1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
17
18 #include "aops.h"
19 #include "attrib.h"
20 #include "bitmap.h"
21 #include "dir.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "lcnalloc.h"
25 #include "malloc.h"
26 #include "mft.h"
27 #include "time.h"
28 #include "ntfs.h"
29
30 /**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
ntfs_test_inode(struct inode * vi,void * data)46 int ntfs_test_inode(struct inode *vi, void *data)
47 {
48 ntfs_attr *na = (ntfs_attr *)data;
49 ntfs_inode *ni;
50
51 if (vi->i_ino != na->mft_no)
52 return 0;
53 ni = NTFS_I(vi);
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
58 return 0;
59 } else {
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
62 return 0;
63 if (ni->name_len != na->name_len)
64 return 0;
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
67 return 0;
68 }
69 /* Match! */
70 return 1;
71 }
72
73 /**
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
77 *
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
80 *
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
85 *
86 * Return 0 on success and -errno on error.
87 *
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 */
ntfs_init_locked_inode(struct inode * vi,void * data)91 static int ntfs_init_locked_inode(struct inode *vi, void *data)
92 {
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
95
96 vi->i_ino = na->mft_no;
97
98 ni->type = na->type;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
101
102 ni->name = na->name;
103 ni->name_len = na->name_len;
104
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
107 BUG_ON(na->name);
108 BUG_ON(na->name_len);
109 return 0;
110 }
111
112 /* It is a fake inode. */
113 NInoSetAttr(ni);
114
115 /*
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
120 * absolutely tiny.
121 */
122 if (na->name_len && na->name != I30) {
123 unsigned int i;
124
125 BUG_ON(!na->name);
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 if (!ni->name)
129 return -ENOMEM;
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
132 }
133 return 0;
134 }
135
136 static int ntfs_read_locked_inode(struct inode *vi);
137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138 static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 struct inode *vi);
140
141 /**
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
145 *
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
148 *
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
153 *
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
156 */
ntfs_iget(struct super_block * sb,unsigned long mft_no)157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158 {
159 struct inode *vi;
160 int err;
161 ntfs_attr na;
162
163 na.mft_no = mft_no;
164 na.type = AT_UNUSED;
165 na.name = NULL;
166 na.name_len = 0;
167
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
170 if (unlikely(!vi))
171 return ERR_PTR(-ENOMEM);
172
173 err = 0;
174
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
179 }
180 /*
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
183 */
184 if (unlikely(err == -ENOMEM)) {
185 iput(vi);
186 vi = ERR_PTR(err);
187 }
188 return vi;
189 }
190
191 /**
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 *
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
201 *
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
206 *
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 *
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
213 */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
216 {
217 struct inode *vi;
218 int err;
219 ntfs_attr na;
220
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
223
224 na.mft_no = base_vi->i_ino;
225 na.type = type;
226 na.name = name;
227 na.name_len = name_len;
228
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
231 if (unlikely(!vi))
232 return ERR_PTR(-ENOMEM);
233
234 err = 0;
235
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
240 }
241 /*
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
244 * inodes elsewhere.
245 */
246 if (unlikely(err)) {
247 iput(vi);
248 vi = ERR_PTR(err);
249 }
250 return vi;
251 }
252
253 /**
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
258 *
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
261 * inode @base_vi.
262 *
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
267 *
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
271 */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 u32 name_len)
274 {
275 struct inode *vi;
276 int err;
277 ntfs_attr na;
278
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
281 na.name = name;
282 na.name_len = name_len;
283
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
286 if (unlikely(!vi))
287 return ERR_PTR(-ENOMEM);
288
289 err = 0;
290
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
295 }
296 /*
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
299 * inodes elsewhere.
300 */
301 if (unlikely(err)) {
302 iput(vi);
303 vi = ERR_PTR(err);
304 }
305 return vi;
306 }
307
ntfs_alloc_big_inode(struct super_block * sb)308 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309 {
310 ntfs_inode *ni;
311
312 ntfs_debug("Entering.");
313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
315 ni->state = 0;
316 return VFS_I(ni);
317 }
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 return NULL;
320 }
321
ntfs_free_big_inode(struct inode * inode)322 void ntfs_free_big_inode(struct inode *inode)
323 {
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325 }
326
ntfs_alloc_extent_inode(void)327 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328 {
329 ntfs_inode *ni;
330
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
334 ni->state = 0;
335 return ni;
336 }
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 return NULL;
339 }
340
ntfs_destroy_extent_inode(ntfs_inode * ni)341 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342 {
343 ntfs_debug("Entering.");
344 BUG_ON(ni->page);
345 if (!atomic_dec_and_test(&ni->count))
346 BUG();
347 kmem_cache_free(ntfs_inode_cache, ni);
348 }
349
350 /*
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
353 */
354 static struct lock_class_key attr_list_rl_lock_class;
355
356 /**
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
360 *
361 * Initialize an ntfs inode to defaults.
362 *
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
365 *
366 * Return zero on success and -ENOMEM on error.
367 */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369 {
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
373 ni->seq_no = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
378 ni->page = NULL;
379 ni->page_ofs = 0;
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
391 ni->nr_extents = 0;
392 ni->ext.base_ntfs_ino = NULL;
393 }
394
395 /*
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
399 */
400 static struct lock_class_key extent_inode_mrec_lock_key;
401
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
404 {
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
406
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 ni->mft_no = mft_no;
412 ni->type = AT_UNUSED;
413 ni->name = NULL;
414 ni->name_len = 0;
415 }
416 return ni;
417 }
418
419 /**
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
422 *
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
425 * directory.
426 *
427 * Return values:
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
431 */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433 {
434 int nr_links, err;
435
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
438
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
441
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 ctx))) {
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
447 u8 *p, *p2;
448
449 nr_links--;
450 /*
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
453 */
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457 err_corrupt_attr:
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
460 return -EIO;
461 }
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
465 return -EIO;
466 }
467 if (attr->flags) {
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
470 "chkdsk.");
471 return -EIO;
472 }
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
476 return -EIO;
477 }
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
486 }
487 if (unlikely(err != -ENOENT))
488 return err;
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
493 return -EIO;
494 }
495 return 0; /* NO, it is not an extended system file. */
496 }
497
498 /**
499 * ntfs_read_locked_inode - read an inode from its device
500 * @vi: inode to read
501 *
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
504 *
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
508 *
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
511 * the ntfs inode.
512 *
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 *
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
523 */
ntfs_read_locked_inode(struct inode * vi)524 static int ntfs_read_locked_inode(struct inode *vi)
525 {
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 ntfs_inode *ni;
528 struct inode *bvi;
529 MFT_RECORD *m;
530 ATTR_RECORD *a;
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
533 int err = 0;
534
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
540 vi->i_mode = 0;
541
542 /*
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
545 */
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
548 ni = NTFS_I(vi);
549
550 m = map_mft_record(ni);
551 if (IS_ERR(m)) {
552 err = PTR_ERR(m);
553 goto err_out;
554 }
555 ctx = ntfs_attr_get_search_ctx(ni, m);
556 if (!ctx) {
557 err = -ENOMEM;
558 goto unm_err_out;
559 }
560
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
563 goto unm_err_out;
564 }
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 goto unm_err_out;
568 }
569
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572
573 /*
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
581 */
582 set_nlink(vi, le16_to_cpu(m->link_count));
583 /*
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
589 */
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
593 if (IS_RDONLY(vi))
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
597 /*
598 * Apply the directory permissions mask set in the mount
599 * options.
600 */
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
603 if (vi->i_nlink > 1)
604 set_nlink(vi, 1);
605 } else {
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
609 }
610 /*
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
615 */
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 ctx);
618 if (unlikely(err)) {
619 if (err == -ENOENT) {
620 /*
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
623 * attribute.
624 */
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 "is missing.");
627 }
628 goto unm_err_out;
629 }
630 a = ctx->attr;
631 /* Get the standard information attribute value. */
632 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
633 + le32_to_cpu(a->data.resident.value_length) >
634 (u8 *)ctx->mrec + vol->mft_record_size) {
635 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
636 goto unm_err_out;
637 }
638 si = (STANDARD_INFORMATION*)((u8*)a +
639 le16_to_cpu(a->data.resident.value_offset));
640
641 /* Transfer information from the standard information into vi. */
642 /*
643 * Note: The i_?times do not quite map perfectly onto the NTFS times,
644 * but they are close enough, and in the end it doesn't really matter
645 * that much...
646 */
647 /*
648 * mtime is the last change of the data within the file. Not changed
649 * when only metadata is changed, e.g. a rename doesn't affect mtime.
650 */
651 vi->i_mtime = ntfs2utc(si->last_data_change_time);
652 /*
653 * ctime is the last change of the metadata of the file. This obviously
654 * always changes, when mtime is changed. ctime can be changed on its
655 * own, mtime is then not changed, e.g. when a file is renamed.
656 */
657 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
658 /*
659 * Last access to the data within the file. Not changed during a rename
660 * for example but changed whenever the file is written to.
661 */
662 vi->i_atime = ntfs2utc(si->last_access_time);
663
664 /* Find the attribute list attribute if present. */
665 ntfs_attr_reinit_search_ctx(ctx);
666 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
667 if (err) {
668 if (unlikely(err != -ENOENT)) {
669 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
670 "attribute.");
671 goto unm_err_out;
672 }
673 } else /* if (!err) */ {
674 if (vi->i_ino == FILE_MFT)
675 goto skip_attr_list_load;
676 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
677 NInoSetAttrList(ni);
678 a = ctx->attr;
679 if (a->flags & ATTR_COMPRESSION_MASK) {
680 ntfs_error(vi->i_sb, "Attribute list attribute is "
681 "compressed.");
682 goto unm_err_out;
683 }
684 if (a->flags & ATTR_IS_ENCRYPTED ||
685 a->flags & ATTR_IS_SPARSE) {
686 if (a->non_resident) {
687 ntfs_error(vi->i_sb, "Non-resident attribute "
688 "list attribute is encrypted/"
689 "sparse.");
690 goto unm_err_out;
691 }
692 ntfs_warning(vi->i_sb, "Resident attribute list "
693 "attribute in inode 0x%lx is marked "
694 "encrypted/sparse which is not true. "
695 "However, Windows allows this and "
696 "chkdsk does not detect or correct it "
697 "so we will just ignore the invalid "
698 "flags and pretend they are not set.",
699 vi->i_ino);
700 }
701 /* Now allocate memory for the attribute list. */
702 ni->attr_list_size = (u32)ntfs_attr_size(a);
703 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
704 if (!ni->attr_list) {
705 ntfs_error(vi->i_sb, "Not enough memory to allocate "
706 "buffer for attribute list.");
707 err = -ENOMEM;
708 goto unm_err_out;
709 }
710 if (a->non_resident) {
711 NInoSetAttrListNonResident(ni);
712 if (a->data.non_resident.lowest_vcn) {
713 ntfs_error(vi->i_sb, "Attribute list has non "
714 "zero lowest_vcn.");
715 goto unm_err_out;
716 }
717 /*
718 * Setup the runlist. No need for locking as we have
719 * exclusive access to the inode at this time.
720 */
721 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
722 a, NULL);
723 if (IS_ERR(ni->attr_list_rl.rl)) {
724 err = PTR_ERR(ni->attr_list_rl.rl);
725 ni->attr_list_rl.rl = NULL;
726 ntfs_error(vi->i_sb, "Mapping pairs "
727 "decompression failed.");
728 goto unm_err_out;
729 }
730 /* Now load the attribute list. */
731 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
732 ni->attr_list, ni->attr_list_size,
733 sle64_to_cpu(a->data.non_resident.
734 initialized_size)))) {
735 ntfs_error(vi->i_sb, "Failed to load "
736 "attribute list attribute.");
737 goto unm_err_out;
738 }
739 } else /* if (!a->non_resident) */ {
740 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
741 + le32_to_cpu(
742 a->data.resident.value_length) >
743 (u8*)ctx->mrec + vol->mft_record_size) {
744 ntfs_error(vi->i_sb, "Corrupt attribute list "
745 "in inode.");
746 goto unm_err_out;
747 }
748 /* Now copy the attribute list. */
749 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
750 a->data.resident.value_offset),
751 le32_to_cpu(
752 a->data.resident.value_length));
753 }
754 }
755 skip_attr_list_load:
756 /*
757 * If an attribute list is present we now have the attribute list value
758 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
759 */
760 if (S_ISDIR(vi->i_mode)) {
761 loff_t bvi_size;
762 ntfs_inode *bni;
763 INDEX_ROOT *ir;
764 u8 *ir_end, *index_end;
765
766 /* It is a directory, find index root attribute. */
767 ntfs_attr_reinit_search_ctx(ctx);
768 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
769 0, NULL, 0, ctx);
770 if (unlikely(err)) {
771 if (err == -ENOENT) {
772 // FIXME: File is corrupt! Hot-fix with empty
773 // index root attribute if recovery option is
774 // set.
775 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
776 "is missing.");
777 }
778 goto unm_err_out;
779 }
780 a = ctx->attr;
781 /* Set up the state. */
782 if (unlikely(a->non_resident)) {
783 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
784 "resident.");
785 goto unm_err_out;
786 }
787 /* Ensure the attribute name is placed before the value. */
788 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
789 le16_to_cpu(a->data.resident.value_offset)))) {
790 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
791 "placed after the attribute value.");
792 goto unm_err_out;
793 }
794 /*
795 * Compressed/encrypted index root just means that the newly
796 * created files in that directory should be created compressed/
797 * encrypted. However index root cannot be both compressed and
798 * encrypted.
799 */
800 if (a->flags & ATTR_COMPRESSION_MASK)
801 NInoSetCompressed(ni);
802 if (a->flags & ATTR_IS_ENCRYPTED) {
803 if (a->flags & ATTR_COMPRESSION_MASK) {
804 ntfs_error(vi->i_sb, "Found encrypted and "
805 "compressed attribute.");
806 goto unm_err_out;
807 }
808 NInoSetEncrypted(ni);
809 }
810 if (a->flags & ATTR_IS_SPARSE)
811 NInoSetSparse(ni);
812 ir = (INDEX_ROOT*)((u8*)a +
813 le16_to_cpu(a->data.resident.value_offset));
814 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
815 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
816 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
817 "corrupt.");
818 goto unm_err_out;
819 }
820 index_end = (u8*)&ir->index +
821 le32_to_cpu(ir->index.index_length);
822 if (index_end > ir_end) {
823 ntfs_error(vi->i_sb, "Directory index is corrupt.");
824 goto unm_err_out;
825 }
826 if (ir->type != AT_FILE_NAME) {
827 ntfs_error(vi->i_sb, "Indexed attribute is not "
828 "$FILE_NAME.");
829 goto unm_err_out;
830 }
831 if (ir->collation_rule != COLLATION_FILE_NAME) {
832 ntfs_error(vi->i_sb, "Index collation rule is not "
833 "COLLATION_FILE_NAME.");
834 goto unm_err_out;
835 }
836 ni->itype.index.collation_rule = ir->collation_rule;
837 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
838 if (ni->itype.index.block_size &
839 (ni->itype.index.block_size - 1)) {
840 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
841 "power of two.",
842 ni->itype.index.block_size);
843 goto unm_err_out;
844 }
845 if (ni->itype.index.block_size > PAGE_SIZE) {
846 ntfs_error(vi->i_sb, "Index block size (%u) > "
847 "PAGE_SIZE (%ld) is not "
848 "supported. Sorry.",
849 ni->itype.index.block_size,
850 PAGE_SIZE);
851 err = -EOPNOTSUPP;
852 goto unm_err_out;
853 }
854 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
855 ntfs_error(vi->i_sb, "Index block size (%u) < "
856 "NTFS_BLOCK_SIZE (%i) is not "
857 "supported. Sorry.",
858 ni->itype.index.block_size,
859 NTFS_BLOCK_SIZE);
860 err = -EOPNOTSUPP;
861 goto unm_err_out;
862 }
863 ni->itype.index.block_size_bits =
864 ffs(ni->itype.index.block_size) - 1;
865 /* Determine the size of a vcn in the directory index. */
866 if (vol->cluster_size <= ni->itype.index.block_size) {
867 ni->itype.index.vcn_size = vol->cluster_size;
868 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
869 } else {
870 ni->itype.index.vcn_size = vol->sector_size;
871 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
872 }
873
874 /* Setup the index allocation attribute, even if not present. */
875 NInoSetMstProtected(ni);
876 ni->type = AT_INDEX_ALLOCATION;
877 ni->name = I30;
878 ni->name_len = 4;
879
880 if (!(ir->index.flags & LARGE_INDEX)) {
881 /* No index allocation. */
882 vi->i_size = ni->initialized_size =
883 ni->allocated_size = 0;
884 /* We are done with the mft record, so we release it. */
885 ntfs_attr_put_search_ctx(ctx);
886 unmap_mft_record(ni);
887 m = NULL;
888 ctx = NULL;
889 goto skip_large_dir_stuff;
890 } /* LARGE_INDEX: Index allocation present. Setup state. */
891 NInoSetIndexAllocPresent(ni);
892 /* Find index allocation attribute. */
893 ntfs_attr_reinit_search_ctx(ctx);
894 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
895 CASE_SENSITIVE, 0, NULL, 0, ctx);
896 if (unlikely(err)) {
897 if (err == -ENOENT)
898 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
899 "attribute is not present but "
900 "$INDEX_ROOT indicated it is.");
901 else
902 ntfs_error(vi->i_sb, "Failed to lookup "
903 "$INDEX_ALLOCATION "
904 "attribute.");
905 goto unm_err_out;
906 }
907 a = ctx->attr;
908 if (!a->non_resident) {
909 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
910 "is resident.");
911 goto unm_err_out;
912 }
913 /*
914 * Ensure the attribute name is placed before the mapping pairs
915 * array.
916 */
917 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
918 le16_to_cpu(
919 a->data.non_resident.mapping_pairs_offset)))) {
920 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
921 "is placed after the mapping pairs "
922 "array.");
923 goto unm_err_out;
924 }
925 if (a->flags & ATTR_IS_ENCRYPTED) {
926 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
927 "is encrypted.");
928 goto unm_err_out;
929 }
930 if (a->flags & ATTR_IS_SPARSE) {
931 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
932 "is sparse.");
933 goto unm_err_out;
934 }
935 if (a->flags & ATTR_COMPRESSION_MASK) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 "is compressed.");
938 goto unm_err_out;
939 }
940 if (a->data.non_resident.lowest_vcn) {
941 ntfs_error(vi->i_sb, "First extent of "
942 "$INDEX_ALLOCATION attribute has non "
943 "zero lowest_vcn.");
944 goto unm_err_out;
945 }
946 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
947 ni->initialized_size = sle64_to_cpu(
948 a->data.non_resident.initialized_size);
949 ni->allocated_size = sle64_to_cpu(
950 a->data.non_resident.allocated_size);
951 /*
952 * We are done with the mft record, so we release it. Otherwise
953 * we would deadlock in ntfs_attr_iget().
954 */
955 ntfs_attr_put_search_ctx(ctx);
956 unmap_mft_record(ni);
957 m = NULL;
958 ctx = NULL;
959 /* Get the index bitmap attribute inode. */
960 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
961 if (IS_ERR(bvi)) {
962 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
963 err = PTR_ERR(bvi);
964 goto unm_err_out;
965 }
966 bni = NTFS_I(bvi);
967 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
968 NInoSparse(bni)) {
969 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
970 "and/or encrypted and/or sparse.");
971 goto iput_unm_err_out;
972 }
973 /* Consistency check bitmap size vs. index allocation size. */
974 bvi_size = i_size_read(bvi);
975 if ((bvi_size << 3) < (vi->i_size >>
976 ni->itype.index.block_size_bits)) {
977 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
978 "for index allocation (0x%llx).",
979 bvi_size << 3, vi->i_size);
980 goto iput_unm_err_out;
981 }
982 /* No longer need the bitmap attribute inode. */
983 iput(bvi);
984 skip_large_dir_stuff:
985 /* Setup the operations for this inode. */
986 vi->i_op = &ntfs_dir_inode_ops;
987 vi->i_fop = &ntfs_dir_ops;
988 vi->i_mapping->a_ops = &ntfs_mst_aops;
989 } else {
990 /* It is a file. */
991 ntfs_attr_reinit_search_ctx(ctx);
992
993 /* Setup the data attribute, even if not present. */
994 ni->type = AT_DATA;
995 ni->name = NULL;
996 ni->name_len = 0;
997
998 /* Find first extent of the unnamed data attribute. */
999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 if (unlikely(err)) {
1001 vi->i_size = ni->initialized_size =
1002 ni->allocated_size = 0;
1003 if (err != -ENOENT) {
1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1005 "attribute.");
1006 goto unm_err_out;
1007 }
1008 /*
1009 * FILE_Secure does not have an unnamed $DATA
1010 * attribute, so we special case it here.
1011 */
1012 if (vi->i_ino == FILE_Secure)
1013 goto no_data_attr_special_case;
1014 /*
1015 * Most if not all the system files in the $Extend
1016 * system directory do not have unnamed data
1017 * attributes so we need to check if the parent
1018 * directory of the file is FILE_Extend and if it is
1019 * ignore this error. To do this we need to get the
1020 * name of this inode from the mft record as the name
1021 * contains the back reference to the parent directory.
1022 */
1023 if (ntfs_is_extended_system_file(ctx) > 0)
1024 goto no_data_attr_special_case;
1025 // FIXME: File is corrupt! Hot-fix with empty data
1026 // attribute if recovery option is set.
1027 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1028 goto unm_err_out;
1029 }
1030 a = ctx->attr;
1031 /* Setup the state. */
1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 if (a->flags & ATTR_COMPRESSION_MASK) {
1034 NInoSetCompressed(ni);
1035 if (vol->cluster_size > 4096) {
1036 ntfs_error(vi->i_sb, "Found "
1037 "compressed data but "
1038 "compression is "
1039 "disabled due to "
1040 "cluster size (%i) > "
1041 "4kiB.",
1042 vol->cluster_size);
1043 goto unm_err_out;
1044 }
1045 if ((a->flags & ATTR_COMPRESSION_MASK)
1046 != ATTR_IS_COMPRESSED) {
1047 ntfs_error(vi->i_sb, "Found unknown "
1048 "compression method "
1049 "or corrupt file.");
1050 goto unm_err_out;
1051 }
1052 }
1053 if (a->flags & ATTR_IS_SPARSE)
1054 NInoSetSparse(ni);
1055 }
1056 if (a->flags & ATTR_IS_ENCRYPTED) {
1057 if (NInoCompressed(ni)) {
1058 ntfs_error(vi->i_sb, "Found encrypted and "
1059 "compressed data.");
1060 goto unm_err_out;
1061 }
1062 NInoSetEncrypted(ni);
1063 }
1064 if (a->non_resident) {
1065 NInoSetNonResident(ni);
1066 if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 if (NInoCompressed(ni) && a->data.non_resident.
1068 compression_unit != 4) {
1069 ntfs_error(vi->i_sb, "Found "
1070 "non-standard "
1071 "compression unit (%u "
1072 "instead of 4). "
1073 "Cannot handle this.",
1074 a->data.non_resident.
1075 compression_unit);
1076 err = -EOPNOTSUPP;
1077 goto unm_err_out;
1078 }
1079 if (a->data.non_resident.compression_unit) {
1080 ni->itype.compressed.block_size = 1U <<
1081 (a->data.non_resident.
1082 compression_unit +
1083 vol->cluster_size_bits);
1084 ni->itype.compressed.block_size_bits =
1085 ffs(ni->itype.
1086 compressed.
1087 block_size) - 1;
1088 ni->itype.compressed.block_clusters =
1089 1U << a->data.
1090 non_resident.
1091 compression_unit;
1092 } else {
1093 ni->itype.compressed.block_size = 0;
1094 ni->itype.compressed.block_size_bits =
1095 0;
1096 ni->itype.compressed.block_clusters =
1097 0;
1098 }
1099 ni->itype.compressed.size = sle64_to_cpu(
1100 a->data.non_resident.
1101 compressed_size);
1102 }
1103 if (a->data.non_resident.lowest_vcn) {
1104 ntfs_error(vi->i_sb, "First extent of $DATA "
1105 "attribute has non zero "
1106 "lowest_vcn.");
1107 goto unm_err_out;
1108 }
1109 vi->i_size = sle64_to_cpu(
1110 a->data.non_resident.data_size);
1111 ni->initialized_size = sle64_to_cpu(
1112 a->data.non_resident.initialized_size);
1113 ni->allocated_size = sle64_to_cpu(
1114 a->data.non_resident.allocated_size);
1115 } else { /* Resident attribute. */
1116 vi->i_size = ni->initialized_size = le32_to_cpu(
1117 a->data.resident.value_length);
1118 ni->allocated_size = le32_to_cpu(a->length) -
1119 le16_to_cpu(
1120 a->data.resident.value_offset);
1121 if (vi->i_size > ni->allocated_size) {
1122 ntfs_error(vi->i_sb, "Resident data attribute "
1123 "is corrupt (size exceeds "
1124 "allocation).");
1125 goto unm_err_out;
1126 }
1127 }
1128 no_data_attr_special_case:
1129 /* We are done with the mft record, so we release it. */
1130 ntfs_attr_put_search_ctx(ctx);
1131 unmap_mft_record(ni);
1132 m = NULL;
1133 ctx = NULL;
1134 /* Setup the operations for this inode. */
1135 vi->i_op = &ntfs_file_inode_ops;
1136 vi->i_fop = &ntfs_file_ops;
1137 vi->i_mapping->a_ops = &ntfs_normal_aops;
1138 if (NInoMstProtected(ni))
1139 vi->i_mapping->a_ops = &ntfs_mst_aops;
1140 else if (NInoCompressed(ni))
1141 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1142 }
1143 /*
1144 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 * far inaccurate as it doesn't account for any named streams or other
1146 * special non-resident attributes, but that is how Windows works, too,
1147 * so we are at least consistent with Windows, if not entirely
1148 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 * significant slowdown as it would involve iterating over all
1150 * attributes in the mft record and adding the allocated/compressed
1151 * sizes of all non-resident attributes present to give us the Linux
1152 * correct size that should go into i_blocks (after division by 512).
1153 */
1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 vi->i_blocks = ni->itype.compressed.size >> 9;
1156 else
1157 vi->i_blocks = ni->allocated_size >> 9;
1158 ntfs_debug("Done.");
1159 return 0;
1160 iput_unm_err_out:
1161 iput(bvi);
1162 unm_err_out:
1163 if (!err)
1164 err = -EIO;
1165 if (ctx)
1166 ntfs_attr_put_search_ctx(ctx);
1167 if (m)
1168 unmap_mft_record(ni);
1169 err_out:
1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1172 make_bad_inode(vi);
1173 if (err != -EOPNOTSUPP && err != -ENOMEM)
1174 NVolSetErrors(vol);
1175 return err;
1176 }
1177
1178 /**
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi: base inode
1181 * @vi: attribute inode to read
1182 *
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1186 *
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1190 *
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 * i_count is set to 1, so it is not going to go away
1194 *
1195 * Return 0 on success and -errno on error. In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1197 *
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1199 */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1200 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1201 {
1202 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 ntfs_inode *ni, *base_ni;
1204 MFT_RECORD *m;
1205 ATTR_RECORD *a;
1206 ntfs_attr_search_ctx *ctx;
1207 int err = 0;
1208
1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1210
1211 ntfs_init_big_inode(vi);
1212
1213 ni = NTFS_I(vi);
1214 base_ni = NTFS_I(base_vi);
1215
1216 /* Just mirror the values from the base inode. */
1217 vi->i_uid = base_vi->i_uid;
1218 vi->i_gid = base_vi->i_gid;
1219 set_nlink(vi, base_vi->i_nlink);
1220 vi->i_mtime = base_vi->i_mtime;
1221 vi->i_ctime = base_vi->i_ctime;
1222 vi->i_atime = base_vi->i_atime;
1223 vi->i_generation = ni->seq_no = base_ni->seq_no;
1224
1225 /* Set inode type to zero but preserve permissions. */
1226 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1227
1228 m = map_mft_record(base_ni);
1229 if (IS_ERR(m)) {
1230 err = PTR_ERR(m);
1231 goto err_out;
1232 }
1233 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1234 if (!ctx) {
1235 err = -ENOMEM;
1236 goto unm_err_out;
1237 }
1238 /* Find the attribute. */
1239 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1240 CASE_SENSITIVE, 0, NULL, 0, ctx);
1241 if (unlikely(err))
1242 goto unm_err_out;
1243 a = ctx->attr;
1244 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1245 if (a->flags & ATTR_COMPRESSION_MASK) {
1246 NInoSetCompressed(ni);
1247 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1248 ni->name_len)) {
1249 ntfs_error(vi->i_sb, "Found compressed "
1250 "non-data or named data "
1251 "attribute. Please report "
1252 "you saw this message to "
1253 "linux-ntfs-dev@lists."
1254 "sourceforge.net");
1255 goto unm_err_out;
1256 }
1257 if (vol->cluster_size > 4096) {
1258 ntfs_error(vi->i_sb, "Found compressed "
1259 "attribute but compression is "
1260 "disabled due to cluster size "
1261 "(%i) > 4kiB.",
1262 vol->cluster_size);
1263 goto unm_err_out;
1264 }
1265 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1266 ATTR_IS_COMPRESSED) {
1267 ntfs_error(vi->i_sb, "Found unknown "
1268 "compression method.");
1269 goto unm_err_out;
1270 }
1271 }
1272 /*
1273 * The compressed/sparse flag set in an index root just means
1274 * to compress all files.
1275 */
1276 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1277 ntfs_error(vi->i_sb, "Found mst protected attribute "
1278 "but the attribute is %s. Please "
1279 "report you saw this message to "
1280 "linux-ntfs-dev@lists.sourceforge.net",
1281 NInoCompressed(ni) ? "compressed" :
1282 "sparse");
1283 goto unm_err_out;
1284 }
1285 if (a->flags & ATTR_IS_SPARSE)
1286 NInoSetSparse(ni);
1287 }
1288 if (a->flags & ATTR_IS_ENCRYPTED) {
1289 if (NInoCompressed(ni)) {
1290 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1291 "data.");
1292 goto unm_err_out;
1293 }
1294 /*
1295 * The encryption flag set in an index root just means to
1296 * encrypt all files.
1297 */
1298 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1299 ntfs_error(vi->i_sb, "Found mst protected attribute "
1300 "but the attribute is encrypted. "
1301 "Please report you saw this message "
1302 "to linux-ntfs-dev@lists.sourceforge."
1303 "net");
1304 goto unm_err_out;
1305 }
1306 if (ni->type != AT_DATA) {
1307 ntfs_error(vi->i_sb, "Found encrypted non-data "
1308 "attribute.");
1309 goto unm_err_out;
1310 }
1311 NInoSetEncrypted(ni);
1312 }
1313 if (!a->non_resident) {
1314 /* Ensure the attribute name is placed before the value. */
1315 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1316 le16_to_cpu(a->data.resident.value_offset)))) {
1317 ntfs_error(vol->sb, "Attribute name is placed after "
1318 "the attribute value.");
1319 goto unm_err_out;
1320 }
1321 if (NInoMstProtected(ni)) {
1322 ntfs_error(vi->i_sb, "Found mst protected attribute "
1323 "but the attribute is resident. "
1324 "Please report you saw this message to "
1325 "linux-ntfs-dev@lists.sourceforge.net");
1326 goto unm_err_out;
1327 }
1328 vi->i_size = ni->initialized_size = le32_to_cpu(
1329 a->data.resident.value_length);
1330 ni->allocated_size = le32_to_cpu(a->length) -
1331 le16_to_cpu(a->data.resident.value_offset);
1332 if (vi->i_size > ni->allocated_size) {
1333 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1334 "(size exceeds allocation).");
1335 goto unm_err_out;
1336 }
1337 } else {
1338 NInoSetNonResident(ni);
1339 /*
1340 * Ensure the attribute name is placed before the mapping pairs
1341 * array.
1342 */
1343 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1344 le16_to_cpu(
1345 a->data.non_resident.mapping_pairs_offset)))) {
1346 ntfs_error(vol->sb, "Attribute name is placed after "
1347 "the mapping pairs array.");
1348 goto unm_err_out;
1349 }
1350 if (NInoCompressed(ni) || NInoSparse(ni)) {
1351 if (NInoCompressed(ni) && a->data.non_resident.
1352 compression_unit != 4) {
1353 ntfs_error(vi->i_sb, "Found non-standard "
1354 "compression unit (%u instead "
1355 "of 4). Cannot handle this.",
1356 a->data.non_resident.
1357 compression_unit);
1358 err = -EOPNOTSUPP;
1359 goto unm_err_out;
1360 }
1361 if (a->data.non_resident.compression_unit) {
1362 ni->itype.compressed.block_size = 1U <<
1363 (a->data.non_resident.
1364 compression_unit +
1365 vol->cluster_size_bits);
1366 ni->itype.compressed.block_size_bits =
1367 ffs(ni->itype.compressed.
1368 block_size) - 1;
1369 ni->itype.compressed.block_clusters = 1U <<
1370 a->data.non_resident.
1371 compression_unit;
1372 } else {
1373 ni->itype.compressed.block_size = 0;
1374 ni->itype.compressed.block_size_bits = 0;
1375 ni->itype.compressed.block_clusters = 0;
1376 }
1377 ni->itype.compressed.size = sle64_to_cpu(
1378 a->data.non_resident.compressed_size);
1379 }
1380 if (a->data.non_resident.lowest_vcn) {
1381 ntfs_error(vi->i_sb, "First extent of attribute has "
1382 "non-zero lowest_vcn.");
1383 goto unm_err_out;
1384 }
1385 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1386 ni->initialized_size = sle64_to_cpu(
1387 a->data.non_resident.initialized_size);
1388 ni->allocated_size = sle64_to_cpu(
1389 a->data.non_resident.allocated_size);
1390 }
1391 vi->i_mapping->a_ops = &ntfs_normal_aops;
1392 if (NInoMstProtected(ni))
1393 vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 else if (NInoCompressed(ni))
1395 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 vi->i_blocks = ni->itype.compressed.size >> 9;
1398 else
1399 vi->i_blocks = ni->allocated_size >> 9;
1400 /*
1401 * Make sure the base inode does not go away and attach it to the
1402 * attribute inode.
1403 */
1404 igrab(base_vi);
1405 ni->ext.base_ntfs_ino = base_ni;
1406 ni->nr_extents = -1;
1407
1408 ntfs_attr_put_search_ctx(ctx);
1409 unmap_mft_record(base_ni);
1410
1411 ntfs_debug("Done.");
1412 return 0;
1413
1414 unm_err_out:
1415 if (!err)
1416 err = -EIO;
1417 if (ctx)
1418 ntfs_attr_put_search_ctx(ctx);
1419 unmap_mft_record(base_ni);
1420 err_out:
1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1423 "Marking corrupt inode and base inode 0x%lx as bad. "
1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425 base_vi->i_ino);
1426 make_bad_inode(vi);
1427 if (err != -ENOMEM)
1428 NVolSetErrors(vol);
1429 return err;
1430 }
1431
1432 /**
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi: base inode
1435 * @vi: index inode to read
1436 *
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1439 * by @base_ni.
1440 *
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1444 * ntfs inode.
1445 *
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way. Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index. Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1457 *
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 * i_count is set to 1, so it is not going to go away
1461 *
1462 * Return 0 on success and -errno on error. In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1464 */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1465 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1466 {
1467 loff_t bvi_size;
1468 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 ntfs_inode *ni, *base_ni, *bni;
1470 struct inode *bvi;
1471 MFT_RECORD *m;
1472 ATTR_RECORD *a;
1473 ntfs_attr_search_ctx *ctx;
1474 INDEX_ROOT *ir;
1475 u8 *ir_end, *index_end;
1476 int err = 0;
1477
1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 ntfs_init_big_inode(vi);
1480 ni = NTFS_I(vi);
1481 base_ni = NTFS_I(base_vi);
1482 /* Just mirror the values from the base inode. */
1483 vi->i_uid = base_vi->i_uid;
1484 vi->i_gid = base_vi->i_gid;
1485 set_nlink(vi, base_vi->i_nlink);
1486 vi->i_mtime = base_vi->i_mtime;
1487 vi->i_ctime = base_vi->i_ctime;
1488 vi->i_atime = base_vi->i_atime;
1489 vi->i_generation = ni->seq_no = base_ni->seq_no;
1490 /* Set inode type to zero but preserve permissions. */
1491 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1492 /* Map the mft record for the base inode. */
1493 m = map_mft_record(base_ni);
1494 if (IS_ERR(m)) {
1495 err = PTR_ERR(m);
1496 goto err_out;
1497 }
1498 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1499 if (!ctx) {
1500 err = -ENOMEM;
1501 goto unm_err_out;
1502 }
1503 /* Find the index root attribute. */
1504 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1505 CASE_SENSITIVE, 0, NULL, 0, ctx);
1506 if (unlikely(err)) {
1507 if (err == -ENOENT)
1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1509 "missing.");
1510 goto unm_err_out;
1511 }
1512 a = ctx->attr;
1513 /* Set up the state. */
1514 if (unlikely(a->non_resident)) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1516 goto unm_err_out;
1517 }
1518 /* Ensure the attribute name is placed before the value. */
1519 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1520 le16_to_cpu(a->data.resident.value_offset)))) {
1521 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1522 "after the attribute value.");
1523 goto unm_err_out;
1524 }
1525 /*
1526 * Compressed/encrypted/sparse index root is not allowed, except for
1527 * directories of course but those are not dealt with here.
1528 */
1529 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1530 ATTR_IS_SPARSE)) {
1531 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1532 "root attribute.");
1533 goto unm_err_out;
1534 }
1535 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1536 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1537 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1538 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1539 goto unm_err_out;
1540 }
1541 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1542 if (index_end > ir_end) {
1543 ntfs_error(vi->i_sb, "Index is corrupt.");
1544 goto unm_err_out;
1545 }
1546 if (ir->type) {
1547 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1548 le32_to_cpu(ir->type));
1549 goto unm_err_out;
1550 }
1551 ni->itype.index.collation_rule = ir->collation_rule;
1552 ntfs_debug("Index collation rule is 0x%x.",
1553 le32_to_cpu(ir->collation_rule));
1554 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1555 if (!is_power_of_2(ni->itype.index.block_size)) {
1556 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1557 "two.", ni->itype.index.block_size);
1558 goto unm_err_out;
1559 }
1560 if (ni->itype.index.block_size > PAGE_SIZE) {
1561 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1562 "(%ld) is not supported. Sorry.",
1563 ni->itype.index.block_size, PAGE_SIZE);
1564 err = -EOPNOTSUPP;
1565 goto unm_err_out;
1566 }
1567 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1568 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1569 "(%i) is not supported. Sorry.",
1570 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1571 err = -EOPNOTSUPP;
1572 goto unm_err_out;
1573 }
1574 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1575 /* Determine the size of a vcn in the index. */
1576 if (vol->cluster_size <= ni->itype.index.block_size) {
1577 ni->itype.index.vcn_size = vol->cluster_size;
1578 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1579 } else {
1580 ni->itype.index.vcn_size = vol->sector_size;
1581 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1582 }
1583 /* Check for presence of index allocation attribute. */
1584 if (!(ir->index.flags & LARGE_INDEX)) {
1585 /* No index allocation. */
1586 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1587 /* We are done with the mft record, so we release it. */
1588 ntfs_attr_put_search_ctx(ctx);
1589 unmap_mft_record(base_ni);
1590 m = NULL;
1591 ctx = NULL;
1592 goto skip_large_index_stuff;
1593 } /* LARGE_INDEX: Index allocation present. Setup state. */
1594 NInoSetIndexAllocPresent(ni);
1595 /* Find index allocation attribute. */
1596 ntfs_attr_reinit_search_ctx(ctx);
1597 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1598 CASE_SENSITIVE, 0, NULL, 0, ctx);
1599 if (unlikely(err)) {
1600 if (err == -ENOENT)
1601 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1602 "not present but $INDEX_ROOT "
1603 "indicated it is.");
1604 else
1605 ntfs_error(vi->i_sb, "Failed to lookup "
1606 "$INDEX_ALLOCATION attribute.");
1607 goto unm_err_out;
1608 }
1609 a = ctx->attr;
1610 if (!a->non_resident) {
1611 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1612 "resident.");
1613 goto unm_err_out;
1614 }
1615 /*
1616 * Ensure the attribute name is placed before the mapping pairs array.
1617 */
1618 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1619 le16_to_cpu(
1620 a->data.non_resident.mapping_pairs_offset)))) {
1621 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1622 "placed after the mapping pairs array.");
1623 goto unm_err_out;
1624 }
1625 if (a->flags & ATTR_IS_ENCRYPTED) {
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 "encrypted.");
1628 goto unm_err_out;
1629 }
1630 if (a->flags & ATTR_IS_SPARSE) {
1631 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1632 goto unm_err_out;
1633 }
1634 if (a->flags & ATTR_COMPRESSION_MASK) {
1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1636 "compressed.");
1637 goto unm_err_out;
1638 }
1639 if (a->data.non_resident.lowest_vcn) {
1640 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1641 "attribute has non zero lowest_vcn.");
1642 goto unm_err_out;
1643 }
1644 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1645 ni->initialized_size = sle64_to_cpu(
1646 a->data.non_resident.initialized_size);
1647 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1648 /*
1649 * We are done with the mft record, so we release it. Otherwise
1650 * we would deadlock in ntfs_attr_iget().
1651 */
1652 ntfs_attr_put_search_ctx(ctx);
1653 unmap_mft_record(base_ni);
1654 m = NULL;
1655 ctx = NULL;
1656 /* Get the index bitmap attribute inode. */
1657 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1658 if (IS_ERR(bvi)) {
1659 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1660 err = PTR_ERR(bvi);
1661 goto unm_err_out;
1662 }
1663 bni = NTFS_I(bvi);
1664 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1665 NInoSparse(bni)) {
1666 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1667 "encrypted and/or sparse.");
1668 goto iput_unm_err_out;
1669 }
1670 /* Consistency check bitmap size vs. index allocation size. */
1671 bvi_size = i_size_read(bvi);
1672 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1673 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1674 "index allocation (0x%llx).", bvi_size << 3,
1675 vi->i_size);
1676 goto iput_unm_err_out;
1677 }
1678 iput(bvi);
1679 skip_large_index_stuff:
1680 /* Setup the operations for this index inode. */
1681 vi->i_mapping->a_ops = &ntfs_mst_aops;
1682 vi->i_blocks = ni->allocated_size >> 9;
1683 /*
1684 * Make sure the base inode doesn't go away and attach it to the
1685 * index inode.
1686 */
1687 igrab(base_vi);
1688 ni->ext.base_ntfs_ino = base_ni;
1689 ni->nr_extents = -1;
1690
1691 ntfs_debug("Done.");
1692 return 0;
1693 iput_unm_err_out:
1694 iput(bvi);
1695 unm_err_out:
1696 if (!err)
1697 err = -EIO;
1698 if (ctx)
1699 ntfs_attr_put_search_ctx(ctx);
1700 if (m)
1701 unmap_mft_record(base_ni);
1702 err_out:
1703 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1704 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1705 ni->name_len);
1706 make_bad_inode(vi);
1707 if (err != -EOPNOTSUPP && err != -ENOMEM)
1708 NVolSetErrors(vol);
1709 return err;
1710 }
1711
1712 /*
1713 * The MFT inode has special locking, so teach the lock validator
1714 * about this by splitting off the locking rules of the MFT from
1715 * the locking rules of other inodes. The MFT inode can never be
1716 * accessed from the VFS side (or even internally), only by the
1717 * map_mft functions.
1718 */
1719 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1720
1721 /**
1722 * ntfs_read_inode_mount - special read_inode for mount time use only
1723 * @vi: inode to read
1724 *
1725 * Read inode FILE_MFT at mount time, only called with super_block lock
1726 * held from within the read_super() code path.
1727 *
1728 * This function exists because when it is called the page cache for $MFT/$DATA
1729 * is not initialized and hence we cannot get at the contents of mft records
1730 * by calling map_mft_record*().
1731 *
1732 * Further it needs to cope with the circular references problem, i.e. cannot
1733 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1734 * we do not know where the other extent mft records are yet and again, because
1735 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1736 * attribute list is actually present in $MFT inode.
1737 *
1738 * We solve these problems by starting with the $DATA attribute before anything
1739 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1740 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1741 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1742 * sufficient information for the next step to complete.
1743 *
1744 * This should work but there are two possible pit falls (see inline comments
1745 * below), but only time will tell if they are real pits or just smoke...
1746 */
ntfs_read_inode_mount(struct inode * vi)1747 int ntfs_read_inode_mount(struct inode *vi)
1748 {
1749 VCN next_vcn, last_vcn, highest_vcn;
1750 s64 block;
1751 struct super_block *sb = vi->i_sb;
1752 ntfs_volume *vol = NTFS_SB(sb);
1753 struct buffer_head *bh;
1754 ntfs_inode *ni;
1755 MFT_RECORD *m = NULL;
1756 ATTR_RECORD *a;
1757 ntfs_attr_search_ctx *ctx;
1758 unsigned int i, nr_blocks;
1759 int err;
1760
1761 ntfs_debug("Entering.");
1762
1763 /* Initialize the ntfs specific part of @vi. */
1764 ntfs_init_big_inode(vi);
1765
1766 ni = NTFS_I(vi);
1767
1768 /* Setup the data attribute. It is special as it is mst protected. */
1769 NInoSetNonResident(ni);
1770 NInoSetMstProtected(ni);
1771 NInoSetSparseDisabled(ni);
1772 ni->type = AT_DATA;
1773 ni->name = NULL;
1774 ni->name_len = 0;
1775 /*
1776 * This sets up our little cheat allowing us to reuse the async read io
1777 * completion handler for directories.
1778 */
1779 ni->itype.index.block_size = vol->mft_record_size;
1780 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1781
1782 /* Very important! Needed to be able to call map_mft_record*(). */
1783 vol->mft_ino = vi;
1784
1785 /* Allocate enough memory to read the first mft record. */
1786 if (vol->mft_record_size > 64 * 1024) {
1787 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1788 vol->mft_record_size);
1789 goto err_out;
1790 }
1791 i = vol->mft_record_size;
1792 if (i < sb->s_blocksize)
1793 i = sb->s_blocksize;
1794 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1795 if (!m) {
1796 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1797 goto err_out;
1798 }
1799
1800 /* Determine the first block of the $MFT/$DATA attribute. */
1801 block = vol->mft_lcn << vol->cluster_size_bits >>
1802 sb->s_blocksize_bits;
1803 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1804 if (!nr_blocks)
1805 nr_blocks = 1;
1806
1807 /* Load $MFT/$DATA's first mft record. */
1808 for (i = 0; i < nr_blocks; i++) {
1809 bh = sb_bread(sb, block++);
1810 if (!bh) {
1811 ntfs_error(sb, "Device read failed.");
1812 goto err_out;
1813 }
1814 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1815 sb->s_blocksize);
1816 brelse(bh);
1817 }
1818
1819 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1820 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1821 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1822 goto err_out;
1823 }
1824
1825 /* Apply the mst fixups. */
1826 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1827 /* FIXME: Try to use the $MFTMirr now. */
1828 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1829 goto err_out;
1830 }
1831
1832 /* Sanity check offset to the first attribute */
1833 if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) {
1834 ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.",
1835 le16_to_cpu(m->attrs_offset));
1836 goto err_out;
1837 }
1838
1839 /* Need this to sanity check attribute list references to $MFT. */
1840 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1841
1842 /* Provides readpage() for map_mft_record(). */
1843 vi->i_mapping->a_ops = &ntfs_mst_aops;
1844
1845 ctx = ntfs_attr_get_search_ctx(ni, m);
1846 if (!ctx) {
1847 err = -ENOMEM;
1848 goto err_out;
1849 }
1850
1851 /* Find the attribute list attribute if present. */
1852 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1853 if (err) {
1854 if (unlikely(err != -ENOENT)) {
1855 ntfs_error(sb, "Failed to lookup attribute list "
1856 "attribute. You should run chkdsk.");
1857 goto put_err_out;
1858 }
1859 } else /* if (!err) */ {
1860 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1861 u8 *al_end;
1862 static const char *es = " Not allowed. $MFT is corrupt. "
1863 "You should run chkdsk.";
1864
1865 ntfs_debug("Attribute list attribute found in $MFT.");
1866 NInoSetAttrList(ni);
1867 a = ctx->attr;
1868 if (a->flags & ATTR_COMPRESSION_MASK) {
1869 ntfs_error(sb, "Attribute list attribute is "
1870 "compressed.%s", es);
1871 goto put_err_out;
1872 }
1873 if (a->flags & ATTR_IS_ENCRYPTED ||
1874 a->flags & ATTR_IS_SPARSE) {
1875 if (a->non_resident) {
1876 ntfs_error(sb, "Non-resident attribute list "
1877 "attribute is encrypted/"
1878 "sparse.%s", es);
1879 goto put_err_out;
1880 }
1881 ntfs_warning(sb, "Resident attribute list attribute "
1882 "in $MFT system file is marked "
1883 "encrypted/sparse which is not true. "
1884 "However, Windows allows this and "
1885 "chkdsk does not detect or correct it "
1886 "so we will just ignore the invalid "
1887 "flags and pretend they are not set.");
1888 }
1889 /* Now allocate memory for the attribute list. */
1890 ni->attr_list_size = (u32)ntfs_attr_size(a);
1891 if (!ni->attr_list_size) {
1892 ntfs_error(sb, "Attr_list_size is zero");
1893 goto put_err_out;
1894 }
1895 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1896 if (!ni->attr_list) {
1897 ntfs_error(sb, "Not enough memory to allocate buffer "
1898 "for attribute list.");
1899 goto put_err_out;
1900 }
1901 if (a->non_resident) {
1902 NInoSetAttrListNonResident(ni);
1903 if (a->data.non_resident.lowest_vcn) {
1904 ntfs_error(sb, "Attribute list has non zero "
1905 "lowest_vcn. $MFT is corrupt. "
1906 "You should run chkdsk.");
1907 goto put_err_out;
1908 }
1909 /* Setup the runlist. */
1910 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1911 a, NULL);
1912 if (IS_ERR(ni->attr_list_rl.rl)) {
1913 err = PTR_ERR(ni->attr_list_rl.rl);
1914 ni->attr_list_rl.rl = NULL;
1915 ntfs_error(sb, "Mapping pairs decompression "
1916 "failed with error code %i.",
1917 -err);
1918 goto put_err_out;
1919 }
1920 /* Now load the attribute list. */
1921 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1922 ni->attr_list, ni->attr_list_size,
1923 sle64_to_cpu(a->data.
1924 non_resident.initialized_size)))) {
1925 ntfs_error(sb, "Failed to load attribute list "
1926 "attribute with error code %i.",
1927 -err);
1928 goto put_err_out;
1929 }
1930 } else /* if (!ctx.attr->non_resident) */ {
1931 if ((u8*)a + le16_to_cpu(
1932 a->data.resident.value_offset) +
1933 le32_to_cpu(
1934 a->data.resident.value_length) >
1935 (u8*)ctx->mrec + vol->mft_record_size) {
1936 ntfs_error(sb, "Corrupt attribute list "
1937 "attribute.");
1938 goto put_err_out;
1939 }
1940 /* Now copy the attribute list. */
1941 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1942 a->data.resident.value_offset),
1943 le32_to_cpu(
1944 a->data.resident.value_length));
1945 }
1946 /* The attribute list is now setup in memory. */
1947 /*
1948 * FIXME: I don't know if this case is actually possible.
1949 * According to logic it is not possible but I have seen too
1950 * many weird things in MS software to rely on logic... Thus we
1951 * perform a manual search and make sure the first $MFT/$DATA
1952 * extent is in the base inode. If it is not we abort with an
1953 * error and if we ever see a report of this error we will need
1954 * to do some magic in order to have the necessary mft record
1955 * loaded and in the right place in the page cache. But
1956 * hopefully logic will prevail and this never happens...
1957 */
1958 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1959 al_end = (u8*)al_entry + ni->attr_list_size;
1960 for (;; al_entry = next_al_entry) {
1961 /* Out of bounds check. */
1962 if ((u8*)al_entry < ni->attr_list ||
1963 (u8*)al_entry > al_end)
1964 goto em_put_err_out;
1965 /* Catch the end of the attribute list. */
1966 if ((u8*)al_entry == al_end)
1967 goto em_put_err_out;
1968 if (!al_entry->length)
1969 goto em_put_err_out;
1970 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1971 le16_to_cpu(al_entry->length) > al_end)
1972 goto em_put_err_out;
1973 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1974 le16_to_cpu(al_entry->length));
1975 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1976 goto em_put_err_out;
1977 if (AT_DATA != al_entry->type)
1978 continue;
1979 /* We want an unnamed attribute. */
1980 if (al_entry->name_length)
1981 goto em_put_err_out;
1982 /* Want the first entry, i.e. lowest_vcn == 0. */
1983 if (al_entry->lowest_vcn)
1984 goto em_put_err_out;
1985 /* First entry has to be in the base mft record. */
1986 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1987 /* MFT references do not match, logic fails. */
1988 ntfs_error(sb, "BUG: The first $DATA extent "
1989 "of $MFT is not in the base "
1990 "mft record. Please report "
1991 "you saw this message to "
1992 "linux-ntfs-dev@lists."
1993 "sourceforge.net");
1994 goto put_err_out;
1995 } else {
1996 /* Sequence numbers must match. */
1997 if (MSEQNO_LE(al_entry->mft_reference) !=
1998 ni->seq_no)
1999 goto em_put_err_out;
2000 /* Got it. All is ok. We can stop now. */
2001 break;
2002 }
2003 }
2004 }
2005
2006 ntfs_attr_reinit_search_ctx(ctx);
2007
2008 /* Now load all attribute extents. */
2009 a = NULL;
2010 next_vcn = last_vcn = highest_vcn = 0;
2011 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2012 ctx))) {
2013 runlist_element *nrl;
2014
2015 /* Cache the current attribute. */
2016 a = ctx->attr;
2017 /* $MFT must be non-resident. */
2018 if (!a->non_resident) {
2019 ntfs_error(sb, "$MFT must be non-resident but a "
2020 "resident extent was found. $MFT is "
2021 "corrupt. Run chkdsk.");
2022 goto put_err_out;
2023 }
2024 /* $MFT must be uncompressed and unencrypted. */
2025 if (a->flags & ATTR_COMPRESSION_MASK ||
2026 a->flags & ATTR_IS_ENCRYPTED ||
2027 a->flags & ATTR_IS_SPARSE) {
2028 ntfs_error(sb, "$MFT must be uncompressed, "
2029 "non-sparse, and unencrypted but a "
2030 "compressed/sparse/encrypted extent "
2031 "was found. $MFT is corrupt. Run "
2032 "chkdsk.");
2033 goto put_err_out;
2034 }
2035 /*
2036 * Decompress the mapping pairs array of this extent and merge
2037 * the result into the existing runlist. No need for locking
2038 * as we have exclusive access to the inode at this time and we
2039 * are a mount in progress task, too.
2040 */
2041 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2042 if (IS_ERR(nrl)) {
2043 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2044 "failed with error code %ld. $MFT is "
2045 "corrupt.", PTR_ERR(nrl));
2046 goto put_err_out;
2047 }
2048 ni->runlist.rl = nrl;
2049
2050 /* Are we in the first extent? */
2051 if (!next_vcn) {
2052 if (a->data.non_resident.lowest_vcn) {
2053 ntfs_error(sb, "First extent of $DATA "
2054 "attribute has non zero "
2055 "lowest_vcn. $MFT is corrupt. "
2056 "You should run chkdsk.");
2057 goto put_err_out;
2058 }
2059 /* Get the last vcn in the $DATA attribute. */
2060 last_vcn = sle64_to_cpu(
2061 a->data.non_resident.allocated_size)
2062 >> vol->cluster_size_bits;
2063 /* Fill in the inode size. */
2064 vi->i_size = sle64_to_cpu(
2065 a->data.non_resident.data_size);
2066 ni->initialized_size = sle64_to_cpu(
2067 a->data.non_resident.initialized_size);
2068 ni->allocated_size = sle64_to_cpu(
2069 a->data.non_resident.allocated_size);
2070 /*
2071 * Verify the number of mft records does not exceed
2072 * 2^32 - 1.
2073 */
2074 if ((vi->i_size >> vol->mft_record_size_bits) >=
2075 (1ULL << 32)) {
2076 ntfs_error(sb, "$MFT is too big! Aborting.");
2077 goto put_err_out;
2078 }
2079 /*
2080 * We have got the first extent of the runlist for
2081 * $MFT which means it is now relatively safe to call
2082 * the normal ntfs_read_inode() function.
2083 * Complete reading the inode, this will actually
2084 * re-read the mft record for $MFT, this time entering
2085 * it into the page cache with which we complete the
2086 * kick start of the volume. It should be safe to do
2087 * this now as the first extent of $MFT/$DATA is
2088 * already known and we would hope that we don't need
2089 * further extents in order to find the other
2090 * attributes belonging to $MFT. Only time will tell if
2091 * this is really the case. If not we will have to play
2092 * magic at this point, possibly duplicating a lot of
2093 * ntfs_read_inode() at this point. We will need to
2094 * ensure we do enough of its work to be able to call
2095 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2096 * hope this never happens...
2097 */
2098 ntfs_read_locked_inode(vi);
2099 if (is_bad_inode(vi)) {
2100 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2101 "failed. BUG or corrupt $MFT. "
2102 "Run chkdsk and if no errors "
2103 "are found, please report you "
2104 "saw this message to "
2105 "linux-ntfs-dev@lists."
2106 "sourceforge.net");
2107 ntfs_attr_put_search_ctx(ctx);
2108 /* Revert to the safe super operations. */
2109 ntfs_free(m);
2110 return -1;
2111 }
2112 /*
2113 * Re-initialize some specifics about $MFT's inode as
2114 * ntfs_read_inode() will have set up the default ones.
2115 */
2116 /* Set uid and gid to root. */
2117 vi->i_uid = GLOBAL_ROOT_UID;
2118 vi->i_gid = GLOBAL_ROOT_GID;
2119 /* Regular file. No access for anyone. */
2120 vi->i_mode = S_IFREG;
2121 /* No VFS initiated operations allowed for $MFT. */
2122 vi->i_op = &ntfs_empty_inode_ops;
2123 vi->i_fop = &ntfs_empty_file_ops;
2124 }
2125
2126 /* Get the lowest vcn for the next extent. */
2127 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2128 next_vcn = highest_vcn + 1;
2129
2130 /* Only one extent or error, which we catch below. */
2131 if (next_vcn <= 0)
2132 break;
2133
2134 /* Avoid endless loops due to corruption. */
2135 if (next_vcn < sle64_to_cpu(
2136 a->data.non_resident.lowest_vcn)) {
2137 ntfs_error(sb, "$MFT has corrupt attribute list "
2138 "attribute. Run chkdsk.");
2139 goto put_err_out;
2140 }
2141 }
2142 if (err != -ENOENT) {
2143 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2144 "$MFT is corrupt. Run chkdsk.");
2145 goto put_err_out;
2146 }
2147 if (!a) {
2148 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2149 "corrupt. Run chkdsk.");
2150 goto put_err_out;
2151 }
2152 if (highest_vcn && highest_vcn != last_vcn - 1) {
2153 ntfs_error(sb, "Failed to load the complete runlist for "
2154 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2155 "Run chkdsk.");
2156 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2157 (unsigned long long)highest_vcn,
2158 (unsigned long long)last_vcn - 1);
2159 goto put_err_out;
2160 }
2161 ntfs_attr_put_search_ctx(ctx);
2162 ntfs_debug("Done.");
2163 ntfs_free(m);
2164
2165 /*
2166 * Split the locking rules of the MFT inode from the
2167 * locking rules of other inodes:
2168 */
2169 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2170 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2171
2172 return 0;
2173
2174 em_put_err_out:
2175 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2176 "attribute list. $MFT is corrupt. Run chkdsk.");
2177 put_err_out:
2178 ntfs_attr_put_search_ctx(ctx);
2179 err_out:
2180 ntfs_error(sb, "Failed. Marking inode as bad.");
2181 make_bad_inode(vi);
2182 ntfs_free(m);
2183 return -1;
2184 }
2185
__ntfs_clear_inode(ntfs_inode * ni)2186 static void __ntfs_clear_inode(ntfs_inode *ni)
2187 {
2188 /* Free all alocated memory. */
2189 down_write(&ni->runlist.lock);
2190 if (ni->runlist.rl) {
2191 ntfs_free(ni->runlist.rl);
2192 ni->runlist.rl = NULL;
2193 }
2194 up_write(&ni->runlist.lock);
2195
2196 if (ni->attr_list) {
2197 ntfs_free(ni->attr_list);
2198 ni->attr_list = NULL;
2199 }
2200
2201 down_write(&ni->attr_list_rl.lock);
2202 if (ni->attr_list_rl.rl) {
2203 ntfs_free(ni->attr_list_rl.rl);
2204 ni->attr_list_rl.rl = NULL;
2205 }
2206 up_write(&ni->attr_list_rl.lock);
2207
2208 if (ni->name_len && ni->name != I30) {
2209 /* Catch bugs... */
2210 BUG_ON(!ni->name);
2211 kfree(ni->name);
2212 }
2213 }
2214
ntfs_clear_extent_inode(ntfs_inode * ni)2215 void ntfs_clear_extent_inode(ntfs_inode *ni)
2216 {
2217 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2218
2219 BUG_ON(NInoAttr(ni));
2220 BUG_ON(ni->nr_extents != -1);
2221
2222 #ifdef NTFS_RW
2223 if (NInoDirty(ni)) {
2224 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2225 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2226 "Losing data! This is a BUG!!!");
2227 // FIXME: Do something!!!
2228 }
2229 #endif /* NTFS_RW */
2230
2231 __ntfs_clear_inode(ni);
2232
2233 /* Bye, bye... */
2234 ntfs_destroy_extent_inode(ni);
2235 }
2236
2237 /**
2238 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2239 * @vi: vfs inode pending annihilation
2240 *
2241 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2242 * is called, which deallocates all memory belonging to the NTFS specific part
2243 * of the inode and returns.
2244 *
2245 * If the MFT record is dirty, we commit it before doing anything else.
2246 */
ntfs_evict_big_inode(struct inode * vi)2247 void ntfs_evict_big_inode(struct inode *vi)
2248 {
2249 ntfs_inode *ni = NTFS_I(vi);
2250
2251 truncate_inode_pages_final(&vi->i_data);
2252 clear_inode(vi);
2253
2254 #ifdef NTFS_RW
2255 if (NInoDirty(ni)) {
2256 bool was_bad = (is_bad_inode(vi));
2257
2258 /* Committing the inode also commits all extent inodes. */
2259 ntfs_commit_inode(vi);
2260
2261 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2262 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2263 "0x%lx. Losing data!", vi->i_ino);
2264 // FIXME: Do something!!!
2265 }
2266 }
2267 #endif /* NTFS_RW */
2268
2269 /* No need to lock at this stage as no one else has a reference. */
2270 if (ni->nr_extents > 0) {
2271 int i;
2272
2273 for (i = 0; i < ni->nr_extents; i++)
2274 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2275 kfree(ni->ext.extent_ntfs_inos);
2276 }
2277
2278 __ntfs_clear_inode(ni);
2279
2280 if (NInoAttr(ni)) {
2281 /* Release the base inode if we are holding it. */
2282 if (ni->nr_extents == -1) {
2283 iput(VFS_I(ni->ext.base_ntfs_ino));
2284 ni->nr_extents = 0;
2285 ni->ext.base_ntfs_ino = NULL;
2286 }
2287 }
2288 BUG_ON(ni->page);
2289 if (!atomic_dec_and_test(&ni->count))
2290 BUG();
2291 return;
2292 }
2293
2294 /**
2295 * ntfs_show_options - show mount options in /proc/mounts
2296 * @sf: seq_file in which to write our mount options
2297 * @root: root of the mounted tree whose mount options to display
2298 *
2299 * Called by the VFS once for each mounted ntfs volume when someone reads
2300 * /proc/mounts in order to display the NTFS specific mount options of each
2301 * mount. The mount options of fs specified by @root are written to the seq file
2302 * @sf and success is returned.
2303 */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2304 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2305 {
2306 ntfs_volume *vol = NTFS_SB(root->d_sb);
2307 int i;
2308
2309 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2310 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2311 if (vol->fmask == vol->dmask)
2312 seq_printf(sf, ",umask=0%o", vol->fmask);
2313 else {
2314 seq_printf(sf, ",fmask=0%o", vol->fmask);
2315 seq_printf(sf, ",dmask=0%o", vol->dmask);
2316 }
2317 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2318 if (NVolCaseSensitive(vol))
2319 seq_printf(sf, ",case_sensitive");
2320 if (NVolShowSystemFiles(vol))
2321 seq_printf(sf, ",show_sys_files");
2322 if (!NVolSparseEnabled(vol))
2323 seq_printf(sf, ",disable_sparse");
2324 for (i = 0; on_errors_arr[i].val; i++) {
2325 if (on_errors_arr[i].val & vol->on_errors)
2326 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2327 }
2328 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2329 return 0;
2330 }
2331
2332 #ifdef NTFS_RW
2333
2334 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2335 "chkdsk.";
2336
2337 /**
2338 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2339 * @vi: inode for which the i_size was changed
2340 *
2341 * We only support i_size changes for normal files at present, i.e. not
2342 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2343 * below.
2344 *
2345 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2346 * that the change is allowed.
2347 *
2348 * This implies for us that @vi is a file inode rather than a directory, index,
2349 * or attribute inode as well as that @vi is a base inode.
2350 *
2351 * Returns 0 on success or -errno on error.
2352 *
2353 * Called with ->i_mutex held.
2354 */
ntfs_truncate(struct inode * vi)2355 int ntfs_truncate(struct inode *vi)
2356 {
2357 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2358 VCN highest_vcn;
2359 unsigned long flags;
2360 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2361 ntfs_volume *vol = ni->vol;
2362 ntfs_attr_search_ctx *ctx;
2363 MFT_RECORD *m;
2364 ATTR_RECORD *a;
2365 const char *te = " Leaving file length out of sync with i_size.";
2366 int err, mp_size, size_change, alloc_change;
2367 u32 attr_len;
2368
2369 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2370 BUG_ON(NInoAttr(ni));
2371 BUG_ON(S_ISDIR(vi->i_mode));
2372 BUG_ON(NInoMstProtected(ni));
2373 BUG_ON(ni->nr_extents < 0);
2374 retry_truncate:
2375 /*
2376 * Lock the runlist for writing and map the mft record to ensure it is
2377 * safe to mess with the attribute runlist and sizes.
2378 */
2379 down_write(&ni->runlist.lock);
2380 if (!NInoAttr(ni))
2381 base_ni = ni;
2382 else
2383 base_ni = ni->ext.base_ntfs_ino;
2384 m = map_mft_record(base_ni);
2385 if (IS_ERR(m)) {
2386 err = PTR_ERR(m);
2387 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2388 "(error code %d).%s", vi->i_ino, err, te);
2389 ctx = NULL;
2390 m = NULL;
2391 goto old_bad_out;
2392 }
2393 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2394 if (unlikely(!ctx)) {
2395 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2396 "inode 0x%lx (not enough memory).%s",
2397 vi->i_ino, te);
2398 err = -ENOMEM;
2399 goto old_bad_out;
2400 }
2401 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2402 CASE_SENSITIVE, 0, NULL, 0, ctx);
2403 if (unlikely(err)) {
2404 if (err == -ENOENT) {
2405 ntfs_error(vi->i_sb, "Open attribute is missing from "
2406 "mft record. Inode 0x%lx is corrupt. "
2407 "Run chkdsk.%s", vi->i_ino, te);
2408 err = -EIO;
2409 } else
2410 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2411 "inode 0x%lx (error code %d).%s",
2412 vi->i_ino, err, te);
2413 goto old_bad_out;
2414 }
2415 m = ctx->mrec;
2416 a = ctx->attr;
2417 /*
2418 * The i_size of the vfs inode is the new size for the attribute value.
2419 */
2420 new_size = i_size_read(vi);
2421 /* The current size of the attribute value is the old size. */
2422 old_size = ntfs_attr_size(a);
2423 /* Calculate the new allocated size. */
2424 if (NInoNonResident(ni))
2425 new_alloc_size = (new_size + vol->cluster_size - 1) &
2426 ~(s64)vol->cluster_size_mask;
2427 else
2428 new_alloc_size = (new_size + 7) & ~7;
2429 /* The current allocated size is the old allocated size. */
2430 read_lock_irqsave(&ni->size_lock, flags);
2431 old_alloc_size = ni->allocated_size;
2432 read_unlock_irqrestore(&ni->size_lock, flags);
2433 /*
2434 * The change in the file size. This will be 0 if no change, >0 if the
2435 * size is growing, and <0 if the size is shrinking.
2436 */
2437 size_change = -1;
2438 if (new_size - old_size >= 0) {
2439 size_change = 1;
2440 if (new_size == old_size)
2441 size_change = 0;
2442 }
2443 /* As above for the allocated size. */
2444 alloc_change = -1;
2445 if (new_alloc_size - old_alloc_size >= 0) {
2446 alloc_change = 1;
2447 if (new_alloc_size == old_alloc_size)
2448 alloc_change = 0;
2449 }
2450 /*
2451 * If neither the size nor the allocation are being changed there is
2452 * nothing to do.
2453 */
2454 if (!size_change && !alloc_change)
2455 goto unm_done;
2456 /* If the size is changing, check if new size is allowed in $AttrDef. */
2457 if (size_change) {
2458 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2459 if (unlikely(err)) {
2460 if (err == -ERANGE) {
2461 ntfs_error(vol->sb, "Truncate would cause the "
2462 "inode 0x%lx to %simum size "
2463 "for its attribute type "
2464 "(0x%x). Aborting truncate.",
2465 vi->i_ino,
2466 new_size > old_size ? "exceed "
2467 "the max" : "go under the min",
2468 le32_to_cpu(ni->type));
2469 err = -EFBIG;
2470 } else {
2471 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2472 "attribute type 0x%x. "
2473 "Aborting truncate.",
2474 vi->i_ino,
2475 le32_to_cpu(ni->type));
2476 err = -EIO;
2477 }
2478 /* Reset the vfs inode size to the old size. */
2479 i_size_write(vi, old_size);
2480 goto err_out;
2481 }
2482 }
2483 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2484 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2485 "supported yet for %s files, ignoring.",
2486 NInoCompressed(ni) ? "compressed" :
2487 "encrypted");
2488 err = -EOPNOTSUPP;
2489 goto bad_out;
2490 }
2491 if (a->non_resident)
2492 goto do_non_resident_truncate;
2493 BUG_ON(NInoNonResident(ni));
2494 /* Resize the attribute record to best fit the new attribute size. */
2495 if (new_size < vol->mft_record_size &&
2496 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2497 /* The resize succeeded! */
2498 flush_dcache_mft_record_page(ctx->ntfs_ino);
2499 mark_mft_record_dirty(ctx->ntfs_ino);
2500 write_lock_irqsave(&ni->size_lock, flags);
2501 /* Update the sizes in the ntfs inode and all is done. */
2502 ni->allocated_size = le32_to_cpu(a->length) -
2503 le16_to_cpu(a->data.resident.value_offset);
2504 /*
2505 * Note ntfs_resident_attr_value_resize() has already done any
2506 * necessary data clearing in the attribute record. When the
2507 * file is being shrunk vmtruncate() will already have cleared
2508 * the top part of the last partial page, i.e. since this is
2509 * the resident case this is the page with index 0. However,
2510 * when the file is being expanded, the page cache page data
2511 * between the old data_size, i.e. old_size, and the new_size
2512 * has not been zeroed. Fortunately, we do not need to zero it
2513 * either since on one hand it will either already be zero due
2514 * to both readpage and writepage clearing partial page data
2515 * beyond i_size in which case there is nothing to do or in the
2516 * case of the file being mmap()ped at the same time, POSIX
2517 * specifies that the behaviour is unspecified thus we do not
2518 * have to do anything. This means that in our implementation
2519 * in the rare case that the file is mmap()ped and a write
2520 * occurred into the mmap()ped region just beyond the file size
2521 * and writepage has not yet been called to write out the page
2522 * (which would clear the area beyond the file size) and we now
2523 * extend the file size to incorporate this dirty region
2524 * outside the file size, a write of the page would result in
2525 * this data being written to disk instead of being cleared.
2526 * Given both POSIX and the Linux mmap(2) man page specify that
2527 * this corner case is undefined, we choose to leave it like
2528 * that as this is much simpler for us as we cannot lock the
2529 * relevant page now since we are holding too many ntfs locks
2530 * which would result in a lock reversal deadlock.
2531 */
2532 ni->initialized_size = new_size;
2533 write_unlock_irqrestore(&ni->size_lock, flags);
2534 goto unm_done;
2535 }
2536 /* If the above resize failed, this must be an attribute extension. */
2537 BUG_ON(size_change < 0);
2538 /*
2539 * We have to drop all the locks so we can call
2540 * ntfs_attr_make_non_resident(). This could be optimised by try-
2541 * locking the first page cache page and only if that fails dropping
2542 * the locks, locking the page, and redoing all the locking and
2543 * lookups. While this would be a huge optimisation, it is not worth
2544 * it as this is definitely a slow code path as it only ever can happen
2545 * once for any given file.
2546 */
2547 ntfs_attr_put_search_ctx(ctx);
2548 unmap_mft_record(base_ni);
2549 up_write(&ni->runlist.lock);
2550 /*
2551 * Not enough space in the mft record, try to make the attribute
2552 * non-resident and if successful restart the truncation process.
2553 */
2554 err = ntfs_attr_make_non_resident(ni, old_size);
2555 if (likely(!err))
2556 goto retry_truncate;
2557 /*
2558 * Could not make non-resident. If this is due to this not being
2559 * permitted for this attribute type or there not being enough space,
2560 * try to make other attributes non-resident. Otherwise fail.
2561 */
2562 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2563 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2564 "type 0x%x, because the conversion from "
2565 "resident to non-resident attribute failed "
2566 "with error code %i.", vi->i_ino,
2567 (unsigned)le32_to_cpu(ni->type), err);
2568 if (err != -ENOMEM)
2569 err = -EIO;
2570 goto conv_err_out;
2571 }
2572 /* TODO: Not implemented from here, abort. */
2573 if (err == -ENOSPC)
2574 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2575 "disk for the non-resident attribute value. "
2576 "This case is not implemented yet.");
2577 else /* if (err == -EPERM) */
2578 ntfs_error(vol->sb, "This attribute type may not be "
2579 "non-resident. This case is not implemented "
2580 "yet.");
2581 err = -EOPNOTSUPP;
2582 goto conv_err_out;
2583 #if 0
2584 // TODO: Attempt to make other attributes non-resident.
2585 if (!err)
2586 goto do_resident_extend;
2587 /*
2588 * Both the attribute list attribute and the standard information
2589 * attribute must remain in the base inode. Thus, if this is one of
2590 * these attributes, we have to try to move other attributes out into
2591 * extent mft records instead.
2592 */
2593 if (ni->type == AT_ATTRIBUTE_LIST ||
2594 ni->type == AT_STANDARD_INFORMATION) {
2595 // TODO: Attempt to move other attributes into extent mft
2596 // records.
2597 err = -EOPNOTSUPP;
2598 if (!err)
2599 goto do_resident_extend;
2600 goto err_out;
2601 }
2602 // TODO: Attempt to move this attribute to an extent mft record, but
2603 // only if it is not already the only attribute in an mft record in
2604 // which case there would be nothing to gain.
2605 err = -EOPNOTSUPP;
2606 if (!err)
2607 goto do_resident_extend;
2608 /* There is nothing we can do to make enough space. )-: */
2609 goto err_out;
2610 #endif
2611 do_non_resident_truncate:
2612 BUG_ON(!NInoNonResident(ni));
2613 if (alloc_change < 0) {
2614 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2615 if (highest_vcn > 0 &&
2616 old_alloc_size >> vol->cluster_size_bits >
2617 highest_vcn + 1) {
2618 /*
2619 * This attribute has multiple extents. Not yet
2620 * supported.
2621 */
2622 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2623 "attribute type 0x%x, because the "
2624 "attribute is highly fragmented (it "
2625 "consists of multiple extents) and "
2626 "this case is not implemented yet.",
2627 vi->i_ino,
2628 (unsigned)le32_to_cpu(ni->type));
2629 err = -EOPNOTSUPP;
2630 goto bad_out;
2631 }
2632 }
2633 /*
2634 * If the size is shrinking, need to reduce the initialized_size and
2635 * the data_size before reducing the allocation.
2636 */
2637 if (size_change < 0) {
2638 /*
2639 * Make the valid size smaller (i_size is already up-to-date).
2640 */
2641 write_lock_irqsave(&ni->size_lock, flags);
2642 if (new_size < ni->initialized_size) {
2643 ni->initialized_size = new_size;
2644 a->data.non_resident.initialized_size =
2645 cpu_to_sle64(new_size);
2646 }
2647 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2648 write_unlock_irqrestore(&ni->size_lock, flags);
2649 flush_dcache_mft_record_page(ctx->ntfs_ino);
2650 mark_mft_record_dirty(ctx->ntfs_ino);
2651 /* If the allocated size is not changing, we are done. */
2652 if (!alloc_change)
2653 goto unm_done;
2654 /*
2655 * If the size is shrinking it makes no sense for the
2656 * allocation to be growing.
2657 */
2658 BUG_ON(alloc_change > 0);
2659 } else /* if (size_change >= 0) */ {
2660 /*
2661 * The file size is growing or staying the same but the
2662 * allocation can be shrinking, growing or staying the same.
2663 */
2664 if (alloc_change > 0) {
2665 /*
2666 * We need to extend the allocation and possibly update
2667 * the data size. If we are updating the data size,
2668 * since we are not touching the initialized_size we do
2669 * not need to worry about the actual data on disk.
2670 * And as far as the page cache is concerned, there
2671 * will be no pages beyond the old data size and any
2672 * partial region in the last page between the old and
2673 * new data size (or the end of the page if the new
2674 * data size is outside the page) does not need to be
2675 * modified as explained above for the resident
2676 * attribute truncate case. To do this, we simply drop
2677 * the locks we hold and leave all the work to our
2678 * friendly helper ntfs_attr_extend_allocation().
2679 */
2680 ntfs_attr_put_search_ctx(ctx);
2681 unmap_mft_record(base_ni);
2682 up_write(&ni->runlist.lock);
2683 err = ntfs_attr_extend_allocation(ni, new_size,
2684 size_change > 0 ? new_size : -1, -1);
2685 /*
2686 * ntfs_attr_extend_allocation() will have done error
2687 * output already.
2688 */
2689 goto done;
2690 }
2691 if (!alloc_change)
2692 goto alloc_done;
2693 }
2694 /* alloc_change < 0 */
2695 /* Free the clusters. */
2696 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2697 vol->cluster_size_bits, -1, ctx);
2698 m = ctx->mrec;
2699 a = ctx->attr;
2700 if (unlikely(nr_freed < 0)) {
2701 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2702 "%lli). Unmount and run chkdsk to recover "
2703 "the lost cluster(s).", (long long)nr_freed);
2704 NVolSetErrors(vol);
2705 nr_freed = 0;
2706 }
2707 /* Truncate the runlist. */
2708 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2709 new_alloc_size >> vol->cluster_size_bits);
2710 /*
2711 * If the runlist truncation failed and/or the search context is no
2712 * longer valid, we cannot resize the attribute record or build the
2713 * mapping pairs array thus we mark the inode bad so that no access to
2714 * the freed clusters can happen.
2715 */
2716 if (unlikely(err || IS_ERR(m))) {
2717 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2718 IS_ERR(m) ?
2719 "restore attribute search context" :
2720 "truncate attribute runlist",
2721 IS_ERR(m) ? PTR_ERR(m) : err, es);
2722 err = -EIO;
2723 goto bad_out;
2724 }
2725 /* Get the size for the shrunk mapping pairs array for the runlist. */
2726 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2727 if (unlikely(mp_size <= 0)) {
2728 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2729 "attribute type 0x%x, because determining the "
2730 "size for the mapping pairs failed with error "
2731 "code %i.%s", vi->i_ino,
2732 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2733 err = -EIO;
2734 goto bad_out;
2735 }
2736 /*
2737 * Shrink the attribute record for the new mapping pairs array. Note,
2738 * this cannot fail since we are making the attribute smaller thus by
2739 * definition there is enough space to do so.
2740 */
2741 attr_len = le32_to_cpu(a->length);
2742 err = ntfs_attr_record_resize(m, a, mp_size +
2743 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2744 BUG_ON(err);
2745 /*
2746 * Generate the mapping pairs array directly into the attribute record.
2747 */
2748 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2749 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2750 mp_size, ni->runlist.rl, 0, -1, NULL);
2751 if (unlikely(err)) {
2752 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2753 "attribute type 0x%x, because building the "
2754 "mapping pairs failed with error code %i.%s",
2755 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2756 err, es);
2757 err = -EIO;
2758 goto bad_out;
2759 }
2760 /* Update the allocated/compressed size as well as the highest vcn. */
2761 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2762 vol->cluster_size_bits) - 1);
2763 write_lock_irqsave(&ni->size_lock, flags);
2764 ni->allocated_size = new_alloc_size;
2765 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2766 if (NInoSparse(ni) || NInoCompressed(ni)) {
2767 if (nr_freed) {
2768 ni->itype.compressed.size -= nr_freed <<
2769 vol->cluster_size_bits;
2770 BUG_ON(ni->itype.compressed.size < 0);
2771 a->data.non_resident.compressed_size = cpu_to_sle64(
2772 ni->itype.compressed.size);
2773 vi->i_blocks = ni->itype.compressed.size >> 9;
2774 }
2775 } else
2776 vi->i_blocks = new_alloc_size >> 9;
2777 write_unlock_irqrestore(&ni->size_lock, flags);
2778 /*
2779 * We have shrunk the allocation. If this is a shrinking truncate we
2780 * have already dealt with the initialized_size and the data_size above
2781 * and we are done. If the truncate is only changing the allocation
2782 * and not the data_size, we are also done. If this is an extending
2783 * truncate, need to extend the data_size now which is ensured by the
2784 * fact that @size_change is positive.
2785 */
2786 alloc_done:
2787 /*
2788 * If the size is growing, need to update it now. If it is shrinking,
2789 * we have already updated it above (before the allocation change).
2790 */
2791 if (size_change > 0)
2792 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2793 /* Ensure the modified mft record is written out. */
2794 flush_dcache_mft_record_page(ctx->ntfs_ino);
2795 mark_mft_record_dirty(ctx->ntfs_ino);
2796 unm_done:
2797 ntfs_attr_put_search_ctx(ctx);
2798 unmap_mft_record(base_ni);
2799 up_write(&ni->runlist.lock);
2800 done:
2801 /* Update the mtime and ctime on the base inode. */
2802 /* normally ->truncate shouldn't update ctime or mtime,
2803 * but ntfs did before so it got a copy & paste version
2804 * of file_update_time. one day someone should fix this
2805 * for real.
2806 */
2807 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2808 struct timespec64 now = current_time(VFS_I(base_ni));
2809 int sync_it = 0;
2810
2811 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2812 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2813 sync_it = 1;
2814 VFS_I(base_ni)->i_mtime = now;
2815 VFS_I(base_ni)->i_ctime = now;
2816
2817 if (sync_it)
2818 mark_inode_dirty_sync(VFS_I(base_ni));
2819 }
2820
2821 if (likely(!err)) {
2822 NInoClearTruncateFailed(ni);
2823 ntfs_debug("Done.");
2824 }
2825 return err;
2826 old_bad_out:
2827 old_size = -1;
2828 bad_out:
2829 if (err != -ENOMEM && err != -EOPNOTSUPP)
2830 NVolSetErrors(vol);
2831 if (err != -EOPNOTSUPP)
2832 NInoSetTruncateFailed(ni);
2833 else if (old_size >= 0)
2834 i_size_write(vi, old_size);
2835 err_out:
2836 if (ctx)
2837 ntfs_attr_put_search_ctx(ctx);
2838 if (m)
2839 unmap_mft_record(base_ni);
2840 up_write(&ni->runlist.lock);
2841 out:
2842 ntfs_debug("Failed. Returning error code %i.", err);
2843 return err;
2844 conv_err_out:
2845 if (err != -ENOMEM && err != -EOPNOTSUPP)
2846 NVolSetErrors(vol);
2847 if (err != -EOPNOTSUPP)
2848 NInoSetTruncateFailed(ni);
2849 else
2850 i_size_write(vi, old_size);
2851 goto out;
2852 }
2853
2854 /**
2855 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2856 * @vi: inode for which the i_size was changed
2857 *
2858 * Wrapper for ntfs_truncate() that has no return value.
2859 *
2860 * See ntfs_truncate() description above for details.
2861 */
2862 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2863 void ntfs_truncate_vfs(struct inode *vi) {
2864 ntfs_truncate(vi);
2865 }
2866 #endif
2867
2868 /**
2869 * ntfs_setattr - called from notify_change() when an attribute is being changed
2870 * @dentry: dentry whose attributes to change
2871 * @attr: structure describing the attributes and the changes
2872 *
2873 * We have to trap VFS attempts to truncate the file described by @dentry as
2874 * soon as possible, because we do not implement changes in i_size yet. So we
2875 * abort all i_size changes here.
2876 *
2877 * We also abort all changes of user, group, and mode as we do not implement
2878 * the NTFS ACLs yet.
2879 *
2880 * Called with ->i_mutex held.
2881 */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2882 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2883 {
2884 struct inode *vi = d_inode(dentry);
2885 int err;
2886 unsigned int ia_valid = attr->ia_valid;
2887
2888 err = setattr_prepare(dentry, attr);
2889 if (err)
2890 goto out;
2891 /* We do not support NTFS ACLs yet. */
2892 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2893 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2894 "supported yet, ignoring.");
2895 err = -EOPNOTSUPP;
2896 goto out;
2897 }
2898 if (ia_valid & ATTR_SIZE) {
2899 if (attr->ia_size != i_size_read(vi)) {
2900 ntfs_inode *ni = NTFS_I(vi);
2901 /*
2902 * FIXME: For now we do not support resizing of
2903 * compressed or encrypted files yet.
2904 */
2905 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2906 ntfs_warning(vi->i_sb, "Changes in inode size "
2907 "are not supported yet for "
2908 "%s files, ignoring.",
2909 NInoCompressed(ni) ?
2910 "compressed" : "encrypted");
2911 err = -EOPNOTSUPP;
2912 } else {
2913 truncate_setsize(vi, attr->ia_size);
2914 ntfs_truncate_vfs(vi);
2915 }
2916 if (err || ia_valid == ATTR_SIZE)
2917 goto out;
2918 } else {
2919 /*
2920 * We skipped the truncate but must still update
2921 * timestamps.
2922 */
2923 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2924 }
2925 }
2926 if (ia_valid & ATTR_ATIME)
2927 vi->i_atime = attr->ia_atime;
2928 if (ia_valid & ATTR_MTIME)
2929 vi->i_mtime = attr->ia_mtime;
2930 if (ia_valid & ATTR_CTIME)
2931 vi->i_ctime = attr->ia_ctime;
2932 mark_inode_dirty(vi);
2933 out:
2934 return err;
2935 }
2936
2937 /**
2938 * ntfs_write_inode - write out a dirty inode
2939 * @vi: inode to write out
2940 * @sync: if true, write out synchronously
2941 *
2942 * Write out a dirty inode to disk including any extent inodes if present.
2943 *
2944 * If @sync is true, commit the inode to disk and wait for io completion. This
2945 * is done using write_mft_record().
2946 *
2947 * If @sync is false, just schedule the write to happen but do not wait for i/o
2948 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2949 * marking the page (and in this case mft record) dirty but we do not implement
2950 * this yet as write_mft_record() largely ignores the @sync parameter and
2951 * always performs synchronous writes.
2952 *
2953 * Return 0 on success and -errno on error.
2954 */
__ntfs_write_inode(struct inode * vi,int sync)2955 int __ntfs_write_inode(struct inode *vi, int sync)
2956 {
2957 sle64 nt;
2958 ntfs_inode *ni = NTFS_I(vi);
2959 ntfs_attr_search_ctx *ctx;
2960 MFT_RECORD *m;
2961 STANDARD_INFORMATION *si;
2962 int err = 0;
2963 bool modified = false;
2964
2965 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2966 vi->i_ino);
2967 /*
2968 * Dirty attribute inodes are written via their real inodes so just
2969 * clean them here. Access time updates are taken care off when the
2970 * real inode is written.
2971 */
2972 if (NInoAttr(ni)) {
2973 NInoClearDirty(ni);
2974 ntfs_debug("Done.");
2975 return 0;
2976 }
2977 /* Map, pin, and lock the mft record belonging to the inode. */
2978 m = map_mft_record(ni);
2979 if (IS_ERR(m)) {
2980 err = PTR_ERR(m);
2981 goto err_out;
2982 }
2983 /* Update the access times in the standard information attribute. */
2984 ctx = ntfs_attr_get_search_ctx(ni, m);
2985 if (unlikely(!ctx)) {
2986 err = -ENOMEM;
2987 goto unm_err_out;
2988 }
2989 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2990 CASE_SENSITIVE, 0, NULL, 0, ctx);
2991 if (unlikely(err)) {
2992 ntfs_attr_put_search_ctx(ctx);
2993 goto unm_err_out;
2994 }
2995 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2996 le16_to_cpu(ctx->attr->data.resident.value_offset));
2997 /* Update the access times if they have changed. */
2998 nt = utc2ntfs(vi->i_mtime);
2999 if (si->last_data_change_time != nt) {
3000 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3001 "new = 0x%llx", vi->i_ino, (long long)
3002 sle64_to_cpu(si->last_data_change_time),
3003 (long long)sle64_to_cpu(nt));
3004 si->last_data_change_time = nt;
3005 modified = true;
3006 }
3007 nt = utc2ntfs(vi->i_ctime);
3008 if (si->last_mft_change_time != nt) {
3009 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3010 "new = 0x%llx", vi->i_ino, (long long)
3011 sle64_to_cpu(si->last_mft_change_time),
3012 (long long)sle64_to_cpu(nt));
3013 si->last_mft_change_time = nt;
3014 modified = true;
3015 }
3016 nt = utc2ntfs(vi->i_atime);
3017 if (si->last_access_time != nt) {
3018 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3019 "new = 0x%llx", vi->i_ino,
3020 (long long)sle64_to_cpu(si->last_access_time),
3021 (long long)sle64_to_cpu(nt));
3022 si->last_access_time = nt;
3023 modified = true;
3024 }
3025 /*
3026 * If we just modified the standard information attribute we need to
3027 * mark the mft record it is in dirty. We do this manually so that
3028 * mark_inode_dirty() is not called which would redirty the inode and
3029 * hence result in an infinite loop of trying to write the inode.
3030 * There is no need to mark the base inode nor the base mft record
3031 * dirty, since we are going to write this mft record below in any case
3032 * and the base mft record may actually not have been modified so it
3033 * might not need to be written out.
3034 * NOTE: It is not a problem when the inode for $MFT itself is being
3035 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3036 * on the $MFT inode and hence ntfs_write_inode() will not be
3037 * re-invoked because of it which in turn is ok since the dirtied mft
3038 * record will be cleaned and written out to disk below, i.e. before
3039 * this function returns.
3040 */
3041 if (modified) {
3042 flush_dcache_mft_record_page(ctx->ntfs_ino);
3043 if (!NInoTestSetDirty(ctx->ntfs_ino))
3044 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3045 ctx->ntfs_ino->page_ofs);
3046 }
3047 ntfs_attr_put_search_ctx(ctx);
3048 /* Now the access times are updated, write the base mft record. */
3049 if (NInoDirty(ni))
3050 err = write_mft_record(ni, m, sync);
3051 /* Write all attached extent mft records. */
3052 mutex_lock(&ni->extent_lock);
3053 if (ni->nr_extents > 0) {
3054 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3055 int i;
3056
3057 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3058 for (i = 0; i < ni->nr_extents; i++) {
3059 ntfs_inode *tni = extent_nis[i];
3060
3061 if (NInoDirty(tni)) {
3062 MFT_RECORD *tm = map_mft_record(tni);
3063 int ret;
3064
3065 if (IS_ERR(tm)) {
3066 if (!err || err == -ENOMEM)
3067 err = PTR_ERR(tm);
3068 continue;
3069 }
3070 ret = write_mft_record(tni, tm, sync);
3071 unmap_mft_record(tni);
3072 if (unlikely(ret)) {
3073 if (!err || err == -ENOMEM)
3074 err = ret;
3075 }
3076 }
3077 }
3078 }
3079 mutex_unlock(&ni->extent_lock);
3080 unmap_mft_record(ni);
3081 if (unlikely(err))
3082 goto err_out;
3083 ntfs_debug("Done.");
3084 return 0;
3085 unm_err_out:
3086 unmap_mft_record(ni);
3087 err_out:
3088 if (err == -ENOMEM) {
3089 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3090 "Marking the inode dirty again, so the VFS "
3091 "retries later.");
3092 mark_inode_dirty(vi);
3093 } else {
3094 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3095 NVolSetErrors(ni->vol);
3096 }
3097 return err;
3098 }
3099
3100 #endif /* NTFS_RW */
3101