfs_match_string(zeroing_mode, buf);
454 if (mode < 0)
455 return -EINVAL;
456
457 sdkp->zeroing_mode = mode;
458
459 return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462
463 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)464 max_medium_access_timeouts_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 struct scsi_disk *sdkp = to_scsi_disk(dev);
468
469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471
472 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)473 max_medium_access_timeouts_store(struct device *dev,
474 struct device_attribute *attr, const char *buf,
475 size_t count)
476 {
477 struct scsi_disk *sdkp = to_scsi_disk(dev);
478 int err;
479
480 if (!capable(CAP_SYS_ADMIN))
481 return -EACCES;
482
483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484
485 return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488
489 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 char *buf)
492 {
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497
498 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 const char *buf, size_t count)
501 {
502 struct scsi_disk *sdkp = to_scsi_disk(dev);
503 struct scsi_device *sdp = sdkp->device;
504 unsigned long max;
505 int err;
506
507 if (!capable(CAP_SYS_ADMIN))
508 return -EACCES;
509
510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 return -EINVAL;
512
513 err = kstrtoul(buf, 10, &max);
514
515 if (err)
516 return err;
517
518 if (max == 0)
519 sdp->no_write_same = 1;
520 else if (max <= SD_MAX_WS16_BLOCKS) {
521 sdp->no_write_same = 0;
522 sdkp->max_ws_blocks = max;
523 }
524
525 sd_config_write_same(sdkp);
526
527 return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530
531 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 struct scsi_disk *sdkp = to_scsi_disk(dev);
535
536 if (sdkp->device->type == TYPE_ZBC)
537 return sprintf(buf, "host-managed\n");
538 if (sdkp->zoned == 1)
539 return sprintf(buf, "host-aware\n");
540 if (sdkp->zoned == 2)
541 return sprintf(buf, "drive-managed\n");
542 return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545
546 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)547 max_retries_store(struct device *dev, struct device_attribute *attr,
548 const char *buf, size_t count)
549 {
550 struct scsi_disk *sdkp = to_scsi_disk(dev);
551 struct scsi_device *sdev = sdkp->device;
552 int retries, err;
553
554 err = kstrtoint(buf, 10, &retries);
555 if (err)
556 return err;
557
558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
559 sdkp->max_retries = retries;
560 return count;
561 }
562
563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
564 SD_MAX_RETRIES);
565 return -EINVAL;
566 }
567
568 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)569 max_retries_show(struct device *dev, struct device_attribute *attr,
570 char *buf)
571 {
572 struct scsi_disk *sdkp = to_scsi_disk(dev);
573
574 return sprintf(buf, "%d\n", sdkp->max_retries);
575 }
576
577 static DEVICE_ATTR_RW(max_retries);
578
579 static struct attribute *sd_disk_attrs[] = {
580 &dev_attr_cache_type.attr,
581 &dev_attr_FUA.attr,
582 &dev_attr_allow_restart.attr,
583 &dev_attr_manage_start_stop.attr,
584 &dev_attr_protection_type.attr,
585 &dev_attr_protection_mode.attr,
586 &dev_attr_app_tag_own.attr,
587 &dev_attr_thin_provisioning.attr,
588 &dev_attr_provisioning_mode.attr,
589 &dev_attr_zeroing_mode.attr,
590 &dev_attr_max_write_same_blocks.attr,
591 &dev_attr_max_medium_access_timeouts.attr,
592 &dev_attr_zoned_cap.attr,
593 &dev_attr_max_retries.attr,
594 NULL,
595 };
596 ATTRIBUTE_GROUPS(sd_disk);
597
598 static struct class sd_disk_class = {
599 .name = "scsi_disk",
600 .owner = THIS_MODULE,
601 .dev_release = scsi_disk_release,
602 .dev_groups = sd_disk_groups,
603 };
604
605 static const struct dev_pm_ops sd_pm_ops = {
606 .suspend = sd_suspend_system,
607 .resume = sd_resume_system,
608 .poweroff = sd_suspend_system,
609 .restore = sd_resume_system,
610 .runtime_suspend = sd_suspend_runtime,
611 .runtime_resume = sd_resume_runtime,
612 };
613
614 static struct scsi_driver sd_template = {
615 .gendrv = {
616 .name = "sd",
617 .owner = THIS_MODULE,
618 .probe = sd_probe,
619 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
620 .remove = sd_remove,
621 .shutdown = sd_shutdown,
622 .pm = &sd_pm_ops,
623 },
624 .rescan = sd_rescan,
625 .init_command = sd_init_command,
626 .uninit_command = sd_uninit_command,
627 .done = sd_done,
628 .eh_action = sd_eh_action,
629 .eh_reset = sd_eh_reset,
630 };
631
632 /*
633 * Dummy kobj_map->probe function.
634 * The default ->probe function will call modprobe, which is
635 * pointless as this module is already loaded.
636 */
sd_default_probe(dev_t devt,int * partno,void * data)637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
638 {
639 return NULL;
640 }
641
642 /*
643 * Device no to disk mapping:
644 *
645 * major disc2 disc p1
646 * |............|.............|....|....| <- dev_t
647 * 31 20 19 8 7 4 3 0
648 *
649 * Inside a major, we have 16k disks, however mapped non-
650 * contiguously. The first 16 disks are for major0, the next
651 * ones with major1, ... Disk 256 is for major0 again, disk 272
652 * for major1, ...
653 * As we stay compatible with our numbering scheme, we can reuse
654 * the well-know SCSI majors 8, 65--71, 136--143.
655 */
sd_major(int major_idx)656 static int sd_major(int major_idx)
657 {
658 switch (major_idx) {
659 case 0:
660 return SCSI_DISK0_MAJOR;
661 case 1 ... 7:
662 return SCSI_DISK1_MAJOR + major_idx - 1;
663 case 8 ... 15:
664 return SCSI_DISK8_MAJOR + major_idx - 8;
665 default:
666 BUG();
667 return 0; /* shut up gcc */
668 }
669 }
670
scsi_disk_get(struct gendisk * disk)671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
672 {
673 struct scsi_disk *sdkp = NULL;
674
675 mutex_lock(&sd_ref_mutex);
676
677 if (disk->private_data) {
678 sdkp = scsi_disk(disk);
679 if (scsi_device_get(sdkp->device) == 0)
680 get_device(&sdkp->dev);
681 else
682 sdkp = NULL;
683 }
684 mutex_unlock(&sd_ref_mutex);
685 return sdkp;
686 }
687
scsi_disk_put(struct scsi_disk * sdkp)688 static void scsi_disk_put(struct scsi_disk *sdkp)
689 {
690 struct scsi_device *sdev = sdkp->device;
691
692 mutex_lock(&sd_ref_mutex);
693 put_device(&sdkp->dev);
694 scsi_device_put(sdev);
695 mutex_unlock(&sd_ref_mutex);
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 size_t len, bool send)
701 {
702 struct scsi_disk *sdkp = data;
703 struct scsi_device *sdev = sdkp->device;
704 u8 cdb[12] = { 0, };
705 int ret;
706
707 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
708 cdb[1] = secp;
709 put_unaligned_be16(spsp, &cdb[2]);
710 put_unaligned_be32(len, &cdb[6]);
711
712 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
713 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
714 RQF_PM, NULL);
715 return ret <= 0 ? ret : -EIO;
716 }
717 #endif /* CONFIG_BLK_SED_OPAL */
718
719 /*
720 * Look up the DIX operation based on whether the command is read or
721 * write and whether dix and dif are enabled.
722 */
sd_prot_op(bool write,bool dix,bool dif)723 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
724 {
725 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
726 static const unsigned int ops[] = { /* wrt dix dif */
727 SCSI_PROT_NORMAL, /* 0 0 0 */
728 SCSI_PROT_READ_STRIP, /* 0 0 1 */
729 SCSI_PROT_READ_INSERT, /* 0 1 0 */
730 SCSI_PROT_READ_PASS, /* 0 1 1 */
731 SCSI_PROT_NORMAL, /* 1 0 0 */
732 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
733 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
734 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
735 };
736
737 return ops[write << 2 | dix << 1 | dif];
738 }
739
740 /*
741 * Returns a mask of the protection flags that are valid for a given DIX
742 * operation.
743 */
sd_prot_flag_mask(unsigned int prot_op)744 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
745 {
746 static const unsigned int flag_mask[] = {
747 [SCSI_PROT_NORMAL] = 0,
748
749 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
750 SCSI_PROT_GUARD_CHECK |
751 SCSI_PROT_REF_CHECK |
752 SCSI_PROT_REF_INCREMENT,
753
754 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
755 SCSI_PROT_IP_CHECKSUM,
756
757 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
758 SCSI_PROT_GUARD_CHECK |
759 SCSI_PROT_REF_CHECK |
760 SCSI_PROT_REF_INCREMENT |
761 SCSI_PROT_IP_CHECKSUM,
762
763 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
764 SCSI_PROT_REF_INCREMENT,
765
766 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
767 SCSI_PROT_REF_CHECK |
768 SCSI_PROT_REF_INCREMENT |
769 SCSI_PROT_IP_CHECKSUM,
770
771 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
772 SCSI_PROT_GUARD_CHECK |
773 SCSI_PROT_REF_CHECK |
774 SCSI_PROT_REF_INCREMENT |
775 SCSI_PROT_IP_CHECKSUM,
776 };
777
778 return flag_mask[prot_op];
779 }
780
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
782 unsigned int dix, unsigned int dif)
783 {
784 struct bio *bio = scmd->request->bio;
785 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
786 unsigned int protect = 0;
787
788 if (dix) { /* DIX Type 0, 1, 2, 3 */
789 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
790 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
791
792 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
793 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
794 }
795
796 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
797 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
798
799 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
800 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
801 }
802
803 if (dif) { /* DIX/DIF Type 1, 2, 3 */
804 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
805
806 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
807 protect = 3 << 5; /* Disable target PI checking */
808 else
809 protect = 1 << 5; /* Enable target PI checking */
810 }
811
812 scsi_set_prot_op(scmd, prot_op);
813 scsi_set_prot_type(scmd, dif);
814 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
815
816 return protect;
817 }
818
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
820 {
821 struct request_queue *q = sdkp->disk->queue;
822 unsigned int logical_block_size = sdkp->device->sector_size;
823 unsigned int max_blocks = 0;
824
825 q->limits.discard_alignment =
826 sdkp->unmap_alignment * logical_block_size;
827 q->limits.discard_granularity =
828 max(sdkp->physical_block_size,
829 sdkp->unmap_granularity * logical_block_size);
830 sdkp->provisioning_mode = mode;
831
832 switch (mode) {
833
834 case SD_LBP_FULL:
835 case SD_LBP_DISABLE:
836 blk_queue_max_discard_sectors(q, 0);
837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
838 return;
839
840 case SD_LBP_UNMAP:
841 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
842 (u32)SD_MAX_WS16_BLOCKS);
843 break;
844
845 case SD_LBP_WS16:
846 if (sdkp->device->unmap_limit_for_ws)
847 max_blocks = sdkp->max_unmap_blocks;
848 else
849 max_blocks = sdkp->max_ws_blocks;
850
851 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
852 break;
853
854 case SD_LBP_WS10:
855 if (sdkp->device->unmap_limit_for_ws)
856 max_blocks = sdkp->max_unmap_blocks;
857 else
858 max_blocks = sdkp->max_ws_blocks;
859
860 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
861 break;
862
863 case SD_LBP_ZERO:
864 max_blocks = min_not_zero(sdkp->max_ws_blocks,
865 (u32)SD_MAX_WS10_BLOCKS);
866 break;
867 }
868
869 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
870 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
871 }
872
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
874 {
875 struct scsi_device *sdp = cmd->device;
876 struct request *rq = cmd->request;
877 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
880 unsigned int data_len = 24;
881 char *buf;
882
883 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
884 if (!rq->special_vec.bv_page)
885 return BLK_STS_RESOURCE;
886 clear_highpage(rq->special_vec.bv_page);
887 rq->special_vec.bv_offset = 0;
888 rq->special_vec.bv_len = data_len;
889 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 cmd->cmd_len = 10;
892 cmd->cmnd[0] = UNMAP;
893 cmd->cmnd[8] = 24;
894
895 buf = page_address(rq->special_vec.bv_page);
896 put_unaligned_be16(6 + 16, &buf[0]);
897 put_unaligned_be16(16, &buf[2]);
898 put_unaligned_be64(lba, &buf[8]);
899 put_unaligned_be32(nr_blocks, &buf[16]);
900
901 cmd->allowed = sdkp->max_retries;
902 cmd->transfersize = data_len;
903 rq->timeout = SD_TIMEOUT;
904
905 return scsi_alloc_sgtables(cmd);
906 }
907
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
909 bool unmap)
910 {
911 struct scsi_device *sdp = cmd->device;
912 struct request *rq = cmd->request;
913 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
914 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
915 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
916 u32 data_len = sdp->sector_size;
917
918 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
919 if (!rq->special_vec.bv_page)
920 return BLK_STS_RESOURCE;
921 clear_highpage(rq->special_vec.bv_page);
922 rq->special_vec.bv_offset = 0;
923 rq->special_vec.bv_len = data_len;
924 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
925
926 cmd->cmd_len = 16;
927 cmd->cmnd[0] = WRITE_SAME_16;
928 if (unmap)
929 cmd->cmnd[1] = 0x8; /* UNMAP */
930 put_unaligned_be64(lba, &cmd->cmnd[2]);
931 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
932
933 cmd->allowed = sdkp->max_retries;
934 cmd->transfersize = data_len;
935 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
936
937 return scsi_alloc_sgtables(cmd);
938 }
939
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
941 bool unmap)
942 {
943 struct scsi_device *sdp = cmd->device;
944 struct request *rq = cmd->request;
945 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
948 u32 data_len = sdp->sector_size;
949
950 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
951 if (!rq->special_vec.bv_page)
952 return BLK_STS_RESOURCE;
953 clear_highpage(rq->special_vec.bv_page);
954 rq->special_vec.bv_offset = 0;
955 rq->special_vec.bv_len = data_len;
956 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
957
958 cmd->cmd_len = 10;
959 cmd->cmnd[0] = WRITE_SAME;
960 if (unmap)
961 cmd->cmnd[1] = 0x8; /* UNMAP */
962 put_unaligned_be32(lba, &cmd->cmnd[2]);
963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965 cmd->allowed = sdkp->max_retries;
966 cmd->transfersize = data_len;
967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969 return scsi_alloc_sgtables(cmd);
970 }
971
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 struct request *rq = cmd->request;
975 struct scsi_device *sdp = cmd->device;
976 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 switch (sdkp->zeroing_mode) {
982 case SD_ZERO_WS16_UNMAP:
983 return sd_setup_write_same16_cmnd(cmd, true);
984 case SD_ZERO_WS10_UNMAP:
985 return sd_setup_write_same10_cmnd(cmd, true);
986 }
987 }
988
989 if (sdp->no_write_same) {
990 rq->rq_flags |= RQF_QUIET;
991 return BLK_STS_TARGET;
992 }
993
994 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995 return sd_setup_write_same16_cmnd(cmd, false);
996
997 return sd_setup_write_same10_cmnd(cmd, false);
998 }
999
sd_config_write_same(struct scsi_disk * sdkp)1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002 struct request_queue *q = sdkp->disk->queue;
1003 unsigned int logical_block_size = sdkp->device->sector_size;
1004
1005 if (sdkp->device->no_write_same) {
1006 sdkp->max_ws_blocks = 0;
1007 goto out;
1008 }
1009
1010 /* Some devices can not handle block counts above 0xffff despite
1011 * supporting WRITE SAME(16). Consequently we default to 64k
1012 * blocks per I/O unless the device explicitly advertises a
1013 * bigger limit.
1014 */
1015 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS16_BLOCKS);
1018 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 (u32)SD_MAX_WS10_BLOCKS);
1021 else {
1022 sdkp->device->no_write_same = 1;
1023 sdkp->max_ws_blocks = 0;
1024 }
1025
1026 if (sdkp->lbprz && sdkp->lbpws)
1027 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028 else if (sdkp->lbprz && sdkp->lbpws10)
1029 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030 else if (sdkp->max_ws_blocks)
1031 sdkp->zeroing_mode = SD_ZERO_WS;
1032 else
1033 sdkp->zeroing_mode = SD_ZERO_WRITE;
1034
1035 if (sdkp->max_ws_blocks &&
1036 sdkp->physical_block_size > logical_block_size) {
1037 /*
1038 * Reporting a maximum number of blocks that is not aligned
1039 * on the device physical size would cause a large write same
1040 * request to be split into physically unaligned chunks by
1041 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1042 * even if the caller of these functions took care to align the
1043 * large request. So make sure the maximum reported is aligned
1044 * to the device physical block size. This is only an optional
1045 * optimization for regular disks, but this is mandatory to
1046 * avoid failure of large write same requests directed at
1047 * sequential write required zones of host-managed ZBC disks.
1048 */
1049 sdkp->max_ws_blocks =
1050 round_down(sdkp->max_ws_blocks,
1051 bytes_to_logical(sdkp->device,
1052 sdkp->physical_block_size));
1053 }
1054
1055 out:
1056 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059 (logical_block_size >> 9));
1060 }
1061
1062 /**
1063 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1064 * @cmd: command to prepare
1065 *
1066 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1067 * the preference indicated by the target device.
1068 **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)1069 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1070 {
1071 struct request *rq = cmd->request;
1072 struct scsi_device *sdp = cmd->device;
1073 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1074 struct bio *bio = rq->bio;
1075 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1076 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1077 unsigned int nr_bytes = blk_rq_bytes(rq);
1078 blk_status_t ret;
1079
1080 if (sdkp->device->no_write_same)
1081 return BLK_STS_TARGET;
1082
1083 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1084
1085 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1086
1087 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1088 cmd->cmd_len = 16;
1089 cmd->cmnd[0] = WRITE_SAME_16;
1090 put_unaligned_be64(lba, &cmd->cmnd[2]);
1091 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1092 } else {
1093 cmd->cmd_len = 10;
1094 cmd->cmnd[0] = WRITE_SAME;
1095 put_unaligned_be32(lba, &cmd->cmnd[2]);
1096 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1097 }
1098
1099 cmd->transfersize = sdp->sector_size;
1100 cmd->allowed = sdkp->max_retries;
1101
1102 /*
1103 * For WRITE SAME the data transferred via the DATA OUT buffer is
1104 * different from the amount of data actually written to the target.
1105 *
1106 * We set up __data_len to the amount of data transferred via the
1107 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1108 * to transfer a single sector of data first, but then reset it to
1109 * the amount of data to be written right after so that the I/O path
1110 * knows how much to actually write.
1111 */
1112 rq->__data_len = sdp->sector_size;
1113 ret = scsi_alloc_sgtables(cmd);
1114 rq->__data_len = nr_bytes;
1115
1116 return ret;
1117 }
1118
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1119 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1120 {
1121 struct request *rq = cmd->request;
1122 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1123
1124 /* flush requests don't perform I/O, zero the S/G table */
1125 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1126
1127 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1128 cmd->cmd_len = 10;
1129 cmd->transfersize = 0;
1130 cmd->allowed = sdkp->max_retries;
1131
1132 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1133 return BLK_STS_OK;
1134 }
1135
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1136 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1137 sector_t lba, unsigned int nr_blocks,
1138 unsigned char flags)
1139 {
1140 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1141 if (unlikely(cmd->cmnd == NULL))
1142 return BLK_STS_RESOURCE;
1143
1144 cmd->cmd_len = SD_EXT_CDB_SIZE;
1145 memset(cmd->cmnd, 0, cmd->cmd_len);
1146
1147 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1148 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1149 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1150 cmd->cmnd[10] = flags;
1151 put_unaligned_be64(lba, &cmd->cmnd[12]);
1152 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1153 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1154
1155 return BLK_STS_OK;
1156 }
1157
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1158 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1159 sector_t lba, unsigned int nr_blocks,
1160 unsigned char flags)
1161 {
1162 cmd->cmd_len = 16;
1163 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1164 cmd->cmnd[1] = flags;
1165 cmd->cmnd[14] = 0;
1166 cmd->cmnd[15] = 0;
1167 put_unaligned_be64(lba, &cmd->cmnd[2]);
1168 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1169
1170 return BLK_STS_OK;
1171 }
1172
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1173 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1174 sector_t lba, unsigned int nr_blocks,
1175 unsigned char flags)
1176 {
1177 cmd->cmd_len = 10;
1178 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1179 cmd->cmnd[1] = flags;
1180 cmd->cmnd[6] = 0;
1181 cmd->cmnd[9] = 0;
1182 put_unaligned_be32(lba, &cmd->cmnd[2]);
1183 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1184
1185 return BLK_STS_OK;
1186 }
1187
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1188 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1189 sector_t lba, unsigned int nr_blocks,
1190 unsigned char flags)
1191 {
1192 /* Avoid that 0 blocks gets translated into 256 blocks. */
1193 if (WARN_ON_ONCE(nr_blocks == 0))
1194 return BLK_STS_IOERR;
1195
1196 if (unlikely(flags & 0x8)) {
1197 /*
1198 * This happens only if this drive failed 10byte rw
1199 * command with ILLEGAL_REQUEST during operation and
1200 * thus turned off use_10_for_rw.
1201 */
1202 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1203 return BLK_STS_IOERR;
1204 }
1205
1206 cmd->cmd_len = 6;
1207 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1208 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1209 cmd->cmnd[2] = (lba >> 8) & 0xff;
1210 cmd->cmnd[3] = lba & 0xff;
1211 cmd->cmnd[4] = nr_blocks;
1212 cmd->cmnd[5] = 0;
1213
1214 return BLK_STS_OK;
1215 }
1216
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1217 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1218 {
1219 struct request *rq = cmd->request;
1220 struct scsi_device *sdp = cmd->device;
1221 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1222 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1223 sector_t threshold;
1224 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1225 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1226 bool write = rq_data_dir(rq) == WRITE;
1227 unsigned char protect, fua;
1228 blk_status_t ret;
1229 unsigned int dif;
1230 bool dix;
1231
1232 ret = scsi_alloc_sgtables(cmd);
1233 if (ret != BLK_STS_OK)
1234 return ret;
1235
1236 ret = BLK_STS_IOERR;
1237 if (!scsi_device_online(sdp) || sdp->changed) {
1238 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1239 goto fail;
1240 }
1241
1242 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1243 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1244 goto fail;
1245 }
1246
1247 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1248 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1249 goto fail;
1250 }
1251
1252 /*
1253 * Some SD card readers can't handle accesses which touch the
1254 * last one or two logical blocks. Split accesses as needed.
1255 */
1256 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1257
1258 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1259 if (lba < threshold) {
1260 /* Access up to the threshold but not beyond */
1261 nr_blocks = threshold - lba;
1262 } else {
1263 /* Access only a single logical block */
1264 nr_blocks = 1;
1265 }
1266 }
1267
1268 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1269 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1270 if (ret)
1271 goto fail;
1272 }
1273
1274 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1275 dix = scsi_prot_sg_count(cmd);
1276 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1277
1278 if (dif || dix)
1279 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1280 else
1281 protect = 0;
1282
1283 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1284 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1285 protect | fua);
1286 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1287 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1288 protect | fua);
1289 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1290 sdp->use_10_for_rw || protect) {
1291 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1292 protect | fua);
1293 } else {
1294 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1295 protect | fua);
1296 }
1297
1298 if (unlikely(ret != BLK_STS_OK))
1299 goto fail;
1300
1301 /*
1302 * We shouldn't disconnect in the middle of a sector, so with a dumb
1303 * host adapter, it's safe to assume that we can at least transfer
1304 * this many bytes between each connect / disconnect.
1305 */
1306 cmd->transfersize = sdp->sector_size;
1307 cmd->underflow = nr_blocks << 9;
1308 cmd->allowed = sdkp->max_retries;
1309 cmd->sdb.length = nr_blocks * sdp->sector_size;
1310
1311 SCSI_LOG_HLQUEUE(1,
1312 scmd_printk(KERN_INFO, cmd,
1313 "%s: block=%llu, count=%d\n", __func__,
1314 (unsigned long long)blk_rq_pos(rq),
1315 blk_rq_sectors(rq)));
1316 SCSI_LOG_HLQUEUE(2,
1317 scmd_printk(KERN_INFO, cmd,
1318 "%s %d/%u 512 byte blocks.\n",
1319 write ? "writing" : "reading", nr_blocks,
1320 blk_rq_sectors(rq)));
1321
1322 /*
1323 * This indicates that the command is ready from our end to be queued.
1324 */
1325 return BLK_STS_OK;
1326 fail:
1327 scsi_free_sgtables(cmd);
1328 return ret;
1329 }
1330
sd_init_command(struct scsi_cmnd * cmd)1331 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1332 {
1333 struct request *rq = cmd->request;
1334
1335 switch (req_op(rq)) {
1336 case REQ_OP_DISCARD:
1337 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1338 case SD_LBP_UNMAP:
1339 return sd_setup_unmap_cmnd(cmd);
1340 case SD_LBP_WS16:
1341 return sd_setup_write_same16_cmnd(cmd, true);
1342 case SD_LBP_WS10:
1343 return sd_setup_write_same10_cmnd(cmd, true);
1344 case SD_LBP_ZERO:
1345 return sd_setup_write_same10_cmnd(cmd, false);
1346 default:
1347 return BLK_STS_TARGET;
1348 }
1349 case REQ_OP_WRITE_ZEROES:
1350 return sd_setup_write_zeroes_cmnd(cmd);
1351 case REQ_OP_WRITE_SAME:
1352 return sd_setup_write_same_cmnd(cmd);
1353 case REQ_OP_FLUSH:
1354 return sd_setup_flush_cmnd(cmd);
1355 case REQ_OP_READ:
1356 case REQ_OP_WRITE:
1357 case REQ_OP_ZONE_APPEND:
1358 return sd_setup_read_write_cmnd(cmd);
1359 case REQ_OP_ZONE_RESET:
1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 false);
1362 case REQ_OP_ZONE_RESET_ALL:
1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1364 true);
1365 case REQ_OP_ZONE_OPEN:
1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1367 case REQ_OP_ZONE_CLOSE:
1368 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1369 case REQ_OP_ZONE_FINISH:
1370 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1371 default:
1372 WARN_ON_ONCE(1);
1373 return BLK_STS_NOTSUPP;
1374 }
1375 }
1376
sd_uninit_command(struct scsi_cmnd * SCpnt)1377 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1378 {
1379 struct request *rq = SCpnt->request;
1380 u8 *cmnd;
1381
1382 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1383 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1384
1385 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1386 cmnd = SCpnt->cmnd;
1387 SCpnt->cmnd = NULL;
1388 SCpnt->cmd_len = 0;
1389 mempool_free(cmnd, sd_cdb_pool);
1390 }
1391 }
1392
sd_need_revalidate(struct block_device * bdev,struct scsi_disk * sdkp)1393 static bool sd_need_revalidate(struct block_device *bdev,
1394 struct scsi_disk *sdkp)
1395 {
1396 if (sdkp->device->removable || sdkp->write_prot) {
1397 if (bdev_check_media_change(bdev))
1398 return true;
1399 }
1400
1401 /*
1402 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1403 * nothing to do with partitions, BLKRRPART is used to force a full
1404 * revalidate after things like a format for historical reasons.
1405 */
1406 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1407 }
1408
1409 /**
1410 * sd_open - open a scsi disk device
1411 * @bdev: Block device of the scsi disk to open
1412 * @mode: FMODE_* mask
1413 *
1414 * Returns 0 if successful. Returns a negated errno value in case
1415 * of error.
1416 *
1417 * Note: This can be called from a user context (e.g. fsck(1) )
1418 * or from within the kernel (e.g. as a result of a mount(1) ).
1419 * In the latter case @inode and @filp carry an abridged amount
1420 * of information as noted above.
1421 *
1422 * Locking: called with bdev->bd_mutex held.
1423 **/
sd_open(struct block_device * bdev,fmode_t mode)1424 static int sd_open(struct block_device *bdev, fmode_t mode)
1425 {
1426 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1427 struct scsi_device *sdev;
1428 int retval;
1429
1430 if (!sdkp)
1431 return -ENXIO;
1432
1433 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1434
1435 sdev = sdkp->device;
1436
1437 /*
1438 * If the device is in error recovery, wait until it is done.
1439 * If the device is offline, then disallow any access to it.
1440 */
1441 retval = -ENXIO;
1442 if (!scsi_block_when_processing_errors(sdev))
1443 goto error_out;
1444
1445 if (sd_need_revalidate(bdev, sdkp))
1446 sd_revalidate_disk(bdev->bd_disk);
1447
1448 /*
1449 * If the drive is empty, just let the open fail.
1450 */
1451 retval = -ENOMEDIUM;
1452 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1453 goto error_out;
1454
1455 /*
1456 * If the device has the write protect tab set, have the open fail
1457 * if the user expects to be able to write to the thing.
1458 */
1459 retval = -EROFS;
1460 if (sdkp->write_prot && (mode & FMODE_WRITE))
1461 goto error_out;
1462
1463 /*
1464 * It is possible that the disk changing stuff resulted in
1465 * the device being taken offline. If this is the case,
1466 * report this to the user, and don't pretend that the
1467 * open actually succeeded.
1468 */
1469 retval = -ENXIO;
1470 if (!scsi_device_online(sdev))
1471 goto error_out;
1472
1473 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1474 if (scsi_block_when_processing_errors(sdev))
1475 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1476 }
1477
1478 return 0;
1479
1480 error_out:
1481 scsi_disk_put(sdkp);
1482 return retval;
1483 }
1484
1485 /**
1486 * sd_release - invoked when the (last) close(2) is called on this
1487 * scsi disk.
1488 * @disk: disk to release
1489 * @mode: FMODE_* mask
1490 *
1491 * Returns 0.
1492 *
1493 * Note: may block (uninterruptible) if error recovery is underway
1494 * on this disk.
1495 *
1496 * Locking: called with bdev->bd_mutex held.
1497 **/
sd_release(struct gendisk * disk,fmode_t mode)1498 static void sd_release(struct gendisk *disk, fmode_t mode)
1499 {
1500 struct scsi_disk *sdkp = scsi_disk(disk);
1501 struct scsi_device *sdev = sdkp->device;
1502
1503 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1504
1505 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1506 if (scsi_block_when_processing_errors(sdev))
1507 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1508 }
1509
1510 scsi_disk_put(sdkp);
1511 }
1512
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1513 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1514 {
1515 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1516 struct scsi_device *sdp = sdkp->device;
1517 struct Scsi_Host *host = sdp->host;
1518 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1519 int diskinfo[4];
1520
1521 /* default to most commonly used values */
1522 diskinfo[0] = 0x40; /* 1 << 6 */
1523 diskinfo[1] = 0x20; /* 1 << 5 */
1524 diskinfo[2] = capacity >> 11;
1525
1526 /* override with calculated, extended default, or driver values */
1527 if (host->hostt->bios_param)
1528 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1529 else
1530 scsicam_bios_param(bdev, capacity, diskinfo);
1531
1532 geo->heads = diskinfo[0];
1533 geo->sectors = diskinfo[1];
1534 geo->cylinders = diskinfo[2];
1535 return 0;
1536 }
1537
1538 /**
1539 * sd_ioctl - process an ioctl
1540 * @bdev: target block device
1541 * @mode: FMODE_* mask
1542 * @cmd: ioctl command number
1543 * @p: this is third argument given to ioctl(2) system call.
1544 * Often contains a pointer.
1545 *
1546 * Returns 0 if successful (some ioctls return positive numbers on
1547 * success as well). Returns a negated errno value in case of error.
1548 *
1549 * Note: most ioctls are forward onto the block subsystem or further
1550 * down in the scsi subsystem.
1551 **/
sd_ioctl_common(struct block_device * bdev,fmode_t mode,unsigned int cmd,void __user * p)1552 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1553 unsigned int cmd, void __user *p)
1554 {
1555 struct gendisk *disk = bdev->bd_disk;
1556 struct scsi_disk *sdkp = scsi_disk(disk);
1557 struct scsi_device *sdp = sdkp->device;
1558 int error;
1559
1560 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1561 "cmd=0x%x\n", disk->disk_name, cmd));
1562
1563 error = scsi_verify_blk_ioctl(bdev, cmd);
1564 if (error < 0)
1565 return error;
1566
1567 /*
1568 * If we are in the middle of error recovery, don't let anyone
1569 * else try and use this device. Also, if error recovery fails, it
1570 * may try and take the device offline, in which case all further
1571 * access to the device is prohibited.
1572 */
1573 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1574 (mode & FMODE_NDELAY) != 0);
1575 if (error)
1576 goto out;
1577
1578 if (is_sed_ioctl(cmd))
1579 return sed_ioctl(sdkp->opal_dev, cmd, p);
1580
1581 /*
1582 * Send SCSI addressing ioctls directly to mid level, send other
1583 * ioctls to block level and then onto mid level if they can't be
1584 * resolved.
1585 */
1586 switch (cmd) {
1587 case SCSI_IOCTL_GET_IDLUN:
1588 case SCSI_IOCTL_GET_BUS_NUMBER:
1589 error = scsi_ioctl(sdp, cmd, p);
1590 break;
1591 default:
1592 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1593 break;
1594 }
1595 out:
1596 return error;
1597 }
1598
set_media_not_present(struct scsi_disk * sdkp)1599 static void set_media_not_present(struct scsi_disk *sdkp)
1600 {
1601 if (sdkp->media_present)
1602 sdkp->device->changed = 1;
1603
1604 if (sdkp->device->removable) {
1605 sdkp->media_present = 0;
1606 sdkp->capacity = 0;
1607 }
1608 }
1609
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1610 static int media_not_present(struct scsi_disk *sdkp,
1611 struct scsi_sense_hdr *sshdr)
1612 {
1613 if (!scsi_sense_valid(sshdr))
1614 return 0;
1615
1616 /* not invoked for commands that could return deferred errors */
1617 switch (sshdr->sense_key) {
1618 case UNIT_ATTENTION:
1619 case NOT_READY:
1620 /* medium not present */
1621 if (sshdr->asc == 0x3A) {
1622 set_media_not_present(sdkp);
1623 return 1;
1624 }
1625 }
1626 return 0;
1627 }
1628
1629 /**
1630 * sd_check_events - check media events
1631 * @disk: kernel device descriptor
1632 * @clearing: disk events currently being cleared
1633 *
1634 * Returns mask of DISK_EVENT_*.
1635 *
1636 * Note: this function is invoked from the block subsystem.
1637 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1638 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1639 {
1640 struct scsi_disk *sdkp = scsi_disk_get(disk);
1641 struct scsi_device *sdp;
1642 int retval;
1643
1644 if (!sdkp)
1645 return 0;
1646
1647 sdp = sdkp->device;
1648 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1649
1650 /*
1651 * If the device is offline, don't send any commands - just pretend as
1652 * if the command failed. If the device ever comes back online, we
1653 * can deal with it then. It is only because of unrecoverable errors
1654 * that we would ever take a device offline in the first place.
1655 */
1656 if (!scsi_device_online(sdp)) {
1657 set_media_not_present(sdkp);
1658 goto out;
1659 }
1660
1661 /*
1662 * Using TEST_UNIT_READY enables differentiation between drive with
1663 * no cartridge loaded - NOT READY, drive with changed cartridge -
1664 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1665 *
1666 * Drives that auto spin down. eg iomega jaz 1G, will be started
1667 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1668 * sd_revalidate() is called.
1669 */
1670 if (scsi_block_when_processing_errors(sdp)) {
1671 struct scsi_sense_hdr sshdr = { 0, };
1672
1673 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1674 &sshdr);
1675
1676 /* failed to execute TUR, assume media not present */
1677 if (host_byte(retval)) {
1678 set_media_not_present(sdkp);
1679 goto out;
1680 }
1681
1682 if (media_not_present(sdkp, &sshdr))
1683 goto out;
1684 }
1685
1686 /*
1687 * For removable scsi disk we have to recognise the presence
1688 * of a disk in the drive.
1689 */
1690 if (!sdkp->media_present)
1691 sdp->changed = 1;
1692 sdkp->media_present = 1;
1693 out:
1694 /*
1695 * sdp->changed is set under the following conditions:
1696 *
1697 * Medium present state has changed in either direction.
1698 * Device has indicated UNIT_ATTENTION.
1699 */
1700 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1701 sdp->changed = 0;
1702 scsi_disk_put(sdkp);
1703 return retval;
1704 }
1705
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1706 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1707 {
1708 int retries, res;
1709 struct scsi_device *sdp = sdkp->device;
1710 const int timeout = sdp->request_queue->rq_timeout
1711 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1712 struct scsi_sense_hdr my_sshdr;
1713
1714 if (!scsi_device_online(sdp))
1715 return -ENODEV;
1716
1717 /* caller might not be interested in sense, but we need it */
1718 if (!sshdr)
1719 sshdr = &my_sshdr;
1720
1721 for (retries = 3; retries > 0; --retries) {
1722 unsigned char cmd[10] = { 0 };
1723
1724 cmd[0] = SYNCHRONIZE_CACHE;
1725 /*
1726 * Leave the rest of the command zero to indicate
1727 * flush everything.
1728 */
1729 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1730 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1731 if (res == 0)
1732 break;
1733 }
1734
1735 if (res) {
1736 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1737
1738 if (driver_byte(res) == DRIVER_SENSE)
1739 sd_print_sense_hdr(sdkp, sshdr);
1740
1741 /* we need to evaluate the error return */
1742 if (scsi_sense_valid(sshdr) &&
1743 (sshdr->asc == 0x3a || /* medium not present */
1744 sshdr->asc == 0x20 || /* invalid command */
1745 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */
1746 /* this is no error here */
1747 return 0;
1748
1749 switch (host_byte(res)) {
1750 /* ignore errors due to racing a disconnection */
1751 case DID_BAD_TARGET:
1752 case DID_NO_CONNECT:
1753 return 0;
1754 /* signal the upper layer it might try again */
1755 case DID_BUS_BUSY:
1756 case DID_IMM_RETRY:
1757 case DID_REQUEUE:
1758 case DID_SOFT_ERROR:
1759 return -EBUSY;
1760 default:
1761 return -EIO;
1762 }
1763 }
1764 return 0;
1765 }
1766
sd_rescan(struct device * dev)1767 static void sd_rescan(struct device *dev)
1768 {
1769 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1770 int ret;
1771
1772 ret = sd_revalidate_disk(sdkp->disk);
1773 revalidate_disk_size(sdkp->disk, ret == 0);
1774 }
1775
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1776 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1777 unsigned int cmd, unsigned long arg)
1778 {
1779 void __user *p = (void __user *)arg;
1780 int ret;
1781
1782 ret = sd_ioctl_common(bdev, mode, cmd, p);
1783 if (ret != -ENOTTY)
1784 return ret;
1785
1786 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1787 }
1788
1789 #ifdef CONFIG_COMPAT
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1790 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1791 unsigned int cmd, unsigned long arg)
1792 {
1793 void __user *p = compat_ptr(arg);
1794 int ret;
1795
1796 ret = sd_ioctl_common(bdev, mode, cmd, p);
1797 if (ret != -ENOTTY)
1798 return ret;
1799
1800 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1801 }
1802 #endif
1803
sd_pr_type(enum pr_type type)1804 static char sd_pr_type(enum pr_type type)
1805 {
1806 switch (type) {
1807 case PR_WRITE_EXCLUSIVE:
1808 return 0x01;
1809 case PR_EXCLUSIVE_ACCESS:
1810 return 0x03;
1811 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1812 return 0x05;
1813 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1814 return 0x06;
1815 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1816 return 0x07;
1817 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1818 return 0x08;
1819 default:
1820 return 0;
1821 }
1822 };
1823
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1824 static int sd_pr_command(struct block_device *bdev, u8 sa,
1825 u64 key, u64 sa_key, u8 type, u8 flags)
1826 {
1827 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1828 struct scsi_device *sdev = sdkp->device;
1829 struct scsi_sense_hdr sshdr;
1830 int result;
1831 u8 cmd[16] = { 0, };
1832 u8 data[24] = { 0, };
1833
1834 cmd[0] = PERSISTENT_RESERVE_OUT;
1835 cmd[1] = sa;
1836 cmd[2] = type;
1837 put_unaligned_be32(sizeof(data), &cmd[5]);
1838
1839 put_unaligned_be64(key, &data[0]);
1840 put_unaligned_be64(sa_key, &data[8]);
1841 data[20] = flags;
1842
1843 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1844 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1845
1846 if (driver_byte(result) == DRIVER_SENSE &&
1847 scsi_sense_valid(&sshdr)) {
1848 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1849 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1850 }
1851
1852 return result;
1853 }
1854
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1855 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1856 u32 flags)
1857 {
1858 if (flags & ~PR_FL_IGNORE_KEY)
1859 return -EOPNOTSUPP;
1860 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1861 old_key, new_key, 0,
1862 (1 << 0) /* APTPL */);
1863 }
1864
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1865 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1866 u32 flags)
1867 {
1868 if (flags)
1869 return -EOPNOTSUPP;
1870 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1871 }
1872
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1873 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1874 {
1875 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1876 }
1877
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1878 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1879 enum pr_type type, bool abort)
1880 {
1881 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1882 sd_pr_type(type), 0);
1883 }
1884
sd_pr_clear(struct block_device * bdev,u64 key)1885 static int sd_pr_clear(struct block_device *bdev, u64 key)
1886 {
1887 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1888 }
1889
1890 static const struct pr_ops sd_pr_ops = {
1891 .pr_register = sd_pr_register,
1892 .pr_reserve = sd_pr_reserve,
1893 .pr_release = sd_pr_release,
1894 .pr_preempt = sd_pr_preempt,
1895 .pr_clear = sd_pr_clear,
1896 };
1897
1898 static const struct block_device_operations sd_fops = {
1899 .owner = THIS_MODULE,
1900 .open = sd_open,
1901 .release = sd_release,
1902 .ioctl = sd_ioctl,
1903 .getgeo = sd_getgeo,
1904 #ifdef CONFIG_COMPAT
1905 .compat_ioctl = sd_compat_ioctl,
1906 #endif
1907 .check_events = sd_check_events,
1908 .unlock_native_capacity = sd_unlock_native_capacity,
1909 .report_zones = sd_zbc_report_zones,
1910 .pr_ops = &sd_pr_ops,
1911 };
1912
1913 /**
1914 * sd_eh_reset - reset error handling callback
1915 * @scmd: sd-issued command that has failed
1916 *
1917 * This function is called by the SCSI midlayer before starting
1918 * SCSI EH. When counting medium access failures we have to be
1919 * careful to register it only only once per device and SCSI EH run;
1920 * there might be several timed out commands which will cause the
1921 * 'max_medium_access_timeouts' counter to trigger after the first
1922 * SCSI EH run already and set the device to offline.
1923 * So this function resets the internal counter before starting SCSI EH.
1924 **/
sd_eh_reset(struct scsi_cmnd * scmd)1925 static void sd_eh_reset(struct scsi_cmnd *scmd)
1926 {
1927 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1928
1929 /* New SCSI EH run, reset gate variable */
1930 sdkp->ignore_medium_access_errors = false;
1931 }
1932
1933 /**
1934 * sd_eh_action - error handling callback
1935 * @scmd: sd-issued command that has failed
1936 * @eh_disp: The recovery disposition suggested by the midlayer
1937 *
1938 * This function is called by the SCSI midlayer upon completion of an
1939 * error test command (currently TEST UNIT READY). The result of sending
1940 * the eh command is passed in eh_disp. We're looking for devices that
1941 * fail medium access commands but are OK with non access commands like
1942 * test unit ready (so wrongly see the device as having a successful
1943 * recovery)
1944 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1945 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1946 {
1947 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1948 struct scsi_device *sdev = scmd->device;
1949
1950 if (!scsi_device_online(sdev) ||
1951 !scsi_medium_access_command(scmd) ||
1952 host_byte(scmd->result) != DID_TIME_OUT ||
1953 eh_disp != SUCCESS)
1954 return eh_disp;
1955
1956 /*
1957 * The device has timed out executing a medium access command.
1958 * However, the TEST UNIT READY command sent during error
1959 * handling completed successfully. Either the device is in the
1960 * process of recovering or has it suffered an internal failure
1961 * that prevents access to the storage medium.
1962 */
1963 if (!sdkp->ignore_medium_access_errors) {
1964 sdkp->medium_access_timed_out++;
1965 sdkp->ignore_medium_access_errors = true;
1966 }
1967
1968 /*
1969 * If the device keeps failing read/write commands but TEST UNIT
1970 * READY always completes successfully we assume that medium
1971 * access is no longer possible and take the device offline.
1972 */
1973 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1974 scmd_printk(KERN_ERR, scmd,
1975 "Medium access timeout failure. Offlining disk!\n");
1976 mutex_lock(&sdev->state_mutex);
1977 scsi_device_set_state(sdev, SDEV_OFFLINE);
1978 mutex_unlock(&sdev->state_mutex);
1979
1980 return SUCCESS;
1981 }
1982
1983 return eh_disp;
1984 }
1985
sd_completed_bytes(struct scsi_cmnd * scmd)1986 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1987 {
1988 struct request *req = scmd->request;
1989 struct scsi_device *sdev = scmd->device;
1990 unsigned int transferred, good_bytes;
1991 u64 start_lba, end_lba, bad_lba;
1992
1993 /*
1994 * Some commands have a payload smaller than the device logical
1995 * block size (e.g. INQUIRY on a 4K disk).
1996 */
1997 if (scsi_bufflen(scmd) <= sdev->sector_size)
1998 return 0;
1999
2000 /* Check if we have a 'bad_lba' information */
2001 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2002 SCSI_SENSE_BUFFERSIZE,
2003 &bad_lba))
2004 return 0;
2005
2006 /*
2007 * If the bad lba was reported incorrectly, we have no idea where
2008 * the error is.
2009 */
2010 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2011 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2012 if (bad_lba < start_lba || bad_lba >= end_lba)
2013 return 0;
2014
2015 /*
2016 * resid is optional but mostly filled in. When it's unused,
2017 * its value is zero, so we assume the whole buffer transferred
2018 */
2019 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2020
2021 /* This computation should always be done in terms of the
2022 * resolution of the device's medium.
2023 */
2024 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2025
2026 return min(good_bytes, transferred);
2027 }
2028
2029 /**
2030 * sd_done - bottom half handler: called when the lower level
2031 * driver has completed (successfully or otherwise) a scsi command.
2032 * @SCpnt: mid-level's per command structure.
2033 *
2034 * Note: potentially run from within an ISR. Must not block.
2035 **/
sd_done(struct scsi_cmnd * SCpnt)2036 static int sd_done(struct scsi_cmnd *SCpnt)
2037 {
2038 int result = SCpnt->result;
2039 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2040 unsigned int sector_size = SCpnt->device->sector_size;
2041 unsigned int resid;
2042 struct scsi_sense_hdr sshdr;
2043 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2044 struct request *req = SCpnt->request;
2045 int sense_valid = 0;
2046 int sense_deferred = 0;
2047
2048 switch (req_op(req)) {
2049 case REQ_OP_DISCARD:
2050 case REQ_OP_WRITE_ZEROES:
2051 case REQ_OP_WRITE_SAME:
2052 case REQ_OP_ZONE_RESET:
2053 case REQ_OP_ZONE_RESET_ALL:
2054 case REQ_OP_ZONE_OPEN:
2055 case REQ_OP_ZONE_CLOSE:
2056 case REQ_OP_ZONE_FINISH:
2057 if (!result) {
2058 good_bytes = blk_rq_bytes(req);
2059 scsi_set_resid(SCpnt, 0);
2060 } else {
2061 good_bytes = 0;
2062 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2063 }
2064 break;
2065 default:
2066 /*
2067 * In case of bogus fw or device, we could end up having
2068 * an unaligned partial completion. Check this here and force
2069 * alignment.
2070 */
2071 resid = scsi_get_resid(SCpnt);
2072 if (resid & (sector_size - 1)) {
2073 sd_printk(KERN_INFO, sdkp,
2074 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2075 resid, sector_size);
2076 scsi_print_command(SCpnt);
2077 resid = min(scsi_bufflen(SCpnt),
2078 round_up(resid, sector_size));
2079 scsi_set_resid(SCpnt, resid);
2080 }
2081 }
2082
2083 if (result) {
2084 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2085 if (sense_valid)
2086 sense_deferred = scsi_sense_is_deferred(&sshdr);
2087 }
2088 sdkp->medium_access_timed_out = 0;
2089
2090 if (driver_byte(result) != DRIVER_SENSE &&
2091 (!sense_valid || sense_deferred))
2092 goto out;
2093
2094 switch (sshdr.sense_key) {
2095 case HARDWARE_ERROR:
2096 case MEDIUM_ERROR:
2097 good_bytes = sd_completed_bytes(SCpnt);
2098 break;
2099 case RECOVERED_ERROR:
2100 good_bytes = scsi_bufflen(SCpnt);
2101 break;
2102 case NO_SENSE:
2103 /* This indicates a false check condition, so ignore it. An
2104 * unknown amount of data was transferred so treat it as an
2105 * error.
2106 */
2107 SCpnt->result = 0;
2108 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2109 break;
2110 case ABORTED_COMMAND:
2111 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2112 good_bytes = sd_completed_bytes(SCpnt);
2113 break;
2114 case ILLEGAL_REQUEST:
2115 switch (sshdr.asc) {
2116 case 0x10: /* DIX: Host detected corruption */
2117 good_bytes = sd_completed_bytes(SCpnt);
2118 break;
2119 case 0x20: /* INVALID COMMAND OPCODE */
2120 case 0x24: /* INVALID FIELD IN CDB */
2121 switch (SCpnt->cmnd[0]) {
2122 case UNMAP:
2123 sd_config_discard(sdkp, SD_LBP_DISABLE);
2124 break;
2125 case WRITE_SAME_16:
2126 case WRITE_SAME:
2127 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2128 sd_config_discard(sdkp, SD_LBP_DISABLE);
2129 } else {
2130 sdkp->device->no_write_same = 1;
2131 sd_config_write_same(sdkp);
2132 req->rq_flags |= RQF_QUIET;
2133 }
2134 break;
2135 }
2136 }
2137 break;
2138 default:
2139 break;
2140 }
2141
2142 out:
2143 if (sd_is_zoned(sdkp))
2144 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2145
2146 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2147 "sd_done: completed %d of %d bytes\n",
2148 good_bytes, scsi_bufflen(SCpnt)));
2149
2150 return good_bytes;
2151 }
2152
2153 /*
2154 * spinup disk - called only in sd_revalidate_disk()
2155 */
2156 static void
sd_spinup_disk(struct scsi_disk * sdkp)2157 sd_spinup_disk(struct scsi_disk *sdkp)
2158 {
2159 unsigned char cmd[10];
2160 unsigned long spintime_expire = 0;
2161 int retries, spintime;
2162 unsigned int the_result;
2163 struct scsi_sense_hdr sshdr;
2164 int sense_valid = 0;
2165
2166 spintime = 0;
2167
2168 /* Spin up drives, as required. Only do this at boot time */
2169 /* Spinup needs to be done for module loads too. */
2170 do {
2171 retries = 0;
2172
2173 do {
2174 cmd[0] = TEST_UNIT_READY;
2175 memset((void *) &cmd[1], 0, 9);
2176
2177 the_result = scsi_execute_req(sdkp->device, cmd,
2178 DMA_NONE, NULL, 0,
2179 &sshdr, SD_TIMEOUT,
2180 sdkp->max_retries, NULL);
2181
2182 /*
2183 * If the drive has indicated to us that it
2184 * doesn't have any media in it, don't bother
2185 * with any more polling.
2186 */
2187 if (media_not_present(sdkp, &sshdr))
2188 return;
2189
2190 if (the_result)
2191 sense_valid = scsi_sense_valid(&sshdr);
2192 retries++;
2193 } while (retries < 3 &&
2194 (!scsi_status_is_good(the_result) ||
2195 ((driver_byte(the_result) == DRIVER_SENSE) &&
2196 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2197
2198 if (driver_byte(the_result) != DRIVER_SENSE) {
2199 /* no sense, TUR either succeeded or failed
2200 * with a status error */
2201 if(!spintime && !scsi_status_is_good(the_result)) {
2202 sd_print_result(sdkp, "Test Unit Ready failed",
2203 the_result);
2204 }
2205 break;
2206 }
2207
2208 /*
2209 * The device does not want the automatic start to be issued.
2210 */
2211 if (sdkp->device->no_start_on_add)
2212 break;
2213
2214 if (sense_valid && sshdr.sense_key == NOT_READY) {
2215 if (sshdr.asc == 4 && sshdr.ascq == 3)
2216 break; /* manual intervention required */
2217 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2218 break; /* standby */
2219 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2220 break; /* unavailable */
2221 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2222 break; /* sanitize in progress */
2223 /*
2224 * Issue command to spin up drive when not ready
2225 */
2226 if (!spintime) {
2227 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2228 cmd[0] = START_STOP;
2229 cmd[1] = 1; /* Return immediately */
2230 memset((void *) &cmd[2], 0, 8);
2231 cmd[4] = 1; /* Start spin cycle */
2232 if (sdkp->device->start_stop_pwr_cond)
2233 cmd[4] |= 1 << 4;
2234 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2235 NULL, 0, &sshdr,
2236 SD_TIMEOUT, sdkp->max_retries,
2237 NULL);
2238 spintime_expire = jiffies + 100 * HZ;
2239 spintime = 1;
2240 }
2241 /* Wait 1 second for next try */
2242 msleep(1000);
2243 printk(KERN_CONT ".");
2244
2245 /*
2246 * Wait for USB flash devices with slow firmware.
2247 * Yes, this sense key/ASC combination shouldn't
2248 * occur here. It's characteristic of these devices.
2249 */
2250 } else if (sense_valid &&
2251 sshdr.sense_key == UNIT_ATTENTION &&
2252 sshdr.asc == 0x28) {
2253 if (!spintime) {
2254 spintime_expire = jiffies + 5 * HZ;
2255 spintime = 1;
2256 }
2257 /* Wait 1 second for next try */
2258 msleep(1000);
2259 } else {
2260 /* we don't understand the sense code, so it's
2261 * probably pointless to loop */
2262 if(!spintime) {
2263 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2264 sd_print_sense_hdr(sdkp, &sshdr);
2265 }
2266 break;
2267 }
2268
2269 } while (spintime && time_before_eq(jiffies, spintime_expire));
2270
2271 if (spintime) {
2272 if (scsi_status_is_good(the_result))
2273 printk(KERN_CONT "ready\n");
2274 else
2275 printk(KERN_CONT "not responding...\n");
2276 }
2277 }
2278
2279 /*
2280 * Determine whether disk supports Data Integrity Field.
2281 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2282 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2283 {
2284 struct scsi_device *sdp = sdkp->device;
2285 u8 type;
2286 int ret = 0;
2287
2288 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2289 sdkp->protection_type = 0;
2290 return ret;
2291 }
2292
2293 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2294
2295 if (type > T10_PI_TYPE3_PROTECTION)
2296 ret = -ENODEV;
2297 else if (scsi_host_dif_capable(sdp->host, type))
2298 ret = 1;
2299
2300 if (sdkp->first_scan || type != sdkp->protection_type)
2301 switch (ret) {
2302 case -ENODEV:
2303 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2304 " protection type %u. Disabling disk!\n",
2305 type);
2306 break;
2307 case 1:
2308 sd_printk(KERN_NOTICE, sdkp,
2309 "Enabling DIF Type %u protection\n", type);
2310 break;
2311 case 0:
2312 sd_printk(KERN_NOTICE, sdkp,
2313 "Disabling DIF Type %u protection\n", type);
2314 break;
2315 }
2316
2317 sdkp->protection_type = type;
2318
2319 return ret;
2320 }
2321
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2322 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2323 struct scsi_sense_hdr *sshdr, int sense_valid,
2324 int the_result)
2325 {
2326 if (driver_byte(the_result) == DRIVER_SENSE)
2327 sd_print_sense_hdr(sdkp, sshdr);
2328 else
2329 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2330
2331 /*
2332 * Set dirty bit for removable devices if not ready -
2333 * sometimes drives will not report this properly.
2334 */
2335 if (sdp->removable &&
2336 sense_valid && sshdr->sense_key == NOT_READY)
2337 set_media_not_present(sdkp);
2338
2339 /*
2340 * We used to set media_present to 0 here to indicate no media
2341 * in the drive, but some drives fail read capacity even with
2342 * media present, so we can't do that.
2343 */
2344 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2345 }
2346
2347 #define RC16_LEN 32
2348 #if RC16_LEN > SD_BUF_SIZE
2349 #error RC16_LEN must not be more than SD_BUF_SIZE
2350 #endif
2351
2352 #define READ_CAPACITY_RETRIES_ON_RESET 10
2353
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2354 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2355 unsigned char *buffer)
2356 {
2357 unsigned char cmd[16];
2358 struct scsi_sense_hdr sshdr;
2359 int sense_valid = 0;
2360 int the_result;
2361 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2362 unsigned int alignment;
2363 unsigned long long lba;
2364 unsigned sector_size;
2365
2366 if (sdp->no_read_capacity_16)
2367 return -EINVAL;
2368
2369 do {
2370 memset(cmd, 0, 16);
2371 cmd[0] = SERVICE_ACTION_IN_16;
2372 cmd[1] = SAI_READ_CAPACITY_16;
2373 cmd[13] = RC16_LEN;
2374 memset(buffer, 0, RC16_LEN);
2375
2376 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2377 buffer, RC16_LEN, &sshdr,
2378 SD_TIMEOUT, sdkp->max_retries, NULL);
2379
2380 if (media_not_present(sdkp, &sshdr))
2381 return -ENODEV;
2382
2383 if (the_result) {
2384 sense_valid = scsi_sense_valid(&sshdr);
2385 if (sense_valid &&
2386 sshdr.sense_key == ILLEGAL_REQUEST &&
2387 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2388 sshdr.ascq == 0x00)
2389 /* Invalid Command Operation Code or
2390 * Invalid Field in CDB, just retry
2391 * silently with RC10 */
2392 return -EINVAL;
2393 if (sense_valid &&
2394 sshdr.sense_key == UNIT_ATTENTION &&
2395 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2396 /* Device reset might occur several times,
2397 * give it one more chance */
2398 if (--reset_retries > 0)
2399 continue;
2400 }
2401 retries--;
2402
2403 } while (the_result && retries);
2404
2405 if (the_result) {
2406 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2407 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2408 return -EINVAL;
2409 }
2410
2411 sector_size = get_unaligned_be32(&buffer[8]);
2412 lba = get_unaligned_be64(&buffer[0]);
2413
2414 if (sd_read_protection_type(sdkp, buffer) < 0) {
2415 sdkp->capacity = 0;
2416 return -ENODEV;
2417 }
2418
2419 /* Logical blocks per physical block exponent */
2420 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2421
2422 /* RC basis */
2423 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2424
2425 /* Lowest aligned logical block */
2426 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2427 blk_queue_alignment_offset(sdp->request_queue, alignment);
2428 if (alignment && sdkp->first_scan)
2429 sd_printk(KERN_NOTICE, sdkp,
2430 "physical block alignment offset: %u\n", alignment);
2431
2432 if (buffer[14] & 0x80) { /* LBPME */
2433 sdkp->lbpme = 1;
2434
2435 if (buffer[14] & 0x40) /* LBPRZ */
2436 sdkp->lbprz = 1;
2437
2438 sd_config_discard(sdkp, SD_LBP_WS16);
2439 }
2440
2441 sdkp->capacity = lba + 1;
2442 return sector_size;
2443 }
2444
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2445 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2446 unsigned char *buffer)
2447 {
2448 unsigned char cmd[16];
2449 struct scsi_sense_hdr sshdr;
2450 int sense_valid = 0;
2451 int the_result;
2452 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2453 sector_t lba;
2454 unsigned sector_size;
2455
2456 do {
2457 cmd[0] = READ_CAPACITY;
2458 memset(&cmd[1], 0, 9);
2459 memset(buffer, 0, 8);
2460
2461 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2462 buffer, 8, &sshdr,
2463 SD_TIMEOUT, sdkp->max_retries, NULL);
2464
2465 if (media_not_present(sdkp, &sshdr))
2466 return -ENODEV;
2467
2468 if (the_result) {
2469 sense_valid = scsi_sense_valid(&sshdr);
2470 if (sense_valid &&
2471 sshdr.sense_key == UNIT_ATTENTION &&
2472 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2473 /* Device reset might occur several times,
2474 * give it one more chance */
2475 if (--reset_retries > 0)
2476 continue;
2477 }
2478 retries--;
2479
2480 } while (the_result && retries);
2481
2482 if (the_result) {
2483 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2484 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2485 return -EINVAL;
2486 }
2487
2488 sector_size = get_unaligned_be32(&buffer[4]);
2489 lba = get_unaligned_be32(&buffer[0]);
2490
2491 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2492 /* Some buggy (usb cardreader) devices return an lba of
2493 0xffffffff when the want to report a size of 0 (with
2494 which they really mean no media is present) */
2495 sdkp->capacity = 0;
2496 sdkp->physical_block_size = sector_size;
2497 return sector_size;
2498 }
2499
2500 sdkp->capacity = lba + 1;
2501 sdkp->physical_block_size = sector_size;
2502 return sector_size;
2503 }
2504
sd_try_rc16_first(struct scsi_device * sdp)2505 static int sd_try_rc16_first(struct scsi_device *sdp)
2506 {
2507 if (sdp->host->max_cmd_len < 16)
2508 return 0;
2509 if (sdp->try_rc_10_first)
2510 return 0;
2511 if (sdp->scsi_level > SCSI_SPC_2)
2512 return 1;
2513 if (scsi_device_protection(sdp))
2514 return 1;
2515 return 0;
2516 }
2517
2518 /*
2519 * read disk capacity
2520 */
2521 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2522 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2523 {
2524 int sector_size;
2525 struct scsi_device *sdp = sdkp->device;
2526
2527 if (sd_try_rc16_first(sdp)) {
2528 sector_size = read_capacity_16(sdkp, sdp, buffer);
2529 if (sector_size == -EOVERFLOW)
2530 goto got_data;
2531 if (sector_size == -ENODEV)
2532 return;
2533 if (sector_size < 0)
2534 sector_size = read_capacity_10(sdkp, sdp, buffer);
2535 if (sector_size < 0)
2536 return;
2537 } else {
2538 sector_size = read_capacity_10(sdkp, sdp, buffer);
2539 if (sector_size == -EOVERFLOW)
2540 goto got_data;
2541 if (sector_size < 0)
2542 return;
2543 if ((sizeof(sdkp->capacity) > 4) &&
2544 (sdkp->capacity > 0xffffffffULL)) {
2545 int old_sector_size = sector_size;
2546 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2547 "Trying to use READ CAPACITY(16).\n");
2548 sector_size = read_capacity_16(sdkp, sdp, buffer);
2549 if (sector_size < 0) {
2550 sd_printk(KERN_NOTICE, sdkp,
2551 "Using 0xffffffff as device size\n");
2552 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2553 sector_size = old_sector_size;
2554 goto got_data;
2555 }
2556 /* Remember that READ CAPACITY(16) succeeded */
2557 sdp->try_rc_10_first = 0;
2558 }
2559 }
2560
2561 /* Some devices are known to return the total number of blocks,
2562 * not the highest block number. Some devices have versions
2563 * which do this and others which do not. Some devices we might
2564 * suspect of doing this but we don't know for certain.
2565 *
2566 * If we know the reported capacity is wrong, decrement it. If
2567 * we can only guess, then assume the number of blocks is even
2568 * (usually true but not always) and err on the side of lowering
2569 * the capacity.
2570 */
2571 if (sdp->fix_capacity ||
2572 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2573 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2574 "from its reported value: %llu\n",
2575 (unsigned long long) sdkp->capacity);
2576 --sdkp->capacity;
2577 }
2578
2579 got_data:
2580 if (sector_size == 0) {
2581 sector_size = 512;
2582 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2583 "assuming 512.\n");
2584 }
2585
2586 if (sector_size != 512 &&
2587 sector_size != 1024 &&
2588 sector_size != 2048 &&
2589 sector_size != 4096) {
2590 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2591 sector_size);
2592 /*
2593 * The user might want to re-format the drive with
2594 * a supported sectorsize. Once this happens, it
2595 * would be relatively trivial to set the thing up.
2596 * For this reason, we leave the thing in the table.
2597 */
2598 sdkp->capacity = 0;
2599 /*
2600 * set a bogus sector size so the normal read/write
2601 * logic in the block layer will eventually refuse any
2602 * request on this device without tripping over power
2603 * of two sector size assumptions
2604 */
2605 sector_size = 512;
2606 }
2607 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2608 blk_queue_physical_block_size(sdp->request_queue,
2609 sdkp->physical_block_size);
2610 sdkp->device->sector_size = sector_size;
2611
2612 if (sdkp->capacity > 0xffffffff)
2613 sdp->use_16_for_rw = 1;
2614
2615 }
2616
2617 /*
2618 * Print disk capacity
2619 */
2620 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2621 sd_print_capacity(struct scsi_disk *sdkp,
2622 sector_t old_capacity)
2623 {
2624 int sector_size = sdkp->device->sector_size;
2625 char cap_str_2[10], cap_str_10[10];
2626
2627 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2628 return;
2629
2630 string_get_size(sdkp->capacity, sector_size,
2631 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2632 string_get_size(sdkp->capacity, sector_size,
2633 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2634
2635 sd_printk(KERN_NOTICE, sdkp,
2636 "%llu %d-byte logical blocks: (%s/%s)\n",
2637 (unsigned long long)sdkp->capacity,
2638 sector_size, cap_str_10, cap_str_2);
2639
2640 if (sdkp->physical_block_size != sector_size)
2641 sd_printk(KERN_NOTICE, sdkp,
2642 "%u-byte physical blocks\n",
2643 sdkp->physical_block_size);
2644 }
2645
2646 /* called with buffer of length 512 */
2647 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2648 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2649 unsigned char *buffer, int len, struct scsi_mode_data *data,
2650 struct scsi_sense_hdr *sshdr)
2651 {
2652 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2653 SD_TIMEOUT, sdkp->max_retries, data,
2654 sshdr);
2655 }
2656
2657 /*
2658 * read write protect setting, if possible - called only in sd_revalidate_disk()
2659 * called with buffer of length SD_BUF_SIZE
2660 */
2661 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2662 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2663 {
2664 int res;
2665 struct scsi_device *sdp = sdkp->device;
2666 struct scsi_mode_data data;
2667 int old_wp = sdkp->write_prot;
2668
2669 set_disk_ro(sdkp->disk, 0);
2670 if (sdp->skip_ms_page_3f) {
2671 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2672 return;
2673 }
2674
2675 if (sdp->use_192_bytes_for_3f) {
2676 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2677 } else {
2678 /*
2679 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2680 * We have to start carefully: some devices hang if we ask
2681 * for more than is available.
2682 */
2683 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2684
2685 /*
2686 * Second attempt: ask for page 0 When only page 0 is
2687 * implemented, a request for page 3F may return Sense Key
2688 * 5: Illegal Request, Sense Code 24: Invalid field in
2689 * CDB.
2690 */
2691 if (res < 0)
2692 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2693
2694 /*
2695 * Third attempt: ask 255 bytes, as we did earlier.
2696 */
2697 if (res < 0)
2698 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2699 &data, NULL);
2700 }
2701
2702 if (res < 0) {
2703 sd_first_printk(KERN_WARNING, sdkp,
2704 "Test WP failed, assume Write Enabled\n");
2705 } else {
2706 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2707 set_disk_ro(sdkp->disk, sdkp->write_prot);
2708 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2709 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2710 sdkp->write_prot ? "on" : "off");
2711 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2712 }
2713 }
2714 }
2715
2716 /*
2717 * sd_read_cache_type - called only from sd_revalidate_disk()
2718 * called with buffer of length SD_BUF_SIZE
2719 */
2720 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2721 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2722 {
2723 int len = 0, res;
2724 struct scsi_device *sdp = sdkp->device;
2725
2726 int dbd;
2727 int modepage;
2728 int first_len;
2729 struct scsi_mode_data data;
2730 struct scsi_sense_hdr sshdr;
2731 int old_wce = sdkp->WCE;
2732 int old_rcd = sdkp->RCD;
2733 int old_dpofua = sdkp->DPOFUA;
2734
2735
2736 if (sdkp->cache_override)
2737 return;
2738
2739 first_len = 4;
2740 if (sdp->skip_ms_page_8) {
2741 if (sdp->type == TYPE_RBC)
2742 goto defaults;
2743 else {
2744 if (sdp->skip_ms_page_3f)
2745 goto defaults;
2746 modepage = 0x3F;
2747 if (sdp->use_192_bytes_for_3f)
2748 first_len = 192;
2749 dbd = 0;
2750 }
2751 } else if (sdp->type == TYPE_RBC) {
2752 modepage = 6;
2753 dbd = 8;
2754 } else {
2755 modepage = 8;
2756 dbd = 0;
2757 }
2758
2759 /* cautiously ask */
2760 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2761 &data, &sshdr);
2762
2763 if (res < 0)
2764 goto bad_sense;
2765
2766 if (!data.header_length) {
2767 modepage = 6;
2768 first_len = 0;
2769 sd_first_printk(KERN_ERR, sdkp,
2770 "Missing header in MODE_SENSE response\n");
2771 }
2772
2773 /* that went OK, now ask for the proper length */
2774 len = data.length;
2775
2776 /*
2777 * We're only interested in the first three bytes, actually.
2778 * But the data cache page is defined for the first 20.
2779 */
2780 if (len < 3)
2781 goto bad_sense;
2782 else if (len > SD_BUF_SIZE) {
2783 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2784 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2785 len = SD_BUF_SIZE;
2786 }
2787 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2788 len = 192;
2789
2790 /* Get the data */
2791 if (len > first_len)
2792 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2793 &data, &sshdr);
2794
2795 if (!res) {
2796 int offset = data.header_length + data.block_descriptor_length;
2797
2798 while (offset < len) {
2799 u8 page_code = buffer[offset] & 0x3F;
2800 u8 spf = buffer[offset] & 0x40;
2801
2802 if (page_code == 8 || page_code == 6) {
2803 /* We're interested only in the first 3 bytes.
2804 */
2805 if (len - offset <= 2) {
2806 sd_first_printk(KERN_ERR, sdkp,
2807 "Incomplete mode parameter "
2808 "data\n");
2809 goto defaults;
2810 } else {
2811 modepage = page_code;
2812 goto Page_found;
2813 }
2814 } else {
2815 /* Go to the next page */
2816 if (spf && len - offset > 3)
2817 offset += 4 + (buffer[offset+2] << 8) +
2818 buffer[offset+3];
2819 else if (!spf && len - offset > 1)
2820 offset += 2 + buffer[offset+1];
2821 else {
2822 sd_first_printk(KERN_ERR, sdkp,
2823 "Incomplete mode "
2824 "parameter data\n");
2825 goto defaults;
2826 }
2827 }
2828 }
2829
2830 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2831 goto defaults;
2832
2833 Page_found:
2834 if (modepage == 8) {
2835 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2836 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2837 } else {
2838 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2839 sdkp->RCD = 0;
2840 }
2841
2842 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2843 if (sdp->broken_fua) {
2844 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2845 sdkp->DPOFUA = 0;
2846 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2847 !sdkp->device->use_16_for_rw) {
2848 sd_first_printk(KERN_NOTICE, sdkp,
2849 "Uses READ/WRITE(6), disabling FUA\n");
2850 sdkp->DPOFUA = 0;
2851 }
2852
2853 /* No cache flush allowed for write protected devices */
2854 if (sdkp->WCE && sdkp->write_prot)
2855 sdkp->WCE = 0;
2856
2857 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2858 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2859 sd_printk(KERN_NOTICE, sdkp,
2860 "Write cache: %s, read cache: %s, %s\n",
2861 sdkp->WCE ? "enabled" : "disabled",
2862 sdkp->RCD ? "disabled" : "enabled",
2863 sdkp->DPOFUA ? "supports DPO and FUA"
2864 : "doesn't support DPO or FUA");
2865
2866 return;
2867 }
2868
2869 bad_sense:
2870 if (scsi_sense_valid(&sshdr) &&
2871 sshdr.sense_key == ILLEGAL_REQUEST &&
2872 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2873 /* Invalid field in CDB */
2874 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2875 else
2876 sd_first_printk(KERN_ERR, sdkp,
2877 "Asking for cache data failed\n");
2878
2879 defaults:
2880 if (sdp->wce_default_on) {
2881 sd_first_printk(KERN_NOTICE, sdkp,
2882 "Assuming drive cache: write back\n");
2883 sdkp->WCE = 1;
2884 } else {
2885 sd_first_printk(KERN_ERR, sdkp,
2886 "Assuming drive cache: write through\n");
2887 sdkp->WCE = 0;
2888 }
2889 sdkp->RCD = 0;
2890 sdkp->DPOFUA = 0;
2891 }
2892
2893 /*
2894 * The ATO bit indicates whether the DIF application tag is available
2895 * for use by the operating system.
2896 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2897 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2898 {
2899 int res, offset;
2900 struct scsi_device *sdp = sdkp->device;
2901 struct scsi_mode_data data;
2902 struct scsi_sense_hdr sshdr;
2903
2904 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2905 return;
2906
2907 if (sdkp->protection_type == 0)
2908 return;
2909
2910 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2911 sdkp->max_retries, &data, &sshdr);
2912
2913 if (res < 0 || !data.header_length ||
2914 data.length < 6) {
2915 sd_first_printk(KERN_WARNING, sdkp,
2916 "getting Control mode page failed, assume no ATO\n");
2917
2918 if (scsi_sense_valid(&sshdr))
2919 sd_print_sense_hdr(sdkp, &sshdr);
2920
2921 return;
2922 }
2923
2924 offset = data.header_length + data.block_descriptor_length;
2925
2926 if ((buffer[offset] & 0x3f) != 0x0a) {
2927 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2928 return;
2929 }
2930
2931 if ((buffer[offset + 5] & 0x80) == 0)
2932 return;
2933
2934 sdkp->ATO = 1;
2935
2936 return;
2937 }
2938
2939 /**
2940 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2941 * @sdkp: disk to query
2942 */
sd_read_block_limits(struct scsi_disk * sdkp)2943 static void sd_read_block_limits(struct scsi_disk *sdkp)
2944 {
2945 unsigned int sector_sz = sdkp->device->sector_size;
2946 const int vpd_len = 64;
2947 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2948
2949 if (!buffer ||
2950 /* Block Limits VPD */
2951 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2952 goto out;
2953
2954 blk_queue_io_min(sdkp->disk->queue,
2955 get_unaligned_be16(&buffer[6]) * sector_sz);
2956
2957 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2958 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2959
2960 if (buffer[3] == 0x3c) {
2961 unsigned int lba_count, desc_count;
2962
2963 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2964
2965 if (!sdkp->lbpme)
2966 goto out;
2967
2968 lba_count = get_unaligned_be32(&buffer[20]);
2969 desc_count = get_unaligned_be32(&buffer[24]);
2970
2971 if (lba_count && desc_count)
2972 sdkp->max_unmap_blocks = lba_count;
2973
2974 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2975
2976 if (buffer[32] & 0x80)
2977 sdkp->unmap_alignment =
2978 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2979
2980 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2981
2982 if (sdkp->max_unmap_blocks)
2983 sd_config_discard(sdkp, SD_LBP_UNMAP);
2984 else
2985 sd_config_discard(sdkp, SD_LBP_WS16);
2986
2987 } else { /* LBP VPD page tells us what to use */
2988 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2989 sd_config_discard(sdkp, SD_LBP_UNMAP);
2990 else if (sdkp->lbpws)
2991 sd_config_discard(sdkp, SD_LBP_WS16);
2992 else if (sdkp->lbpws10)
2993 sd_config_discard(sdkp, SD_LBP_WS10);
2994 else
2995 sd_config_discard(sdkp, SD_LBP_DISABLE);
2996 }
2997 }
2998
2999 out:
3000 kfree(buffer);
3001 }
3002
3003 /**
3004 * sd_read_block_characteristics - Query block dev. characteristics
3005 * @sdkp: disk to query
3006 */
sd_read_block_characteristics(struct scsi_disk * sdkp)3007 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3008 {
3009 struct request_queue *q = sdkp->disk->queue;
3010 unsigned char *buffer;
3011 u16 rot;
3012 const int vpd_len = 64;
3013
3014 buffer = kmalloc(vpd_len, GFP_KERNEL);
3015
3016 if (!buffer ||
3017 /* Block Device Characteristics VPD */
3018 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3019 goto out;
3020
3021 rot = get_unaligned_be16(&buffer[4]);
3022
3023 if (rot == 1) {
3024 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3025 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3026 }
3027
3028 if (sdkp->device->type == TYPE_ZBC) {
3029 /* Host-managed */
3030 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3031 } else {
3032 sdkp->zoned = (buffer[8] >> 4) & 3;
3033 if (sdkp->zoned == 1) {
3034 /* Host-aware */
3035 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3036 } else {
3037 /* Regular disk or drive managed disk */
3038 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3039 }
3040 }
3041
3042 if (!sdkp->first_scan)
3043 goto out;
3044
3045 if (blk_queue_is_zoned(q)) {
3046 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3047 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3048 } else {
3049 if (sdkp->zoned == 1)
3050 sd_printk(KERN_NOTICE, sdkp,
3051 "Host-aware SMR disk used as regular disk\n");
3052 else if (sdkp->zoned == 2)
3053 sd_printk(KERN_NOTICE, sdkp,
3054 "Drive-managed SMR disk\n");
3055 }
3056
3057 out:
3058 kfree(buffer);
3059 }
3060
3061 /**
3062 * sd_read_block_provisioning - Query provisioning VPD page
3063 * @sdkp: disk to query
3064 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3065 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3066 {
3067 unsigned char *buffer;
3068 const int vpd_len = 8;
3069
3070 if (sdkp->lbpme == 0)
3071 return;
3072
3073 buffer = kmalloc(vpd_len, GFP_KERNEL);
3074
3075 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3076 goto out;
3077
3078 sdkp->lbpvpd = 1;
3079 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3080 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3081 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3082
3083 out:
3084 kfree(buffer);
3085 }
3086
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3087 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3088 {
3089 struct scsi_device *sdev = sdkp->device;
3090
3091 if (sdev->host->no_write_same) {
3092 sdev->no_write_same = 1;
3093
3094 return;
3095 }
3096
3097 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3098 /* too large values might cause issues with arcmsr */
3099 int vpd_buf_len = 64;
3100
3101 sdev->no_report_opcodes = 1;
3102
3103 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3104 * CODES is unsupported and the device has an ATA
3105 * Information VPD page (SAT).
3106 */
3107 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3108 sdev->no_write_same = 1;
3109 }
3110
3111 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3112 sdkp->ws16 = 1;
3113
3114 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3115 sdkp->ws10 = 1;
3116 }
3117
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3118 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3119 {
3120 struct scsi_device *sdev = sdkp->device;
3121
3122 if (!sdev->security_supported)
3123 return;
3124
3125 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3126 SECURITY_PROTOCOL_IN) == 1 &&
3127 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3128 SECURITY_PROTOCOL_OUT) == 1)
3129 sdkp->security = 1;
3130 }
3131
3132 /*
3133 * Determine the device's preferred I/O size for reads and writes
3134 * unless the reported value is unreasonably small, large, not a
3135 * multiple of the physical block size, or simply garbage.
3136 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3137 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3138 unsigned int dev_max)
3139 {
3140 struct scsi_device *sdp = sdkp->device;
3141 unsigned int opt_xfer_bytes =
3142 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3143
3144 if (sdkp->opt_xfer_blocks == 0)
3145 return false;
3146
3147 if (sdkp->opt_xfer_blocks > dev_max) {
3148 sd_first_printk(KERN_WARNING, sdkp,
3149 "Optimal transfer size %u logical blocks " \
3150 "> dev_max (%u logical blocks)\n",
3151 sdkp->opt_xfer_blocks, dev_max);
3152 return false;
3153 }
3154
3155 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3156 sd_first_printk(KERN_WARNING, sdkp,
3157 "Optimal transfer size %u logical blocks " \
3158 "> sd driver limit (%u logical blocks)\n",
3159 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3160 return false;
3161 }
3162
3163 if (opt_xfer_bytes < PAGE_SIZE) {
3164 sd_first_printk(KERN_WARNING, sdkp,
3165 "Optimal transfer size %u bytes < " \
3166 "PAGE_SIZE (%u bytes)\n",
3167 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3168 return false;
3169 }
3170
3171 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3172 sd_first_printk(KERN_WARNING, sdkp,
3173 "Optimal transfer size %u bytes not a " \
3174 "multiple of physical block size (%u bytes)\n",
3175 opt_xfer_bytes, sdkp->physical_block_size);
3176 return false;
3177 }
3178
3179 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3180 opt_xfer_bytes);
3181 return true;
3182 }
3183
3184 /**
3185 * sd_revalidate_disk - called the first time a new disk is seen,
3186 * performs disk spin up, read_capacity, etc.
3187 * @disk: struct gendisk we care about
3188 **/
sd_revalidate_disk(struct gendisk * disk)3189 static int sd_revalidate_disk(struct gendisk *disk)
3190 {
3191 struct scsi_disk *sdkp = scsi_disk(disk);
3192 struct scsi_device *sdp = sdkp->device;
3193 struct request_queue *q = sdkp->disk->queue;
3194 sector_t old_capacity = sdkp->capacity;
3195 unsigned char *buffer;
3196 unsigned int dev_max, rw_max;
3197
3198 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3199 "sd_revalidate_disk\n"));
3200
3201 /*
3202 * If the device is offline, don't try and read capacity or any
3203 * of the other niceties.
3204 */
3205 if (!scsi_device_online(sdp))
3206 goto out;
3207
3208 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3209 if (!buffer) {
3210 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3211 "allocation failure.\n");
3212 goto out;
3213 }
3214
3215 sd_spinup_disk(sdkp);
3216
3217 /*
3218 * Without media there is no reason to ask; moreover, some devices
3219 * react badly if we do.
3220 */
3221 if (sdkp->media_present) {
3222 sd_read_capacity(sdkp, buffer);
3223
3224 /*
3225 * set the default to rotational. All non-rotational devices
3226 * support the block characteristics VPD page, which will
3227 * cause this to be updated correctly and any device which
3228 * doesn't support it should be treated as rotational.
3229 */
3230 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3231 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3232
3233 if (scsi_device_supports_vpd(sdp)) {
3234 sd_read_block_provisioning(sdkp);
3235 sd_read_block_limits(sdkp);
3236 sd_read_block_characteristics(sdkp);
3237 sd_zbc_read_zones(sdkp, buffer);
3238 }
3239
3240 sd_print_capacity(sdkp, old_capacity);
3241
3242 sd_read_write_protect_flag(sdkp, buffer);
3243 sd_read_cache_type(sdkp, buffer);
3244 sd_read_app_tag_own(sdkp, buffer);
3245 sd_read_write_same(sdkp, buffer);
3246 sd_read_security(sdkp, buffer);
3247 }
3248
3249 /*
3250 * We now have all cache related info, determine how we deal
3251 * with flush requests.
3252 */
3253 sd_set_flush_flag(sdkp);
3254
3255 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3256 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3257
3258 /* Some devices report a maximum block count for READ/WRITE requests. */
3259 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3260 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3261
3262 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3263 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3264 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3265 } else {
3266 q->limits.io_opt = 0;
3267 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3268 (sector_t)BLK_DEF_MAX_SECTORS);
3269 }
3270
3271 /* Do not exceed controller limit */
3272 rw_max = min(rw_max, queue_max_hw_sectors(q));
3273
3274 /*
3275 * Only update max_sectors if previously unset or if the current value
3276 * exceeds the capabilities of the hardware.
3277 */
3278 if (sdkp->first_scan ||
3279 q->limits.max_sectors > q->limits.max_dev_sectors ||
3280 q->limits.max_sectors > q->limits.max_hw_sectors)
3281 q->limits.max_sectors = rw_max;
3282
3283 sdkp->first_scan = 0;
3284
3285 set_capacity_revalidate_and_notify(disk,
3286 logical_to_sectors(sdp, sdkp->capacity), false);
3287 sd_config_write_same(sdkp);
3288 kfree(buffer);
3289
3290 /*
3291 * For a zoned drive, revalidating the zones can be done only once
3292 * the gendisk capacity is set. So if this fails, set back the gendisk
3293 * capacity to 0.
3294 */
3295 if (sd_zbc_revalidate_zones(sdkp))
3296 set_capacity_revalidate_and_notify(disk, 0, false);
3297
3298 out:
3299 return 0;
3300 }
3301
3302 /**
3303 * sd_unlock_native_capacity - unlock native capacity
3304 * @disk: struct gendisk to set capacity for
3305 *
3306 * Block layer calls this function if it detects that partitions
3307 * on @disk reach beyond the end of the device. If the SCSI host
3308 * implements ->unlock_native_capacity() method, it's invoked to
3309 * give it a chance to adjust the device capacity.
3310 *
3311 * CONTEXT:
3312 * Defined by block layer. Might sleep.
3313 */
sd_unlock_native_capacity(struct gendisk * disk)3314 static void sd_unlock_native_capacity(struct gendisk *disk)
3315 {
3316 struct scsi_device *sdev = scsi_disk(disk)->device;
3317
3318 if (sdev->host->hostt->unlock_native_capacity)
3319 sdev->host->hostt->unlock_native_capacity(sdev);
3320 }
3321
3322 /**
3323 * sd_format_disk_name - format disk name
3324 * @prefix: name prefix - ie. "sd" for SCSI disks
3325 * @index: index of the disk to format name for
3326 * @buf: output buffer
3327 * @buflen: length of the output buffer
3328 *
3329 * SCSI disk names starts at sda. The 26th device is sdz and the
3330 * 27th is sdaa. The last one for two lettered suffix is sdzz
3331 * which is followed by sdaaa.
3332 *
3333 * This is basically 26 base counting with one extra 'nil' entry
3334 * at the beginning from the second digit on and can be
3335 * determined using similar method as 26 base conversion with the
3336 * index shifted -1 after each digit is computed.
3337 *
3338 * CONTEXT:
3339 * Don't care.
3340 *
3341 * RETURNS:
3342 * 0 on success, -errno on failure.
3343 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3344 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3345 {
3346 const int base = 'z' - 'a' + 1;
3347 char *begin = buf + strlen(prefix);
3348 char *end = buf + buflen;
3349 char *p;
3350 int unit;
3351
3352 p = end - 1;
3353 *p = '\0';
3354 unit = base;
3355 do {
3356 if (p == begin)
3357 return -EINVAL;
3358 *--p = 'a' + (index % unit);
3359 index = (index / unit) - 1;
3360 } while (index >= 0);
3361
3362 memmove(begin, p, end - p);
3363 memcpy(buf, prefix, strlen(prefix));
3364
3365 return 0;
3366 }
3367
3368 /**
3369 * sd_probe - called during driver initialization and whenever a
3370 * new scsi device is attached to the system. It is called once
3371 * for each scsi device (not just disks) present.
3372 * @dev: pointer to device object
3373 *
3374 * Returns 0 if successful (or not interested in this scsi device
3375 * (e.g. scanner)); 1 when there is an error.
3376 *
3377 * Note: this function is invoked from the scsi mid-level.
3378 * This function sets up the mapping between a given
3379 * <host,channel,id,lun> (found in sdp) and new device name
3380 * (e.g. /dev/sda). More precisely it is the block device major
3381 * and minor number that is chosen here.
3382 *
3383 * Assume sd_probe is not re-entrant (for time being)
3384 * Also think about sd_probe() and sd_remove() running coincidentally.
3385 **/
sd_probe(struct device * dev)3386 static int sd_probe(struct device *dev)
3387 {
3388 struct scsi_device *sdp = to_scsi_device(dev);
3389 struct scsi_disk *sdkp;
3390 struct gendisk *gd;
3391 int index;
3392 int error;
3393
3394 scsi_autopm_get_device(sdp);
3395 error = -ENODEV;
3396 if (sdp->type != TYPE_DISK &&
3397 sdp->type != TYPE_ZBC &&
3398 sdp->type != TYPE_MOD &&
3399 sdp->type != TYPE_RBC)
3400 goto out;
3401
3402 #ifndef CONFIG_BLK_DEV_ZONED
3403 if (sdp->type == TYPE_ZBC)
3404 goto out;
3405 #endif
3406 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3407 "sd_probe\n"));
3408
3409 error = -ENOMEM;
3410 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3411 if (!sdkp)
3412 goto out;
3413
3414 gd = alloc_disk(SD_MINORS);
3415 if (!gd)
3416 goto out_free;
3417
3418 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3419 if (index < 0) {
3420 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3421 goto out_put;
3422 }
3423
3424 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3425 if (error) {
3426 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3427 goto out_free_index;
3428 }
3429
3430 sdkp->device = sdp;
3431 sdkp->driver = &sd_template;
3432 sdkp->disk = gd;
3433 sdkp->index = index;
3434 sdkp->max_retries = SD_MAX_RETRIES;
3435 atomic_set(&sdkp->openers, 0);
3436 atomic_set(&sdkp->device->ioerr_cnt, 0);
3437
3438 if (!sdp->request_queue->rq_timeout) {
3439 if (sdp->type != TYPE_MOD)
3440 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3441 else
3442 blk_queue_rq_timeout(sdp->request_queue,
3443 SD_MOD_TIMEOUT);
3444 }
3445
3446 device_initialize(&sdkp->dev);
3447 sdkp->dev.parent = get_device(dev);
3448 sdkp->dev.class = &sd_disk_class;
3449 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3450
3451 error = device_add(&sdkp->dev);
3452 if (error) {
3453 put_device(&sdkp->dev);
3454 goto out;
3455 }
3456
3457 dev_set_drvdata(dev, sdkp);
3458
3459 gd->major = sd_major((index & 0xf0) >> 4);
3460 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3461
3462 gd->fops = &sd_fops;
3463 gd->private_data = &sdkp->driver;
3464 gd->queue = sdkp->device->request_queue;
3465
3466 /* defaults, until the device tells us otherwise */
3467 sdp->sector_size = 512;
3468 sdkp->capacity = 0;
3469 sdkp->media_present = 1;
3470 sdkp->write_prot = 0;
3471 sdkp->cache_override = 0;
3472 sdkp->WCE = 0;
3473 sdkp->RCD = 0;
3474 sdkp->ATO = 0;
3475 sdkp->first_scan = 1;
3476 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3477
3478 sd_revalidate_disk(gd);
3479
3480 gd->flags = GENHD_FL_EXT_DEVT;
3481 if (sdp->removable) {
3482 gd->flags |= GENHD_FL_REMOVABLE;
3483 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3484 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3485 }
3486
3487 blk_pm_runtime_init(sdp->request_queue, dev);
3488 if (sdp->rpm_autosuspend) {
3489 pm_runtime_set_autosuspend_delay(dev,
3490 sdp->host->hostt->rpm_autosuspend_delay);
3491 }
3492 device_add_disk(dev, gd, NULL);
3493 if (sdkp->capacity)
3494 sd_dif_config_host(sdkp);
3495
3496 sd_revalidate_disk(gd);
3497
3498 if (sdkp->security) {
3499 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3500 if (sdkp->opal_dev)
3501 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3502 }
3503
3504 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3505 sdp->removable ? "removable " : "");
3506 scsi_autopm_put_device(sdp);
3507
3508 return 0;
3509
3510 out_free_index:
3511 ida_free(&sd_index_ida, index);
3512 out_put:
3513 put_disk(gd);
3514 out_free:
3515 kfree(sdkp);
3516 out:
3517 scsi_autopm_put_device(sdp);
3518 return error;
3519 }
3520
3521 /**
3522 * sd_remove - called whenever a scsi disk (previously recognized by
3523 * sd_probe) is detached from the system. It is called (potentially
3524 * multiple times) during sd module unload.
3525 * @dev: pointer to device object
3526 *
3527 * Note: this function is invoked from the scsi mid-level.
3528 * This function potentially frees up a device name (e.g. /dev/sdc)
3529 * that could be re-used by a subsequent sd_probe().
3530 * This function is not called when the built-in sd driver is "exit-ed".
3531 **/
sd_remove(struct device * dev)3532 static int sd_remove(struct device *dev)
3533 {
3534 struct scsi_disk *sdkp;
3535 dev_t devt;
3536
3537 sdkp = dev_get_drvdata(dev);
3538 devt = disk_devt(sdkp->disk);
3539 scsi_autopm_get_device(sdkp->device);
3540
3541 device_del(&sdkp->dev);
3542 del_gendisk(sdkp->disk);
3543 sd_shutdown(dev);
3544
3545 free_opal_dev(sdkp->opal_dev);
3546
3547 blk_register_region(devt, SD_MINORS, NULL,
3548 sd_default_probe, NULL, NULL);
3549
3550 mutex_lock(&sd_ref_mutex);
3551 dev_set_drvdata(dev, NULL);
3552 put_device(&sdkp->dev);
3553 mutex_unlock(&sd_ref_mutex);
3554
3555 return 0;
3556 }
3557
3558 /**
3559 * scsi_disk_release - Called to free the scsi_disk structure
3560 * @dev: pointer to embedded class device
3561 *
3562 * sd_ref_mutex must be held entering this routine. Because it is
3563 * called on last put, you should always use the scsi_disk_get()
3564 * scsi_disk_put() helpers which manipulate the semaphore directly
3565 * and never do a direct put_device.
3566 **/
scsi_disk_release(struct device * dev)3567 static void scsi_disk_release(struct device *dev)
3568 {
3569 struct scsi_disk *sdkp = to_scsi_disk(dev);
3570 struct gendisk *disk = sdkp->disk;
3571 struct request_queue *q = disk->queue;
3572
3573 ida_free(&sd_index_ida, sdkp->index);
3574
3575 /*
3576 * Wait until all requests that are in progress have completed.
3577 * This is necessary to avoid that e.g. scsi_end_request() crashes
3578 * due to clearing the disk->private_data pointer. Wait from inside
3579 * scsi_disk_release() instead of from sd_release() to avoid that
3580 * freezing and unfreezing the request queue affects user space I/O
3581 * in case multiple processes open a /dev/sd... node concurrently.
3582 */
3583 blk_mq_freeze_queue(q);
3584 blk_mq_unfreeze_queue(q);
3585
3586 disk->private_data = NULL;
3587 put_disk(disk);
3588 put_device(&sdkp->device->sdev_gendev);
3589
3590 sd_zbc_release_disk(sdkp);
3591
3592 kfree(sdkp);
3593 }
3594
sd_start_stop_device(struct scsi_disk * sdkp,int start)3595 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3596 {
3597 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3598 struct scsi_sense_hdr sshdr;
3599 struct scsi_device *sdp = sdkp->device;
3600 int res;
3601
3602 if (start)
3603 cmd[4] |= 1; /* START */
3604
3605 if (sdp->start_stop_pwr_cond)
3606 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3607
3608 if (!scsi_device_online(sdp))
3609 return -ENODEV;
3610
3611 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3612 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3613 if (res) {
3614 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3615 if (driver_byte(res) == DRIVER_SENSE)
3616 sd_print_sense_hdr(sdkp, &sshdr);
3617 if (scsi_sense_valid(&sshdr) &&
3618 /* 0x3a is medium not present */
3619 sshdr.asc == 0x3a)
3620 res = 0;
3621 }
3622
3623 /* SCSI error codes must not go to the generic layer */
3624 if (res)
3625 return -EIO;
3626
3627 return 0;
3628 }
3629
3630 /*
3631 * Send a SYNCHRONIZE CACHE instruction down to the device through
3632 * the normal SCSI command structure. Wait for the command to
3633 * complete.
3634 */
sd_shutdown(struct device * dev)3635 static void sd_shutdown(struct device *dev)
3636 {
3637 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3638
3639 if (!sdkp)
3640 return; /* this can happen */
3641
3642 if (pm_runtime_suspended(dev))
3643 return;
3644
3645 if (sdkp->WCE && sdkp->media_present) {
3646 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3647 sd_sync_cache(sdkp, NULL);
3648 }
3649
3650 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3651 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3652 sd_start_stop_device(sdkp, 0);
3653 }
3654 }
3655
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3656 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3657 {
3658 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3659 struct scsi_sense_hdr sshdr;
3660 int ret = 0;
3661
3662 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3663 return 0;
3664
3665 if (sdkp->WCE && sdkp->media_present) {
3666 if (!sdkp->device->silence_suspend)
3667 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3668 ret = sd_sync_cache(sdkp, &sshdr);
3669
3670 if (ret) {
3671 /* ignore OFFLINE device */
3672 if (ret == -ENODEV)
3673 return 0;
3674
3675 if (!scsi_sense_valid(&sshdr) ||
3676 sshdr.sense_key != ILLEGAL_REQUEST)
3677 return ret;
3678
3679 /*
3680 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3681 * doesn't support sync. There's not much to do and
3682 * suspend shouldn't fail.
3683 */
3684 ret = 0;
3685 }
3686 }
3687
3688 if (sdkp->device->manage_start_stop) {
3689 if (!sdkp->device->silence_suspend)
3690 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3691 /* an error is not worth aborting a system sleep */
3692 ret = sd_start_stop_device(sdkp, 0);
3693 if (ignore_stop_errors)
3694 ret = 0;
3695 }
3696
3697 return ret;
3698 }
3699
sd_suspend_system(struct device * dev)3700 static int sd_suspend_system(struct device *dev)
3701 {
3702 if (pm_runtime_suspended(dev))
3703 return 0;
3704
3705 return sd_suspend_common(dev, true);
3706 }
3707
sd_suspend_runtime(struct device * dev)3708 static int sd_suspend_runtime(struct device *dev)
3709 {
3710 return sd_suspend_common(dev, false);
3711 }
3712
sd_resume(struct device * dev)3713 static int sd_resume(struct device *dev)
3714 {
3715 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3716 int ret;
3717
3718 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3719 return 0;
3720
3721 if (!sdkp->device->manage_start_stop)
3722 return 0;
3723
3724 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3725 ret = sd_start_stop_device(sdkp, 1);
3726 if (!ret)
3727 opal_unlock_from_suspend(sdkp->opal_dev);
3728 return ret;
3729 }
3730
sd_resume_system(struct device * dev)3731 static int sd_resume_system(struct device *dev)
3732 {
3733 if (pm_runtime_suspended(dev))
3734 return 0;
3735
3736 return sd_resume(dev);
3737 }
3738
sd_resume_runtime(struct device * dev)3739 static int sd_resume_runtime(struct device *dev)
3740 {
3741 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3742 struct scsi_device *sdp;
3743
3744 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3745 return 0;
3746
3747 sdp = sdkp->device;
3748
3749 if (sdp->ignore_media_change) {
3750 /* clear the device's sense data */
3751 static const u8 cmd[10] = { REQUEST_SENSE };
3752
3753 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3754 NULL, sdp->request_queue->rq_timeout, 1, 0,
3755 RQF_PM, NULL))
3756 sd_printk(KERN_NOTICE, sdkp,
3757 "Failed to clear sense data\n");
3758 }
3759
3760 return sd_resume(dev);
3761 }
3762
3763 /**
3764 * init_sd - entry point for this driver (both when built in or when
3765 * a module).
3766 *
3767 * Note: this function registers this driver with the scsi mid-level.
3768 **/
init_sd(void)3769 static int __init init_sd(void)
3770 {
3771 int majors = 0, i, err;
3772
3773 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3774
3775 for (i = 0; i < SD_MAJORS; i++) {
3776 if (register_blkdev(sd_major(i), "sd") != 0)
3777 continue;
3778 majors++;
3779 blk_register_region(sd_major(i), SD_MINORS, NULL,
3780 sd_default_probe, NULL, NULL);
3781 }
3782
3783 if (!majors)
3784 return -ENODEV;
3785
3786 err = class_register(&sd_disk_class);
3787 if (err)
3788 goto err_out;
3789
3790 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3791 0, 0, NULL);
3792 if (!sd_cdb_cache) {
3793 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3794 err = -ENOMEM;
3795 goto err_out_class;
3796 }
3797
3798 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3799 if (!sd_cdb_pool) {
3800 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3801 err = -ENOMEM;
3802 goto err_out_cache;
3803 }
3804
3805 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3806 if (!sd_page_pool) {
3807 printk(KERN_ERR "sd: can't init discard page pool\n");
3808 err = -ENOMEM;
3809 goto err_out_ppool;
3810 }
3811
3812 err = scsi_register_driver(&sd_template.gendrv);
3813 if (err)
3814 goto err_out_driver;
3815
3816 return 0;
3817
3818 err_out_driver:
3819 mempool_destroy(sd_page_pool);
3820
3821 err_out_ppool:
3822 mempool_destroy(sd_cdb_pool);
3823
3824 err_out_cache:
3825 kmem_cache_destroy(sd_cdb_cache);
3826
3827 err_out_class:
3828 class_unregister(&sd_disk_class);
3829 err_out:
3830 for (i = 0; i < SD_MAJORS; i++)
3831 unregister_blkdev(sd_major(i), "sd");
3832 return err;
3833 }
3834
3835 /**
3836 * exit_sd - exit point for this driver (when it is a module).
3837 *
3838 * Note: this function unregisters this driver from the scsi mid-level.
3839 **/
exit_sd(void)3840 static void __exit exit_sd(void)
3841 {
3842 int i;
3843
3844 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3845
3846 scsi_unregister_driver(&sd_template.gendrv);
3847 mempool_destroy(sd_cdb_pool);
3848 mempool_destroy(sd_page_pool);
3849 kmem_cache_destroy(sd_cdb_cache);
3850
3851 class_unregister(&sd_disk_class);
3852
3853 for (i = 0; i < SD_MAJORS; i++) {
3854 blk_unregister_region(sd_major(i), SD_MINORS);
3855 unregister_blkdev(sd_major(i), "sd");
3856 }
3857 }
3858
3859 module_init(init_sd);
3860 module_exit(exit_sd);
3861
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3862 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3863 {
3864 scsi_print_sense_hdr(sdkp->device,
3865 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3866 }
3867
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3868 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3869 {
3870 const char *hb_string = scsi_hostbyte_string(result);
3871 const char *db_string = scsi_driverbyte_string(result);
3872
3873 if (hb_string || db_string)
3874 sd_printk(KERN_INFO, sdkp,
3875 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3876 hb_string ? hb_string : "invalid",
3877 db_string ? db_string : "invalid");
3878 else
3879 sd_printk(KERN_INFO, sdkp,
3880 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3881 msg, host_byte(result), driver_byte(result));
3882 }
3883