• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/pci.h>
14 #include <linux/platform_data/dma-dw.h>
15 #include <linux/spi/spi.h>
16 #include <linux/types.h>
17 
18 #include "spi-dw.h"
19 
20 #define RX_BUSY		0
21 #define RX_BURST_LEVEL	16
22 #define TX_BUSY		1
23 #define TX_BURST_LEVEL	16
24 
dw_spi_dma_chan_filter(struct dma_chan * chan,void * param)25 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
26 {
27 	struct dw_dma_slave *s = param;
28 
29 	if (s->dma_dev != chan->device->dev)
30 		return false;
31 
32 	chan->private = s;
33 	return true;
34 }
35 
dw_spi_dma_maxburst_init(struct dw_spi * dws)36 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
37 {
38 	struct dma_slave_caps caps;
39 	u32 max_burst, def_burst;
40 	int ret;
41 
42 	def_burst = dws->fifo_len / 2;
43 
44 	ret = dma_get_slave_caps(dws->rxchan, &caps);
45 	if (!ret && caps.max_burst)
46 		max_burst = caps.max_burst;
47 	else
48 		max_burst = RX_BURST_LEVEL;
49 
50 	dws->rxburst = min(max_burst, def_burst);
51 	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
52 
53 	ret = dma_get_slave_caps(dws->txchan, &caps);
54 	if (!ret && caps.max_burst)
55 		max_burst = caps.max_burst;
56 	else
57 		max_burst = TX_BURST_LEVEL;
58 
59 	/*
60 	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
61 	 * channel might not be enough to provide a well balanced DMA-based
62 	 * SPI transfer interface. There might still be moments when the Tx DMA
63 	 * channel is occasionally handled faster than the Rx DMA channel.
64 	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
65 	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
66 	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
67 	 * DMA activity is intentionally slowed down by limiting the SPI Tx
68 	 * FIFO depth with a value twice bigger than the Tx burst length.
69 	 */
70 	dws->txburst = min(max_burst, def_burst);
71 	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
72 }
73 
dw_spi_dma_sg_burst_init(struct dw_spi * dws)74 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
75 {
76 	struct dma_slave_caps tx = {0}, rx = {0};
77 
78 	dma_get_slave_caps(dws->txchan, &tx);
79 	dma_get_slave_caps(dws->rxchan, &rx);
80 
81 	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
82 		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
83 	else if (tx.max_sg_burst > 0)
84 		dws->dma_sg_burst = tx.max_sg_burst;
85 	else if (rx.max_sg_burst > 0)
86 		dws->dma_sg_burst = rx.max_sg_burst;
87 	else
88 		dws->dma_sg_burst = 0;
89 }
90 
dw_spi_dma_init_mfld(struct device * dev,struct dw_spi * dws)91 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
92 {
93 	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
94 	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
95 	struct pci_dev *dma_dev;
96 	dma_cap_mask_t mask;
97 
98 	/*
99 	 * Get pci device for DMA controller, currently it could only
100 	 * be the DMA controller of Medfield
101 	 */
102 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
103 	if (!dma_dev)
104 		return -ENODEV;
105 
106 	dma_cap_zero(mask);
107 	dma_cap_set(DMA_SLAVE, mask);
108 
109 	/* 1. Init rx channel */
110 	rx->dma_dev = &dma_dev->dev;
111 	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
112 	if (!dws->rxchan)
113 		goto err_exit;
114 
115 	/* 2. Init tx channel */
116 	tx->dma_dev = &dma_dev->dev;
117 	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
118 	if (!dws->txchan)
119 		goto free_rxchan;
120 
121 	dws->master->dma_rx = dws->rxchan;
122 	dws->master->dma_tx = dws->txchan;
123 
124 	init_completion(&dws->dma_completion);
125 
126 	dw_spi_dma_maxburst_init(dws);
127 
128 	dw_spi_dma_sg_burst_init(dws);
129 
130 	pci_dev_put(dma_dev);
131 
132 	return 0;
133 
134 free_rxchan:
135 	dma_release_channel(dws->rxchan);
136 	dws->rxchan = NULL;
137 err_exit:
138 	pci_dev_put(dma_dev);
139 	return -EBUSY;
140 }
141 
dw_spi_dma_init_generic(struct device * dev,struct dw_spi * dws)142 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
143 {
144 	dws->rxchan = dma_request_slave_channel(dev, "rx");
145 	if (!dws->rxchan)
146 		return -ENODEV;
147 
148 	dws->txchan = dma_request_slave_channel(dev, "tx");
149 	if (!dws->txchan) {
150 		dma_release_channel(dws->rxchan);
151 		dws->rxchan = NULL;
152 		return -ENODEV;
153 	}
154 
155 	dws->master->dma_rx = dws->rxchan;
156 	dws->master->dma_tx = dws->txchan;
157 
158 	init_completion(&dws->dma_completion);
159 
160 	dw_spi_dma_maxburst_init(dws);
161 
162 	dw_spi_dma_sg_burst_init(dws);
163 
164 	return 0;
165 }
166 
dw_spi_dma_exit(struct dw_spi * dws)167 static void dw_spi_dma_exit(struct dw_spi *dws)
168 {
169 	if (dws->txchan) {
170 		dmaengine_terminate_sync(dws->txchan);
171 		dma_release_channel(dws->txchan);
172 	}
173 
174 	if (dws->rxchan) {
175 		dmaengine_terminate_sync(dws->rxchan);
176 		dma_release_channel(dws->rxchan);
177 	}
178 }
179 
dw_spi_dma_transfer_handler(struct dw_spi * dws)180 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
181 {
182 	dw_spi_check_status(dws, false);
183 
184 	complete(&dws->dma_completion);
185 
186 	return IRQ_HANDLED;
187 }
188 
dw_spi_can_dma(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * xfer)189 static bool dw_spi_can_dma(struct spi_controller *master,
190 			   struct spi_device *spi, struct spi_transfer *xfer)
191 {
192 	struct dw_spi *dws = spi_controller_get_devdata(master);
193 
194 	return xfer->len > dws->fifo_len;
195 }
196 
dw_spi_dma_convert_width(u8 n_bytes)197 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
198 {
199 	if (n_bytes == 1)
200 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
201 	else if (n_bytes == 2)
202 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
203 
204 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
205 }
206 
dw_spi_dma_wait(struct dw_spi * dws,unsigned int len,u32 speed)207 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
208 {
209 	unsigned long long ms;
210 
211 	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
212 	do_div(ms, speed);
213 	ms += ms + 200;
214 
215 	if (ms > UINT_MAX)
216 		ms = UINT_MAX;
217 
218 	ms = wait_for_completion_timeout(&dws->dma_completion,
219 					 msecs_to_jiffies(ms));
220 
221 	if (ms == 0) {
222 		dev_err(&dws->master->cur_msg->spi->dev,
223 			"DMA transaction timed out\n");
224 		return -ETIMEDOUT;
225 	}
226 
227 	return 0;
228 }
229 
dw_spi_dma_tx_busy(struct dw_spi * dws)230 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
231 {
232 	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
233 }
234 
dw_spi_dma_wait_tx_done(struct dw_spi * dws,struct spi_transfer * xfer)235 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
236 				   struct spi_transfer *xfer)
237 {
238 	int retry = SPI_WAIT_RETRIES;
239 	struct spi_delay delay;
240 	u32 nents;
241 
242 	nents = dw_readl(dws, DW_SPI_TXFLR);
243 	delay.unit = SPI_DELAY_UNIT_SCK;
244 	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
245 
246 	while (dw_spi_dma_tx_busy(dws) && retry--)
247 		spi_delay_exec(&delay, xfer);
248 
249 	if (retry < 0) {
250 		dev_err(&dws->master->dev, "Tx hanged up\n");
251 		return -EIO;
252 	}
253 
254 	return 0;
255 }
256 
257 /*
258  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
259  * channel will clear a corresponding bit.
260  */
dw_spi_dma_tx_done(void * arg)261 static void dw_spi_dma_tx_done(void *arg)
262 {
263 	struct dw_spi *dws = arg;
264 
265 	clear_bit(TX_BUSY, &dws->dma_chan_busy);
266 	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
267 		return;
268 
269 	complete(&dws->dma_completion);
270 }
271 
dw_spi_dma_config_tx(struct dw_spi * dws)272 static int dw_spi_dma_config_tx(struct dw_spi *dws)
273 {
274 	struct dma_slave_config txconf;
275 
276 	memset(&txconf, 0, sizeof(txconf));
277 	txconf.direction = DMA_MEM_TO_DEV;
278 	txconf.dst_addr = dws->dma_addr;
279 	txconf.dst_maxburst = dws->txburst;
280 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
281 	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
282 	txconf.device_fc = false;
283 
284 	return dmaengine_slave_config(dws->txchan, &txconf);
285 }
286 
dw_spi_dma_submit_tx(struct dw_spi * dws,struct scatterlist * sgl,unsigned int nents)287 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
288 				unsigned int nents)
289 {
290 	struct dma_async_tx_descriptor *txdesc;
291 	dma_cookie_t cookie;
292 	int ret;
293 
294 	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
295 					 DMA_MEM_TO_DEV,
296 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
297 	if (!txdesc)
298 		return -ENOMEM;
299 
300 	txdesc->callback = dw_spi_dma_tx_done;
301 	txdesc->callback_param = dws;
302 
303 	cookie = dmaengine_submit(txdesc);
304 	ret = dma_submit_error(cookie);
305 	if (ret) {
306 		dmaengine_terminate_sync(dws->txchan);
307 		return ret;
308 	}
309 
310 	set_bit(TX_BUSY, &dws->dma_chan_busy);
311 
312 	return 0;
313 }
314 
dw_spi_dma_rx_busy(struct dw_spi * dws)315 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
316 {
317 	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
318 }
319 
dw_spi_dma_wait_rx_done(struct dw_spi * dws)320 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
321 {
322 	int retry = SPI_WAIT_RETRIES;
323 	struct spi_delay delay;
324 	unsigned long ns, us;
325 	u32 nents;
326 
327 	/*
328 	 * It's unlikely that DMA engine is still doing the data fetching, but
329 	 * if it's let's give it some reasonable time. The timeout calculation
330 	 * is based on the synchronous APB/SSI reference clock rate, on a
331 	 * number of data entries left in the Rx FIFO, times a number of clock
332 	 * periods normally needed for a single APB read/write transaction
333 	 * without PREADY signal utilized (which is true for the DW APB SSI
334 	 * controller).
335 	 */
336 	nents = dw_readl(dws, DW_SPI_RXFLR);
337 	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
338 	if (ns <= NSEC_PER_USEC) {
339 		delay.unit = SPI_DELAY_UNIT_NSECS;
340 		delay.value = ns;
341 	} else {
342 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
343 		delay.unit = SPI_DELAY_UNIT_USECS;
344 		delay.value = clamp_val(us, 0, USHRT_MAX);
345 	}
346 
347 	while (dw_spi_dma_rx_busy(dws) && retry--)
348 		spi_delay_exec(&delay, NULL);
349 
350 	if (retry < 0) {
351 		dev_err(&dws->master->dev, "Rx hanged up\n");
352 		return -EIO;
353 	}
354 
355 	return 0;
356 }
357 
358 /*
359  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
360  * channel will clear a corresponding bit.
361  */
dw_spi_dma_rx_done(void * arg)362 static void dw_spi_dma_rx_done(void *arg)
363 {
364 	struct dw_spi *dws = arg;
365 
366 	clear_bit(RX_BUSY, &dws->dma_chan_busy);
367 	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
368 		return;
369 
370 	complete(&dws->dma_completion);
371 }
372 
dw_spi_dma_config_rx(struct dw_spi * dws)373 static int dw_spi_dma_config_rx(struct dw_spi *dws)
374 {
375 	struct dma_slave_config rxconf;
376 
377 	memset(&rxconf, 0, sizeof(rxconf));
378 	rxconf.direction = DMA_DEV_TO_MEM;
379 	rxconf.src_addr = dws->dma_addr;
380 	rxconf.src_maxburst = dws->rxburst;
381 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
382 	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
383 	rxconf.device_fc = false;
384 
385 	return dmaengine_slave_config(dws->rxchan, &rxconf);
386 }
387 
dw_spi_dma_submit_rx(struct dw_spi * dws,struct scatterlist * sgl,unsigned int nents)388 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
389 				unsigned int nents)
390 {
391 	struct dma_async_tx_descriptor *rxdesc;
392 	dma_cookie_t cookie;
393 	int ret;
394 
395 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
396 					 DMA_DEV_TO_MEM,
397 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
398 	if (!rxdesc)
399 		return -ENOMEM;
400 
401 	rxdesc->callback = dw_spi_dma_rx_done;
402 	rxdesc->callback_param = dws;
403 
404 	cookie = dmaengine_submit(rxdesc);
405 	ret = dma_submit_error(cookie);
406 	if (ret) {
407 		dmaengine_terminate_sync(dws->rxchan);
408 		return ret;
409 	}
410 
411 	set_bit(RX_BUSY, &dws->dma_chan_busy);
412 
413 	return 0;
414 }
415 
dw_spi_dma_setup(struct dw_spi * dws,struct spi_transfer * xfer)416 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
417 {
418 	u16 imr, dma_ctrl;
419 	int ret;
420 
421 	if (!xfer->tx_buf)
422 		return -EINVAL;
423 
424 	/* Setup DMA channels */
425 	ret = dw_spi_dma_config_tx(dws);
426 	if (ret)
427 		return ret;
428 
429 	if (xfer->rx_buf) {
430 		ret = dw_spi_dma_config_rx(dws);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	/* Set the DMA handshaking interface */
436 	dma_ctrl = SPI_DMA_TDMAE;
437 	if (xfer->rx_buf)
438 		dma_ctrl |= SPI_DMA_RDMAE;
439 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
440 
441 	/* Set the interrupt mask */
442 	imr = SPI_INT_TXOI;
443 	if (xfer->rx_buf)
444 		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
445 	spi_umask_intr(dws, imr);
446 
447 	reinit_completion(&dws->dma_completion);
448 
449 	dws->transfer_handler = dw_spi_dma_transfer_handler;
450 
451 	return 0;
452 }
453 
dw_spi_dma_transfer_all(struct dw_spi * dws,struct spi_transfer * xfer)454 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
455 				   struct spi_transfer *xfer)
456 {
457 	int ret;
458 
459 	/* Submit the DMA Tx transfer */
460 	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
461 	if (ret)
462 		goto err_clear_dmac;
463 
464 	/* Submit the DMA Rx transfer if required */
465 	if (xfer->rx_buf) {
466 		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
467 					   xfer->rx_sg.nents);
468 		if (ret)
469 			goto err_clear_dmac;
470 
471 		/* rx must be started before tx due to spi instinct */
472 		dma_async_issue_pending(dws->rxchan);
473 	}
474 
475 	dma_async_issue_pending(dws->txchan);
476 
477 	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
478 
479 err_clear_dmac:
480 	dw_writel(dws, DW_SPI_DMACR, 0);
481 
482 	return ret;
483 }
484 
485 /*
486  * In case if at least one of the requested DMA channels doesn't support the
487  * hardware accelerated SG list entries traverse, the DMA driver will most
488  * likely work that around by performing the IRQ-based SG list entries
489  * resubmission. That might and will cause a problem if the DMA Tx channel is
490  * recharged and re-executed before the Rx DMA channel. Due to
491  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
492  * start pushing data to the SPI bus before the Rx DMA channel is even
493  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
494  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
495  * the DMA Rx channel being recharged and re-executed will eventually be
496  * overflown.
497  *
498  * In order to solve the problem we have to feed the DMA engine with SG list
499  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
500  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
501  * and rx_sg lists may have different number of entries of different lengths
502  * (though total length should match) let's virtually split the SG-lists to the
503  * set of DMA transfers, which length is a minimum of the ordered SG-entries
504  * lengths. An ASCII-sketch of the implemented algo is following:
505  *                  xfer->len
506  *                |___________|
507  * tx_sg list:    |___|____|__|
508  * rx_sg list:    |_|____|____|
509  * DMA transfers: |_|_|__|_|__|
510  *
511  * Note in order to have this workaround solving the denoted problem the DMA
512  * engine driver should properly initialize the max_sg_burst capability and set
513  * the DMA device max segment size parameter with maximum data block size the
514  * DMA engine supports.
515  */
516 
dw_spi_dma_transfer_one(struct dw_spi * dws,struct spi_transfer * xfer)517 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
518 				   struct spi_transfer *xfer)
519 {
520 	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
521 	unsigned int tx_len = 0, rx_len = 0;
522 	unsigned int base, len;
523 	int ret;
524 
525 	sg_init_table(&tx_tmp, 1);
526 	sg_init_table(&rx_tmp, 1);
527 
528 	for (base = 0, len = 0; base < xfer->len; base += len) {
529 		/* Fetch next Tx DMA data chunk */
530 		if (!tx_len) {
531 			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
532 			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
533 			tx_len = sg_dma_len(tx_sg);
534 		}
535 
536 		/* Fetch next Rx DMA data chunk */
537 		if (!rx_len) {
538 			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
539 			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
540 			rx_len = sg_dma_len(rx_sg);
541 		}
542 
543 		len = min(tx_len, rx_len);
544 
545 		sg_dma_len(&tx_tmp) = len;
546 		sg_dma_len(&rx_tmp) = len;
547 
548 		/* Submit DMA Tx transfer */
549 		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
550 		if (ret)
551 			break;
552 
553 		/* Submit DMA Rx transfer */
554 		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
555 		if (ret)
556 			break;
557 
558 		/* Rx must be started before Tx due to SPI instinct */
559 		dma_async_issue_pending(dws->rxchan);
560 
561 		dma_async_issue_pending(dws->txchan);
562 
563 		/*
564 		 * Here we only need to wait for the DMA transfer to be
565 		 * finished since SPI controller is kept enabled during the
566 		 * procedure this loop implements and there is no risk to lose
567 		 * data left in the Tx/Rx FIFOs.
568 		 */
569 		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
570 		if (ret)
571 			break;
572 
573 		reinit_completion(&dws->dma_completion);
574 
575 		sg_dma_address(&tx_tmp) += len;
576 		sg_dma_address(&rx_tmp) += len;
577 		tx_len -= len;
578 		rx_len -= len;
579 	}
580 
581 	dw_writel(dws, DW_SPI_DMACR, 0);
582 
583 	return ret;
584 }
585 
dw_spi_dma_transfer(struct dw_spi * dws,struct spi_transfer * xfer)586 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
587 {
588 	unsigned int nents;
589 	int ret;
590 
591 	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
592 
593 	/*
594 	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
595 	 * lists directly to the DMA engine at once) if either full hardware
596 	 * accelerated SG list traverse is supported by both channels, or the
597 	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
598 	 * handle both SG lists on hardware accelerated basis.
599 	 */
600 	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
601 		ret = dw_spi_dma_transfer_all(dws, xfer);
602 	else
603 		ret = dw_spi_dma_transfer_one(dws, xfer);
604 	if (ret)
605 		return ret;
606 
607 	if (dws->master->cur_msg->status == -EINPROGRESS) {
608 		ret = dw_spi_dma_wait_tx_done(dws, xfer);
609 		if (ret)
610 			return ret;
611 	}
612 
613 	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
614 		ret = dw_spi_dma_wait_rx_done(dws);
615 
616 	return ret;
617 }
618 
dw_spi_dma_stop(struct dw_spi * dws)619 static void dw_spi_dma_stop(struct dw_spi *dws)
620 {
621 	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
622 		dmaengine_terminate_sync(dws->txchan);
623 		clear_bit(TX_BUSY, &dws->dma_chan_busy);
624 	}
625 	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
626 		dmaengine_terminate_sync(dws->rxchan);
627 		clear_bit(RX_BUSY, &dws->dma_chan_busy);
628 	}
629 }
630 
631 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
632 	.dma_init	= dw_spi_dma_init_mfld,
633 	.dma_exit	= dw_spi_dma_exit,
634 	.dma_setup	= dw_spi_dma_setup,
635 	.can_dma	= dw_spi_can_dma,
636 	.dma_transfer	= dw_spi_dma_transfer,
637 	.dma_stop	= dw_spi_dma_stop,
638 };
639 
dw_spi_dma_setup_mfld(struct dw_spi * dws)640 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
641 {
642 	dws->dma_ops = &dw_spi_dma_mfld_ops;
643 }
644 EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
645 
646 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
647 	.dma_init	= dw_spi_dma_init_generic,
648 	.dma_exit	= dw_spi_dma_exit,
649 	.dma_setup	= dw_spi_dma_setup,
650 	.can_dma	= dw_spi_can_dma,
651 	.dma_transfer	= dw_spi_dma_transfer,
652 	.dma_stop	= dw_spi_dma_stop,
653 };
654 
dw_spi_dma_setup_generic(struct dw_spi * dws)655 void dw_spi_dma_setup_generic(struct dw_spi *dws)
656 {
657 	dws->dma_ops = &dw_spi_dma_generic_ops;
658 }
659 EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);
660