• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39 	struct rb_node rb_node;
40 	/* objectid */
41 	u64 ino;
42 	/*
43 	 * transid where the defrag was added, we search for
44 	 * extents newer than this
45 	 */
46 	u64 transid;
47 
48 	/* root objectid */
49 	u64 root;
50 
51 	/* last offset we were able to defrag */
52 	u64 last_offset;
53 
54 	/* if we've wrapped around back to zero once already */
55 	int cycled;
56 };
57 
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 				  struct inode_defrag *defrag2)
60 {
61 	if (defrag1->root > defrag2->root)
62 		return 1;
63 	else if (defrag1->root < defrag2->root)
64 		return -1;
65 	else if (defrag1->ino > defrag2->ino)
66 		return 1;
67 	else if (defrag1->ino < defrag2->ino)
68 		return -1;
69 	else
70 		return 0;
71 }
72 
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 				    struct inode_defrag *defrag)
84 {
85 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 	struct inode_defrag *entry;
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	int ret;
90 
91 	p = &fs_info->defrag_inodes.rb_node;
92 	while (*p) {
93 		parent = *p;
94 		entry = rb_entry(parent, struct inode_defrag, rb_node);
95 
96 		ret = __compare_inode_defrag(defrag, entry);
97 		if (ret < 0)
98 			p = &parent->rb_left;
99 		else if (ret > 0)
100 			p = &parent->rb_right;
101 		else {
102 			/* if we're reinserting an entry for
103 			 * an old defrag run, make sure to
104 			 * lower the transid of our existing record
105 			 */
106 			if (defrag->transid < entry->transid)
107 				entry->transid = defrag->transid;
108 			if (defrag->last_offset > entry->last_offset)
109 				entry->last_offset = defrag->last_offset;
110 			return -EEXIST;
111 		}
112 	}
113 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 	rb_link_node(&defrag->rb_node, parent, p);
115 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 	return 0;
117 }
118 
__need_auto_defrag(struct btrfs_fs_info * fs_info)119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 		return 0;
123 
124 	if (btrfs_fs_closing(fs_info))
125 		return 0;
126 
127 	return 1;
128 }
129 
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 			   struct btrfs_inode *inode)
136 {
137 	struct btrfs_root *root = inode->root;
138 	struct btrfs_fs_info *fs_info = root->fs_info;
139 	struct inode_defrag *defrag;
140 	u64 transid;
141 	int ret;
142 
143 	if (!__need_auto_defrag(fs_info))
144 		return 0;
145 
146 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 		return 0;
148 
149 	if (trans)
150 		transid = trans->transid;
151 	else
152 		transid = inode->root->last_trans;
153 
154 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 	if (!defrag)
156 		return -ENOMEM;
157 
158 	defrag->ino = btrfs_ino(inode);
159 	defrag->transid = transid;
160 	defrag->root = root->root_key.objectid;
161 
162 	spin_lock(&fs_info->defrag_inodes_lock);
163 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 		/*
165 		 * If we set IN_DEFRAG flag and evict the inode from memory,
166 		 * and then re-read this inode, this new inode doesn't have
167 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 		 */
169 		ret = __btrfs_add_inode_defrag(inode, defrag);
170 		if (ret)
171 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	} else {
173 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	}
175 	spin_unlock(&fs_info->defrag_inodes_lock);
176 	return 0;
177 }
178 
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
btrfs_requeue_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 				       struct inode_defrag *defrag)
186 {
187 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 	int ret;
189 
190 	if (!__need_auto_defrag(fs_info))
191 		goto out;
192 
193 	/*
194 	 * Here we don't check the IN_DEFRAG flag, because we need merge
195 	 * them together.
196 	 */
197 	spin_lock(&fs_info->defrag_inodes_lock);
198 	ret = __btrfs_add_inode_defrag(inode, defrag);
199 	spin_unlock(&fs_info->defrag_inodes_lock);
200 	if (ret)
201 		goto out;
202 	return;
203 out:
204 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206 
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 	struct inode_defrag *entry = NULL;
215 	struct inode_defrag tmp;
216 	struct rb_node *p;
217 	struct rb_node *parent = NULL;
218 	int ret;
219 
220 	tmp.ino = ino;
221 	tmp.root = root;
222 
223 	spin_lock(&fs_info->defrag_inodes_lock);
224 	p = fs_info->defrag_inodes.rb_node;
225 	while (p) {
226 		parent = p;
227 		entry = rb_entry(parent, struct inode_defrag, rb_node);
228 
229 		ret = __compare_inode_defrag(&tmp, entry);
230 		if (ret < 0)
231 			p = parent->rb_left;
232 		else if (ret > 0)
233 			p = parent->rb_right;
234 		else
235 			goto out;
236 	}
237 
238 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 		parent = rb_next(parent);
240 		if (parent)
241 			entry = rb_entry(parent, struct inode_defrag, rb_node);
242 		else
243 			entry = NULL;
244 	}
245 out:
246 	if (entry)
247 		rb_erase(parent, &fs_info->defrag_inodes);
248 	spin_unlock(&fs_info->defrag_inodes_lock);
249 	return entry;
250 }
251 
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 	struct inode_defrag *defrag;
255 	struct rb_node *node;
256 
257 	spin_lock(&fs_info->defrag_inodes_lock);
258 	node = rb_first(&fs_info->defrag_inodes);
259 	while (node) {
260 		rb_erase(node, &fs_info->defrag_inodes);
261 		defrag = rb_entry(node, struct inode_defrag, rb_node);
262 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263 
264 		cond_resched_lock(&fs_info->defrag_inodes_lock);
265 
266 		node = rb_first(&fs_info->defrag_inodes);
267 	}
268 	spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270 
271 #define BTRFS_DEFRAG_BATCH	1024
272 
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 				    struct inode_defrag *defrag)
275 {
276 	struct btrfs_root *inode_root;
277 	struct inode *inode;
278 	struct btrfs_ioctl_defrag_range_args range;
279 	int num_defrag;
280 	int ret;
281 
282 	/* get the inode */
283 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 	if (IS_ERR(inode_root)) {
285 		ret = PTR_ERR(inode_root);
286 		goto cleanup;
287 	}
288 
289 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 	btrfs_put_root(inode_root);
291 	if (IS_ERR(inode)) {
292 		ret = PTR_ERR(inode);
293 		goto cleanup;
294 	}
295 
296 	/* do a chunk of defrag */
297 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 	memset(&range, 0, sizeof(range));
299 	range.len = (u64)-1;
300 	range.start = defrag->last_offset;
301 
302 	sb_start_write(fs_info->sb);
303 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 				       BTRFS_DEFRAG_BATCH);
305 	sb_end_write(fs_info->sb);
306 	/*
307 	 * if we filled the whole defrag batch, there
308 	 * must be more work to do.  Queue this defrag
309 	 * again
310 	 */
311 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 		defrag->last_offset = range.start;
313 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 	} else if (defrag->last_offset && !defrag->cycled) {
315 		/*
316 		 * we didn't fill our defrag batch, but
317 		 * we didn't start at zero.  Make sure we loop
318 		 * around to the start of the file.
319 		 */
320 		defrag->last_offset = 0;
321 		defrag->cycled = 1;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else {
324 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 	}
326 
327 	iput(inode);
328 	return 0;
329 cleanup:
330 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 	return ret;
332 }
333 
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 	struct inode_defrag *defrag;
341 	u64 first_ino = 0;
342 	u64 root_objectid = 0;
343 
344 	atomic_inc(&fs_info->defrag_running);
345 	while (1) {
346 		/* Pause the auto defragger. */
347 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 			     &fs_info->fs_state))
349 			break;
350 
351 		if (!__need_auto_defrag(fs_info))
352 			break;
353 
354 		/* find an inode to defrag */
355 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 						 first_ino);
357 		if (!defrag) {
358 			if (root_objectid || first_ino) {
359 				root_objectid = 0;
360 				first_ino = 0;
361 				continue;
362 			} else {
363 				break;
364 			}
365 		}
366 
367 		first_ino = defrag->ino + 1;
368 		root_objectid = defrag->root;
369 
370 		__btrfs_run_defrag_inode(fs_info, defrag);
371 	}
372 	atomic_dec(&fs_info->defrag_running);
373 
374 	/*
375 	 * during unmount, we use the transaction_wait queue to
376 	 * wait for the defragger to stop
377 	 */
378 	wake_up(&fs_info->transaction_wait);
379 	return 0;
380 }
381 
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 					 struct page **prepared_pages,
387 					 struct iov_iter *i)
388 {
389 	size_t copied = 0;
390 	size_t total_copied = 0;
391 	int pg = 0;
392 	int offset = offset_in_page(pos);
393 
394 	while (write_bytes > 0) {
395 		size_t count = min_t(size_t,
396 				     PAGE_SIZE - offset, write_bytes);
397 		struct page *page = prepared_pages[pg];
398 		/*
399 		 * Copy data from userspace to the current page
400 		 */
401 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402 
403 		/* Flush processor's dcache for this page */
404 		flush_dcache_page(page);
405 
406 		/*
407 		 * if we get a partial write, we can end up with
408 		 * partially up to date pages.  These add
409 		 * a lot of complexity, so make sure they don't
410 		 * happen by forcing this copy to be retried.
411 		 *
412 		 * The rest of the btrfs_file_write code will fall
413 		 * back to page at a time copies after we return 0.
414 		 */
415 		if (!PageUptodate(page) && copied < count)
416 			copied = 0;
417 
418 		iov_iter_advance(i, copied);
419 		write_bytes -= copied;
420 		total_copied += copied;
421 
422 		/* Return to btrfs_file_write_iter to fault page */
423 		if (unlikely(copied == 0))
424 			break;
425 
426 		if (copied < PAGE_SIZE - offset) {
427 			offset += copied;
428 		} else {
429 			pg++;
430 			offset = 0;
431 		}
432 	}
433 	return total_copied;
434 }
435 
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
btrfs_drop_pages(struct page ** pages,size_t num_pages)439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 	size_t i;
442 	for (i = 0; i < num_pages; i++) {
443 		/* page checked is some magic around finding pages that
444 		 * have been modified without going through btrfs_set_page_dirty
445 		 * clear it here. There should be no need to mark the pages
446 		 * accessed as prepare_pages should have marked them accessed
447 		 * in prepare_pages via find_or_create_page()
448 		 */
449 		ClearPageChecked(pages[i]);
450 		unlock_page(pages[i]);
451 		put_page(pages[i]);
452 	}
453 }
454 
455 /*
456  * after copy_from_user, pages need to be dirtied and we need to make
457  * sure holes are created between the current EOF and the start of
458  * any next extents (if required).
459  *
460  * this also makes the decision about creating an inline extent vs
461  * doing real data extents, marking pages dirty and delalloc as required.
462  */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 		      size_t num_pages, loff_t pos, size_t write_bytes,
465 		      struct extent_state **cached)
466 {
467 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 	int err = 0;
469 	int i;
470 	u64 num_bytes;
471 	u64 start_pos;
472 	u64 end_of_last_block;
473 	u64 end_pos = pos + write_bytes;
474 	loff_t isize = i_size_read(&inode->vfs_inode);
475 	unsigned int extra_bits = 0;
476 
477 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
478 	num_bytes = round_up(write_bytes + pos - start_pos,
479 			     fs_info->sectorsize);
480 
481 	end_of_last_block = start_pos + num_bytes - 1;
482 
483 	/*
484 	 * The pages may have already been dirty, clear out old accounting so
485 	 * we can set things up properly
486 	 */
487 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
488 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
489 			 0, 0, cached);
490 
491 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
492 					extra_bits, cached);
493 	if (err)
494 		return err;
495 
496 	for (i = 0; i < num_pages; i++) {
497 		struct page *p = pages[i];
498 		SetPageUptodate(p);
499 		ClearPageChecked(p);
500 		set_page_dirty(p);
501 	}
502 
503 	/*
504 	 * we've only changed i_size in ram, and we haven't updated
505 	 * the disk i_size.  There is no need to log the inode
506 	 * at this time.
507 	 */
508 	if (end_pos > isize)
509 		i_size_write(&inode->vfs_inode, end_pos);
510 	return 0;
511 }
512 
513 /*
514  * this drops all the extents in the cache that intersect the range
515  * [start, end].  Existing extents are split as required.
516  */
btrfs_drop_extent_cache(struct btrfs_inode * inode,u64 start,u64 end,int skip_pinned)517 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
518 			     int skip_pinned)
519 {
520 	struct extent_map *em;
521 	struct extent_map *split = NULL;
522 	struct extent_map *split2 = NULL;
523 	struct extent_map_tree *em_tree = &inode->extent_tree;
524 	u64 len = end - start + 1;
525 	u64 gen;
526 	int ret;
527 	int testend = 1;
528 	unsigned long flags;
529 	int compressed = 0;
530 	bool modified;
531 
532 	WARN_ON(end < start);
533 	if (end == (u64)-1) {
534 		len = (u64)-1;
535 		testend = 0;
536 	}
537 	while (1) {
538 		int no_splits = 0;
539 
540 		modified = false;
541 		if (!split)
542 			split = alloc_extent_map();
543 		if (!split2)
544 			split2 = alloc_extent_map();
545 		if (!split || !split2)
546 			no_splits = 1;
547 
548 		write_lock(&em_tree->lock);
549 		em = lookup_extent_mapping(em_tree, start, len);
550 		if (!em) {
551 			write_unlock(&em_tree->lock);
552 			break;
553 		}
554 		flags = em->flags;
555 		gen = em->generation;
556 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
557 			if (testend && em->start + em->len >= start + len) {
558 				free_extent_map(em);
559 				write_unlock(&em_tree->lock);
560 				break;
561 			}
562 			start = em->start + em->len;
563 			if (testend)
564 				len = start + len - (em->start + em->len);
565 			free_extent_map(em);
566 			write_unlock(&em_tree->lock);
567 			continue;
568 		}
569 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
570 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
571 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
572 		modified = !list_empty(&em->list);
573 		if (no_splits)
574 			goto next;
575 
576 		if (em->start < start) {
577 			split->start = em->start;
578 			split->len = start - em->start;
579 
580 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
581 				split->orig_start = em->orig_start;
582 				split->block_start = em->block_start;
583 
584 				if (compressed)
585 					split->block_len = em->block_len;
586 				else
587 					split->block_len = split->len;
588 				split->orig_block_len = max(split->block_len,
589 						em->orig_block_len);
590 				split->ram_bytes = em->ram_bytes;
591 			} else {
592 				split->orig_start = split->start;
593 				split->block_len = 0;
594 				split->block_start = em->block_start;
595 				split->orig_block_len = 0;
596 				split->ram_bytes = split->len;
597 			}
598 
599 			split->generation = gen;
600 			split->flags = flags;
601 			split->compress_type = em->compress_type;
602 			replace_extent_mapping(em_tree, em, split, modified);
603 			free_extent_map(split);
604 			split = split2;
605 			split2 = NULL;
606 		}
607 		if (testend && em->start + em->len > start + len) {
608 			u64 diff = start + len - em->start;
609 
610 			split->start = start + len;
611 			split->len = em->start + em->len - (start + len);
612 			split->flags = flags;
613 			split->compress_type = em->compress_type;
614 			split->generation = gen;
615 
616 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
617 				split->orig_block_len = max(em->block_len,
618 						    em->orig_block_len);
619 
620 				split->ram_bytes = em->ram_bytes;
621 				if (compressed) {
622 					split->block_len = em->block_len;
623 					split->block_start = em->block_start;
624 					split->orig_start = em->orig_start;
625 				} else {
626 					split->block_len = split->len;
627 					split->block_start = em->block_start
628 						+ diff;
629 					split->orig_start = em->orig_start;
630 				}
631 			} else {
632 				split->ram_bytes = split->len;
633 				split->orig_start = split->start;
634 				split->block_len = 0;
635 				split->block_start = em->block_start;
636 				split->orig_block_len = 0;
637 			}
638 
639 			if (extent_map_in_tree(em)) {
640 				replace_extent_mapping(em_tree, em, split,
641 						       modified);
642 			} else {
643 				ret = add_extent_mapping(em_tree, split,
644 							 modified);
645 				ASSERT(ret == 0); /* Logic error */
646 			}
647 			free_extent_map(split);
648 			split = NULL;
649 		}
650 next:
651 		if (extent_map_in_tree(em))
652 			remove_extent_mapping(em_tree, em);
653 		write_unlock(&em_tree->lock);
654 
655 		/* once for us */
656 		free_extent_map(em);
657 		/* once for the tree*/
658 		free_extent_map(em);
659 	}
660 	if (split)
661 		free_extent_map(split);
662 	if (split2)
663 		free_extent_map(split2);
664 }
665 
666 /*
667  * this is very complex, but the basic idea is to drop all extents
668  * in the range start - end.  hint_block is filled in with a block number
669  * that would be a good hint to the block allocator for this file.
670  *
671  * If an extent intersects the range but is not entirely inside the range
672  * it is either truncated or split.  Anything entirely inside the range
673  * is deleted from the tree.
674  */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 			 struct btrfs_root *root, struct btrfs_inode *inode,
677 			 struct btrfs_path *path, u64 start, u64 end,
678 			 u64 *drop_end, int drop_cache,
679 			 int replace_extent,
680 			 u32 extent_item_size,
681 			 int *key_inserted)
682 {
683 	struct btrfs_fs_info *fs_info = root->fs_info;
684 	struct extent_buffer *leaf;
685 	struct btrfs_file_extent_item *fi;
686 	struct btrfs_ref ref = { 0 };
687 	struct btrfs_key key;
688 	struct btrfs_key new_key;
689 	struct inode *vfs_inode = &inode->vfs_inode;
690 	u64 ino = btrfs_ino(inode);
691 	u64 search_start = start;
692 	u64 disk_bytenr = 0;
693 	u64 num_bytes = 0;
694 	u64 extent_offset = 0;
695 	u64 extent_end = 0;
696 	u64 last_end = start;
697 	int del_nr = 0;
698 	int del_slot = 0;
699 	int extent_type;
700 	int recow;
701 	int ret;
702 	int modify_tree = -1;
703 	int update_refs;
704 	int found = 0;
705 	int leafs_visited = 0;
706 
707 	if (drop_cache)
708 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
709 
710 	if (start >= inode->disk_i_size && !replace_extent)
711 		modify_tree = 0;
712 
713 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
714 	while (1) {
715 		recow = 0;
716 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
717 					       search_start, modify_tree);
718 		if (ret < 0)
719 			break;
720 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
721 			leaf = path->nodes[0];
722 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
723 			if (key.objectid == ino &&
724 			    key.type == BTRFS_EXTENT_DATA_KEY)
725 				path->slots[0]--;
726 		}
727 		ret = 0;
728 		leafs_visited++;
729 next_slot:
730 		leaf = path->nodes[0];
731 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
732 			BUG_ON(del_nr > 0);
733 			ret = btrfs_next_leaf(root, path);
734 			if (ret < 0)
735 				break;
736 			if (ret > 0) {
737 				ret = 0;
738 				break;
739 			}
740 			leafs_visited++;
741 			leaf = path->nodes[0];
742 			recow = 1;
743 		}
744 
745 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
746 
747 		if (key.objectid > ino)
748 			break;
749 		if (WARN_ON_ONCE(key.objectid < ino) ||
750 		    key.type < BTRFS_EXTENT_DATA_KEY) {
751 			ASSERT(del_nr == 0);
752 			path->slots[0]++;
753 			goto next_slot;
754 		}
755 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
756 			break;
757 
758 		fi = btrfs_item_ptr(leaf, path->slots[0],
759 				    struct btrfs_file_extent_item);
760 		extent_type = btrfs_file_extent_type(leaf, fi);
761 
762 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
763 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
764 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
765 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
766 			extent_offset = btrfs_file_extent_offset(leaf, fi);
767 			extent_end = key.offset +
768 				btrfs_file_extent_num_bytes(leaf, fi);
769 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
770 			extent_end = key.offset +
771 				btrfs_file_extent_ram_bytes(leaf, fi);
772 		} else {
773 			/* can't happen */
774 			BUG();
775 		}
776 
777 		/*
778 		 * Don't skip extent items representing 0 byte lengths. They
779 		 * used to be created (bug) if while punching holes we hit
780 		 * -ENOSPC condition. So if we find one here, just ensure we
781 		 * delete it, otherwise we would insert a new file extent item
782 		 * with the same key (offset) as that 0 bytes length file
783 		 * extent item in the call to setup_items_for_insert() later
784 		 * in this function.
785 		 */
786 		if (extent_end == key.offset && extent_end >= search_start) {
787 			last_end = extent_end;
788 			goto delete_extent_item;
789 		}
790 
791 		if (extent_end <= search_start) {
792 			path->slots[0]++;
793 			goto next_slot;
794 		}
795 
796 		found = 1;
797 		search_start = max(key.offset, start);
798 		if (recow || !modify_tree) {
799 			modify_tree = -1;
800 			btrfs_release_path(path);
801 			continue;
802 		}
803 
804 		/*
805 		 *     | - range to drop - |
806 		 *  | -------- extent -------- |
807 		 */
808 		if (start > key.offset && end < extent_end) {
809 			BUG_ON(del_nr > 0);
810 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
811 				ret = -EOPNOTSUPP;
812 				break;
813 			}
814 
815 			memcpy(&new_key, &key, sizeof(new_key));
816 			new_key.offset = start;
817 			ret = btrfs_duplicate_item(trans, root, path,
818 						   &new_key);
819 			if (ret == -EAGAIN) {
820 				btrfs_release_path(path);
821 				continue;
822 			}
823 			if (ret < 0)
824 				break;
825 
826 			leaf = path->nodes[0];
827 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
828 					    struct btrfs_file_extent_item);
829 			btrfs_set_file_extent_num_bytes(leaf, fi,
830 							start - key.offset);
831 
832 			fi = btrfs_item_ptr(leaf, path->slots[0],
833 					    struct btrfs_file_extent_item);
834 
835 			extent_offset += start - key.offset;
836 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
837 			btrfs_set_file_extent_num_bytes(leaf, fi,
838 							extent_end - start);
839 			btrfs_mark_buffer_dirty(leaf);
840 
841 			if (update_refs && disk_bytenr > 0) {
842 				btrfs_init_generic_ref(&ref,
843 						BTRFS_ADD_DELAYED_REF,
844 						disk_bytenr, num_bytes, 0);
845 				btrfs_init_data_ref(&ref,
846 						root->root_key.objectid,
847 						new_key.objectid,
848 						start - extent_offset);
849 				ret = btrfs_inc_extent_ref(trans, &ref);
850 				BUG_ON(ret); /* -ENOMEM */
851 			}
852 			key.offset = start;
853 		}
854 		/*
855 		 * From here on out we will have actually dropped something, so
856 		 * last_end can be updated.
857 		 */
858 		last_end = extent_end;
859 
860 		/*
861 		 *  | ---- range to drop ----- |
862 		 *      | -------- extent -------- |
863 		 */
864 		if (start <= key.offset && end < extent_end) {
865 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
866 				ret = -EOPNOTSUPP;
867 				break;
868 			}
869 
870 			memcpy(&new_key, &key, sizeof(new_key));
871 			new_key.offset = end;
872 			btrfs_set_item_key_safe(fs_info, path, &new_key);
873 
874 			extent_offset += end - key.offset;
875 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
876 			btrfs_set_file_extent_num_bytes(leaf, fi,
877 							extent_end - end);
878 			btrfs_mark_buffer_dirty(leaf);
879 			if (update_refs && disk_bytenr > 0)
880 				inode_sub_bytes(vfs_inode, end - key.offset);
881 			break;
882 		}
883 
884 		search_start = extent_end;
885 		/*
886 		 *       | ---- range to drop ----- |
887 		 *  | -------- extent -------- |
888 		 */
889 		if (start > key.offset && end >= extent_end) {
890 			BUG_ON(del_nr > 0);
891 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
892 				ret = -EOPNOTSUPP;
893 				break;
894 			}
895 
896 			btrfs_set_file_extent_num_bytes(leaf, fi,
897 							start - key.offset);
898 			btrfs_mark_buffer_dirty(leaf);
899 			if (update_refs && disk_bytenr > 0)
900 				inode_sub_bytes(vfs_inode, extent_end - start);
901 			if (end == extent_end)
902 				break;
903 
904 			path->slots[0]++;
905 			goto next_slot;
906 		}
907 
908 		/*
909 		 *  | ---- range to drop ----- |
910 		 *    | ------ extent ------ |
911 		 */
912 		if (start <= key.offset && end >= extent_end) {
913 delete_extent_item:
914 			if (del_nr == 0) {
915 				del_slot = path->slots[0];
916 				del_nr = 1;
917 			} else {
918 				BUG_ON(del_slot + del_nr != path->slots[0]);
919 				del_nr++;
920 			}
921 
922 			if (update_refs &&
923 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
924 				inode_sub_bytes(vfs_inode,
925 						extent_end - key.offset);
926 				extent_end = ALIGN(extent_end,
927 						   fs_info->sectorsize);
928 			} else if (update_refs && disk_bytenr > 0) {
929 				btrfs_init_generic_ref(&ref,
930 						BTRFS_DROP_DELAYED_REF,
931 						disk_bytenr, num_bytes, 0);
932 				btrfs_init_data_ref(&ref,
933 						root->root_key.objectid,
934 						key.objectid,
935 						key.offset - extent_offset);
936 				ret = btrfs_free_extent(trans, &ref);
937 				BUG_ON(ret); /* -ENOMEM */
938 				inode_sub_bytes(vfs_inode,
939 						extent_end - key.offset);
940 			}
941 
942 			if (end == extent_end)
943 				break;
944 
945 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 				path->slots[0]++;
947 				goto next_slot;
948 			}
949 
950 			ret = btrfs_del_items(trans, root, path, del_slot,
951 					      del_nr);
952 			if (ret) {
953 				btrfs_abort_transaction(trans, ret);
954 				break;
955 			}
956 
957 			del_nr = 0;
958 			del_slot = 0;
959 
960 			btrfs_release_path(path);
961 			continue;
962 		}
963 
964 		BUG();
965 	}
966 
967 	if (!ret && del_nr > 0) {
968 		/*
969 		 * Set path->slots[0] to first slot, so that after the delete
970 		 * if items are move off from our leaf to its immediate left or
971 		 * right neighbor leafs, we end up with a correct and adjusted
972 		 * path->slots[0] for our insertion (if replace_extent != 0).
973 		 */
974 		path->slots[0] = del_slot;
975 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 		if (ret)
977 			btrfs_abort_transaction(trans, ret);
978 	}
979 
980 	leaf = path->nodes[0];
981 	/*
982 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 	 * which case it unlocked our path, so check path->locks[0] matches a
984 	 * write lock.
985 	 */
986 	if (!ret && replace_extent && leafs_visited == 1 &&
987 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
989 	    btrfs_leaf_free_space(leaf) >=
990 	    sizeof(struct btrfs_item) + extent_item_size) {
991 
992 		key.objectid = ino;
993 		key.type = BTRFS_EXTENT_DATA_KEY;
994 		key.offset = start;
995 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 			struct btrfs_key slot_key;
997 
998 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 				path->slots[0]++;
1001 		}
1002 		setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1003 		*key_inserted = 1;
1004 	}
1005 
1006 	if (!replace_extent || !(*key_inserted))
1007 		btrfs_release_path(path);
1008 	if (drop_end)
1009 		*drop_end = found ? min(end, last_end) : end;
1010 	return ret;
1011 }
1012 
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1014 		       struct btrfs_root *root, struct inode *inode, u64 start,
1015 		       u64 end, int drop_cache)
1016 {
1017 	struct btrfs_path *path;
1018 	int ret;
1019 
1020 	path = btrfs_alloc_path();
1021 	if (!path)
1022 		return -ENOMEM;
1023 	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1024 				   end, NULL, drop_cache, 0, 0, NULL);
1025 	btrfs_free_path(path);
1026 	return ret;
1027 }
1028 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1029 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1030 			    u64 objectid, u64 bytenr, u64 orig_offset,
1031 			    u64 *start, u64 *end)
1032 {
1033 	struct btrfs_file_extent_item *fi;
1034 	struct btrfs_key key;
1035 	u64 extent_end;
1036 
1037 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1038 		return 0;
1039 
1040 	btrfs_item_key_to_cpu(leaf, &key, slot);
1041 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1042 		return 0;
1043 
1044 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1045 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1046 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1047 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1048 	    btrfs_file_extent_compression(leaf, fi) ||
1049 	    btrfs_file_extent_encryption(leaf, fi) ||
1050 	    btrfs_file_extent_other_encoding(leaf, fi))
1051 		return 0;
1052 
1053 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1054 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1055 		return 0;
1056 
1057 	*start = key.offset;
1058 	*end = extent_end;
1059 	return 1;
1060 }
1061 
1062 /*
1063  * Mark extent in the range start - end as written.
1064  *
1065  * This changes extent type from 'pre-allocated' to 'regular'. If only
1066  * part of extent is marked as written, the extent will be split into
1067  * two or three.
1068  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1070 			      struct btrfs_inode *inode, u64 start, u64 end)
1071 {
1072 	struct btrfs_fs_info *fs_info = trans->fs_info;
1073 	struct btrfs_root *root = inode->root;
1074 	struct extent_buffer *leaf;
1075 	struct btrfs_path *path;
1076 	struct btrfs_file_extent_item *fi;
1077 	struct btrfs_ref ref = { 0 };
1078 	struct btrfs_key key;
1079 	struct btrfs_key new_key;
1080 	u64 bytenr;
1081 	u64 num_bytes;
1082 	u64 extent_end;
1083 	u64 orig_offset;
1084 	u64 other_start;
1085 	u64 other_end;
1086 	u64 split;
1087 	int del_nr = 0;
1088 	int del_slot = 0;
1089 	int recow;
1090 	int ret = 0;
1091 	u64 ino = btrfs_ino(inode);
1092 
1093 	path = btrfs_alloc_path();
1094 	if (!path)
1095 		return -ENOMEM;
1096 again:
1097 	recow = 0;
1098 	split = start;
1099 	key.objectid = ino;
1100 	key.type = BTRFS_EXTENT_DATA_KEY;
1101 	key.offset = split;
1102 
1103 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104 	if (ret < 0)
1105 		goto out;
1106 	if (ret > 0 && path->slots[0] > 0)
1107 		path->slots[0]--;
1108 
1109 	leaf = path->nodes[0];
1110 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1111 	if (key.objectid != ino ||
1112 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1113 		ret = -EINVAL;
1114 		btrfs_abort_transaction(trans, ret);
1115 		goto out;
1116 	}
1117 	fi = btrfs_item_ptr(leaf, path->slots[0],
1118 			    struct btrfs_file_extent_item);
1119 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1120 		ret = -EINVAL;
1121 		btrfs_abort_transaction(trans, ret);
1122 		goto out;
1123 	}
1124 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1125 	if (key.offset > start || extent_end < end) {
1126 		ret = -EINVAL;
1127 		btrfs_abort_transaction(trans, ret);
1128 		goto out;
1129 	}
1130 
1131 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1132 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1133 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1134 	memcpy(&new_key, &key, sizeof(new_key));
1135 
1136 	if (start == key.offset && end < extent_end) {
1137 		other_start = 0;
1138 		other_end = start;
1139 		if (extent_mergeable(leaf, path->slots[0] - 1,
1140 				     ino, bytenr, orig_offset,
1141 				     &other_start, &other_end)) {
1142 			new_key.offset = end;
1143 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1144 			fi = btrfs_item_ptr(leaf, path->slots[0],
1145 					    struct btrfs_file_extent_item);
1146 			btrfs_set_file_extent_generation(leaf, fi,
1147 							 trans->transid);
1148 			btrfs_set_file_extent_num_bytes(leaf, fi,
1149 							extent_end - end);
1150 			btrfs_set_file_extent_offset(leaf, fi,
1151 						     end - orig_offset);
1152 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1153 					    struct btrfs_file_extent_item);
1154 			btrfs_set_file_extent_generation(leaf, fi,
1155 							 trans->transid);
1156 			btrfs_set_file_extent_num_bytes(leaf, fi,
1157 							end - other_start);
1158 			btrfs_mark_buffer_dirty(leaf);
1159 			goto out;
1160 		}
1161 	}
1162 
1163 	if (start > key.offset && end == extent_end) {
1164 		other_start = end;
1165 		other_end = 0;
1166 		if (extent_mergeable(leaf, path->slots[0] + 1,
1167 				     ino, bytenr, orig_offset,
1168 				     &other_start, &other_end)) {
1169 			fi = btrfs_item_ptr(leaf, path->slots[0],
1170 					    struct btrfs_file_extent_item);
1171 			btrfs_set_file_extent_num_bytes(leaf, fi,
1172 							start - key.offset);
1173 			btrfs_set_file_extent_generation(leaf, fi,
1174 							 trans->transid);
1175 			path->slots[0]++;
1176 			new_key.offset = start;
1177 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1178 
1179 			fi = btrfs_item_ptr(leaf, path->slots[0],
1180 					    struct btrfs_file_extent_item);
1181 			btrfs_set_file_extent_generation(leaf, fi,
1182 							 trans->transid);
1183 			btrfs_set_file_extent_num_bytes(leaf, fi,
1184 							other_end - start);
1185 			btrfs_set_file_extent_offset(leaf, fi,
1186 						     start - orig_offset);
1187 			btrfs_mark_buffer_dirty(leaf);
1188 			goto out;
1189 		}
1190 	}
1191 
1192 	while (start > key.offset || end < extent_end) {
1193 		if (key.offset == start)
1194 			split = end;
1195 
1196 		new_key.offset = split;
1197 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1198 		if (ret == -EAGAIN) {
1199 			btrfs_release_path(path);
1200 			goto again;
1201 		}
1202 		if (ret < 0) {
1203 			btrfs_abort_transaction(trans, ret);
1204 			goto out;
1205 		}
1206 
1207 		leaf = path->nodes[0];
1208 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1209 				    struct btrfs_file_extent_item);
1210 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1211 		btrfs_set_file_extent_num_bytes(leaf, fi,
1212 						split - key.offset);
1213 
1214 		fi = btrfs_item_ptr(leaf, path->slots[0],
1215 				    struct btrfs_file_extent_item);
1216 
1217 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1218 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1219 		btrfs_set_file_extent_num_bytes(leaf, fi,
1220 						extent_end - split);
1221 		btrfs_mark_buffer_dirty(leaf);
1222 
1223 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1224 				       num_bytes, 0);
1225 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1226 				    orig_offset);
1227 		ret = btrfs_inc_extent_ref(trans, &ref);
1228 		if (ret) {
1229 			btrfs_abort_transaction(trans, ret);
1230 			goto out;
1231 		}
1232 
1233 		if (split == start) {
1234 			key.offset = start;
1235 		} else {
1236 			if (start != key.offset) {
1237 				ret = -EINVAL;
1238 				btrfs_abort_transaction(trans, ret);
1239 				goto out;
1240 			}
1241 			path->slots[0]--;
1242 			extent_end = end;
1243 		}
1244 		recow = 1;
1245 	}
1246 
1247 	other_start = end;
1248 	other_end = 0;
1249 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1250 			       num_bytes, 0);
1251 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1252 	if (extent_mergeable(leaf, path->slots[0] + 1,
1253 			     ino, bytenr, orig_offset,
1254 			     &other_start, &other_end)) {
1255 		if (recow) {
1256 			btrfs_release_path(path);
1257 			goto again;
1258 		}
1259 		extent_end = other_end;
1260 		del_slot = path->slots[0] + 1;
1261 		del_nr++;
1262 		ret = btrfs_free_extent(trans, &ref);
1263 		if (ret) {
1264 			btrfs_abort_transaction(trans, ret);
1265 			goto out;
1266 		}
1267 	}
1268 	other_start = 0;
1269 	other_end = start;
1270 	if (extent_mergeable(leaf, path->slots[0] - 1,
1271 			     ino, bytenr, orig_offset,
1272 			     &other_start, &other_end)) {
1273 		if (recow) {
1274 			btrfs_release_path(path);
1275 			goto again;
1276 		}
1277 		key.offset = other_start;
1278 		del_slot = path->slots[0];
1279 		del_nr++;
1280 		ret = btrfs_free_extent(trans, &ref);
1281 		if (ret) {
1282 			btrfs_abort_transaction(trans, ret);
1283 			goto out;
1284 		}
1285 	}
1286 	if (del_nr == 0) {
1287 		fi = btrfs_item_ptr(leaf, path->slots[0],
1288 			   struct btrfs_file_extent_item);
1289 		btrfs_set_file_extent_type(leaf, fi,
1290 					   BTRFS_FILE_EXTENT_REG);
1291 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1292 		btrfs_mark_buffer_dirty(leaf);
1293 	} else {
1294 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1295 			   struct btrfs_file_extent_item);
1296 		btrfs_set_file_extent_type(leaf, fi,
1297 					   BTRFS_FILE_EXTENT_REG);
1298 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1299 		btrfs_set_file_extent_num_bytes(leaf, fi,
1300 						extent_end - key.offset);
1301 		btrfs_mark_buffer_dirty(leaf);
1302 
1303 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1304 		if (ret < 0) {
1305 			btrfs_abort_transaction(trans, ret);
1306 			goto out;
1307 		}
1308 	}
1309 out:
1310 	btrfs_free_path(path);
1311 	return ret;
1312 }
1313 
1314 /*
1315  * on error we return an unlocked page and the error value
1316  * on success we return a locked page and 0
1317  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1318 static int prepare_uptodate_page(struct inode *inode,
1319 				 struct page *page, u64 pos,
1320 				 bool force_uptodate)
1321 {
1322 	int ret = 0;
1323 
1324 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1325 	    !PageUptodate(page)) {
1326 		ret = btrfs_readpage(NULL, page);
1327 		if (ret)
1328 			return ret;
1329 		lock_page(page);
1330 		if (!PageUptodate(page)) {
1331 			unlock_page(page);
1332 			return -EIO;
1333 		}
1334 		if (page->mapping != inode->i_mapping) {
1335 			unlock_page(page);
1336 			return -EAGAIN;
1337 		}
1338 	}
1339 	return 0;
1340 }
1341 
1342 /*
1343  * this just gets pages into the page cache and locks them down.
1344  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1345 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1346 				  size_t num_pages, loff_t pos,
1347 				  size_t write_bytes, bool force_uptodate)
1348 {
1349 	int i;
1350 	unsigned long index = pos >> PAGE_SHIFT;
1351 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1352 	int err = 0;
1353 	int faili;
1354 
1355 	for (i = 0; i < num_pages; i++) {
1356 again:
1357 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1358 					       mask | __GFP_WRITE);
1359 		if (!pages[i]) {
1360 			faili = i - 1;
1361 			err = -ENOMEM;
1362 			goto fail;
1363 		}
1364 
1365 		if (i == 0)
1366 			err = prepare_uptodate_page(inode, pages[i], pos,
1367 						    force_uptodate);
1368 		if (!err && i == num_pages - 1)
1369 			err = prepare_uptodate_page(inode, pages[i],
1370 						    pos + write_bytes, false);
1371 		if (err) {
1372 			put_page(pages[i]);
1373 			if (err == -EAGAIN) {
1374 				err = 0;
1375 				goto again;
1376 			}
1377 			faili = i - 1;
1378 			goto fail;
1379 		}
1380 		wait_on_page_writeback(pages[i]);
1381 	}
1382 
1383 	return 0;
1384 fail:
1385 	while (faili >= 0) {
1386 		unlock_page(pages[faili]);
1387 		put_page(pages[faili]);
1388 		faili--;
1389 	}
1390 	return err;
1391 
1392 }
1393 
1394 /*
1395  * This function locks the extent and properly waits for data=ordered extents
1396  * to finish before allowing the pages to be modified if need.
1397  *
1398  * The return value:
1399  * 1 - the extent is locked
1400  * 0 - the extent is not locked, and everything is OK
1401  * -EAGAIN - need re-prepare the pages
1402  * the other < 0 number - Something wrong happens
1403  */
1404 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1405 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1406 				size_t num_pages, loff_t pos,
1407 				size_t write_bytes,
1408 				u64 *lockstart, u64 *lockend,
1409 				struct extent_state **cached_state)
1410 {
1411 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1412 	u64 start_pos;
1413 	u64 last_pos;
1414 	int i;
1415 	int ret = 0;
1416 
1417 	start_pos = round_down(pos, fs_info->sectorsize);
1418 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1419 
1420 	if (start_pos < inode->vfs_inode.i_size) {
1421 		struct btrfs_ordered_extent *ordered;
1422 
1423 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1424 				cached_state);
1425 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1426 						     last_pos - start_pos + 1);
1427 		if (ordered &&
1428 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1429 		    ordered->file_offset <= last_pos) {
1430 			unlock_extent_cached(&inode->io_tree, start_pos,
1431 					last_pos, cached_state);
1432 			for (i = 0; i < num_pages; i++) {
1433 				unlock_page(pages[i]);
1434 				put_page(pages[i]);
1435 			}
1436 			btrfs_start_ordered_extent(ordered, 1);
1437 			btrfs_put_ordered_extent(ordered);
1438 			return -EAGAIN;
1439 		}
1440 		if (ordered)
1441 			btrfs_put_ordered_extent(ordered);
1442 
1443 		*lockstart = start_pos;
1444 		*lockend = last_pos;
1445 		ret = 1;
1446 	}
1447 
1448 	/*
1449 	 * It's possible the pages are dirty right now, but we don't want
1450 	 * to clean them yet because copy_from_user may catch a page fault
1451 	 * and we might have to fall back to one page at a time.  If that
1452 	 * happens, we'll unlock these pages and we'd have a window where
1453 	 * reclaim could sneak in and drop the once-dirty page on the floor
1454 	 * without writing it.
1455 	 *
1456 	 * We have the pages locked and the extent range locked, so there's
1457 	 * no way someone can start IO on any dirty pages in this range.
1458 	 *
1459 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1460 	 * delalloc bits and dirty the pages as required.
1461 	 */
1462 	for (i = 0; i < num_pages; i++) {
1463 		set_page_extent_mapped(pages[i]);
1464 		WARN_ON(!PageLocked(pages[i]));
1465 	}
1466 
1467 	return ret;
1468 }
1469 
check_can_nocow(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1470 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1471 			   size_t *write_bytes, bool nowait)
1472 {
1473 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474 	struct btrfs_root *root = inode->root;
1475 	u64 lockstart, lockend;
1476 	u64 num_bytes;
1477 	int ret;
1478 
1479 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1480 		return 0;
1481 
1482 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1483 		return -EAGAIN;
1484 
1485 	lockstart = round_down(pos, fs_info->sectorsize);
1486 	lockend = round_up(pos + *write_bytes,
1487 			   fs_info->sectorsize) - 1;
1488 	num_bytes = lockend - lockstart + 1;
1489 
1490 	if (nowait) {
1491 		struct btrfs_ordered_extent *ordered;
1492 
1493 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1494 			return -EAGAIN;
1495 
1496 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1497 						     num_bytes);
1498 		if (ordered) {
1499 			btrfs_put_ordered_extent(ordered);
1500 			ret = -EAGAIN;
1501 			goto out_unlock;
1502 		}
1503 	} else {
1504 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1505 						   lockend, NULL);
1506 	}
1507 
1508 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1509 			NULL, NULL, NULL, false);
1510 	if (ret <= 0) {
1511 		ret = 0;
1512 		if (!nowait)
1513 			btrfs_drew_write_unlock(&root->snapshot_lock);
1514 	} else {
1515 		*write_bytes = min_t(size_t, *write_bytes ,
1516 				     num_bytes - pos + lockstart);
1517 	}
1518 out_unlock:
1519 	unlock_extent(&inode->io_tree, lockstart, lockend);
1520 
1521 	return ret;
1522 }
1523 
check_nocow_nolock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1524 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1525 			      size_t *write_bytes)
1526 {
1527 	return check_can_nocow(inode, pos, write_bytes, true);
1528 }
1529 
1530 /*
1531  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1532  *
1533  * @pos:	 File offset
1534  * @write_bytes: The length to write, will be updated to the nocow writeable
1535  *		 range
1536  *
1537  * This function will flush ordered extents in the range to ensure proper
1538  * nocow checks.
1539  *
1540  * Return:
1541  * >0		and update @write_bytes if we can do nocow write
1542  *  0		if we can't do nocow write
1543  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1544  * 		for * (nowait == true) case
1545  * <0		if other error happened
1546  *
1547  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1548  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1549 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1550 			   size_t *write_bytes)
1551 {
1552 	return check_can_nocow(inode, pos, write_bytes, false);
1553 }
1554 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1555 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1556 {
1557 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1558 }
1559 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1560 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1561 					       struct iov_iter *i)
1562 {
1563 	struct file *file = iocb->ki_filp;
1564 	loff_t pos = iocb->ki_pos;
1565 	struct inode *inode = file_inode(file);
1566 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1567 	struct page **pages = NULL;
1568 	struct extent_changeset *data_reserved = NULL;
1569 	u64 release_bytes = 0;
1570 	u64 lockstart;
1571 	u64 lockend;
1572 	size_t num_written = 0;
1573 	int nrptrs;
1574 	int ret = 0;
1575 	bool only_release_metadata = false;
1576 	bool force_page_uptodate = false;
1577 
1578 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1579 			PAGE_SIZE / (sizeof(struct page *)));
1580 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1581 	nrptrs = max(nrptrs, 8);
1582 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1583 	if (!pages)
1584 		return -ENOMEM;
1585 
1586 	while (iov_iter_count(i) > 0) {
1587 		struct extent_state *cached_state = NULL;
1588 		size_t offset = offset_in_page(pos);
1589 		size_t sector_offset;
1590 		size_t write_bytes = min(iov_iter_count(i),
1591 					 nrptrs * (size_t)PAGE_SIZE -
1592 					 offset);
1593 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1594 						PAGE_SIZE);
1595 		size_t reserve_bytes;
1596 		size_t dirty_pages;
1597 		size_t copied;
1598 		size_t dirty_sectors;
1599 		size_t num_sectors;
1600 		int extents_locked;
1601 
1602 		WARN_ON(num_pages > nrptrs);
1603 
1604 		/*
1605 		 * Fault pages before locking them in prepare_pages
1606 		 * to avoid recursive lock
1607 		 */
1608 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1609 			ret = -EFAULT;
1610 			break;
1611 		}
1612 
1613 		only_release_metadata = false;
1614 		sector_offset = pos & (fs_info->sectorsize - 1);
1615 		reserve_bytes = round_up(write_bytes + sector_offset,
1616 				fs_info->sectorsize);
1617 
1618 		extent_changeset_release(data_reserved);
1619 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1620 						  &data_reserved, pos,
1621 						  write_bytes);
1622 		if (ret < 0) {
1623 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1624 						   &write_bytes) > 0) {
1625 				/*
1626 				 * For nodata cow case, no need to reserve
1627 				 * data space.
1628 				 */
1629 				only_release_metadata = true;
1630 				/*
1631 				 * our prealloc extent may be smaller than
1632 				 * write_bytes, so scale down.
1633 				 */
1634 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1635 							 PAGE_SIZE);
1636 				reserve_bytes = round_up(write_bytes +
1637 							 sector_offset,
1638 							 fs_info->sectorsize);
1639 			} else {
1640 				break;
1641 			}
1642 		}
1643 
1644 		WARN_ON(reserve_bytes == 0);
1645 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1646 				reserve_bytes);
1647 		if (ret) {
1648 			if (!only_release_metadata)
1649 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1650 						data_reserved, pos,
1651 						write_bytes);
1652 			else
1653 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1654 			break;
1655 		}
1656 
1657 		release_bytes = reserve_bytes;
1658 again:
1659 		/*
1660 		 * This is going to setup the pages array with the number of
1661 		 * pages we want, so we don't really need to worry about the
1662 		 * contents of pages from loop to loop
1663 		 */
1664 		ret = prepare_pages(inode, pages, num_pages,
1665 				    pos, write_bytes,
1666 				    force_page_uptodate);
1667 		if (ret) {
1668 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1669 						       reserve_bytes);
1670 			break;
1671 		}
1672 
1673 		extents_locked = lock_and_cleanup_extent_if_need(
1674 				BTRFS_I(inode), pages,
1675 				num_pages, pos, write_bytes, &lockstart,
1676 				&lockend, &cached_state);
1677 		if (extents_locked < 0) {
1678 			if (extents_locked == -EAGAIN)
1679 				goto again;
1680 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1681 						       reserve_bytes);
1682 			ret = extents_locked;
1683 			break;
1684 		}
1685 
1686 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1687 
1688 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1689 		dirty_sectors = round_up(copied + sector_offset,
1690 					fs_info->sectorsize);
1691 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1692 
1693 		/*
1694 		 * if we have trouble faulting in the pages, fall
1695 		 * back to one page at a time
1696 		 */
1697 		if (copied < write_bytes)
1698 			nrptrs = 1;
1699 
1700 		if (copied == 0) {
1701 			force_page_uptodate = true;
1702 			dirty_sectors = 0;
1703 			dirty_pages = 0;
1704 		} else {
1705 			force_page_uptodate = false;
1706 			dirty_pages = DIV_ROUND_UP(copied + offset,
1707 						   PAGE_SIZE);
1708 		}
1709 
1710 		if (num_sectors > dirty_sectors) {
1711 			/* release everything except the sectors we dirtied */
1712 			release_bytes -= dirty_sectors <<
1713 						fs_info->sb->s_blocksize_bits;
1714 			if (only_release_metadata) {
1715 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1716 							release_bytes, true);
1717 			} else {
1718 				u64 __pos;
1719 
1720 				__pos = round_down(pos,
1721 						   fs_info->sectorsize) +
1722 					(dirty_pages << PAGE_SHIFT);
1723 				btrfs_delalloc_release_space(BTRFS_I(inode),
1724 						data_reserved, __pos,
1725 						release_bytes, true);
1726 			}
1727 		}
1728 
1729 		release_bytes = round_up(copied + sector_offset,
1730 					fs_info->sectorsize);
1731 
1732 		if (copied > 0)
1733 			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1734 						dirty_pages, pos, copied,
1735 						&cached_state);
1736 
1737 		/*
1738 		 * If we have not locked the extent range, because the range's
1739 		 * start offset is >= i_size, we might still have a non-NULL
1740 		 * cached extent state, acquired while marking the extent range
1741 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1742 		 * possible cached extent state to avoid a memory leak.
1743 		 */
1744 		if (extents_locked)
1745 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1746 					     lockstart, lockend, &cached_state);
1747 		else
1748 			free_extent_state(cached_state);
1749 
1750 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1751 		if (ret) {
1752 			btrfs_drop_pages(pages, num_pages);
1753 			break;
1754 		}
1755 
1756 		release_bytes = 0;
1757 		if (only_release_metadata)
1758 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1759 
1760 		if (only_release_metadata && copied > 0) {
1761 			lockstart = round_down(pos,
1762 					       fs_info->sectorsize);
1763 			lockend = round_up(pos + copied,
1764 					   fs_info->sectorsize) - 1;
1765 
1766 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1767 				       lockend, EXTENT_NORESERVE, NULL,
1768 				       NULL, GFP_NOFS);
1769 		}
1770 
1771 		btrfs_drop_pages(pages, num_pages);
1772 
1773 		cond_resched();
1774 
1775 		balance_dirty_pages_ratelimited(inode->i_mapping);
1776 
1777 		pos += copied;
1778 		num_written += copied;
1779 	}
1780 
1781 	kfree(pages);
1782 
1783 	if (release_bytes) {
1784 		if (only_release_metadata) {
1785 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1786 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1787 					release_bytes, true);
1788 		} else {
1789 			btrfs_delalloc_release_space(BTRFS_I(inode),
1790 					data_reserved,
1791 					round_down(pos, fs_info->sectorsize),
1792 					release_bytes, true);
1793 		}
1794 	}
1795 
1796 	extent_changeset_free(data_reserved);
1797 	return num_written ? num_written : ret;
1798 }
1799 
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1800 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1801 {
1802 	struct file *file = iocb->ki_filp;
1803 	struct inode *inode = file_inode(file);
1804 	loff_t pos;
1805 	ssize_t written;
1806 	ssize_t written_buffered;
1807 	loff_t endbyte;
1808 	int err;
1809 
1810 	written = btrfs_direct_IO(iocb, from);
1811 
1812 	if (written < 0 || !iov_iter_count(from))
1813 		return written;
1814 
1815 	pos = iocb->ki_pos;
1816 	written_buffered = btrfs_buffered_write(iocb, from);
1817 	if (written_buffered < 0) {
1818 		err = written_buffered;
1819 		goto out;
1820 	}
1821 	/*
1822 	 * Ensure all data is persisted. We want the next direct IO read to be
1823 	 * able to read what was just written.
1824 	 */
1825 	endbyte = pos + written_buffered - 1;
1826 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1827 	if (err)
1828 		goto out;
1829 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1830 	if (err)
1831 		goto out;
1832 	written += written_buffered;
1833 	iocb->ki_pos = pos + written_buffered;
1834 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1835 				 endbyte >> PAGE_SHIFT);
1836 out:
1837 	return written ? written : err;
1838 }
1839 
update_time_for_write(struct inode * inode)1840 static void update_time_for_write(struct inode *inode)
1841 {
1842 	struct timespec64 now;
1843 
1844 	if (IS_NOCMTIME(inode))
1845 		return;
1846 
1847 	now = current_time(inode);
1848 	if (!timespec64_equal(&inode->i_mtime, &now))
1849 		inode->i_mtime = now;
1850 
1851 	if (!timespec64_equal(&inode->i_ctime, &now))
1852 		inode->i_ctime = now;
1853 
1854 	if (IS_I_VERSION(inode))
1855 		inode_inc_iversion(inode);
1856 }
1857 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1858 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1859 				    struct iov_iter *from)
1860 {
1861 	struct file *file = iocb->ki_filp;
1862 	struct inode *inode = file_inode(file);
1863 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1864 	u64 start_pos;
1865 	u64 end_pos;
1866 	ssize_t num_written = 0;
1867 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1868 	ssize_t err;
1869 	loff_t pos;
1870 	size_t count;
1871 	loff_t oldsize;
1872 	int clean_page = 0;
1873 
1874 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1875 	    (iocb->ki_flags & IOCB_NOWAIT))
1876 		return -EOPNOTSUPP;
1877 
1878 	if (iocb->ki_flags & IOCB_NOWAIT) {
1879 		if (!inode_trylock(inode))
1880 			return -EAGAIN;
1881 	} else {
1882 		inode_lock(inode);
1883 	}
1884 
1885 	err = generic_write_checks(iocb, from);
1886 	if (err <= 0) {
1887 		inode_unlock(inode);
1888 		return err;
1889 	}
1890 
1891 	pos = iocb->ki_pos;
1892 	count = iov_iter_count(from);
1893 	if (iocb->ki_flags & IOCB_NOWAIT) {
1894 		size_t nocow_bytes = count;
1895 
1896 		/*
1897 		 * We will allocate space in case nodatacow is not set,
1898 		 * so bail
1899 		 */
1900 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1901 		    <= 0) {
1902 			inode_unlock(inode);
1903 			return -EAGAIN;
1904 		}
1905 		/*
1906 		 * There are holes in the range or parts of the range that must
1907 		 * be COWed (shared extents, RO block groups, etc), so just bail
1908 		 * out.
1909 		 */
1910 		if (nocow_bytes < count) {
1911 			inode_unlock(inode);
1912 			return -EAGAIN;
1913 		}
1914 	}
1915 
1916 	current->backing_dev_info = inode_to_bdi(inode);
1917 	err = file_remove_privs(file);
1918 	if (err) {
1919 		inode_unlock(inode);
1920 		goto out;
1921 	}
1922 
1923 	/*
1924 	 * If BTRFS flips readonly due to some impossible error
1925 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1926 	 * although we have opened a file as writable, we have
1927 	 * to stop this write operation to ensure FS consistency.
1928 	 */
1929 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1930 		inode_unlock(inode);
1931 		err = -EROFS;
1932 		goto out;
1933 	}
1934 
1935 	/*
1936 	 * We reserve space for updating the inode when we reserve space for the
1937 	 * extent we are going to write, so we will enospc out there.  We don't
1938 	 * need to start yet another transaction to update the inode as we will
1939 	 * update the inode when we finish writing whatever data we write.
1940 	 */
1941 	update_time_for_write(inode);
1942 
1943 	start_pos = round_down(pos, fs_info->sectorsize);
1944 	oldsize = i_size_read(inode);
1945 	if (start_pos > oldsize) {
1946 		/* Expand hole size to cover write data, preventing empty gap */
1947 		end_pos = round_up(pos + count,
1948 				   fs_info->sectorsize);
1949 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1950 		if (err) {
1951 			inode_unlock(inode);
1952 			goto out;
1953 		}
1954 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1955 			clean_page = 1;
1956 	}
1957 
1958 	if (sync)
1959 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1960 
1961 	if (iocb->ki_flags & IOCB_DIRECT) {
1962 		/*
1963 		 * 1. We must always clear IOCB_DSYNC in order to not deadlock
1964 		 *    in iomap, as it calls generic_write_sync() in this case.
1965 		 * 2. If we are async, we can call iomap_dio_complete() either
1966 		 *    in
1967 		 *
1968 		 *    2.1. A worker thread from the last bio completed.  In this
1969 		 *	   case we need to mark the btrfs_dio_data that it is
1970 		 *	   async in order to call generic_write_sync() properly.
1971 		 *	   This is handled by setting BTRFS_DIO_SYNC_STUB in the
1972 		 *	   current->journal_info.
1973 		 *    2.2  The submitter context, because all IO completed
1974 		 *         before we exited iomap_dio_rw().  In this case we can
1975 		 *         just re-set the IOCB_DSYNC on the iocb and we'll do
1976 		 *         the sync below.  If our ->end_io() gets called and
1977 		 *         current->journal_info is set, then we know we're in
1978 		 *         our current context and we will clear
1979 		 *         current->journal_info to indicate that we need to
1980 		 *         sync below.
1981 		 */
1982 		if (sync) {
1983 			ASSERT(current->journal_info == NULL);
1984 			iocb->ki_flags &= ~IOCB_DSYNC;
1985 			current->journal_info = BTRFS_DIO_SYNC_STUB;
1986 		}
1987 		num_written = __btrfs_direct_write(iocb, from);
1988 
1989 		/*
1990 		 * As stated above, we cleared journal_info, so we need to do
1991 		 * the sync ourselves.
1992 		 */
1993 		if (sync && current->journal_info == NULL)
1994 			iocb->ki_flags |= IOCB_DSYNC;
1995 		current->journal_info = NULL;
1996 	} else {
1997 		num_written = btrfs_buffered_write(iocb, from);
1998 		if (num_written > 0)
1999 			iocb->ki_pos = pos + num_written;
2000 		if (clean_page)
2001 			pagecache_isize_extended(inode, oldsize,
2002 						i_size_read(inode));
2003 	}
2004 
2005 	inode_unlock(inode);
2006 
2007 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2008 
2009 	if (num_written > 0)
2010 		num_written = generic_write_sync(iocb, num_written);
2011 
2012 	if (sync)
2013 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2014 out:
2015 	current->backing_dev_info = NULL;
2016 	return num_written ? num_written : err;
2017 }
2018 
btrfs_release_file(struct inode * inode,struct file * filp)2019 int btrfs_release_file(struct inode *inode, struct file *filp)
2020 {
2021 	struct btrfs_file_private *private = filp->private_data;
2022 
2023 	if (private && private->filldir_buf)
2024 		kfree(private->filldir_buf);
2025 	kfree(private);
2026 	filp->private_data = NULL;
2027 
2028 	/*
2029 	 * Set by setattr when we are about to truncate a file from a non-zero
2030 	 * size to a zero size.  This tries to flush down new bytes that may
2031 	 * have been written if the application were using truncate to replace
2032 	 * a file in place.
2033 	 */
2034 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2035 			       &BTRFS_I(inode)->runtime_flags))
2036 			filemap_flush(inode->i_mapping);
2037 	return 0;
2038 }
2039 
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2040 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2041 {
2042 	int ret;
2043 	struct blk_plug plug;
2044 
2045 	/*
2046 	 * This is only called in fsync, which would do synchronous writes, so
2047 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2048 	 * multiple disks using raid profile, a large IO can be split to
2049 	 * several segments of stripe length (currently 64K).
2050 	 */
2051 	blk_start_plug(&plug);
2052 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2053 	ret = btrfs_fdatawrite_range(inode, start, end);
2054 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2055 	blk_finish_plug(&plug);
2056 
2057 	return ret;
2058 }
2059 
skip_inode_logging(const struct btrfs_log_ctx * ctx)2060 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2061 {
2062 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2063 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2064 
2065 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2066 	    list_empty(&ctx->ordered_extents))
2067 		return true;
2068 
2069 	/*
2070 	 * If we are doing a fast fsync we can not bail out if the inode's
2071 	 * last_trans is <= then the last committed transaction, because we only
2072 	 * update the last_trans of the inode during ordered extent completion,
2073 	 * and for a fast fsync we don't wait for that, we only wait for the
2074 	 * writeback to complete.
2075 	 */
2076 	if (inode->last_trans <= fs_info->last_trans_committed &&
2077 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2078 	     list_empty(&ctx->ordered_extents)))
2079 		return true;
2080 
2081 	return false;
2082 }
2083 
2084 /*
2085  * fsync call for both files and directories.  This logs the inode into
2086  * the tree log instead of forcing full commits whenever possible.
2087  *
2088  * It needs to call filemap_fdatawait so that all ordered extent updates are
2089  * in the metadata btree are up to date for copying to the log.
2090  *
2091  * It drops the inode mutex before doing the tree log commit.  This is an
2092  * important optimization for directories because holding the mutex prevents
2093  * new operations on the dir while we write to disk.
2094  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2095 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2096 {
2097 	struct dentry *dentry = file_dentry(file);
2098 	struct inode *inode = d_inode(dentry);
2099 	struct btrfs_root *root = BTRFS_I(inode)->root;
2100 	struct btrfs_trans_handle *trans;
2101 	struct btrfs_log_ctx ctx;
2102 	int ret = 0, err;
2103 	u64 len;
2104 	bool full_sync;
2105 
2106 	trace_btrfs_sync_file(file, datasync);
2107 
2108 	btrfs_init_log_ctx(&ctx, inode);
2109 
2110 	/*
2111 	 * Always set the range to a full range, otherwise we can get into
2112 	 * several problems, from missing file extent items to represent holes
2113 	 * when not using the NO_HOLES feature, to log tree corruption due to
2114 	 * races between hole detection during logging and completion of ordered
2115 	 * extents outside the range, to missing checksums due to ordered extents
2116 	 * for which we flushed only a subset of their pages.
2117 	 */
2118 	start = 0;
2119 	end = LLONG_MAX;
2120 	len = (u64)LLONG_MAX + 1;
2121 
2122 	/*
2123 	 * We write the dirty pages in the range and wait until they complete
2124 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2125 	 * multi-task, and make the performance up.  See
2126 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2127 	 */
2128 	ret = start_ordered_ops(inode, start, end);
2129 	if (ret)
2130 		goto out;
2131 
2132 	inode_lock(inode);
2133 
2134 	/*
2135 	 * We take the dio_sem here because the tree log stuff can race with
2136 	 * lockless dio writes and get an extent map logged for an extent we
2137 	 * never waited on.  We need it this high up for lockdep reasons.
2138 	 */
2139 	down_write(&BTRFS_I(inode)->dio_sem);
2140 
2141 	atomic_inc(&root->log_batch);
2142 
2143 	/*
2144 	 * Always check for the full sync flag while holding the inode's lock,
2145 	 * to avoid races with other tasks. The flag must be either set all the
2146 	 * time during logging or always off all the time while logging.
2147 	 */
2148 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2149 			     &BTRFS_I(inode)->runtime_flags);
2150 
2151 	/*
2152 	 * Before we acquired the inode's lock, someone may have dirtied more
2153 	 * pages in the target range. We need to make sure that writeback for
2154 	 * any such pages does not start while we are logging the inode, because
2155 	 * if it does, any of the following might happen when we are not doing a
2156 	 * full inode sync:
2157 	 *
2158 	 * 1) We log an extent after its writeback finishes but before its
2159 	 *    checksums are added to the csum tree, leading to -EIO errors
2160 	 *    when attempting to read the extent after a log replay.
2161 	 *
2162 	 * 2) We can end up logging an extent before its writeback finishes.
2163 	 *    Therefore after the log replay we will have a file extent item
2164 	 *    pointing to an unwritten extent (and no data checksums as well).
2165 	 *
2166 	 * So trigger writeback for any eventual new dirty pages and then we
2167 	 * wait for all ordered extents to complete below.
2168 	 */
2169 	ret = start_ordered_ops(inode, start, end);
2170 	if (ret) {
2171 		up_write(&BTRFS_I(inode)->dio_sem);
2172 		inode_unlock(inode);
2173 		goto out;
2174 	}
2175 
2176 	/*
2177 	 * We have to do this here to avoid the priority inversion of waiting on
2178 	 * IO of a lower priority task while holding a transaction open.
2179 	 *
2180 	 * For a full fsync we wait for the ordered extents to complete while
2181 	 * for a fast fsync we wait just for writeback to complete, and then
2182 	 * attach the ordered extents to the transaction so that a transaction
2183 	 * commit waits for their completion, to avoid data loss if we fsync,
2184 	 * the current transaction commits before the ordered extents complete
2185 	 * and a power failure happens right after that.
2186 	 */
2187 	if (full_sync) {
2188 		ret = btrfs_wait_ordered_range(inode, start, len);
2189 	} else {
2190 		/*
2191 		 * Get our ordered extents as soon as possible to avoid doing
2192 		 * checksum lookups in the csum tree, and use instead the
2193 		 * checksums attached to the ordered extents.
2194 		 */
2195 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2196 						      &ctx.ordered_extents);
2197 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2198 	}
2199 
2200 	if (ret)
2201 		goto out_release_extents;
2202 
2203 	atomic_inc(&root->log_batch);
2204 
2205 	smp_mb();
2206 	if (skip_inode_logging(&ctx)) {
2207 		/*
2208 		 * We've had everything committed since the last time we were
2209 		 * modified so clear this flag in case it was set for whatever
2210 		 * reason, it's no longer relevant.
2211 		 */
2212 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2213 			  &BTRFS_I(inode)->runtime_flags);
2214 		/*
2215 		 * An ordered extent might have started before and completed
2216 		 * already with io errors, in which case the inode was not
2217 		 * updated and we end up here. So check the inode's mapping
2218 		 * for any errors that might have happened since we last
2219 		 * checked called fsync.
2220 		 */
2221 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2222 		goto out_release_extents;
2223 	}
2224 
2225 	/*
2226 	 * We use start here because we will need to wait on the IO to complete
2227 	 * in btrfs_sync_log, which could require joining a transaction (for
2228 	 * example checking cross references in the nocow path).  If we use join
2229 	 * here we could get into a situation where we're waiting on IO to
2230 	 * happen that is blocked on a transaction trying to commit.  With start
2231 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2232 	 * before we start blocking joiners.  This comment is to keep somebody
2233 	 * from thinking they are super smart and changing this to
2234 	 * btrfs_join_transaction *cough*Josef*cough*.
2235 	 */
2236 	trans = btrfs_start_transaction(root, 0);
2237 	if (IS_ERR(trans)) {
2238 		ret = PTR_ERR(trans);
2239 		goto out_release_extents;
2240 	}
2241 
2242 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2243 	btrfs_release_log_ctx_extents(&ctx);
2244 	if (ret < 0) {
2245 		/* Fallthrough and commit/free transaction. */
2246 		ret = 1;
2247 	}
2248 
2249 	/* we've logged all the items and now have a consistent
2250 	 * version of the file in the log.  It is possible that
2251 	 * someone will come in and modify the file, but that's
2252 	 * fine because the log is consistent on disk, and we
2253 	 * have references to all of the file's extents
2254 	 *
2255 	 * It is possible that someone will come in and log the
2256 	 * file again, but that will end up using the synchronization
2257 	 * inside btrfs_sync_log to keep things safe.
2258 	 */
2259 	up_write(&BTRFS_I(inode)->dio_sem);
2260 	inode_unlock(inode);
2261 
2262 	if (ret != BTRFS_NO_LOG_SYNC) {
2263 		if (!ret) {
2264 			ret = btrfs_sync_log(trans, root, &ctx);
2265 			if (!ret) {
2266 				ret = btrfs_end_transaction(trans);
2267 				goto out;
2268 			}
2269 		}
2270 		if (!full_sync) {
2271 			ret = btrfs_wait_ordered_range(inode, start, len);
2272 			if (ret) {
2273 				btrfs_end_transaction(trans);
2274 				goto out;
2275 			}
2276 		}
2277 		ret = btrfs_commit_transaction(trans);
2278 	} else {
2279 		ret = btrfs_end_transaction(trans);
2280 	}
2281 out:
2282 	ASSERT(list_empty(&ctx.list));
2283 	err = file_check_and_advance_wb_err(file);
2284 	if (!ret)
2285 		ret = err;
2286 	return ret > 0 ? -EIO : ret;
2287 
2288 out_release_extents:
2289 	btrfs_release_log_ctx_extents(&ctx);
2290 	up_write(&BTRFS_I(inode)->dio_sem);
2291 	inode_unlock(inode);
2292 	goto out;
2293 }
2294 
2295 static const struct vm_operations_struct btrfs_file_vm_ops = {
2296 	.fault		= filemap_fault,
2297 	.map_pages	= filemap_map_pages,
2298 	.page_mkwrite	= btrfs_page_mkwrite,
2299 };
2300 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2301 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2302 {
2303 	struct address_space *mapping = filp->f_mapping;
2304 
2305 	if (!mapping->a_ops->readpage)
2306 		return -ENOEXEC;
2307 
2308 	file_accessed(filp);
2309 	vma->vm_ops = &btrfs_file_vm_ops;
2310 
2311 	return 0;
2312 }
2313 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2314 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2315 			  int slot, u64 start, u64 end)
2316 {
2317 	struct btrfs_file_extent_item *fi;
2318 	struct btrfs_key key;
2319 
2320 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2321 		return 0;
2322 
2323 	btrfs_item_key_to_cpu(leaf, &key, slot);
2324 	if (key.objectid != btrfs_ino(inode) ||
2325 	    key.type != BTRFS_EXTENT_DATA_KEY)
2326 		return 0;
2327 
2328 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2329 
2330 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2331 		return 0;
2332 
2333 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2334 		return 0;
2335 
2336 	if (key.offset == end)
2337 		return 1;
2338 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2339 		return 1;
2340 	return 0;
2341 }
2342 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2343 static int fill_holes(struct btrfs_trans_handle *trans,
2344 		struct btrfs_inode *inode,
2345 		struct btrfs_path *path, u64 offset, u64 end)
2346 {
2347 	struct btrfs_fs_info *fs_info = trans->fs_info;
2348 	struct btrfs_root *root = inode->root;
2349 	struct extent_buffer *leaf;
2350 	struct btrfs_file_extent_item *fi;
2351 	struct extent_map *hole_em;
2352 	struct extent_map_tree *em_tree = &inode->extent_tree;
2353 	struct btrfs_key key;
2354 	int ret;
2355 
2356 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2357 		goto out;
2358 
2359 	key.objectid = btrfs_ino(inode);
2360 	key.type = BTRFS_EXTENT_DATA_KEY;
2361 	key.offset = offset;
2362 
2363 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2364 	if (ret <= 0) {
2365 		/*
2366 		 * We should have dropped this offset, so if we find it then
2367 		 * something has gone horribly wrong.
2368 		 */
2369 		if (ret == 0)
2370 			ret = -EINVAL;
2371 		return ret;
2372 	}
2373 
2374 	leaf = path->nodes[0];
2375 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2376 		u64 num_bytes;
2377 
2378 		path->slots[0]--;
2379 		fi = btrfs_item_ptr(leaf, path->slots[0],
2380 				    struct btrfs_file_extent_item);
2381 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2382 			end - offset;
2383 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2384 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2385 		btrfs_set_file_extent_offset(leaf, fi, 0);
2386 		btrfs_mark_buffer_dirty(leaf);
2387 		goto out;
2388 	}
2389 
2390 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2391 		u64 num_bytes;
2392 
2393 		key.offset = offset;
2394 		btrfs_set_item_key_safe(fs_info, path, &key);
2395 		fi = btrfs_item_ptr(leaf, path->slots[0],
2396 				    struct btrfs_file_extent_item);
2397 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2398 			offset;
2399 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2400 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2401 		btrfs_set_file_extent_offset(leaf, fi, 0);
2402 		btrfs_mark_buffer_dirty(leaf);
2403 		goto out;
2404 	}
2405 	btrfs_release_path(path);
2406 
2407 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2408 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2409 	if (ret)
2410 		return ret;
2411 
2412 out:
2413 	btrfs_release_path(path);
2414 
2415 	hole_em = alloc_extent_map();
2416 	if (!hole_em) {
2417 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2418 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2419 	} else {
2420 		hole_em->start = offset;
2421 		hole_em->len = end - offset;
2422 		hole_em->ram_bytes = hole_em->len;
2423 		hole_em->orig_start = offset;
2424 
2425 		hole_em->block_start = EXTENT_MAP_HOLE;
2426 		hole_em->block_len = 0;
2427 		hole_em->orig_block_len = 0;
2428 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2429 		hole_em->generation = trans->transid;
2430 
2431 		do {
2432 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2433 			write_lock(&em_tree->lock);
2434 			ret = add_extent_mapping(em_tree, hole_em, 1);
2435 			write_unlock(&em_tree->lock);
2436 		} while (ret == -EEXIST);
2437 		free_extent_map(hole_em);
2438 		if (ret)
2439 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2440 					&inode->runtime_flags);
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 /*
2447  * Find a hole extent on given inode and change start/len to the end of hole
2448  * extent.(hole/vacuum extent whose em->start <= start &&
2449  *	   em->start + em->len > start)
2450  * When a hole extent is found, return 1 and modify start/len.
2451  */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2452 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2453 {
2454 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455 	struct extent_map *em;
2456 	int ret = 0;
2457 
2458 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2459 			      round_down(*start, fs_info->sectorsize),
2460 			      round_up(*len, fs_info->sectorsize));
2461 	if (IS_ERR(em))
2462 		return PTR_ERR(em);
2463 
2464 	/* Hole or vacuum extent(only exists in no-hole mode) */
2465 	if (em->block_start == EXTENT_MAP_HOLE) {
2466 		ret = 1;
2467 		*len = em->start + em->len > *start + *len ?
2468 		       0 : *start + *len - em->start - em->len;
2469 		*start = em->start + em->len;
2470 	}
2471 	free_extent_map(em);
2472 	return ret;
2473 }
2474 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2475 static int btrfs_punch_hole_lock_range(struct inode *inode,
2476 				       const u64 lockstart,
2477 				       const u64 lockend,
2478 				       struct extent_state **cached_state)
2479 {
2480 	while (1) {
2481 		struct btrfs_ordered_extent *ordered;
2482 		int ret;
2483 
2484 		truncate_pagecache_range(inode, lockstart, lockend);
2485 
2486 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2487 				 cached_state);
2488 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2489 							    lockend);
2490 
2491 		/*
2492 		 * We need to make sure we have no ordered extents in this range
2493 		 * and nobody raced in and read a page in this range, if we did
2494 		 * we need to try again.
2495 		 */
2496 		if ((!ordered ||
2497 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2498 		     ordered->file_offset > lockend)) &&
2499 		     !filemap_range_has_page(inode->i_mapping,
2500 					     lockstart, lockend)) {
2501 			if (ordered)
2502 				btrfs_put_ordered_extent(ordered);
2503 			break;
2504 		}
2505 		if (ordered)
2506 			btrfs_put_ordered_extent(ordered);
2507 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2508 				     lockend, cached_state);
2509 		ret = btrfs_wait_ordered_range(inode, lockstart,
2510 					       lockend - lockstart + 1);
2511 		if (ret)
2512 			return ret;
2513 	}
2514 	return 0;
2515 }
2516 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len)2517 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2518 				     struct inode *inode,
2519 				     struct btrfs_path *path,
2520 				     struct btrfs_replace_extent_info *extent_info,
2521 				     const u64 replace_len)
2522 {
2523 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2524 	struct btrfs_root *root = BTRFS_I(inode)->root;
2525 	struct btrfs_file_extent_item *extent;
2526 	struct extent_buffer *leaf;
2527 	struct btrfs_key key;
2528 	int slot;
2529 	struct btrfs_ref ref = { 0 };
2530 	int ret;
2531 
2532 	if (replace_len == 0)
2533 		return 0;
2534 
2535 	if (extent_info->disk_offset == 0 &&
2536 	    btrfs_fs_incompat(fs_info, NO_HOLES))
2537 		return 0;
2538 
2539 	key.objectid = btrfs_ino(BTRFS_I(inode));
2540 	key.type = BTRFS_EXTENT_DATA_KEY;
2541 	key.offset = extent_info->file_offset;
2542 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2543 				      sizeof(struct btrfs_file_extent_item));
2544 	if (ret)
2545 		return ret;
2546 	leaf = path->nodes[0];
2547 	slot = path->slots[0];
2548 	write_extent_buffer(leaf, extent_info->extent_buf,
2549 			    btrfs_item_ptr_offset(leaf, slot),
2550 			    sizeof(struct btrfs_file_extent_item));
2551 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2552 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2553 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2554 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2555 	if (extent_info->is_new_extent)
2556 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2557 	btrfs_mark_buffer_dirty(leaf);
2558 	btrfs_release_path(path);
2559 
2560 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2561 			extent_info->file_offset, replace_len);
2562 	if (ret)
2563 		return ret;
2564 
2565 	/* If it's a hole, nothing more needs to be done. */
2566 	if (extent_info->disk_offset == 0)
2567 		return 0;
2568 
2569 	inode_add_bytes(inode, replace_len);
2570 
2571 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2572 		key.objectid = extent_info->disk_offset;
2573 		key.type = BTRFS_EXTENT_ITEM_KEY;
2574 		key.offset = extent_info->disk_len;
2575 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2576 						       btrfs_ino(BTRFS_I(inode)),
2577 						       extent_info->file_offset,
2578 						       extent_info->qgroup_reserved,
2579 						       &key);
2580 	} else {
2581 		u64 ref_offset;
2582 
2583 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2584 				       extent_info->disk_offset,
2585 				       extent_info->disk_len, 0);
2586 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2587 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2588 				    btrfs_ino(BTRFS_I(inode)), ref_offset);
2589 		ret = btrfs_inc_extent_ref(trans, &ref);
2590 	}
2591 
2592 	extent_info->insertions++;
2593 
2594 	return ret;
2595 }
2596 
2597 /*
2598  * The respective range must have been previously locked, as well as the inode.
2599  * The end offset is inclusive (last byte of the range).
2600  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2601  * the file range with an extent.
2602  * When not punching a hole, we don't want to end up in a state where we dropped
2603  * extents without inserting a new one, so we must abort the transaction to avoid
2604  * a corruption.
2605  */
btrfs_replace_file_extents(struct inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2606 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2607 			   const u64 start, const u64 end,
2608 			   struct btrfs_replace_extent_info *extent_info,
2609 			   struct btrfs_trans_handle **trans_out)
2610 {
2611 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2612 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2613 	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2614 	struct btrfs_root *root = BTRFS_I(inode)->root;
2615 	struct btrfs_trans_handle *trans = NULL;
2616 	struct btrfs_block_rsv *rsv;
2617 	unsigned int rsv_count;
2618 	u64 cur_offset;
2619 	u64 drop_end;
2620 	u64 len = end - start;
2621 	int ret = 0;
2622 
2623 	if (end <= start)
2624 		return -EINVAL;
2625 
2626 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2627 	if (!rsv) {
2628 		ret = -ENOMEM;
2629 		goto out;
2630 	}
2631 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2632 	rsv->failfast = 1;
2633 
2634 	/*
2635 	 * 1 - update the inode
2636 	 * 1 - removing the extents in the range
2637 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2638 	 *     replacing the range with a new extent
2639 	 */
2640 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2641 		rsv_count = 3;
2642 	else
2643 		rsv_count = 2;
2644 
2645 	trans = btrfs_start_transaction(root, rsv_count);
2646 	if (IS_ERR(trans)) {
2647 		ret = PTR_ERR(trans);
2648 		trans = NULL;
2649 		goto out_free;
2650 	}
2651 
2652 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2653 				      min_size, false);
2654 	BUG_ON(ret);
2655 	trans->block_rsv = rsv;
2656 
2657 	cur_offset = start;
2658 	while (cur_offset < end) {
2659 		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2660 					   cur_offset, end + 1, &drop_end,
2661 					   1, 0, 0, NULL);
2662 		if (ret != -ENOSPC) {
2663 			/*
2664 			 * The only time we don't want to abort is if we are
2665 			 * attempting to clone a partial inline extent, in which
2666 			 * case we'll get EOPNOTSUPP.  However if we aren't
2667 			 * clone we need to abort no matter what, because if we
2668 			 * got EOPNOTSUPP via prealloc then we messed up and
2669 			 * need to abort.
2670 			 */
2671 			if (ret &&
2672 			    (ret != -EOPNOTSUPP ||
2673 			     (extent_info && extent_info->is_new_extent)))
2674 				btrfs_abort_transaction(trans, ret);
2675 			break;
2676 		}
2677 
2678 		trans->block_rsv = &fs_info->trans_block_rsv;
2679 
2680 		if (!extent_info && cur_offset < drop_end &&
2681 		    cur_offset < ino_size) {
2682 			ret = fill_holes(trans, BTRFS_I(inode), path,
2683 					cur_offset, drop_end);
2684 			if (ret) {
2685 				/*
2686 				 * If we failed then we didn't insert our hole
2687 				 * entries for the area we dropped, so now the
2688 				 * fs is corrupted, so we must abort the
2689 				 * transaction.
2690 				 */
2691 				btrfs_abort_transaction(trans, ret);
2692 				break;
2693 			}
2694 		} else if (!extent_info && cur_offset < drop_end) {
2695 			/*
2696 			 * We are past the i_size here, but since we didn't
2697 			 * insert holes we need to clear the mapped area so we
2698 			 * know to not set disk_i_size in this area until a new
2699 			 * file extent is inserted here.
2700 			 */
2701 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2702 					cur_offset, drop_end - cur_offset);
2703 			if (ret) {
2704 				/*
2705 				 * We couldn't clear our area, so we could
2706 				 * presumably adjust up and corrupt the fs, so
2707 				 * we need to abort.
2708 				 */
2709 				btrfs_abort_transaction(trans, ret);
2710 				break;
2711 			}
2712 		}
2713 
2714 		if (extent_info && drop_end > extent_info->file_offset) {
2715 			u64 replace_len = drop_end - extent_info->file_offset;
2716 
2717 			ret = btrfs_insert_replace_extent(trans, inode, path,
2718 							extent_info, replace_len);
2719 			if (ret) {
2720 				btrfs_abort_transaction(trans, ret);
2721 				break;
2722 			}
2723 			extent_info->data_len -= replace_len;
2724 			extent_info->data_offset += replace_len;
2725 			extent_info->file_offset += replace_len;
2726 		}
2727 
2728 		cur_offset = drop_end;
2729 
2730 		ret = btrfs_update_inode(trans, root, inode);
2731 		if (ret)
2732 			break;
2733 
2734 		btrfs_end_transaction(trans);
2735 		btrfs_btree_balance_dirty(fs_info);
2736 
2737 		trans = btrfs_start_transaction(root, rsv_count);
2738 		if (IS_ERR(trans)) {
2739 			ret = PTR_ERR(trans);
2740 			trans = NULL;
2741 			break;
2742 		}
2743 
2744 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2745 					      rsv, min_size, false);
2746 		BUG_ON(ret);	/* shouldn't happen */
2747 		trans->block_rsv = rsv;
2748 
2749 		if (!extent_info) {
2750 			ret = find_first_non_hole(inode, &cur_offset, &len);
2751 			if (unlikely(ret < 0))
2752 				break;
2753 			if (ret && !len) {
2754 				ret = 0;
2755 				break;
2756 			}
2757 		}
2758 	}
2759 
2760 	/*
2761 	 * If we were cloning, force the next fsync to be a full one since we
2762 	 * we replaced (or just dropped in the case of cloning holes when
2763 	 * NO_HOLES is enabled) extents and extent maps.
2764 	 * This is for the sake of simplicity, and cloning into files larger
2765 	 * than 16Mb would force the full fsync any way (when
2766 	 * try_release_extent_mapping() is invoked during page cache truncation.
2767 	 */
2768 	if (extent_info && !extent_info->is_new_extent)
2769 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2770 			&BTRFS_I(inode)->runtime_flags);
2771 
2772 	if (ret)
2773 		goto out_trans;
2774 
2775 	trans->block_rsv = &fs_info->trans_block_rsv;
2776 	/*
2777 	 * If we are using the NO_HOLES feature we might have had already an
2778 	 * hole that overlaps a part of the region [lockstart, lockend] and
2779 	 * ends at (or beyond) lockend. Since we have no file extent items to
2780 	 * represent holes, drop_end can be less than lockend and so we must
2781 	 * make sure we have an extent map representing the existing hole (the
2782 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2783 	 * map representing the existing hole), otherwise the fast fsync path
2784 	 * will not record the existence of the hole region
2785 	 * [existing_hole_start, lockend].
2786 	 */
2787 	if (drop_end <= end)
2788 		drop_end = end + 1;
2789 	/*
2790 	 * Don't insert file hole extent item if it's for a range beyond eof
2791 	 * (because it's useless) or if it represents a 0 bytes range (when
2792 	 * cur_offset == drop_end).
2793 	 */
2794 	if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2795 		ret = fill_holes(trans, BTRFS_I(inode), path,
2796 				cur_offset, drop_end);
2797 		if (ret) {
2798 			/* Same comment as above. */
2799 			btrfs_abort_transaction(trans, ret);
2800 			goto out_trans;
2801 		}
2802 	} else if (!extent_info && cur_offset < drop_end) {
2803 		/* See the comment in the loop above for the reasoning here. */
2804 		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2805 					cur_offset, drop_end - cur_offset);
2806 		if (ret) {
2807 			btrfs_abort_transaction(trans, ret);
2808 			goto out_trans;
2809 		}
2810 
2811 	}
2812 	if (extent_info) {
2813 		ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2814 						extent_info->data_len);
2815 		if (ret) {
2816 			btrfs_abort_transaction(trans, ret);
2817 			goto out_trans;
2818 		}
2819 	}
2820 
2821 out_trans:
2822 	if (!trans)
2823 		goto out_free;
2824 
2825 	trans->block_rsv = &fs_info->trans_block_rsv;
2826 	if (ret)
2827 		btrfs_end_transaction(trans);
2828 	else
2829 		*trans_out = trans;
2830 out_free:
2831 	btrfs_free_block_rsv(fs_info, rsv);
2832 out:
2833 	return ret;
2834 }
2835 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2836 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2837 {
2838 	struct inode *inode = file_inode(file);
2839 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2840 	struct btrfs_root *root = BTRFS_I(inode)->root;
2841 	struct extent_state *cached_state = NULL;
2842 	struct btrfs_path *path;
2843 	struct btrfs_trans_handle *trans = NULL;
2844 	u64 lockstart;
2845 	u64 lockend;
2846 	u64 tail_start;
2847 	u64 tail_len;
2848 	u64 orig_start = offset;
2849 	int ret = 0;
2850 	bool same_block;
2851 	u64 ino_size;
2852 	bool truncated_block = false;
2853 	bool updated_inode = false;
2854 
2855 	ret = btrfs_wait_ordered_range(inode, offset, len);
2856 	if (ret)
2857 		return ret;
2858 
2859 	inode_lock(inode);
2860 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2861 	ret = find_first_non_hole(inode, &offset, &len);
2862 	if (ret < 0)
2863 		goto out_only_mutex;
2864 	if (ret && !len) {
2865 		/* Already in a large hole */
2866 		ret = 0;
2867 		goto out_only_mutex;
2868 	}
2869 
2870 	ret = file_modified(file);
2871 	if (ret)
2872 		goto out_only_mutex;
2873 
2874 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2875 	lockend = round_down(offset + len,
2876 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2877 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2878 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2879 	/*
2880 	 * We needn't truncate any block which is beyond the end of the file
2881 	 * because we are sure there is no data there.
2882 	 */
2883 	/*
2884 	 * Only do this if we are in the same block and we aren't doing the
2885 	 * entire block.
2886 	 */
2887 	if (same_block && len < fs_info->sectorsize) {
2888 		if (offset < ino_size) {
2889 			truncated_block = true;
2890 			ret = btrfs_truncate_block(inode, offset, len, 0);
2891 		} else {
2892 			ret = 0;
2893 		}
2894 		goto out_only_mutex;
2895 	}
2896 
2897 	/* zero back part of the first block */
2898 	if (offset < ino_size) {
2899 		truncated_block = true;
2900 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2901 		if (ret) {
2902 			inode_unlock(inode);
2903 			return ret;
2904 		}
2905 	}
2906 
2907 	/* Check the aligned pages after the first unaligned page,
2908 	 * if offset != orig_start, which means the first unaligned page
2909 	 * including several following pages are already in holes,
2910 	 * the extra check can be skipped */
2911 	if (offset == orig_start) {
2912 		/* after truncate page, check hole again */
2913 		len = offset + len - lockstart;
2914 		offset = lockstart;
2915 		ret = find_first_non_hole(inode, &offset, &len);
2916 		if (ret < 0)
2917 			goto out_only_mutex;
2918 		if (ret && !len) {
2919 			ret = 0;
2920 			goto out_only_mutex;
2921 		}
2922 		lockstart = offset;
2923 	}
2924 
2925 	/* Check the tail unaligned part is in a hole */
2926 	tail_start = lockend + 1;
2927 	tail_len = offset + len - tail_start;
2928 	if (tail_len) {
2929 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2930 		if (unlikely(ret < 0))
2931 			goto out_only_mutex;
2932 		if (!ret) {
2933 			/* zero the front end of the last page */
2934 			if (tail_start + tail_len < ino_size) {
2935 				truncated_block = true;
2936 				ret = btrfs_truncate_block(inode,
2937 							tail_start + tail_len,
2938 							0, 1);
2939 				if (ret)
2940 					goto out_only_mutex;
2941 			}
2942 		}
2943 	}
2944 
2945 	if (lockend < lockstart) {
2946 		ret = 0;
2947 		goto out_only_mutex;
2948 	}
2949 
2950 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2951 					  &cached_state);
2952 	if (ret)
2953 		goto out_only_mutex;
2954 
2955 	path = btrfs_alloc_path();
2956 	if (!path) {
2957 		ret = -ENOMEM;
2958 		goto out;
2959 	}
2960 
2961 	ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2962 				     &trans);
2963 	btrfs_free_path(path);
2964 	if (ret)
2965 		goto out;
2966 
2967 	ASSERT(trans != NULL);
2968 	inode_inc_iversion(inode);
2969 	inode->i_mtime = inode->i_ctime = current_time(inode);
2970 	ret = btrfs_update_inode(trans, root, inode);
2971 	updated_inode = true;
2972 	btrfs_end_transaction(trans);
2973 	btrfs_btree_balance_dirty(fs_info);
2974 out:
2975 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2976 			     &cached_state);
2977 out_only_mutex:
2978 	if (!updated_inode && truncated_block && !ret) {
2979 		/*
2980 		 * If we only end up zeroing part of a page, we still need to
2981 		 * update the inode item, so that all the time fields are
2982 		 * updated as well as the necessary btrfs inode in memory fields
2983 		 * for detecting, at fsync time, if the inode isn't yet in the
2984 		 * log tree or it's there but not up to date.
2985 		 */
2986 		struct timespec64 now = current_time(inode);
2987 
2988 		inode_inc_iversion(inode);
2989 		inode->i_mtime = now;
2990 		inode->i_ctime = now;
2991 		trans = btrfs_start_transaction(root, 1);
2992 		if (IS_ERR(trans)) {
2993 			ret = PTR_ERR(trans);
2994 		} else {
2995 			int ret2;
2996 
2997 			ret = btrfs_update_inode(trans, root, inode);
2998 			ret2 = btrfs_end_transaction(trans);
2999 			if (!ret)
3000 				ret = ret2;
3001 		}
3002 	}
3003 	inode_unlock(inode);
3004 	return ret;
3005 }
3006 
3007 /* Helper structure to record which range is already reserved */
3008 struct falloc_range {
3009 	struct list_head list;
3010 	u64 start;
3011 	u64 len;
3012 };
3013 
3014 /*
3015  * Helper function to add falloc range
3016  *
3017  * Caller should have locked the larger range of extent containing
3018  * [start, len)
3019  */
add_falloc_range(struct list_head * head,u64 start,u64 len)3020 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3021 {
3022 	struct falloc_range *prev = NULL;
3023 	struct falloc_range *range = NULL;
3024 
3025 	if (list_empty(head))
3026 		goto insert;
3027 
3028 	/*
3029 	 * As fallocate iterate by bytenr order, we only need to check
3030 	 * the last range.
3031 	 */
3032 	prev = list_entry(head->prev, struct falloc_range, list);
3033 	if (prev->start + prev->len == start) {
3034 		prev->len += len;
3035 		return 0;
3036 	}
3037 insert:
3038 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3039 	if (!range)
3040 		return -ENOMEM;
3041 	range->start = start;
3042 	range->len = len;
3043 	list_add_tail(&range->list, head);
3044 	return 0;
3045 }
3046 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)3047 static int btrfs_fallocate_update_isize(struct inode *inode,
3048 					const u64 end,
3049 					const int mode)
3050 {
3051 	struct btrfs_trans_handle *trans;
3052 	struct btrfs_root *root = BTRFS_I(inode)->root;
3053 	int ret;
3054 	int ret2;
3055 
3056 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3057 		return 0;
3058 
3059 	trans = btrfs_start_transaction(root, 1);
3060 	if (IS_ERR(trans))
3061 		return PTR_ERR(trans);
3062 
3063 	inode->i_ctime = current_time(inode);
3064 	i_size_write(inode, end);
3065 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3066 	ret = btrfs_update_inode(trans, root, inode);
3067 	ret2 = btrfs_end_transaction(trans);
3068 
3069 	return ret ? ret : ret2;
3070 }
3071 
3072 enum {
3073 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3074 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3075 	RANGE_BOUNDARY_HOLE,
3076 };
3077 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)3078 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3079 						 u64 offset)
3080 {
3081 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3082 	struct extent_map *em;
3083 	int ret;
3084 
3085 	offset = round_down(offset, sectorsize);
3086 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3087 	if (IS_ERR(em))
3088 		return PTR_ERR(em);
3089 
3090 	if (em->block_start == EXTENT_MAP_HOLE)
3091 		ret = RANGE_BOUNDARY_HOLE;
3092 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3093 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3094 	else
3095 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3096 
3097 	free_extent_map(em);
3098 	return ret;
3099 }
3100 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)3101 static int btrfs_zero_range(struct inode *inode,
3102 			    loff_t offset,
3103 			    loff_t len,
3104 			    const int mode)
3105 {
3106 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3107 	struct extent_map *em;
3108 	struct extent_changeset *data_reserved = NULL;
3109 	int ret;
3110 	u64 alloc_hint = 0;
3111 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3112 	u64 alloc_start = round_down(offset, sectorsize);
3113 	u64 alloc_end = round_up(offset + len, sectorsize);
3114 	u64 bytes_to_reserve = 0;
3115 	bool space_reserved = false;
3116 
3117 	inode_dio_wait(inode);
3118 
3119 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3120 			      alloc_end - alloc_start);
3121 	if (IS_ERR(em)) {
3122 		ret = PTR_ERR(em);
3123 		goto out;
3124 	}
3125 
3126 	/*
3127 	 * Avoid hole punching and extent allocation for some cases. More cases
3128 	 * could be considered, but these are unlikely common and we keep things
3129 	 * as simple as possible for now. Also, intentionally, if the target
3130 	 * range contains one or more prealloc extents together with regular
3131 	 * extents and holes, we drop all the existing extents and allocate a
3132 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3133 	 */
3134 	if (em->start <= alloc_start &&
3135 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3136 		const u64 em_end = em->start + em->len;
3137 
3138 		if (em_end >= offset + len) {
3139 			/*
3140 			 * The whole range is already a prealloc extent,
3141 			 * do nothing except updating the inode's i_size if
3142 			 * needed.
3143 			 */
3144 			free_extent_map(em);
3145 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3146 							   mode);
3147 			goto out;
3148 		}
3149 		/*
3150 		 * Part of the range is already a prealloc extent, so operate
3151 		 * only on the remaining part of the range.
3152 		 */
3153 		alloc_start = em_end;
3154 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3155 		len = offset + len - alloc_start;
3156 		offset = alloc_start;
3157 		alloc_hint = em->block_start + em->len;
3158 	}
3159 	free_extent_map(em);
3160 
3161 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3162 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3163 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3164 				      sectorsize);
3165 		if (IS_ERR(em)) {
3166 			ret = PTR_ERR(em);
3167 			goto out;
3168 		}
3169 
3170 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3171 			free_extent_map(em);
3172 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3173 							   mode);
3174 			goto out;
3175 		}
3176 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3177 			free_extent_map(em);
3178 			ret = btrfs_truncate_block(inode, offset, len, 0);
3179 			if (!ret)
3180 				ret = btrfs_fallocate_update_isize(inode,
3181 								   offset + len,
3182 								   mode);
3183 			return ret;
3184 		}
3185 		free_extent_map(em);
3186 		alloc_start = round_down(offset, sectorsize);
3187 		alloc_end = alloc_start + sectorsize;
3188 		goto reserve_space;
3189 	}
3190 
3191 	alloc_start = round_up(offset, sectorsize);
3192 	alloc_end = round_down(offset + len, sectorsize);
3193 
3194 	/*
3195 	 * For unaligned ranges, check the pages at the boundaries, they might
3196 	 * map to an extent, in which case we need to partially zero them, or
3197 	 * they might map to a hole, in which case we need our allocation range
3198 	 * to cover them.
3199 	 */
3200 	if (!IS_ALIGNED(offset, sectorsize)) {
3201 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3202 							    offset);
3203 		if (ret < 0)
3204 			goto out;
3205 		if (ret == RANGE_BOUNDARY_HOLE) {
3206 			alloc_start = round_down(offset, sectorsize);
3207 			ret = 0;
3208 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3209 			ret = btrfs_truncate_block(inode, offset, 0, 0);
3210 			if (ret)
3211 				goto out;
3212 		} else {
3213 			ret = 0;
3214 		}
3215 	}
3216 
3217 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3218 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3219 							    offset + len);
3220 		if (ret < 0)
3221 			goto out;
3222 		if (ret == RANGE_BOUNDARY_HOLE) {
3223 			alloc_end = round_up(offset + len, sectorsize);
3224 			ret = 0;
3225 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3226 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3227 			if (ret)
3228 				goto out;
3229 		} else {
3230 			ret = 0;
3231 		}
3232 	}
3233 
3234 reserve_space:
3235 	if (alloc_start < alloc_end) {
3236 		struct extent_state *cached_state = NULL;
3237 		const u64 lockstart = alloc_start;
3238 		const u64 lockend = alloc_end - 1;
3239 
3240 		bytes_to_reserve = alloc_end - alloc_start;
3241 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3242 						      bytes_to_reserve);
3243 		if (ret < 0)
3244 			goto out;
3245 		space_reserved = true;
3246 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3247 						  &cached_state);
3248 		if (ret)
3249 			goto out;
3250 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3251 						alloc_start, bytes_to_reserve);
3252 		if (ret) {
3253 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3254 					     lockend, &cached_state);
3255 			goto out;
3256 		}
3257 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3258 						alloc_end - alloc_start,
3259 						i_blocksize(inode),
3260 						offset + len, &alloc_hint);
3261 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3262 				     lockend, &cached_state);
3263 		/* btrfs_prealloc_file_range releases reserved space on error */
3264 		if (ret) {
3265 			space_reserved = false;
3266 			goto out;
3267 		}
3268 	}
3269 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3270  out:
3271 	if (ret && space_reserved)
3272 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3273 					       alloc_start, bytes_to_reserve);
3274 	extent_changeset_free(data_reserved);
3275 
3276 	return ret;
3277 }
3278 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3279 static long btrfs_fallocate(struct file *file, int mode,
3280 			    loff_t offset, loff_t len)
3281 {
3282 	struct inode *inode = file_inode(file);
3283 	struct extent_state *cached_state = NULL;
3284 	struct extent_changeset *data_reserved = NULL;
3285 	struct falloc_range *range;
3286 	struct falloc_range *tmp;
3287 	struct list_head reserve_list;
3288 	u64 cur_offset;
3289 	u64 last_byte;
3290 	u64 alloc_start;
3291 	u64 alloc_end;
3292 	u64 alloc_hint = 0;
3293 	u64 locked_end;
3294 	u64 actual_end = 0;
3295 	struct extent_map *em;
3296 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3297 	int ret;
3298 
3299 	alloc_start = round_down(offset, blocksize);
3300 	alloc_end = round_up(offset + len, blocksize);
3301 	cur_offset = alloc_start;
3302 
3303 	/* Make sure we aren't being give some crap mode */
3304 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3305 		     FALLOC_FL_ZERO_RANGE))
3306 		return -EOPNOTSUPP;
3307 
3308 	if (mode & FALLOC_FL_PUNCH_HOLE)
3309 		return btrfs_punch_hole(file, offset, len);
3310 
3311 	/*
3312 	 * Only trigger disk allocation, don't trigger qgroup reserve
3313 	 *
3314 	 * For qgroup space, it will be checked later.
3315 	 */
3316 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3317 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3318 						      alloc_end - alloc_start);
3319 		if (ret < 0)
3320 			return ret;
3321 	}
3322 
3323 	inode_lock(inode);
3324 
3325 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3326 		ret = inode_newsize_ok(inode, offset + len);
3327 		if (ret)
3328 			goto out;
3329 	}
3330 
3331 	ret = file_modified(file);
3332 	if (ret)
3333 		goto out;
3334 
3335 	/*
3336 	 * TODO: Move these two operations after we have checked
3337 	 * accurate reserved space, or fallocate can still fail but
3338 	 * with page truncated or size expanded.
3339 	 *
3340 	 * But that's a minor problem and won't do much harm BTW.
3341 	 */
3342 	if (alloc_start > inode->i_size) {
3343 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3344 					alloc_start);
3345 		if (ret)
3346 			goto out;
3347 	} else if (offset + len > inode->i_size) {
3348 		/*
3349 		 * If we are fallocating from the end of the file onward we
3350 		 * need to zero out the end of the block if i_size lands in the
3351 		 * middle of a block.
3352 		 */
3353 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3354 		if (ret)
3355 			goto out;
3356 	}
3357 
3358 	/*
3359 	 * wait for ordered IO before we have any locks.  We'll loop again
3360 	 * below with the locks held.
3361 	 */
3362 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3363 				       alloc_end - alloc_start);
3364 	if (ret)
3365 		goto out;
3366 
3367 	if (mode & FALLOC_FL_ZERO_RANGE) {
3368 		ret = btrfs_zero_range(inode, offset, len, mode);
3369 		inode_unlock(inode);
3370 		return ret;
3371 	}
3372 
3373 	locked_end = alloc_end - 1;
3374 	while (1) {
3375 		struct btrfs_ordered_extent *ordered;
3376 
3377 		/* the extent lock is ordered inside the running
3378 		 * transaction
3379 		 */
3380 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3381 				 locked_end, &cached_state);
3382 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3383 							    locked_end);
3384 
3385 		if (ordered &&
3386 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3387 		    ordered->file_offset < alloc_end) {
3388 			btrfs_put_ordered_extent(ordered);
3389 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3390 					     alloc_start, locked_end,
3391 					     &cached_state);
3392 			/*
3393 			 * we can't wait on the range with the transaction
3394 			 * running or with the extent lock held
3395 			 */
3396 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3397 						       alloc_end - alloc_start);
3398 			if (ret)
3399 				goto out;
3400 		} else {
3401 			if (ordered)
3402 				btrfs_put_ordered_extent(ordered);
3403 			break;
3404 		}
3405 	}
3406 
3407 	/* First, check if we exceed the qgroup limit */
3408 	INIT_LIST_HEAD(&reserve_list);
3409 	while (cur_offset < alloc_end) {
3410 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3411 				      alloc_end - cur_offset);
3412 		if (IS_ERR(em)) {
3413 			ret = PTR_ERR(em);
3414 			break;
3415 		}
3416 		last_byte = min(extent_map_end(em), alloc_end);
3417 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3418 		last_byte = ALIGN(last_byte, blocksize);
3419 		if (em->block_start == EXTENT_MAP_HOLE ||
3420 		    (cur_offset >= inode->i_size &&
3421 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3422 			ret = add_falloc_range(&reserve_list, cur_offset,
3423 					       last_byte - cur_offset);
3424 			if (ret < 0) {
3425 				free_extent_map(em);
3426 				break;
3427 			}
3428 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3429 					&data_reserved, cur_offset,
3430 					last_byte - cur_offset);
3431 			if (ret < 0) {
3432 				cur_offset = last_byte;
3433 				free_extent_map(em);
3434 				break;
3435 			}
3436 		} else {
3437 			/*
3438 			 * Do not need to reserve unwritten extent for this
3439 			 * range, free reserved data space first, otherwise
3440 			 * it'll result in false ENOSPC error.
3441 			 */
3442 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3443 				data_reserved, cur_offset,
3444 				last_byte - cur_offset);
3445 		}
3446 		free_extent_map(em);
3447 		cur_offset = last_byte;
3448 	}
3449 
3450 	/*
3451 	 * If ret is still 0, means we're OK to fallocate.
3452 	 * Or just cleanup the list and exit.
3453 	 */
3454 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3455 		if (!ret)
3456 			ret = btrfs_prealloc_file_range(inode, mode,
3457 					range->start,
3458 					range->len, i_blocksize(inode),
3459 					offset + len, &alloc_hint);
3460 		else
3461 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3462 					data_reserved, range->start,
3463 					range->len);
3464 		list_del(&range->list);
3465 		kfree(range);
3466 	}
3467 	if (ret < 0)
3468 		goto out_unlock;
3469 
3470 	/*
3471 	 * We didn't need to allocate any more space, but we still extended the
3472 	 * size of the file so we need to update i_size and the inode item.
3473 	 */
3474 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3475 out_unlock:
3476 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3477 			     &cached_state);
3478 out:
3479 	inode_unlock(inode);
3480 	/* Let go of our reservation. */
3481 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3482 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3483 				cur_offset, alloc_end - cur_offset);
3484 	extent_changeset_free(data_reserved);
3485 	return ret;
3486 }
3487 
find_desired_extent(struct inode * inode,loff_t offset,int whence)3488 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3489 				  int whence)
3490 {
3491 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3492 	struct extent_map *em = NULL;
3493 	struct extent_state *cached_state = NULL;
3494 	loff_t i_size = inode->i_size;
3495 	u64 lockstart;
3496 	u64 lockend;
3497 	u64 start;
3498 	u64 len;
3499 	int ret = 0;
3500 
3501 	if (i_size == 0 || offset >= i_size)
3502 		return -ENXIO;
3503 
3504 	/*
3505 	 * offset can be negative, in this case we start finding DATA/HOLE from
3506 	 * the very start of the file.
3507 	 */
3508 	start = max_t(loff_t, 0, offset);
3509 
3510 	lockstart = round_down(start, fs_info->sectorsize);
3511 	lockend = round_up(i_size, fs_info->sectorsize);
3512 	if (lockend <= lockstart)
3513 		lockend = lockstart + fs_info->sectorsize;
3514 	lockend--;
3515 	len = lockend - lockstart + 1;
3516 
3517 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3518 			 &cached_state);
3519 
3520 	while (start < i_size) {
3521 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3522 		if (IS_ERR(em)) {
3523 			ret = PTR_ERR(em);
3524 			em = NULL;
3525 			break;
3526 		}
3527 
3528 		if (whence == SEEK_HOLE &&
3529 		    (em->block_start == EXTENT_MAP_HOLE ||
3530 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3531 			break;
3532 		else if (whence == SEEK_DATA &&
3533 			   (em->block_start != EXTENT_MAP_HOLE &&
3534 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3535 			break;
3536 
3537 		start = em->start + em->len;
3538 		free_extent_map(em);
3539 		em = NULL;
3540 		cond_resched();
3541 	}
3542 	free_extent_map(em);
3543 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3544 			     &cached_state);
3545 	if (ret) {
3546 		offset = ret;
3547 	} else {
3548 		if (whence == SEEK_DATA && start >= i_size)
3549 			offset = -ENXIO;
3550 		else
3551 			offset = min_t(loff_t, start, i_size);
3552 	}
3553 
3554 	return offset;
3555 }
3556 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3557 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3558 {
3559 	struct inode *inode = file->f_mapping->host;
3560 
3561 	switch (whence) {
3562 	default:
3563 		return generic_file_llseek(file, offset, whence);
3564 	case SEEK_DATA:
3565 	case SEEK_HOLE:
3566 		inode_lock_shared(inode);
3567 		offset = find_desired_extent(inode, offset, whence);
3568 		inode_unlock_shared(inode);
3569 		break;
3570 	}
3571 
3572 	if (offset < 0)
3573 		return offset;
3574 
3575 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3576 }
3577 
btrfs_file_open(struct inode * inode,struct file * filp)3578 static int btrfs_file_open(struct inode *inode, struct file *filp)
3579 {
3580 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3581 	return generic_file_open(inode, filp);
3582 }
3583 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3584 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3585 {
3586 	ssize_t ret = 0;
3587 
3588 	if (iocb->ki_flags & IOCB_DIRECT) {
3589 		struct inode *inode = file_inode(iocb->ki_filp);
3590 
3591 		inode_lock_shared(inode);
3592 		ret = btrfs_direct_IO(iocb, to);
3593 		inode_unlock_shared(inode);
3594 		if (ret < 0 || !iov_iter_count(to) ||
3595 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3596 			return ret;
3597 	}
3598 
3599 	return generic_file_buffered_read(iocb, to, ret);
3600 }
3601 
3602 const struct file_operations btrfs_file_operations = {
3603 	.llseek		= btrfs_file_llseek,
3604 	.read_iter      = btrfs_file_read_iter,
3605 	.splice_read	= generic_file_splice_read,
3606 	.write_iter	= btrfs_file_write_iter,
3607 	.splice_write	= iter_file_splice_write,
3608 	.mmap		= btrfs_file_mmap,
3609 	.open		= btrfs_file_open,
3610 	.release	= btrfs_release_file,
3611 	.fsync		= btrfs_sync_file,
3612 	.fallocate	= btrfs_fallocate,
3613 	.unlocked_ioctl	= btrfs_ioctl,
3614 #ifdef CONFIG_COMPAT
3615 	.compat_ioctl	= btrfs_compat_ioctl,
3616 #endif
3617 	.remap_file_range = btrfs_remap_file_range,
3618 };
3619 
btrfs_auto_defrag_exit(void)3620 void __cold btrfs_auto_defrag_exit(void)
3621 {
3622 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3623 }
3624 
btrfs_auto_defrag_init(void)3625 int __init btrfs_auto_defrag_init(void)
3626 {
3627 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3628 					sizeof(struct inode_defrag), 0,
3629 					SLAB_MEM_SPREAD,
3630 					NULL);
3631 	if (!btrfs_inode_defrag_cachep)
3632 		return -ENOMEM;
3633 
3634 	return 0;
3635 }
3636 
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3637 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3638 {
3639 	int ret;
3640 
3641 	/*
3642 	 * So with compression we will find and lock a dirty page and clear the
3643 	 * first one as dirty, setup an async extent, and immediately return
3644 	 * with the entire range locked but with nobody actually marked with
3645 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3646 	 * expect it to work since it will just kick off a thread to do the
3647 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3648 	 * since it will wait on the page lock, which won't be unlocked until
3649 	 * after the pages have been marked as writeback and so we're good to go
3650 	 * from there.  We have to do this otherwise we'll miss the ordered
3651 	 * extents and that results in badness.  Please Josef, do not think you
3652 	 * know better and pull this out at some point in the future, it is
3653 	 * right and you are wrong.
3654 	 */
3655 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3656 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3657 			     &BTRFS_I(inode)->runtime_flags))
3658 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3659 
3660 	return ret;
3661 }
3662