• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20 
21 struct extent_inode_elem {
22 	u64 inum;
23 	u64 offset;
24 	struct extent_inode_elem *next;
25 };
26 
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)27 static int check_extent_in_eb(const struct btrfs_key *key,
28 			      const struct extent_buffer *eb,
29 			      const struct btrfs_file_extent_item *fi,
30 			      u64 extent_item_pos,
31 			      struct extent_inode_elem **eie,
32 			      bool ignore_offset)
33 {
34 	u64 offset = 0;
35 	struct extent_inode_elem *e;
36 
37 	if (!ignore_offset &&
38 	    !btrfs_file_extent_compression(eb, fi) &&
39 	    !btrfs_file_extent_encryption(eb, fi) &&
40 	    !btrfs_file_extent_other_encoding(eb, fi)) {
41 		u64 data_offset;
42 		u64 data_len;
43 
44 		data_offset = btrfs_file_extent_offset(eb, fi);
45 		data_len = btrfs_file_extent_num_bytes(eb, fi);
46 
47 		if (extent_item_pos < data_offset ||
48 		    extent_item_pos >= data_offset + data_len)
49 			return 1;
50 		offset = extent_item_pos - data_offset;
51 	}
52 
53 	e = kmalloc(sizeof(*e), GFP_NOFS);
54 	if (!e)
55 		return -ENOMEM;
56 
57 	e->next = *eie;
58 	e->inum = key->objectid;
59 	e->offset = key->offset + offset;
60 	*eie = e;
61 
62 	return 0;
63 }
64 
free_inode_elem_list(struct extent_inode_elem * eie)65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 	struct extent_inode_elem *eie_next;
68 
69 	for (; eie; eie = eie_next) {
70 		eie_next = eie->next;
71 		kfree(eie);
72 	}
73 }
74 
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 			     u64 wanted_disk_byte, u64 extent_item_pos,
77 			     struct extent_inode_elem **eie,
78 			     bool ignore_offset)
79 {
80 	u64 disk_byte;
81 	struct btrfs_key key;
82 	struct btrfs_file_extent_item *fi;
83 	int slot;
84 	int nritems;
85 	int extent_type;
86 	int ret;
87 
88 	/*
89 	 * from the shared data ref, we only have the leaf but we need
90 	 * the key. thus, we must look into all items and see that we
91 	 * find one (some) with a reference to our extent item.
92 	 */
93 	nritems = btrfs_header_nritems(eb);
94 	for (slot = 0; slot < nritems; ++slot) {
95 		btrfs_item_key_to_cpu(eb, &key, slot);
96 		if (key.type != BTRFS_EXTENT_DATA_KEY)
97 			continue;
98 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 		extent_type = btrfs_file_extent_type(eb, fi);
100 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 			continue;
102 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 		if (disk_byte != wanted_disk_byte)
105 			continue;
106 
107 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 		if (ret < 0)
109 			return ret;
110 	}
111 
112 	return 0;
113 }
114 
115 struct preftree {
116 	struct rb_root_cached root;
117 	unsigned int count;
118 };
119 
120 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 
122 struct preftrees {
123 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 	struct preftree indirect_missing_keys;
126 };
127 
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137 	u64 root_objectid;
138 	u64 inum;
139 	int share_count;
140 	bool have_delayed_delete_refs;
141 };
142 
extent_is_shared(struct share_check * sc)143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147 
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149 
btrfs_prelim_ref_init(void)150 int __init btrfs_prelim_ref_init(void)
151 {
152 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 					sizeof(struct prelim_ref),
154 					0,
155 					SLAB_MEM_SPREAD,
156 					NULL);
157 	if (!btrfs_prelim_ref_cache)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
btrfs_prelim_ref_exit(void)162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166 
free_pref(struct prelim_ref * ref)167 static void free_pref(struct prelim_ref *ref)
168 {
169 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171 
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 			      struct prelim_ref *ref2)
179 {
180 	if (ref1->level < ref2->level)
181 		return -1;
182 	if (ref1->level > ref2->level)
183 		return 1;
184 	if (ref1->root_id < ref2->root_id)
185 		return -1;
186 	if (ref1->root_id > ref2->root_id)
187 		return 1;
188 	if (ref1->key_for_search.type < ref2->key_for_search.type)
189 		return -1;
190 	if (ref1->key_for_search.type > ref2->key_for_search.type)
191 		return 1;
192 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 		return -1;
194 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 		return 1;
196 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 		return -1;
198 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 		return 1;
200 	if (ref1->parent < ref2->parent)
201 		return -1;
202 	if (ref1->parent > ref2->parent)
203 		return 1;
204 
205 	return 0;
206 }
207 
update_share_count(struct share_check * sc,int oldcount,int newcount)208 static void update_share_count(struct share_check *sc, int oldcount,
209 			       int newcount)
210 {
211 	if ((!sc) || (oldcount == 0 && newcount < 1))
212 		return;
213 
214 	if (oldcount > 0 && newcount < 1)
215 		sc->share_count--;
216 	else if (oldcount < 1 && newcount > 0)
217 		sc->share_count++;
218 }
219 
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 			      struct preftree *preftree,
227 			      struct prelim_ref *newref,
228 			      struct share_check *sc)
229 {
230 	struct rb_root_cached *root;
231 	struct rb_node **p;
232 	struct rb_node *parent = NULL;
233 	struct prelim_ref *ref;
234 	int result;
235 	bool leftmost = true;
236 
237 	root = &preftree->root;
238 	p = &root->rb_root.rb_node;
239 
240 	while (*p) {
241 		parent = *p;
242 		ref = rb_entry(parent, struct prelim_ref, rbnode);
243 		result = prelim_ref_compare(ref, newref);
244 		if (result < 0) {
245 			p = &(*p)->rb_left;
246 		} else if (result > 0) {
247 			p = &(*p)->rb_right;
248 			leftmost = false;
249 		} else {
250 			/* Identical refs, merge them and free @newref */
251 			struct extent_inode_elem *eie = ref->inode_list;
252 
253 			while (eie && eie->next)
254 				eie = eie->next;
255 
256 			if (!eie)
257 				ref->inode_list = newref->inode_list;
258 			else
259 				eie->next = newref->inode_list;
260 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 						     preftree->count);
262 			/*
263 			 * A delayed ref can have newref->count < 0.
264 			 * The ref->count is updated to follow any
265 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 			 */
267 			update_share_count(sc, ref->count,
268 					   ref->count + newref->count);
269 			ref->count += newref->count;
270 			free_pref(newref);
271 			return;
272 		}
273 	}
274 
275 	update_share_count(sc, 0, newref->count);
276 	preftree->count++;
277 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 	rb_link_node(&newref->rbnode, parent, p);
279 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281 
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
prelim_release(struct preftree * preftree)286 static void prelim_release(struct preftree *preftree)
287 {
288 	struct prelim_ref *ref, *next_ref;
289 
290 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 					     &preftree->root.rb_root, rbnode) {
292 		free_inode_elem_list(ref->inode_list);
293 		free_pref(ref);
294 	}
295 
296 	preftree->root = RB_ROOT_CACHED;
297 	preftree->count = 0;
298 }
299 
300 /*
301  * the rules for all callers of this function are:
302  * - obtaining the parent is the goal
303  * - if you add a key, you must know that it is a correct key
304  * - if you cannot add the parent or a correct key, then we will look into the
305  *   block later to set a correct key
306  *
307  * delayed refs
308  * ============
309  *        backref type | shared | indirect | shared | indirect
310  * information         |   tree |     tree |   data |     data
311  * --------------------+--------+----------+--------+----------
312  *      parent logical |    y   |     -    |    -   |     -
313  *      key to resolve |    -   |     y    |    y   |     y
314  *  tree block logical |    -   |     -    |    -   |     -
315  *  root for resolving |    y   |     y    |    y   |     y
316  *
317  * - column 1:       we've the parent -> done
318  * - column 2, 3, 4: we use the key to find the parent
319  *
320  * on disk refs (inline or keyed)
321  * ==============================
322  *        backref type | shared | indirect | shared | indirect
323  * information         |   tree |     tree |   data |     data
324  * --------------------+--------+----------+--------+----------
325  *      parent logical |    y   |     -    |    y   |     -
326  *      key to resolve |    -   |     -    |    -   |     y
327  *  tree block logical |    y   |     y    |    y   |     y
328  *  root for resolving |    -   |     y    |    y   |     y
329  *
330  * - column 1, 3: we've the parent -> done
331  * - column 2:    we take the first key from the block to find the parent
332  *                (see add_missing_keys)
333  * - column 4:    we use the key to find the parent
334  *
335  * additional information that's available but not required to find the parent
336  * block might help in merging entries to gain some speed.
337  */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)338 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
339 			  struct preftree *preftree, u64 root_id,
340 			  const struct btrfs_key *key, int level, u64 parent,
341 			  u64 wanted_disk_byte, int count,
342 			  struct share_check *sc, gfp_t gfp_mask)
343 {
344 	struct prelim_ref *ref;
345 
346 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
347 		return 0;
348 
349 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
350 	if (!ref)
351 		return -ENOMEM;
352 
353 	ref->root_id = root_id;
354 	if (key)
355 		ref->key_for_search = *key;
356 	else
357 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
358 
359 	ref->inode_list = NULL;
360 	ref->level = level;
361 	ref->count = count;
362 	ref->parent = parent;
363 	ref->wanted_disk_byte = wanted_disk_byte;
364 	prelim_ref_insert(fs_info, preftree, ref, sc);
365 	return extent_is_shared(sc);
366 }
367 
368 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)369 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
370 			  struct preftrees *preftrees, int level, u64 parent,
371 			  u64 wanted_disk_byte, int count,
372 			  struct share_check *sc, gfp_t gfp_mask)
373 {
374 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
375 			      parent, wanted_disk_byte, count, sc, gfp_mask);
376 }
377 
378 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)379 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
380 			    struct preftrees *preftrees, u64 root_id,
381 			    const struct btrfs_key *key, int level,
382 			    u64 wanted_disk_byte, int count,
383 			    struct share_check *sc, gfp_t gfp_mask)
384 {
385 	struct preftree *tree = &preftrees->indirect;
386 
387 	if (!key)
388 		tree = &preftrees->indirect_missing_keys;
389 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
390 			      wanted_disk_byte, count, sc, gfp_mask);
391 }
392 
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)393 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
394 {
395 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
396 	struct rb_node *parent = NULL;
397 	struct prelim_ref *ref = NULL;
398 	struct prelim_ref target = {};
399 	int result;
400 
401 	target.parent = bytenr;
402 
403 	while (*p) {
404 		parent = *p;
405 		ref = rb_entry(parent, struct prelim_ref, rbnode);
406 		result = prelim_ref_compare(ref, &target);
407 
408 		if (result < 0)
409 			p = &(*p)->rb_left;
410 		else if (result > 0)
411 			p = &(*p)->rb_right;
412 		else
413 			return 1;
414 	}
415 	return 0;
416 }
417 
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)418 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
419 			   struct ulist *parents,
420 			   struct preftrees *preftrees, struct prelim_ref *ref,
421 			   int level, u64 time_seq, const u64 *extent_item_pos,
422 			   bool ignore_offset)
423 {
424 	int ret = 0;
425 	int slot;
426 	struct extent_buffer *eb;
427 	struct btrfs_key key;
428 	struct btrfs_key *key_for_search = &ref->key_for_search;
429 	struct btrfs_file_extent_item *fi;
430 	struct extent_inode_elem *eie = NULL, *old = NULL;
431 	u64 disk_byte;
432 	u64 wanted_disk_byte = ref->wanted_disk_byte;
433 	u64 count = 0;
434 	u64 data_offset;
435 	u8 type;
436 
437 	if (level != 0) {
438 		eb = path->nodes[level];
439 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
440 		if (ret < 0)
441 			return ret;
442 		return 0;
443 	}
444 
445 	/*
446 	 * 1. We normally enter this function with the path already pointing to
447 	 *    the first item to check. But sometimes, we may enter it with
448 	 *    slot == nritems.
449 	 * 2. We are searching for normal backref but bytenr of this leaf
450 	 *    matches shared data backref
451 	 * 3. The leaf owner is not equal to the root we are searching
452 	 *
453 	 * For these cases, go to the next leaf before we continue.
454 	 */
455 	eb = path->nodes[0];
456 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
457 	    is_shared_data_backref(preftrees, eb->start) ||
458 	    ref->root_id != btrfs_header_owner(eb)) {
459 		if (time_seq == SEQ_LAST)
460 			ret = btrfs_next_leaf(root, path);
461 		else
462 			ret = btrfs_next_old_leaf(root, path, time_seq);
463 	}
464 
465 	while (!ret && count < ref->count) {
466 		eb = path->nodes[0];
467 		slot = path->slots[0];
468 
469 		btrfs_item_key_to_cpu(eb, &key, slot);
470 
471 		if (key.objectid != key_for_search->objectid ||
472 		    key.type != BTRFS_EXTENT_DATA_KEY)
473 			break;
474 
475 		/*
476 		 * We are searching for normal backref but bytenr of this leaf
477 		 * matches shared data backref, OR
478 		 * the leaf owner is not equal to the root we are searching for
479 		 */
480 		if (slot == 0 &&
481 		    (is_shared_data_backref(preftrees, eb->start) ||
482 		     ref->root_id != btrfs_header_owner(eb))) {
483 			if (time_seq == SEQ_LAST)
484 				ret = btrfs_next_leaf(root, path);
485 			else
486 				ret = btrfs_next_old_leaf(root, path, time_seq);
487 			continue;
488 		}
489 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
490 		type = btrfs_file_extent_type(eb, fi);
491 		if (type == BTRFS_FILE_EXTENT_INLINE)
492 			goto next;
493 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
494 		data_offset = btrfs_file_extent_offset(eb, fi);
495 
496 		if (disk_byte == wanted_disk_byte) {
497 			eie = NULL;
498 			old = NULL;
499 			if (ref->key_for_search.offset == key.offset - data_offset)
500 				count++;
501 			else
502 				goto next;
503 			if (extent_item_pos) {
504 				ret = check_extent_in_eb(&key, eb, fi,
505 						*extent_item_pos,
506 						&eie, ignore_offset);
507 				if (ret < 0)
508 					break;
509 			}
510 			if (ret > 0)
511 				goto next;
512 			ret = ulist_add_merge_ptr(parents, eb->start,
513 						  eie, (void **)&old, GFP_NOFS);
514 			if (ret < 0)
515 				break;
516 			if (!ret && extent_item_pos) {
517 				while (old->next)
518 					old = old->next;
519 				old->next = eie;
520 			}
521 			eie = NULL;
522 		}
523 next:
524 		if (time_seq == SEQ_LAST)
525 			ret = btrfs_next_item(root, path);
526 		else
527 			ret = btrfs_next_old_item(root, path, time_seq);
528 	}
529 
530 	if (ret > 0)
531 		ret = 0;
532 	else if (ret < 0)
533 		free_inode_elem_list(eie);
534 	return ret;
535 }
536 
537 /*
538  * resolve an indirect backref in the form (root_id, key, level)
539  * to a logical address
540  */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)541 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
542 				struct btrfs_path *path, u64 time_seq,
543 				struct preftrees *preftrees,
544 				struct prelim_ref *ref, struct ulist *parents,
545 				const u64 *extent_item_pos, bool ignore_offset)
546 {
547 	struct btrfs_root *root;
548 	struct extent_buffer *eb;
549 	int ret = 0;
550 	int root_level;
551 	int level = ref->level;
552 	struct btrfs_key search_key = ref->key_for_search;
553 
554 	/*
555 	 * If we're search_commit_root we could possibly be holding locks on
556 	 * other tree nodes.  This happens when qgroups does backref walks when
557 	 * adding new delayed refs.  To deal with this we need to look in cache
558 	 * for the root, and if we don't find it then we need to search the
559 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
560 	 * here.
561 	 */
562 	if (path->search_commit_root)
563 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
564 	else
565 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
566 	if (IS_ERR(root)) {
567 		ret = PTR_ERR(root);
568 		goto out_free;
569 	}
570 
571 	if (!path->search_commit_root &&
572 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
573 		ret = -ENOENT;
574 		goto out;
575 	}
576 
577 	if (btrfs_is_testing(fs_info)) {
578 		ret = -ENOENT;
579 		goto out;
580 	}
581 
582 	if (path->search_commit_root)
583 		root_level = btrfs_header_level(root->commit_root);
584 	else if (time_seq == SEQ_LAST)
585 		root_level = btrfs_header_level(root->node);
586 	else
587 		root_level = btrfs_old_root_level(root, time_seq);
588 
589 	if (root_level + 1 == level)
590 		goto out;
591 
592 	/*
593 	 * We can often find data backrefs with an offset that is too large
594 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
595 	 * subtracting a file's offset with the data offset of its
596 	 * corresponding extent data item. This can happen for example in the
597 	 * clone ioctl.
598 	 *
599 	 * So if we detect such case we set the search key's offset to zero to
600 	 * make sure we will find the matching file extent item at
601 	 * add_all_parents(), otherwise we will miss it because the offset
602 	 * taken form the backref is much larger then the offset of the file
603 	 * extent item. This can make us scan a very large number of file
604 	 * extent items, but at least it will not make us miss any.
605 	 *
606 	 * This is an ugly workaround for a behaviour that should have never
607 	 * existed, but it does and a fix for the clone ioctl would touch a lot
608 	 * of places, cause backwards incompatibility and would not fix the
609 	 * problem for extents cloned with older kernels.
610 	 */
611 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
612 	    search_key.offset >= LLONG_MAX)
613 		search_key.offset = 0;
614 	path->lowest_level = level;
615 	if (time_seq == SEQ_LAST)
616 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
617 	else
618 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
619 
620 	btrfs_debug(fs_info,
621 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
622 		 ref->root_id, level, ref->count, ret,
623 		 ref->key_for_search.objectid, ref->key_for_search.type,
624 		 ref->key_for_search.offset);
625 	if (ret < 0)
626 		goto out;
627 
628 	eb = path->nodes[level];
629 	while (!eb) {
630 		if (WARN_ON(!level)) {
631 			ret = 1;
632 			goto out;
633 		}
634 		level--;
635 		eb = path->nodes[level];
636 	}
637 
638 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
639 			      time_seq, extent_item_pos, ignore_offset);
640 out:
641 	btrfs_put_root(root);
642 out_free:
643 	path->lowest_level = 0;
644 	btrfs_release_path(path);
645 	return ret;
646 }
647 
648 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)649 unode_aux_to_inode_list(struct ulist_node *node)
650 {
651 	if (!node)
652 		return NULL;
653 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
654 }
655 
free_leaf_list(struct ulist * ulist)656 static void free_leaf_list(struct ulist *ulist)
657 {
658 	struct ulist_node *node;
659 	struct ulist_iterator uiter;
660 
661 	ULIST_ITER_INIT(&uiter);
662 	while ((node = ulist_next(ulist, &uiter)))
663 		free_inode_elem_list(unode_aux_to_inode_list(node));
664 
665 	ulist_free(ulist);
666 }
667 
668 /*
669  * We maintain three separate rbtrees: one for direct refs, one for
670  * indirect refs which have a key, and one for indirect refs which do not
671  * have a key. Each tree does merge on insertion.
672  *
673  * Once all of the references are located, we iterate over the tree of
674  * indirect refs with missing keys. An appropriate key is located and
675  * the ref is moved onto the tree for indirect refs. After all missing
676  * keys are thus located, we iterate over the indirect ref tree, resolve
677  * each reference, and then insert the resolved reference onto the
678  * direct tree (merging there too).
679  *
680  * New backrefs (i.e., for parent nodes) are added to the appropriate
681  * rbtree as they are encountered. The new backrefs are subsequently
682  * resolved as above.
683  */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)684 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
685 				 struct btrfs_path *path, u64 time_seq,
686 				 struct preftrees *preftrees,
687 				 const u64 *extent_item_pos,
688 				 struct share_check *sc, bool ignore_offset)
689 {
690 	int err;
691 	int ret = 0;
692 	struct ulist *parents;
693 	struct ulist_node *node;
694 	struct ulist_iterator uiter;
695 	struct rb_node *rnode;
696 
697 	parents = ulist_alloc(GFP_NOFS);
698 	if (!parents)
699 		return -ENOMEM;
700 
701 	/*
702 	 * We could trade memory usage for performance here by iterating
703 	 * the tree, allocating new refs for each insertion, and then
704 	 * freeing the entire indirect tree when we're done.  In some test
705 	 * cases, the tree can grow quite large (~200k objects).
706 	 */
707 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
708 		struct prelim_ref *ref;
709 
710 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
711 		if (WARN(ref->parent,
712 			 "BUG: direct ref found in indirect tree")) {
713 			ret = -EINVAL;
714 			goto out;
715 		}
716 
717 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
718 		preftrees->indirect.count--;
719 
720 		if (ref->count == 0) {
721 			free_pref(ref);
722 			continue;
723 		}
724 
725 		if (sc && sc->root_objectid &&
726 		    ref->root_id != sc->root_objectid) {
727 			free_pref(ref);
728 			ret = BACKREF_FOUND_SHARED;
729 			goto out;
730 		}
731 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
732 					   ref, parents, extent_item_pos,
733 					   ignore_offset);
734 		/*
735 		 * we can only tolerate ENOENT,otherwise,we should catch error
736 		 * and return directly.
737 		 */
738 		if (err == -ENOENT) {
739 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
740 					  NULL);
741 			continue;
742 		} else if (err) {
743 			free_pref(ref);
744 			ret = err;
745 			goto out;
746 		}
747 
748 		/* we put the first parent into the ref at hand */
749 		ULIST_ITER_INIT(&uiter);
750 		node = ulist_next(parents, &uiter);
751 		ref->parent = node ? node->val : 0;
752 		ref->inode_list = unode_aux_to_inode_list(node);
753 
754 		/* Add a prelim_ref(s) for any other parent(s). */
755 		while ((node = ulist_next(parents, &uiter))) {
756 			struct prelim_ref *new_ref;
757 
758 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
759 						   GFP_NOFS);
760 			if (!new_ref) {
761 				free_pref(ref);
762 				ret = -ENOMEM;
763 				goto out;
764 			}
765 			memcpy(new_ref, ref, sizeof(*ref));
766 			new_ref->parent = node->val;
767 			new_ref->inode_list = unode_aux_to_inode_list(node);
768 			prelim_ref_insert(fs_info, &preftrees->direct,
769 					  new_ref, NULL);
770 		}
771 
772 		/*
773 		 * Now it's a direct ref, put it in the direct tree. We must
774 		 * do this last because the ref could be merged/freed here.
775 		 */
776 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
777 
778 		ulist_reinit(parents);
779 		cond_resched();
780 	}
781 out:
782 	/*
783 	 * We may have inode lists attached to refs in the parents ulist, so we
784 	 * must free them before freeing the ulist and its refs.
785 	 */
786 	free_leaf_list(parents);
787 	return ret;
788 }
789 
790 /*
791  * read tree blocks and add keys where required.
792  */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)793 static int add_missing_keys(struct btrfs_fs_info *fs_info,
794 			    struct preftrees *preftrees, bool lock)
795 {
796 	struct prelim_ref *ref;
797 	struct extent_buffer *eb;
798 	struct preftree *tree = &preftrees->indirect_missing_keys;
799 	struct rb_node *node;
800 
801 	while ((node = rb_first_cached(&tree->root))) {
802 		ref = rb_entry(node, struct prelim_ref, rbnode);
803 		rb_erase_cached(node, &tree->root);
804 
805 		BUG_ON(ref->parent);	/* should not be a direct ref */
806 		BUG_ON(ref->key_for_search.type);
807 		BUG_ON(!ref->wanted_disk_byte);
808 
809 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
810 				     ref->level - 1, NULL);
811 		if (IS_ERR(eb)) {
812 			free_pref(ref);
813 			return PTR_ERR(eb);
814 		} else if (!extent_buffer_uptodate(eb)) {
815 			free_pref(ref);
816 			free_extent_buffer(eb);
817 			return -EIO;
818 		}
819 		if (lock)
820 			btrfs_tree_read_lock(eb);
821 		if (btrfs_header_level(eb) == 0)
822 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
823 		else
824 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
825 		if (lock)
826 			btrfs_tree_read_unlock(eb);
827 		free_extent_buffer(eb);
828 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
829 		cond_resched();
830 	}
831 	return 0;
832 }
833 
834 /*
835  * add all currently queued delayed refs from this head whose seq nr is
836  * smaller or equal that seq to the list
837  */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)838 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
839 			    struct btrfs_delayed_ref_head *head, u64 seq,
840 			    struct preftrees *preftrees, struct share_check *sc)
841 {
842 	struct btrfs_delayed_ref_node *node;
843 	struct btrfs_key key;
844 	struct rb_node *n;
845 	int count;
846 	int ret = 0;
847 
848 	spin_lock(&head->lock);
849 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
850 		node = rb_entry(n, struct btrfs_delayed_ref_node,
851 				ref_node);
852 		if (node->seq > seq)
853 			continue;
854 
855 		switch (node->action) {
856 		case BTRFS_ADD_DELAYED_EXTENT:
857 		case BTRFS_UPDATE_DELAYED_HEAD:
858 			WARN_ON(1);
859 			continue;
860 		case BTRFS_ADD_DELAYED_REF:
861 			count = node->ref_mod;
862 			break;
863 		case BTRFS_DROP_DELAYED_REF:
864 			count = node->ref_mod * -1;
865 			break;
866 		default:
867 			BUG();
868 		}
869 		switch (node->type) {
870 		case BTRFS_TREE_BLOCK_REF_KEY: {
871 			/* NORMAL INDIRECT METADATA backref */
872 			struct btrfs_delayed_tree_ref *ref;
873 			struct btrfs_key *key_ptr = NULL;
874 
875 			if (head->extent_op && head->extent_op->update_key) {
876 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
877 				key_ptr = &key;
878 			}
879 
880 			ref = btrfs_delayed_node_to_tree_ref(node);
881 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
882 					       key_ptr, ref->level + 1,
883 					       node->bytenr, count, sc,
884 					       GFP_ATOMIC);
885 			break;
886 		}
887 		case BTRFS_SHARED_BLOCK_REF_KEY: {
888 			/* SHARED DIRECT METADATA backref */
889 			struct btrfs_delayed_tree_ref *ref;
890 
891 			ref = btrfs_delayed_node_to_tree_ref(node);
892 
893 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
894 					     ref->parent, node->bytenr, count,
895 					     sc, GFP_ATOMIC);
896 			break;
897 		}
898 		case BTRFS_EXTENT_DATA_REF_KEY: {
899 			/* NORMAL INDIRECT DATA backref */
900 			struct btrfs_delayed_data_ref *ref;
901 			ref = btrfs_delayed_node_to_data_ref(node);
902 
903 			key.objectid = ref->objectid;
904 			key.type = BTRFS_EXTENT_DATA_KEY;
905 			key.offset = ref->offset;
906 
907 			/*
908 			 * If we have a share check context and a reference for
909 			 * another inode, we can't exit immediately. This is
910 			 * because even if this is a BTRFS_ADD_DELAYED_REF
911 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
912 			 * which cancels out this ADD reference.
913 			 *
914 			 * If this is a DROP reference and there was no previous
915 			 * ADD reference, then we need to signal that when we
916 			 * process references from the extent tree (through
917 			 * add_inline_refs() and add_keyed_refs()), we should
918 			 * not exit early if we find a reference for another
919 			 * inode, because one of the delayed DROP references
920 			 * may cancel that reference in the extent tree.
921 			 */
922 			if (sc && count < 0)
923 				sc->have_delayed_delete_refs = true;
924 
925 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
926 					       &key, 0, node->bytenr, count, sc,
927 					       GFP_ATOMIC);
928 			break;
929 		}
930 		case BTRFS_SHARED_DATA_REF_KEY: {
931 			/* SHARED DIRECT FULL backref */
932 			struct btrfs_delayed_data_ref *ref;
933 
934 			ref = btrfs_delayed_node_to_data_ref(node);
935 
936 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
937 					     node->bytenr, count, sc,
938 					     GFP_ATOMIC);
939 			break;
940 		}
941 		default:
942 			WARN_ON(1);
943 		}
944 		/*
945 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
946 		 * refs have been checked.
947 		 */
948 		if (ret && (ret != BACKREF_FOUND_SHARED))
949 			break;
950 	}
951 	if (!ret)
952 		ret = extent_is_shared(sc);
953 
954 	spin_unlock(&head->lock);
955 	return ret;
956 }
957 
958 /*
959  * add all inline backrefs for bytenr to the list
960  *
961  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
962  */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)963 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
964 			   struct btrfs_path *path, u64 bytenr,
965 			   int *info_level, struct preftrees *preftrees,
966 			   struct share_check *sc)
967 {
968 	int ret = 0;
969 	int slot;
970 	struct extent_buffer *leaf;
971 	struct btrfs_key key;
972 	struct btrfs_key found_key;
973 	unsigned long ptr;
974 	unsigned long end;
975 	struct btrfs_extent_item *ei;
976 	u64 flags;
977 	u64 item_size;
978 
979 	/*
980 	 * enumerate all inline refs
981 	 */
982 	leaf = path->nodes[0];
983 	slot = path->slots[0];
984 
985 	item_size = btrfs_item_size_nr(leaf, slot);
986 	BUG_ON(item_size < sizeof(*ei));
987 
988 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
989 	flags = btrfs_extent_flags(leaf, ei);
990 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
991 
992 	ptr = (unsigned long)(ei + 1);
993 	end = (unsigned long)ei + item_size;
994 
995 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
996 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
997 		struct btrfs_tree_block_info *info;
998 
999 		info = (struct btrfs_tree_block_info *)ptr;
1000 		*info_level = btrfs_tree_block_level(leaf, info);
1001 		ptr += sizeof(struct btrfs_tree_block_info);
1002 		BUG_ON(ptr > end);
1003 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1004 		*info_level = found_key.offset;
1005 	} else {
1006 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1007 	}
1008 
1009 	while (ptr < end) {
1010 		struct btrfs_extent_inline_ref *iref;
1011 		u64 offset;
1012 		int type;
1013 
1014 		iref = (struct btrfs_extent_inline_ref *)ptr;
1015 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1016 							BTRFS_REF_TYPE_ANY);
1017 		if (type == BTRFS_REF_TYPE_INVALID)
1018 			return -EUCLEAN;
1019 
1020 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1021 
1022 		switch (type) {
1023 		case BTRFS_SHARED_BLOCK_REF_KEY:
1024 			ret = add_direct_ref(fs_info, preftrees,
1025 					     *info_level + 1, offset,
1026 					     bytenr, 1, NULL, GFP_NOFS);
1027 			break;
1028 		case BTRFS_SHARED_DATA_REF_KEY: {
1029 			struct btrfs_shared_data_ref *sdref;
1030 			int count;
1031 
1032 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1033 			count = btrfs_shared_data_ref_count(leaf, sdref);
1034 
1035 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1036 					     bytenr, count, sc, GFP_NOFS);
1037 			break;
1038 		}
1039 		case BTRFS_TREE_BLOCK_REF_KEY:
1040 			ret = add_indirect_ref(fs_info, preftrees, offset,
1041 					       NULL, *info_level + 1,
1042 					       bytenr, 1, NULL, GFP_NOFS);
1043 			break;
1044 		case BTRFS_EXTENT_DATA_REF_KEY: {
1045 			struct btrfs_extent_data_ref *dref;
1046 			int count;
1047 			u64 root;
1048 
1049 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050 			count = btrfs_extent_data_ref_count(leaf, dref);
1051 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052 								      dref);
1053 			key.type = BTRFS_EXTENT_DATA_KEY;
1054 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055 
1056 			if (sc && sc->inum && key.objectid != sc->inum &&
1057 			    !sc->have_delayed_delete_refs) {
1058 				ret = BACKREF_FOUND_SHARED;
1059 				break;
1060 			}
1061 
1062 			root = btrfs_extent_data_ref_root(leaf, dref);
1063 
1064 			ret = add_indirect_ref(fs_info, preftrees, root,
1065 					       &key, 0, bytenr, count,
1066 					       sc, GFP_NOFS);
1067 
1068 			break;
1069 		}
1070 		default:
1071 			WARN_ON(1);
1072 		}
1073 		if (ret)
1074 			return ret;
1075 		ptr += btrfs_extent_inline_ref_size(type);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * add all non-inline backrefs for bytenr to the list
1083  *
1084  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1085  */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1086 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1087 			  struct btrfs_path *path, u64 bytenr,
1088 			  int info_level, struct preftrees *preftrees,
1089 			  struct share_check *sc)
1090 {
1091 	struct btrfs_root *extent_root = fs_info->extent_root;
1092 	int ret;
1093 	int slot;
1094 	struct extent_buffer *leaf;
1095 	struct btrfs_key key;
1096 
1097 	while (1) {
1098 		ret = btrfs_next_item(extent_root, path);
1099 		if (ret < 0)
1100 			break;
1101 		if (ret) {
1102 			ret = 0;
1103 			break;
1104 		}
1105 
1106 		slot = path->slots[0];
1107 		leaf = path->nodes[0];
1108 		btrfs_item_key_to_cpu(leaf, &key, slot);
1109 
1110 		if (key.objectid != bytenr)
1111 			break;
1112 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1113 			continue;
1114 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1115 			break;
1116 
1117 		switch (key.type) {
1118 		case BTRFS_SHARED_BLOCK_REF_KEY:
1119 			/* SHARED DIRECT METADATA backref */
1120 			ret = add_direct_ref(fs_info, preftrees,
1121 					     info_level + 1, key.offset,
1122 					     bytenr, 1, NULL, GFP_NOFS);
1123 			break;
1124 		case BTRFS_SHARED_DATA_REF_KEY: {
1125 			/* SHARED DIRECT FULL backref */
1126 			struct btrfs_shared_data_ref *sdref;
1127 			int count;
1128 
1129 			sdref = btrfs_item_ptr(leaf, slot,
1130 					      struct btrfs_shared_data_ref);
1131 			count = btrfs_shared_data_ref_count(leaf, sdref);
1132 			ret = add_direct_ref(fs_info, preftrees, 0,
1133 					     key.offset, bytenr, count,
1134 					     sc, GFP_NOFS);
1135 			break;
1136 		}
1137 		case BTRFS_TREE_BLOCK_REF_KEY:
1138 			/* NORMAL INDIRECT METADATA backref */
1139 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1140 					       NULL, info_level + 1, bytenr,
1141 					       1, NULL, GFP_NOFS);
1142 			break;
1143 		case BTRFS_EXTENT_DATA_REF_KEY: {
1144 			/* NORMAL INDIRECT DATA backref */
1145 			struct btrfs_extent_data_ref *dref;
1146 			int count;
1147 			u64 root;
1148 
1149 			dref = btrfs_item_ptr(leaf, slot,
1150 					      struct btrfs_extent_data_ref);
1151 			count = btrfs_extent_data_ref_count(leaf, dref);
1152 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1153 								      dref);
1154 			key.type = BTRFS_EXTENT_DATA_KEY;
1155 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1156 
1157 			if (sc && sc->inum && key.objectid != sc->inum &&
1158 			    !sc->have_delayed_delete_refs) {
1159 				ret = BACKREF_FOUND_SHARED;
1160 				break;
1161 			}
1162 
1163 			root = btrfs_extent_data_ref_root(leaf, dref);
1164 			ret = add_indirect_ref(fs_info, preftrees, root,
1165 					       &key, 0, bytenr, count,
1166 					       sc, GFP_NOFS);
1167 			break;
1168 		}
1169 		default:
1170 			WARN_ON(1);
1171 		}
1172 		if (ret)
1173 			return ret;
1174 
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 /*
1181  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1182  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1183  * indirect refs to their parent bytenr.
1184  * When roots are found, they're added to the roots list
1185  *
1186  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1187  * much like trans == NULL case, the difference only lies in it will not
1188  * commit root.
1189  * The special case is for qgroup to search roots in commit_transaction().
1190  *
1191  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1192  * shared extent is detected.
1193  *
1194  * Otherwise this returns 0 for success and <0 for an error.
1195  *
1196  * If ignore_offset is set to false, only extent refs whose offsets match
1197  * extent_item_pos are returned.  If true, every extent ref is returned
1198  * and extent_item_pos is ignored.
1199  *
1200  * FIXME some caching might speed things up
1201  */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1202 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1203 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1204 			     u64 time_seq, struct ulist *refs,
1205 			     struct ulist *roots, const u64 *extent_item_pos,
1206 			     struct share_check *sc, bool ignore_offset)
1207 {
1208 	struct btrfs_key key;
1209 	struct btrfs_path *path;
1210 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1211 	struct btrfs_delayed_ref_head *head;
1212 	int info_level = 0;
1213 	int ret;
1214 	struct prelim_ref *ref;
1215 	struct rb_node *node;
1216 	struct extent_inode_elem *eie = NULL;
1217 	struct preftrees preftrees = {
1218 		.direct = PREFTREE_INIT,
1219 		.indirect = PREFTREE_INIT,
1220 		.indirect_missing_keys = PREFTREE_INIT
1221 	};
1222 
1223 	key.objectid = bytenr;
1224 	key.offset = (u64)-1;
1225 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1226 		key.type = BTRFS_METADATA_ITEM_KEY;
1227 	else
1228 		key.type = BTRFS_EXTENT_ITEM_KEY;
1229 
1230 	path = btrfs_alloc_path();
1231 	if (!path)
1232 		return -ENOMEM;
1233 	if (!trans) {
1234 		path->search_commit_root = 1;
1235 		path->skip_locking = 1;
1236 	}
1237 
1238 	if (time_seq == SEQ_LAST)
1239 		path->skip_locking = 1;
1240 
1241 	/*
1242 	 * grab both a lock on the path and a lock on the delayed ref head.
1243 	 * We need both to get a consistent picture of how the refs look
1244 	 * at a specified point in time
1245 	 */
1246 again:
1247 	head = NULL;
1248 
1249 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1250 	if (ret < 0)
1251 		goto out;
1252 	if (ret == 0) {
1253 		/* This shouldn't happen, indicates a bug or fs corruption. */
1254 		ASSERT(ret != 0);
1255 		ret = -EUCLEAN;
1256 		goto out;
1257 	}
1258 
1259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1260 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1261 	    time_seq != SEQ_LAST) {
1262 #else
1263 	if (trans && time_seq != SEQ_LAST) {
1264 #endif
1265 		/*
1266 		 * look if there are updates for this ref queued and lock the
1267 		 * head
1268 		 */
1269 		delayed_refs = &trans->transaction->delayed_refs;
1270 		spin_lock(&delayed_refs->lock);
1271 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1272 		if (head) {
1273 			if (!mutex_trylock(&head->mutex)) {
1274 				refcount_inc(&head->refs);
1275 				spin_unlock(&delayed_refs->lock);
1276 
1277 				btrfs_release_path(path);
1278 
1279 				/*
1280 				 * Mutex was contended, block until it's
1281 				 * released and try again
1282 				 */
1283 				mutex_lock(&head->mutex);
1284 				mutex_unlock(&head->mutex);
1285 				btrfs_put_delayed_ref_head(head);
1286 				goto again;
1287 			}
1288 			spin_unlock(&delayed_refs->lock);
1289 			ret = add_delayed_refs(fs_info, head, time_seq,
1290 					       &preftrees, sc);
1291 			mutex_unlock(&head->mutex);
1292 			if (ret)
1293 				goto out;
1294 		} else {
1295 			spin_unlock(&delayed_refs->lock);
1296 		}
1297 	}
1298 
1299 	if (path->slots[0]) {
1300 		struct extent_buffer *leaf;
1301 		int slot;
1302 
1303 		path->slots[0]--;
1304 		leaf = path->nodes[0];
1305 		slot = path->slots[0];
1306 		btrfs_item_key_to_cpu(leaf, &key, slot);
1307 		if (key.objectid == bytenr &&
1308 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1309 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1310 			ret = add_inline_refs(fs_info, path, bytenr,
1311 					      &info_level, &preftrees, sc);
1312 			if (ret)
1313 				goto out;
1314 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1315 					     &preftrees, sc);
1316 			if (ret)
1317 				goto out;
1318 		}
1319 	}
1320 
1321 	btrfs_release_path(path);
1322 
1323 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1324 	if (ret)
1325 		goto out;
1326 
1327 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1328 
1329 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1330 				    extent_item_pos, sc, ignore_offset);
1331 	if (ret)
1332 		goto out;
1333 
1334 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1335 
1336 	/*
1337 	 * This walks the tree of merged and resolved refs. Tree blocks are
1338 	 * read in as needed. Unique entries are added to the ulist, and
1339 	 * the list of found roots is updated.
1340 	 *
1341 	 * We release the entire tree in one go before returning.
1342 	 */
1343 	node = rb_first_cached(&preftrees.direct.root);
1344 	while (node) {
1345 		ref = rb_entry(node, struct prelim_ref, rbnode);
1346 		node = rb_next(&ref->rbnode);
1347 		/*
1348 		 * ref->count < 0 can happen here if there are delayed
1349 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1350 		 * prelim_ref_insert() relies on this when merging
1351 		 * identical refs to keep the overall count correct.
1352 		 * prelim_ref_insert() will merge only those refs
1353 		 * which compare identically.  Any refs having
1354 		 * e.g. different offsets would not be merged,
1355 		 * and would retain their original ref->count < 0.
1356 		 */
1357 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1358 			if (sc && sc->root_objectid &&
1359 			    ref->root_id != sc->root_objectid) {
1360 				ret = BACKREF_FOUND_SHARED;
1361 				goto out;
1362 			}
1363 
1364 			/* no parent == root of tree */
1365 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1366 			if (ret < 0)
1367 				goto out;
1368 		}
1369 		if (ref->count && ref->parent) {
1370 			if (extent_item_pos && !ref->inode_list &&
1371 			    ref->level == 0) {
1372 				struct extent_buffer *eb;
1373 
1374 				eb = read_tree_block(fs_info, ref->parent, 0,
1375 						     ref->level, NULL);
1376 				if (IS_ERR(eb)) {
1377 					ret = PTR_ERR(eb);
1378 					goto out;
1379 				} else if (!extent_buffer_uptodate(eb)) {
1380 					free_extent_buffer(eb);
1381 					ret = -EIO;
1382 					goto out;
1383 				}
1384 
1385 				if (!path->skip_locking) {
1386 					btrfs_tree_read_lock(eb);
1387 					btrfs_set_lock_blocking_read(eb);
1388 				}
1389 				ret = find_extent_in_eb(eb, bytenr,
1390 							*extent_item_pos, &eie, ignore_offset);
1391 				if (!path->skip_locking)
1392 					btrfs_tree_read_unlock_blocking(eb);
1393 				free_extent_buffer(eb);
1394 				if (ret < 0)
1395 					goto out;
1396 				ref->inode_list = eie;
1397 				/*
1398 				 * We transferred the list ownership to the ref,
1399 				 * so set to NULL to avoid a double free in case
1400 				 * an error happens after this.
1401 				 */
1402 				eie = NULL;
1403 			}
1404 			ret = ulist_add_merge_ptr(refs, ref->parent,
1405 						  ref->inode_list,
1406 						  (void **)&eie, GFP_NOFS);
1407 			if (ret < 0)
1408 				goto out;
1409 			if (!ret && extent_item_pos) {
1410 				/*
1411 				 * We've recorded that parent, so we must extend
1412 				 * its inode list here.
1413 				 *
1414 				 * However if there was corruption we may not
1415 				 * have found an eie, return an error in this
1416 				 * case.
1417 				 */
1418 				ASSERT(eie);
1419 				if (!eie) {
1420 					ret = -EUCLEAN;
1421 					goto out;
1422 				}
1423 				while (eie->next)
1424 					eie = eie->next;
1425 				eie->next = ref->inode_list;
1426 			}
1427 			eie = NULL;
1428 			/*
1429 			 * We have transferred the inode list ownership from
1430 			 * this ref to the ref we added to the 'refs' ulist.
1431 			 * So set this ref's inode list to NULL to avoid
1432 			 * use-after-free when our caller uses it or double
1433 			 * frees in case an error happens before we return.
1434 			 */
1435 			ref->inode_list = NULL;
1436 		}
1437 		cond_resched();
1438 	}
1439 
1440 out:
1441 	btrfs_free_path(path);
1442 
1443 	prelim_release(&preftrees.direct);
1444 	prelim_release(&preftrees.indirect);
1445 	prelim_release(&preftrees.indirect_missing_keys);
1446 
1447 	if (ret < 0)
1448 		free_inode_elem_list(eie);
1449 	return ret;
1450 }
1451 
1452 /*
1453  * Finds all leafs with a reference to the specified combination of bytenr and
1454  * offset. key_list_head will point to a list of corresponding keys (caller must
1455  * free each list element). The leafs will be stored in the leafs ulist, which
1456  * must be freed with ulist_free.
1457  *
1458  * returns 0 on success, <0 on error
1459  */
1460 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1461 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1462 			 u64 time_seq, struct ulist **leafs,
1463 			 const u64 *extent_item_pos, bool ignore_offset)
1464 {
1465 	int ret;
1466 
1467 	*leafs = ulist_alloc(GFP_NOFS);
1468 	if (!*leafs)
1469 		return -ENOMEM;
1470 
1471 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1472 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1473 	if (ret < 0 && ret != -ENOENT) {
1474 		free_leaf_list(*leafs);
1475 		return ret;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /*
1482  * walk all backrefs for a given extent to find all roots that reference this
1483  * extent. Walking a backref means finding all extents that reference this
1484  * extent and in turn walk the backrefs of those, too. Naturally this is a
1485  * recursive process, but here it is implemented in an iterative fashion: We
1486  * find all referencing extents for the extent in question and put them on a
1487  * list. In turn, we find all referencing extents for those, further appending
1488  * to the list. The way we iterate the list allows adding more elements after
1489  * the current while iterating. The process stops when we reach the end of the
1490  * list. Found roots are added to the roots list.
1491  *
1492  * returns 0 on success, < 0 on error.
1493  */
1494 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1495 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1496 				     u64 time_seq, struct ulist **roots,
1497 				     bool ignore_offset)
1498 {
1499 	struct ulist *tmp;
1500 	struct ulist_node *node = NULL;
1501 	struct ulist_iterator uiter;
1502 	int ret;
1503 
1504 	tmp = ulist_alloc(GFP_NOFS);
1505 	if (!tmp)
1506 		return -ENOMEM;
1507 	*roots = ulist_alloc(GFP_NOFS);
1508 	if (!*roots) {
1509 		ulist_free(tmp);
1510 		return -ENOMEM;
1511 	}
1512 
1513 	ULIST_ITER_INIT(&uiter);
1514 	while (1) {
1515 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1516 					tmp, *roots, NULL, NULL, ignore_offset);
1517 		if (ret < 0 && ret != -ENOENT) {
1518 			ulist_free(tmp);
1519 			ulist_free(*roots);
1520 			*roots = NULL;
1521 			return ret;
1522 		}
1523 		node = ulist_next(tmp, &uiter);
1524 		if (!node)
1525 			break;
1526 		bytenr = node->val;
1527 		cond_resched();
1528 	}
1529 
1530 	ulist_free(tmp);
1531 	return 0;
1532 }
1533 
1534 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1535 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1536 			 u64 time_seq, struct ulist **roots,
1537 			 bool ignore_offset)
1538 {
1539 	int ret;
1540 
1541 	if (!trans)
1542 		down_read(&fs_info->commit_root_sem);
1543 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1544 					time_seq, roots, ignore_offset);
1545 	if (!trans)
1546 		up_read(&fs_info->commit_root_sem);
1547 	return ret;
1548 }
1549 
1550 /**
1551  * btrfs_check_shared - tell us whether an extent is shared
1552  *
1553  * btrfs_check_shared uses the backref walking code but will short
1554  * circuit as soon as it finds a root or inode that doesn't match the
1555  * one passed in. This provides a significant performance benefit for
1556  * callers (such as fiemap) which want to know whether the extent is
1557  * shared but do not need a ref count.
1558  *
1559  * This attempts to attach to the running transaction in order to account for
1560  * delayed refs, but continues on even when no running transaction exists.
1561  *
1562  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1563  */
1564 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1565 		struct ulist *roots, struct ulist *tmp)
1566 {
1567 	struct btrfs_fs_info *fs_info = root->fs_info;
1568 	struct btrfs_trans_handle *trans;
1569 	struct ulist_iterator uiter;
1570 	struct ulist_node *node;
1571 	struct seq_list elem = SEQ_LIST_INIT(elem);
1572 	int ret = 0;
1573 	struct share_check shared = {
1574 		.root_objectid = root->root_key.objectid,
1575 		.inum = inum,
1576 		.share_count = 0,
1577 		.have_delayed_delete_refs = false,
1578 	};
1579 
1580 	ulist_init(roots);
1581 	ulist_init(tmp);
1582 
1583 	trans = btrfs_join_transaction_nostart(root);
1584 	if (IS_ERR(trans)) {
1585 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1586 			ret = PTR_ERR(trans);
1587 			goto out;
1588 		}
1589 		trans = NULL;
1590 		down_read(&fs_info->commit_root_sem);
1591 	} else {
1592 		btrfs_get_tree_mod_seq(fs_info, &elem);
1593 	}
1594 
1595 	ULIST_ITER_INIT(&uiter);
1596 	while (1) {
1597 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1598 					roots, NULL, &shared, false);
1599 		if (ret == BACKREF_FOUND_SHARED) {
1600 			/* this is the only condition under which we return 1 */
1601 			ret = 1;
1602 			break;
1603 		}
1604 		if (ret < 0 && ret != -ENOENT)
1605 			break;
1606 		ret = 0;
1607 		node = ulist_next(tmp, &uiter);
1608 		if (!node)
1609 			break;
1610 		bytenr = node->val;
1611 		shared.share_count = 0;
1612 		shared.have_delayed_delete_refs = false;
1613 		cond_resched();
1614 	}
1615 
1616 	if (trans) {
1617 		btrfs_put_tree_mod_seq(fs_info, &elem);
1618 		btrfs_end_transaction(trans);
1619 	} else {
1620 		up_read(&fs_info->commit_root_sem);
1621 	}
1622 out:
1623 	ulist_release(roots);
1624 	ulist_release(tmp);
1625 	return ret;
1626 }
1627 
1628 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1629 			  u64 start_off, struct btrfs_path *path,
1630 			  struct btrfs_inode_extref **ret_extref,
1631 			  u64 *found_off)
1632 {
1633 	int ret, slot;
1634 	struct btrfs_key key;
1635 	struct btrfs_key found_key;
1636 	struct btrfs_inode_extref *extref;
1637 	const struct extent_buffer *leaf;
1638 	unsigned long ptr;
1639 
1640 	key.objectid = inode_objectid;
1641 	key.type = BTRFS_INODE_EXTREF_KEY;
1642 	key.offset = start_off;
1643 
1644 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1645 	if (ret < 0)
1646 		return ret;
1647 
1648 	while (1) {
1649 		leaf = path->nodes[0];
1650 		slot = path->slots[0];
1651 		if (slot >= btrfs_header_nritems(leaf)) {
1652 			/*
1653 			 * If the item at offset is not found,
1654 			 * btrfs_search_slot will point us to the slot
1655 			 * where it should be inserted. In our case
1656 			 * that will be the slot directly before the
1657 			 * next INODE_REF_KEY_V2 item. In the case
1658 			 * that we're pointing to the last slot in a
1659 			 * leaf, we must move one leaf over.
1660 			 */
1661 			ret = btrfs_next_leaf(root, path);
1662 			if (ret) {
1663 				if (ret >= 1)
1664 					ret = -ENOENT;
1665 				break;
1666 			}
1667 			continue;
1668 		}
1669 
1670 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1671 
1672 		/*
1673 		 * Check that we're still looking at an extended ref key for
1674 		 * this particular objectid. If we have different
1675 		 * objectid or type then there are no more to be found
1676 		 * in the tree and we can exit.
1677 		 */
1678 		ret = -ENOENT;
1679 		if (found_key.objectid != inode_objectid)
1680 			break;
1681 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1682 			break;
1683 
1684 		ret = 0;
1685 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1686 		extref = (struct btrfs_inode_extref *)ptr;
1687 		*ret_extref = extref;
1688 		if (found_off)
1689 			*found_off = found_key.offset;
1690 		break;
1691 	}
1692 
1693 	return ret;
1694 }
1695 
1696 /*
1697  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1698  * Elements of the path are separated by '/' and the path is guaranteed to be
1699  * 0-terminated. the path is only given within the current file system.
1700  * Therefore, it never starts with a '/'. the caller is responsible to provide
1701  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1702  * the start point of the resulting string is returned. this pointer is within
1703  * dest, normally.
1704  * in case the path buffer would overflow, the pointer is decremented further
1705  * as if output was written to the buffer, though no more output is actually
1706  * generated. that way, the caller can determine how much space would be
1707  * required for the path to fit into the buffer. in that case, the returned
1708  * value will be smaller than dest. callers must check this!
1709  */
1710 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1711 			u32 name_len, unsigned long name_off,
1712 			struct extent_buffer *eb_in, u64 parent,
1713 			char *dest, u32 size)
1714 {
1715 	int slot;
1716 	u64 next_inum;
1717 	int ret;
1718 	s64 bytes_left = ((s64)size) - 1;
1719 	struct extent_buffer *eb = eb_in;
1720 	struct btrfs_key found_key;
1721 	int leave_spinning = path->leave_spinning;
1722 	struct btrfs_inode_ref *iref;
1723 
1724 	if (bytes_left >= 0)
1725 		dest[bytes_left] = '\0';
1726 
1727 	path->leave_spinning = 1;
1728 	while (1) {
1729 		bytes_left -= name_len;
1730 		if (bytes_left >= 0)
1731 			read_extent_buffer(eb, dest + bytes_left,
1732 					   name_off, name_len);
1733 		if (eb != eb_in) {
1734 			if (!path->skip_locking)
1735 				btrfs_tree_read_unlock_blocking(eb);
1736 			free_extent_buffer(eb);
1737 		}
1738 		ret = btrfs_find_item(fs_root, path, parent, 0,
1739 				BTRFS_INODE_REF_KEY, &found_key);
1740 		if (ret > 0)
1741 			ret = -ENOENT;
1742 		if (ret)
1743 			break;
1744 
1745 		next_inum = found_key.offset;
1746 
1747 		/* regular exit ahead */
1748 		if (parent == next_inum)
1749 			break;
1750 
1751 		slot = path->slots[0];
1752 		eb = path->nodes[0];
1753 		/* make sure we can use eb after releasing the path */
1754 		if (eb != eb_in) {
1755 			if (!path->skip_locking)
1756 				btrfs_set_lock_blocking_read(eb);
1757 			path->nodes[0] = NULL;
1758 			path->locks[0] = 0;
1759 		}
1760 		btrfs_release_path(path);
1761 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1762 
1763 		name_len = btrfs_inode_ref_name_len(eb, iref);
1764 		name_off = (unsigned long)(iref + 1);
1765 
1766 		parent = next_inum;
1767 		--bytes_left;
1768 		if (bytes_left >= 0)
1769 			dest[bytes_left] = '/';
1770 	}
1771 
1772 	btrfs_release_path(path);
1773 	path->leave_spinning = leave_spinning;
1774 
1775 	if (ret)
1776 		return ERR_PTR(ret);
1777 
1778 	return dest + bytes_left;
1779 }
1780 
1781 /*
1782  * this makes the path point to (logical EXTENT_ITEM *)
1783  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1784  * tree blocks and <0 on error.
1785  */
1786 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1787 			struct btrfs_path *path, struct btrfs_key *found_key,
1788 			u64 *flags_ret)
1789 {
1790 	int ret;
1791 	u64 flags;
1792 	u64 size = 0;
1793 	u32 item_size;
1794 	const struct extent_buffer *eb;
1795 	struct btrfs_extent_item *ei;
1796 	struct btrfs_key key;
1797 
1798 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1799 		key.type = BTRFS_METADATA_ITEM_KEY;
1800 	else
1801 		key.type = BTRFS_EXTENT_ITEM_KEY;
1802 	key.objectid = logical;
1803 	key.offset = (u64)-1;
1804 
1805 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1806 	if (ret < 0)
1807 		return ret;
1808 
1809 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1810 	if (ret) {
1811 		if (ret > 0)
1812 			ret = -ENOENT;
1813 		return ret;
1814 	}
1815 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1816 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1817 		size = fs_info->nodesize;
1818 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1819 		size = found_key->offset;
1820 
1821 	if (found_key->objectid > logical ||
1822 	    found_key->objectid + size <= logical) {
1823 		btrfs_debug(fs_info,
1824 			"logical %llu is not within any extent", logical);
1825 		return -ENOENT;
1826 	}
1827 
1828 	eb = path->nodes[0];
1829 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1830 	BUG_ON(item_size < sizeof(*ei));
1831 
1832 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1833 	flags = btrfs_extent_flags(eb, ei);
1834 
1835 	btrfs_debug(fs_info,
1836 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1837 		 logical, logical - found_key->objectid, found_key->objectid,
1838 		 found_key->offset, flags, item_size);
1839 
1840 	WARN_ON(!flags_ret);
1841 	if (flags_ret) {
1842 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1843 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1844 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1845 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1846 		else
1847 			BUG();
1848 		return 0;
1849 	}
1850 
1851 	return -EIO;
1852 }
1853 
1854 /*
1855  * helper function to iterate extent inline refs. ptr must point to a 0 value
1856  * for the first call and may be modified. it is used to track state.
1857  * if more refs exist, 0 is returned and the next call to
1858  * get_extent_inline_ref must pass the modified ptr parameter to get the
1859  * next ref. after the last ref was processed, 1 is returned.
1860  * returns <0 on error
1861  */
1862 static int get_extent_inline_ref(unsigned long *ptr,
1863 				 const struct extent_buffer *eb,
1864 				 const struct btrfs_key *key,
1865 				 const struct btrfs_extent_item *ei,
1866 				 u32 item_size,
1867 				 struct btrfs_extent_inline_ref **out_eiref,
1868 				 int *out_type)
1869 {
1870 	unsigned long end;
1871 	u64 flags;
1872 	struct btrfs_tree_block_info *info;
1873 
1874 	if (!*ptr) {
1875 		/* first call */
1876 		flags = btrfs_extent_flags(eb, ei);
1877 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1878 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1879 				/* a skinny metadata extent */
1880 				*out_eiref =
1881 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1882 			} else {
1883 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1884 				info = (struct btrfs_tree_block_info *)(ei + 1);
1885 				*out_eiref =
1886 				   (struct btrfs_extent_inline_ref *)(info + 1);
1887 			}
1888 		} else {
1889 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1890 		}
1891 		*ptr = (unsigned long)*out_eiref;
1892 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1893 			return -ENOENT;
1894 	}
1895 
1896 	end = (unsigned long)ei + item_size;
1897 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1898 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1899 						     BTRFS_REF_TYPE_ANY);
1900 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1901 		return -EUCLEAN;
1902 
1903 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1904 	WARN_ON(*ptr > end);
1905 	if (*ptr == end)
1906 		return 1; /* last */
1907 
1908 	return 0;
1909 }
1910 
1911 /*
1912  * reads the tree block backref for an extent. tree level and root are returned
1913  * through out_level and out_root. ptr must point to a 0 value for the first
1914  * call and may be modified (see get_extent_inline_ref comment).
1915  * returns 0 if data was provided, 1 if there was no more data to provide or
1916  * <0 on error.
1917  */
1918 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1919 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1920 			    u32 item_size, u64 *out_root, u8 *out_level)
1921 {
1922 	int ret;
1923 	int type;
1924 	struct btrfs_extent_inline_ref *eiref;
1925 
1926 	if (*ptr == (unsigned long)-1)
1927 		return 1;
1928 
1929 	while (1) {
1930 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1931 					      &eiref, &type);
1932 		if (ret < 0)
1933 			return ret;
1934 
1935 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1936 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1937 			break;
1938 
1939 		if (ret == 1)
1940 			return 1;
1941 	}
1942 
1943 	/* we can treat both ref types equally here */
1944 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1945 
1946 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1947 		struct btrfs_tree_block_info *info;
1948 
1949 		info = (struct btrfs_tree_block_info *)(ei + 1);
1950 		*out_level = btrfs_tree_block_level(eb, info);
1951 	} else {
1952 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1953 		*out_level = (u8)key->offset;
1954 	}
1955 
1956 	if (ret == 1)
1957 		*ptr = (unsigned long)-1;
1958 
1959 	return 0;
1960 }
1961 
1962 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1963 			     struct extent_inode_elem *inode_list,
1964 			     u64 root, u64 extent_item_objectid,
1965 			     iterate_extent_inodes_t *iterate, void *ctx)
1966 {
1967 	struct extent_inode_elem *eie;
1968 	int ret = 0;
1969 
1970 	for (eie = inode_list; eie; eie = eie->next) {
1971 		btrfs_debug(fs_info,
1972 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1973 			    extent_item_objectid, eie->inum,
1974 			    eie->offset, root);
1975 		ret = iterate(eie->inum, eie->offset, root, ctx);
1976 		if (ret) {
1977 			btrfs_debug(fs_info,
1978 				    "stopping iteration for %llu due to ret=%d",
1979 				    extent_item_objectid, ret);
1980 			break;
1981 		}
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 /*
1988  * calls iterate() for every inode that references the extent identified by
1989  * the given parameters.
1990  * when the iterator function returns a non-zero value, iteration stops.
1991  */
1992 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1993 				u64 extent_item_objectid, u64 extent_item_pos,
1994 				int search_commit_root,
1995 				iterate_extent_inodes_t *iterate, void *ctx,
1996 				bool ignore_offset)
1997 {
1998 	int ret;
1999 	struct btrfs_trans_handle *trans = NULL;
2000 	struct ulist *refs = NULL;
2001 	struct ulist *roots = NULL;
2002 	struct ulist_node *ref_node = NULL;
2003 	struct ulist_node *root_node = NULL;
2004 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2005 	struct ulist_iterator ref_uiter;
2006 	struct ulist_iterator root_uiter;
2007 
2008 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2009 			extent_item_objectid);
2010 
2011 	if (!search_commit_root) {
2012 		trans = btrfs_attach_transaction(fs_info->extent_root);
2013 		if (IS_ERR(trans)) {
2014 			if (PTR_ERR(trans) != -ENOENT &&
2015 			    PTR_ERR(trans) != -EROFS)
2016 				return PTR_ERR(trans);
2017 			trans = NULL;
2018 		}
2019 	}
2020 
2021 	if (trans)
2022 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023 	else
2024 		down_read(&fs_info->commit_root_sem);
2025 
2026 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2027 				   tree_mod_seq_elem.seq, &refs,
2028 				   &extent_item_pos, ignore_offset);
2029 	if (ret)
2030 		goto out;
2031 
2032 	ULIST_ITER_INIT(&ref_uiter);
2033 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2034 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2035 						tree_mod_seq_elem.seq, &roots,
2036 						ignore_offset);
2037 		if (ret)
2038 			break;
2039 		ULIST_ITER_INIT(&root_uiter);
2040 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 			btrfs_debug(fs_info,
2042 				    "root %llu references leaf %llu, data list %#llx",
2043 				    root_node->val, ref_node->val,
2044 				    ref_node->aux);
2045 			ret = iterate_leaf_refs(fs_info,
2046 						(struct extent_inode_elem *)
2047 						(uintptr_t)ref_node->aux,
2048 						root_node->val,
2049 						extent_item_objectid,
2050 						iterate, ctx);
2051 		}
2052 		ulist_free(roots);
2053 	}
2054 
2055 	free_leaf_list(refs);
2056 out:
2057 	if (trans) {
2058 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059 		btrfs_end_transaction(trans);
2060 	} else {
2061 		up_read(&fs_info->commit_root_sem);
2062 	}
2063 
2064 	return ret;
2065 }
2066 
2067 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2068 {
2069 	struct btrfs_data_container *inodes = ctx;
2070 	const size_t c = 3 * sizeof(u64);
2071 
2072 	if (inodes->bytes_left >= c) {
2073 		inodes->bytes_left -= c;
2074 		inodes->val[inodes->elem_cnt] = inum;
2075 		inodes->val[inodes->elem_cnt + 1] = offset;
2076 		inodes->val[inodes->elem_cnt + 2] = root;
2077 		inodes->elem_cnt += 3;
2078 	} else {
2079 		inodes->bytes_missing += c - inodes->bytes_left;
2080 		inodes->bytes_left = 0;
2081 		inodes->elem_missed += 3;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2088 				struct btrfs_path *path,
2089 				void *ctx, bool ignore_offset)
2090 {
2091 	int ret;
2092 	u64 extent_item_pos;
2093 	u64 flags = 0;
2094 	struct btrfs_key found_key;
2095 	int search_commit_root = path->search_commit_root;
2096 
2097 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2098 	btrfs_release_path(path);
2099 	if (ret < 0)
2100 		return ret;
2101 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2102 		return -EINVAL;
2103 
2104 	extent_item_pos = logical - found_key.objectid;
2105 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2106 					extent_item_pos, search_commit_root,
2107 					build_ino_list, ctx, ignore_offset);
2108 
2109 	return ret;
2110 }
2111 
2112 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2113 			      struct extent_buffer *eb, void *ctx);
2114 
2115 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2116 			      struct btrfs_path *path,
2117 			      iterate_irefs_t *iterate, void *ctx)
2118 {
2119 	int ret = 0;
2120 	int slot;
2121 	u32 cur;
2122 	u32 len;
2123 	u32 name_len;
2124 	u64 parent = 0;
2125 	int found = 0;
2126 	struct extent_buffer *eb;
2127 	struct btrfs_item *item;
2128 	struct btrfs_inode_ref *iref;
2129 	struct btrfs_key found_key;
2130 
2131 	while (!ret) {
2132 		ret = btrfs_find_item(fs_root, path, inum,
2133 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2134 				&found_key);
2135 
2136 		if (ret < 0)
2137 			break;
2138 		if (ret) {
2139 			ret = found ? 0 : -ENOENT;
2140 			break;
2141 		}
2142 		++found;
2143 
2144 		parent = found_key.offset;
2145 		slot = path->slots[0];
2146 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2147 		if (!eb) {
2148 			ret = -ENOMEM;
2149 			break;
2150 		}
2151 		btrfs_release_path(path);
2152 
2153 		item = btrfs_item_nr(slot);
2154 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2155 
2156 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2157 			name_len = btrfs_inode_ref_name_len(eb, iref);
2158 			/* path must be released before calling iterate()! */
2159 			btrfs_debug(fs_root->fs_info,
2160 				"following ref at offset %u for inode %llu in tree %llu",
2161 				cur, found_key.objectid,
2162 				fs_root->root_key.objectid);
2163 			ret = iterate(parent, name_len,
2164 				      (unsigned long)(iref + 1), eb, ctx);
2165 			if (ret)
2166 				break;
2167 			len = sizeof(*iref) + name_len;
2168 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2169 		}
2170 		free_extent_buffer(eb);
2171 	}
2172 
2173 	btrfs_release_path(path);
2174 
2175 	return ret;
2176 }
2177 
2178 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2179 				 struct btrfs_path *path,
2180 				 iterate_irefs_t *iterate, void *ctx)
2181 {
2182 	int ret;
2183 	int slot;
2184 	u64 offset = 0;
2185 	u64 parent;
2186 	int found = 0;
2187 	struct extent_buffer *eb;
2188 	struct btrfs_inode_extref *extref;
2189 	u32 item_size;
2190 	u32 cur_offset;
2191 	unsigned long ptr;
2192 
2193 	while (1) {
2194 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2195 					    &offset);
2196 		if (ret < 0)
2197 			break;
2198 		if (ret) {
2199 			ret = found ? 0 : -ENOENT;
2200 			break;
2201 		}
2202 		++found;
2203 
2204 		slot = path->slots[0];
2205 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2206 		if (!eb) {
2207 			ret = -ENOMEM;
2208 			break;
2209 		}
2210 		btrfs_release_path(path);
2211 
2212 		item_size = btrfs_item_size_nr(eb, slot);
2213 		ptr = btrfs_item_ptr_offset(eb, slot);
2214 		cur_offset = 0;
2215 
2216 		while (cur_offset < item_size) {
2217 			u32 name_len;
2218 
2219 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2220 			parent = btrfs_inode_extref_parent(eb, extref);
2221 			name_len = btrfs_inode_extref_name_len(eb, extref);
2222 			ret = iterate(parent, name_len,
2223 				      (unsigned long)&extref->name, eb, ctx);
2224 			if (ret)
2225 				break;
2226 
2227 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2228 			cur_offset += sizeof(*extref);
2229 		}
2230 		free_extent_buffer(eb);
2231 
2232 		offset++;
2233 	}
2234 
2235 	btrfs_release_path(path);
2236 
2237 	return ret;
2238 }
2239 
2240 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2241 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2242 			 void *ctx)
2243 {
2244 	int ret;
2245 	int found_refs = 0;
2246 
2247 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2248 	if (!ret)
2249 		++found_refs;
2250 	else if (ret != -ENOENT)
2251 		return ret;
2252 
2253 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2254 	if (ret == -ENOENT && found_refs)
2255 		return 0;
2256 
2257 	return ret;
2258 }
2259 
2260 /*
2261  * returns 0 if the path could be dumped (probably truncated)
2262  * returns <0 in case of an error
2263  */
2264 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2265 			 struct extent_buffer *eb, void *ctx)
2266 {
2267 	struct inode_fs_paths *ipath = ctx;
2268 	char *fspath;
2269 	char *fspath_min;
2270 	int i = ipath->fspath->elem_cnt;
2271 	const int s_ptr = sizeof(char *);
2272 	u32 bytes_left;
2273 
2274 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2275 					ipath->fspath->bytes_left - s_ptr : 0;
2276 
2277 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2278 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2279 				   name_off, eb, inum, fspath_min, bytes_left);
2280 	if (IS_ERR(fspath))
2281 		return PTR_ERR(fspath);
2282 
2283 	if (fspath > fspath_min) {
2284 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2285 		++ipath->fspath->elem_cnt;
2286 		ipath->fspath->bytes_left = fspath - fspath_min;
2287 	} else {
2288 		++ipath->fspath->elem_missed;
2289 		ipath->fspath->bytes_missing += fspath_min - fspath;
2290 		ipath->fspath->bytes_left = 0;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * this dumps all file system paths to the inode into the ipath struct, provided
2298  * is has been created large enough. each path is zero-terminated and accessed
2299  * from ipath->fspath->val[i].
2300  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2301  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2302  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2303  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2304  * have been needed to return all paths.
2305  */
2306 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2307 {
2308 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2309 			     inode_to_path, ipath);
2310 }
2311 
2312 struct btrfs_data_container *init_data_container(u32 total_bytes)
2313 {
2314 	struct btrfs_data_container *data;
2315 	size_t alloc_bytes;
2316 
2317 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2318 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2319 	if (!data)
2320 		return ERR_PTR(-ENOMEM);
2321 
2322 	if (total_bytes >= sizeof(*data)) {
2323 		data->bytes_left = total_bytes - sizeof(*data);
2324 		data->bytes_missing = 0;
2325 	} else {
2326 		data->bytes_missing = sizeof(*data) - total_bytes;
2327 		data->bytes_left = 0;
2328 	}
2329 
2330 	data->elem_cnt = 0;
2331 	data->elem_missed = 0;
2332 
2333 	return data;
2334 }
2335 
2336 /*
2337  * allocates space to return multiple file system paths for an inode.
2338  * total_bytes to allocate are passed, note that space usable for actual path
2339  * information will be total_bytes - sizeof(struct inode_fs_paths).
2340  * the returned pointer must be freed with free_ipath() in the end.
2341  */
2342 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2343 					struct btrfs_path *path)
2344 {
2345 	struct inode_fs_paths *ifp;
2346 	struct btrfs_data_container *fspath;
2347 
2348 	fspath = init_data_container(total_bytes);
2349 	if (IS_ERR(fspath))
2350 		return ERR_CAST(fspath);
2351 
2352 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2353 	if (!ifp) {
2354 		kvfree(fspath);
2355 		return ERR_PTR(-ENOMEM);
2356 	}
2357 
2358 	ifp->btrfs_path = path;
2359 	ifp->fspath = fspath;
2360 	ifp->fs_root = fs_root;
2361 
2362 	return ifp;
2363 }
2364 
2365 void free_ipath(struct inode_fs_paths *ipath)
2366 {
2367 	if (!ipath)
2368 		return;
2369 	kvfree(ipath->fspath);
2370 	kfree(ipath);
2371 }
2372 
2373 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2374 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2375 {
2376 	struct btrfs_backref_iter *ret;
2377 
2378 	ret = kzalloc(sizeof(*ret), gfp_flag);
2379 	if (!ret)
2380 		return NULL;
2381 
2382 	ret->path = btrfs_alloc_path();
2383 	if (!ret->path) {
2384 		kfree(ret);
2385 		return NULL;
2386 	}
2387 
2388 	/* Current backref iterator only supports iteration in commit root */
2389 	ret->path->search_commit_root = 1;
2390 	ret->path->skip_locking = 1;
2391 	ret->fs_info = fs_info;
2392 
2393 	return ret;
2394 }
2395 
2396 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2397 {
2398 	struct btrfs_fs_info *fs_info = iter->fs_info;
2399 	struct btrfs_path *path = iter->path;
2400 	struct btrfs_extent_item *ei;
2401 	struct btrfs_key key;
2402 	int ret;
2403 
2404 	key.objectid = bytenr;
2405 	key.type = BTRFS_METADATA_ITEM_KEY;
2406 	key.offset = (u64)-1;
2407 	iter->bytenr = bytenr;
2408 
2409 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2410 	if (ret < 0)
2411 		return ret;
2412 	if (ret == 0) {
2413 		ret = -EUCLEAN;
2414 		goto release;
2415 	}
2416 	if (path->slots[0] == 0) {
2417 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2418 		ret = -EUCLEAN;
2419 		goto release;
2420 	}
2421 	path->slots[0]--;
2422 
2423 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2424 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2425 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2426 		ret = -ENOENT;
2427 		goto release;
2428 	}
2429 	memcpy(&iter->cur_key, &key, sizeof(key));
2430 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2431 						    path->slots[0]);
2432 	iter->end_ptr = (u32)(iter->item_ptr +
2433 			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2434 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2435 			    struct btrfs_extent_item);
2436 
2437 	/*
2438 	 * Only support iteration on tree backref yet.
2439 	 *
2440 	 * This is an extra precaution for non skinny-metadata, where
2441 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2442 	 * extent flags to determine if it's a tree block.
2443 	 */
2444 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2445 		ret = -ENOTSUPP;
2446 		goto release;
2447 	}
2448 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2449 
2450 	/* If there is no inline backref, go search for keyed backref */
2451 	if (iter->cur_ptr >= iter->end_ptr) {
2452 		ret = btrfs_next_item(fs_info->extent_root, path);
2453 
2454 		/* No inline nor keyed ref */
2455 		if (ret > 0) {
2456 			ret = -ENOENT;
2457 			goto release;
2458 		}
2459 		if (ret < 0)
2460 			goto release;
2461 
2462 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2463 				path->slots[0]);
2464 		if (iter->cur_key.objectid != bytenr ||
2465 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2466 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2467 			ret = -ENOENT;
2468 			goto release;
2469 		}
2470 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2471 							   path->slots[0]);
2472 		iter->item_ptr = iter->cur_ptr;
2473 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2474 				      path->nodes[0], path->slots[0]));
2475 	}
2476 
2477 	return 0;
2478 release:
2479 	btrfs_backref_iter_release(iter);
2480 	return ret;
2481 }
2482 
2483 /*
2484  * Go to the next backref item of current bytenr, can be either inlined or
2485  * keyed.
2486  *
2487  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2488  *
2489  * Return 0 if we get next backref without problem.
2490  * Return >0 if there is no extra backref for this bytenr.
2491  * Return <0 if there is something wrong happened.
2492  */
2493 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2494 {
2495 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2496 	struct btrfs_path *path = iter->path;
2497 	struct btrfs_extent_inline_ref *iref;
2498 	int ret;
2499 	u32 size;
2500 
2501 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2502 		/* We're still inside the inline refs */
2503 		ASSERT(iter->cur_ptr < iter->end_ptr);
2504 
2505 		if (btrfs_backref_has_tree_block_info(iter)) {
2506 			/* First tree block info */
2507 			size = sizeof(struct btrfs_tree_block_info);
2508 		} else {
2509 			/* Use inline ref type to determine the size */
2510 			int type;
2511 
2512 			iref = (struct btrfs_extent_inline_ref *)
2513 				((unsigned long)iter->cur_ptr);
2514 			type = btrfs_extent_inline_ref_type(eb, iref);
2515 
2516 			size = btrfs_extent_inline_ref_size(type);
2517 		}
2518 		iter->cur_ptr += size;
2519 		if (iter->cur_ptr < iter->end_ptr)
2520 			return 0;
2521 
2522 		/* All inline items iterated, fall through */
2523 	}
2524 
2525 	/* We're at keyed items, there is no inline item, go to the next one */
2526 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2527 	if (ret)
2528 		return ret;
2529 
2530 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2531 	if (iter->cur_key.objectid != iter->bytenr ||
2532 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2533 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2534 		return 1;
2535 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2536 					path->slots[0]);
2537 	iter->cur_ptr = iter->item_ptr;
2538 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2539 						path->slots[0]);
2540 	return 0;
2541 }
2542 
2543 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2544 			      struct btrfs_backref_cache *cache, int is_reloc)
2545 {
2546 	int i;
2547 
2548 	cache->rb_root = RB_ROOT;
2549 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2550 		INIT_LIST_HEAD(&cache->pending[i]);
2551 	INIT_LIST_HEAD(&cache->changed);
2552 	INIT_LIST_HEAD(&cache->detached);
2553 	INIT_LIST_HEAD(&cache->leaves);
2554 	INIT_LIST_HEAD(&cache->pending_edge);
2555 	INIT_LIST_HEAD(&cache->useless_node);
2556 	cache->fs_info = fs_info;
2557 	cache->is_reloc = is_reloc;
2558 }
2559 
2560 struct btrfs_backref_node *btrfs_backref_alloc_node(
2561 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2562 {
2563 	struct btrfs_backref_node *node;
2564 
2565 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2566 	node = kzalloc(sizeof(*node), GFP_NOFS);
2567 	if (!node)
2568 		return node;
2569 
2570 	INIT_LIST_HEAD(&node->list);
2571 	INIT_LIST_HEAD(&node->upper);
2572 	INIT_LIST_HEAD(&node->lower);
2573 	RB_CLEAR_NODE(&node->rb_node);
2574 	cache->nr_nodes++;
2575 	node->level = level;
2576 	node->bytenr = bytenr;
2577 
2578 	return node;
2579 }
2580 
2581 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2582 		struct btrfs_backref_cache *cache)
2583 {
2584 	struct btrfs_backref_edge *edge;
2585 
2586 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2587 	if (edge)
2588 		cache->nr_edges++;
2589 	return edge;
2590 }
2591 
2592 /*
2593  * Drop the backref node from cache, also cleaning up all its
2594  * upper edges and any uncached nodes in the path.
2595  *
2596  * This cleanup happens bottom up, thus the node should either
2597  * be the lowest node in the cache or a detached node.
2598  */
2599 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2600 				struct btrfs_backref_node *node)
2601 {
2602 	struct btrfs_backref_node *upper;
2603 	struct btrfs_backref_edge *edge;
2604 
2605 	if (!node)
2606 		return;
2607 
2608 	BUG_ON(!node->lowest && !node->detached);
2609 	while (!list_empty(&node->upper)) {
2610 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2611 				  list[LOWER]);
2612 		upper = edge->node[UPPER];
2613 		list_del(&edge->list[LOWER]);
2614 		list_del(&edge->list[UPPER]);
2615 		btrfs_backref_free_edge(cache, edge);
2616 
2617 		/*
2618 		 * Add the node to leaf node list if no other child block
2619 		 * cached.
2620 		 */
2621 		if (list_empty(&upper->lower)) {
2622 			list_add_tail(&upper->lower, &cache->leaves);
2623 			upper->lowest = 1;
2624 		}
2625 	}
2626 
2627 	btrfs_backref_drop_node(cache, node);
2628 }
2629 
2630 /*
2631  * Release all nodes/edges from current cache
2632  */
2633 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2634 {
2635 	struct btrfs_backref_node *node;
2636 	int i;
2637 
2638 	while (!list_empty(&cache->detached)) {
2639 		node = list_entry(cache->detached.next,
2640 				  struct btrfs_backref_node, list);
2641 		btrfs_backref_cleanup_node(cache, node);
2642 	}
2643 
2644 	while (!list_empty(&cache->leaves)) {
2645 		node = list_entry(cache->leaves.next,
2646 				  struct btrfs_backref_node, lower);
2647 		btrfs_backref_cleanup_node(cache, node);
2648 	}
2649 
2650 	cache->last_trans = 0;
2651 
2652 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2653 		ASSERT(list_empty(&cache->pending[i]));
2654 	ASSERT(list_empty(&cache->pending_edge));
2655 	ASSERT(list_empty(&cache->useless_node));
2656 	ASSERT(list_empty(&cache->changed));
2657 	ASSERT(list_empty(&cache->detached));
2658 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2659 	ASSERT(!cache->nr_nodes);
2660 	ASSERT(!cache->nr_edges);
2661 }
2662 
2663 /*
2664  * Handle direct tree backref
2665  *
2666  * Direct tree backref means, the backref item shows its parent bytenr
2667  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2668  *
2669  * @ref_key:	The converted backref key.
2670  *		For keyed backref, it's the item key.
2671  *		For inlined backref, objectid is the bytenr,
2672  *		type is btrfs_inline_ref_type, offset is
2673  *		btrfs_inline_ref_offset.
2674  */
2675 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2676 				      struct btrfs_key *ref_key,
2677 				      struct btrfs_backref_node *cur)
2678 {
2679 	struct btrfs_backref_edge *edge;
2680 	struct btrfs_backref_node *upper;
2681 	struct rb_node *rb_node;
2682 
2683 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2684 
2685 	/* Only reloc root uses backref pointing to itself */
2686 	if (ref_key->objectid == ref_key->offset) {
2687 		struct btrfs_root *root;
2688 
2689 		cur->is_reloc_root = 1;
2690 		/* Only reloc backref cache cares about a specific root */
2691 		if (cache->is_reloc) {
2692 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2693 			if (!root)
2694 				return -ENOENT;
2695 			cur->root = root;
2696 		} else {
2697 			/*
2698 			 * For generic purpose backref cache, reloc root node
2699 			 * is useless.
2700 			 */
2701 			list_add(&cur->list, &cache->useless_node);
2702 		}
2703 		return 0;
2704 	}
2705 
2706 	edge = btrfs_backref_alloc_edge(cache);
2707 	if (!edge)
2708 		return -ENOMEM;
2709 
2710 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2711 	if (!rb_node) {
2712 		/* Parent node not yet cached */
2713 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2714 					   cur->level + 1);
2715 		if (!upper) {
2716 			btrfs_backref_free_edge(cache, edge);
2717 			return -ENOMEM;
2718 		}
2719 
2720 		/*
2721 		 *  Backrefs for the upper level block isn't cached, add the
2722 		 *  block to pending list
2723 		 */
2724 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2725 	} else {
2726 		/* Parent node already cached */
2727 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2728 		ASSERT(upper->checked);
2729 		INIT_LIST_HEAD(&edge->list[UPPER]);
2730 	}
2731 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2732 	return 0;
2733 }
2734 
2735 /*
2736  * Handle indirect tree backref
2737  *
2738  * Indirect tree backref means, we only know which tree the node belongs to.
2739  * We still need to do a tree search to find out the parents. This is for
2740  * TREE_BLOCK_REF backref (keyed or inlined).
2741  *
2742  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2743  * @tree_key:	The first key of this tree block.
2744  * @path:	A clean (released) path, to avoid allocating path everytime
2745  *		the function get called.
2746  */
2747 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2748 					struct btrfs_path *path,
2749 					struct btrfs_key *ref_key,
2750 					struct btrfs_key *tree_key,
2751 					struct btrfs_backref_node *cur)
2752 {
2753 	struct btrfs_fs_info *fs_info = cache->fs_info;
2754 	struct btrfs_backref_node *upper;
2755 	struct btrfs_backref_node *lower;
2756 	struct btrfs_backref_edge *edge;
2757 	struct extent_buffer *eb;
2758 	struct btrfs_root *root;
2759 	struct rb_node *rb_node;
2760 	int level;
2761 	bool need_check = true;
2762 	int ret;
2763 
2764 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2765 	if (IS_ERR(root))
2766 		return PTR_ERR(root);
2767 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2768 		cur->cowonly = 1;
2769 
2770 	if (btrfs_root_level(&root->root_item) == cur->level) {
2771 		/* Tree root */
2772 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2773 		/*
2774 		 * For reloc backref cache, we may ignore reloc root.  But for
2775 		 * general purpose backref cache, we can't rely on
2776 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2777 		 * current running relocation and lead to missing root.
2778 		 *
2779 		 * For general purpose backref cache, reloc root detection is
2780 		 * completely relying on direct backref (key->offset is parent
2781 		 * bytenr), thus only do such check for reloc cache.
2782 		 */
2783 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2784 			btrfs_put_root(root);
2785 			list_add(&cur->list, &cache->useless_node);
2786 		} else {
2787 			cur->root = root;
2788 		}
2789 		return 0;
2790 	}
2791 
2792 	level = cur->level + 1;
2793 
2794 	/* Search the tree to find parent blocks referring to the block */
2795 	path->search_commit_root = 1;
2796 	path->skip_locking = 1;
2797 	path->lowest_level = level;
2798 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2799 	path->lowest_level = 0;
2800 	if (ret < 0) {
2801 		btrfs_put_root(root);
2802 		return ret;
2803 	}
2804 	if (ret > 0 && path->slots[level] > 0)
2805 		path->slots[level]--;
2806 
2807 	eb = path->nodes[level];
2808 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2809 		btrfs_err(fs_info,
2810 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2811 			  cur->bytenr, level - 1, root->root_key.objectid,
2812 			  tree_key->objectid, tree_key->type, tree_key->offset);
2813 		btrfs_put_root(root);
2814 		ret = -ENOENT;
2815 		goto out;
2816 	}
2817 	lower = cur;
2818 
2819 	/* Add all nodes and edges in the path */
2820 	for (; level < BTRFS_MAX_LEVEL; level++) {
2821 		if (!path->nodes[level]) {
2822 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2823 			       lower->bytenr);
2824 			/* Same as previous should_ignore_reloc_root() call */
2825 			if (btrfs_should_ignore_reloc_root(root) &&
2826 			    cache->is_reloc) {
2827 				btrfs_put_root(root);
2828 				list_add(&lower->list, &cache->useless_node);
2829 			} else {
2830 				lower->root = root;
2831 			}
2832 			break;
2833 		}
2834 
2835 		edge = btrfs_backref_alloc_edge(cache);
2836 		if (!edge) {
2837 			btrfs_put_root(root);
2838 			ret = -ENOMEM;
2839 			goto out;
2840 		}
2841 
2842 		eb = path->nodes[level];
2843 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2844 		if (!rb_node) {
2845 			upper = btrfs_backref_alloc_node(cache, eb->start,
2846 							 lower->level + 1);
2847 			if (!upper) {
2848 				btrfs_put_root(root);
2849 				btrfs_backref_free_edge(cache, edge);
2850 				ret = -ENOMEM;
2851 				goto out;
2852 			}
2853 			upper->owner = btrfs_header_owner(eb);
2854 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2855 				upper->cowonly = 1;
2856 
2857 			/*
2858 			 * If we know the block isn't shared we can avoid
2859 			 * checking its backrefs.
2860 			 */
2861 			if (btrfs_block_can_be_shared(root, eb))
2862 				upper->checked = 0;
2863 			else
2864 				upper->checked = 1;
2865 
2866 			/*
2867 			 * Add the block to pending list if we need to check its
2868 			 * backrefs, we only do this once while walking up a
2869 			 * tree as we will catch anything else later on.
2870 			 */
2871 			if (!upper->checked && need_check) {
2872 				need_check = false;
2873 				list_add_tail(&edge->list[UPPER],
2874 					      &cache->pending_edge);
2875 			} else {
2876 				if (upper->checked)
2877 					need_check = true;
2878 				INIT_LIST_HEAD(&edge->list[UPPER]);
2879 			}
2880 		} else {
2881 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2882 					 rb_node);
2883 			ASSERT(upper->checked);
2884 			INIT_LIST_HEAD(&edge->list[UPPER]);
2885 			if (!upper->owner)
2886 				upper->owner = btrfs_header_owner(eb);
2887 		}
2888 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2889 
2890 		if (rb_node) {
2891 			btrfs_put_root(root);
2892 			break;
2893 		}
2894 		lower = upper;
2895 		upper = NULL;
2896 	}
2897 out:
2898 	btrfs_release_path(path);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * Add backref node @cur into @cache.
2904  *
2905  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2906  *	 links aren't yet bi-directional. Needs to finish such links.
2907  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2908  *
2909  * @path:	Released path for indirect tree backref lookup
2910  * @iter:	Released backref iter for extent tree search
2911  * @node_key:	The first key of the tree block
2912  */
2913 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2914 				struct btrfs_path *path,
2915 				struct btrfs_backref_iter *iter,
2916 				struct btrfs_key *node_key,
2917 				struct btrfs_backref_node *cur)
2918 {
2919 	struct btrfs_fs_info *fs_info = cache->fs_info;
2920 	struct btrfs_backref_edge *edge;
2921 	struct btrfs_backref_node *exist;
2922 	int ret;
2923 
2924 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2925 	if (ret < 0)
2926 		return ret;
2927 	/*
2928 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2929 	 * stored in it, but fetch it from the tree block
2930 	 */
2931 	if (btrfs_backref_has_tree_block_info(iter)) {
2932 		ret = btrfs_backref_iter_next(iter);
2933 		if (ret < 0)
2934 			goto out;
2935 		/* No extra backref? This means the tree block is corrupted */
2936 		if (ret > 0) {
2937 			ret = -EUCLEAN;
2938 			goto out;
2939 		}
2940 	}
2941 	WARN_ON(cur->checked);
2942 	if (!list_empty(&cur->upper)) {
2943 		/*
2944 		 * The backref was added previously when processing backref of
2945 		 * type BTRFS_TREE_BLOCK_REF_KEY
2946 		 */
2947 		ASSERT(list_is_singular(&cur->upper));
2948 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2949 				  list[LOWER]);
2950 		ASSERT(list_empty(&edge->list[UPPER]));
2951 		exist = edge->node[UPPER];
2952 		/*
2953 		 * Add the upper level block to pending list if we need check
2954 		 * its backrefs
2955 		 */
2956 		if (!exist->checked)
2957 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2958 	} else {
2959 		exist = NULL;
2960 	}
2961 
2962 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2963 		struct extent_buffer *eb;
2964 		struct btrfs_key key;
2965 		int type;
2966 
2967 		cond_resched();
2968 		eb = btrfs_backref_get_eb(iter);
2969 
2970 		key.objectid = iter->bytenr;
2971 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2972 			struct btrfs_extent_inline_ref *iref;
2973 
2974 			/* Update key for inline backref */
2975 			iref = (struct btrfs_extent_inline_ref *)
2976 				((unsigned long)iter->cur_ptr);
2977 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2978 							BTRFS_REF_TYPE_BLOCK);
2979 			if (type == BTRFS_REF_TYPE_INVALID) {
2980 				ret = -EUCLEAN;
2981 				goto out;
2982 			}
2983 			key.type = type;
2984 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2985 		} else {
2986 			key.type = iter->cur_key.type;
2987 			key.offset = iter->cur_key.offset;
2988 		}
2989 
2990 		/*
2991 		 * Parent node found and matches current inline ref, no need to
2992 		 * rebuild this node for this inline ref
2993 		 */
2994 		if (exist &&
2995 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2996 		      exist->owner == key.offset) ||
2997 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2998 		      exist->bytenr == key.offset))) {
2999 			exist = NULL;
3000 			continue;
3001 		}
3002 
3003 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3004 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3005 			ret = handle_direct_tree_backref(cache, &key, cur);
3006 			if (ret < 0)
3007 				goto out;
3008 			continue;
3009 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3010 			ret = -EINVAL;
3011 			btrfs_print_v0_err(fs_info);
3012 			btrfs_handle_fs_error(fs_info, ret, NULL);
3013 			goto out;
3014 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3015 			continue;
3016 		}
3017 
3018 		/*
3019 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3020 		 * means the root objectid. We need to search the tree to get
3021 		 * its parent bytenr.
3022 		 */
3023 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3024 						   cur);
3025 		if (ret < 0)
3026 			goto out;
3027 	}
3028 	ret = 0;
3029 	cur->checked = 1;
3030 	WARN_ON(exist);
3031 out:
3032 	btrfs_backref_iter_release(iter);
3033 	return ret;
3034 }
3035 
3036 /*
3037  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3038  */
3039 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3040 				     struct btrfs_backref_node *start)
3041 {
3042 	struct list_head *useless_node = &cache->useless_node;
3043 	struct btrfs_backref_edge *edge;
3044 	struct rb_node *rb_node;
3045 	LIST_HEAD(pending_edge);
3046 
3047 	ASSERT(start->checked);
3048 
3049 	/* Insert this node to cache if it's not COW-only */
3050 	if (!start->cowonly) {
3051 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3052 					   &start->rb_node);
3053 		if (rb_node)
3054 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3055 					    -EEXIST);
3056 		list_add_tail(&start->lower, &cache->leaves);
3057 	}
3058 
3059 	/*
3060 	 * Use breadth first search to iterate all related edges.
3061 	 *
3062 	 * The starting points are all the edges of this node
3063 	 */
3064 	list_for_each_entry(edge, &start->upper, list[LOWER])
3065 		list_add_tail(&edge->list[UPPER], &pending_edge);
3066 
3067 	while (!list_empty(&pending_edge)) {
3068 		struct btrfs_backref_node *upper;
3069 		struct btrfs_backref_node *lower;
3070 
3071 		edge = list_first_entry(&pending_edge,
3072 				struct btrfs_backref_edge, list[UPPER]);
3073 		list_del_init(&edge->list[UPPER]);
3074 		upper = edge->node[UPPER];
3075 		lower = edge->node[LOWER];
3076 
3077 		/* Parent is detached, no need to keep any edges */
3078 		if (upper->detached) {
3079 			list_del(&edge->list[LOWER]);
3080 			btrfs_backref_free_edge(cache, edge);
3081 
3082 			/* Lower node is orphan, queue for cleanup */
3083 			if (list_empty(&lower->upper))
3084 				list_add(&lower->list, useless_node);
3085 			continue;
3086 		}
3087 
3088 		/*
3089 		 * All new nodes added in current build_backref_tree() haven't
3090 		 * been linked to the cache rb tree.
3091 		 * So if we have upper->rb_node populated, this means a cache
3092 		 * hit. We only need to link the edge, as @upper and all its
3093 		 * parents have already been linked.
3094 		 */
3095 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3096 			if (upper->lowest) {
3097 				list_del_init(&upper->lower);
3098 				upper->lowest = 0;
3099 			}
3100 
3101 			list_add_tail(&edge->list[UPPER], &upper->lower);
3102 			continue;
3103 		}
3104 
3105 		/* Sanity check, we shouldn't have any unchecked nodes */
3106 		if (!upper->checked) {
3107 			ASSERT(0);
3108 			return -EUCLEAN;
3109 		}
3110 
3111 		/* Sanity check, COW-only node has non-COW-only parent */
3112 		if (start->cowonly != upper->cowonly) {
3113 			ASSERT(0);
3114 			return -EUCLEAN;
3115 		}
3116 
3117 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3118 		if (!upper->cowonly) {
3119 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3120 						   &upper->rb_node);
3121 			if (rb_node) {
3122 				btrfs_backref_panic(cache->fs_info,
3123 						upper->bytenr, -EEXIST);
3124 				return -EUCLEAN;
3125 			}
3126 		}
3127 
3128 		list_add_tail(&edge->list[UPPER], &upper->lower);
3129 
3130 		/*
3131 		 * Also queue all the parent edges of this uncached node
3132 		 * to finish the upper linkage
3133 		 */
3134 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3135 			list_add_tail(&edge->list[UPPER], &pending_edge);
3136 	}
3137 	return 0;
3138 }
3139 
3140 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3141 				 struct btrfs_backref_node *node)
3142 {
3143 	struct btrfs_backref_node *lower;
3144 	struct btrfs_backref_node *upper;
3145 	struct btrfs_backref_edge *edge;
3146 
3147 	while (!list_empty(&cache->useless_node)) {
3148 		lower = list_first_entry(&cache->useless_node,
3149 				   struct btrfs_backref_node, list);
3150 		list_del_init(&lower->list);
3151 	}
3152 	while (!list_empty(&cache->pending_edge)) {
3153 		edge = list_first_entry(&cache->pending_edge,
3154 				struct btrfs_backref_edge, list[UPPER]);
3155 		list_del(&edge->list[UPPER]);
3156 		list_del(&edge->list[LOWER]);
3157 		lower = edge->node[LOWER];
3158 		upper = edge->node[UPPER];
3159 		btrfs_backref_free_edge(cache, edge);
3160 
3161 		/*
3162 		 * Lower is no longer linked to any upper backref nodes and
3163 		 * isn't in the cache, we can free it ourselves.
3164 		 */
3165 		if (list_empty(&lower->upper) &&
3166 		    RB_EMPTY_NODE(&lower->rb_node))
3167 			list_add(&lower->list, &cache->useless_node);
3168 
3169 		if (!RB_EMPTY_NODE(&upper->rb_node))
3170 			continue;
3171 
3172 		/* Add this guy's upper edges to the list to process */
3173 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3174 			list_add_tail(&edge->list[UPPER],
3175 				      &cache->pending_edge);
3176 		if (list_empty(&upper->upper))
3177 			list_add(&upper->list, &cache->useless_node);
3178 	}
3179 
3180 	while (!list_empty(&cache->useless_node)) {
3181 		lower = list_first_entry(&cache->useless_node,
3182 				   struct btrfs_backref_node, list);
3183 		list_del_init(&lower->list);
3184 		if (lower == node)
3185 			node = NULL;
3186 		btrfs_backref_drop_node(cache, lower);
3187 	}
3188 
3189 	btrfs_backref_cleanup_node(cache, node);
3190 	ASSERT(list_empty(&cache->useless_node) &&
3191 	       list_empty(&cache->pending_edge));
3192 }
3193