• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 /*
36  * Decide if the given file range is aligned to the size of the fundamental
37  * allocation unit for the file.
38  */
39 static bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)40 xfs_is_falloc_aligned(
41 	struct xfs_inode	*ip,
42 	loff_t			pos,
43 	long long int		len)
44 {
45 	struct xfs_mount	*mp = ip->i_mount;
46 	uint64_t		mask;
47 
48 	if (XFS_IS_REALTIME_INODE(ip)) {
49 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
50 			u64	rextbytes;
51 			u32	mod;
52 
53 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
54 			div_u64_rem(pos, rextbytes, &mod);
55 			if (mod)
56 				return false;
57 			div_u64_rem(len, rextbytes, &mod);
58 			return mod == 0;
59 		}
60 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
61 	} else {
62 		mask = mp->m_sb.sb_blocksize - 1;
63 	}
64 
65 	return !((pos | len) & mask);
66 }
67 
68 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)69 xfs_update_prealloc_flags(
70 	struct xfs_inode	*ip,
71 	enum xfs_prealloc_flags	flags)
72 {
73 	struct xfs_trans	*tp;
74 	int			error;
75 
76 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
77 			0, 0, 0, &tp);
78 	if (error)
79 		return error;
80 
81 	xfs_ilock(ip, XFS_ILOCK_EXCL);
82 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
83 
84 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
85 		VFS_I(ip)->i_mode &= ~S_ISUID;
86 		if (VFS_I(ip)->i_mode & S_IXGRP)
87 			VFS_I(ip)->i_mode &= ~S_ISGID;
88 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
89 	}
90 
91 	if (flags & XFS_PREALLOC_SET)
92 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
93 	if (flags & XFS_PREALLOC_CLEAR)
94 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
95 
96 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
97 	return xfs_trans_commit(tp);
98 }
99 
100 /*
101  * Fsync operations on directories are much simpler than on regular files,
102  * as there is no file data to flush, and thus also no need for explicit
103  * cache flush operations, and there are no non-transaction metadata updates
104  * on directories either.
105  */
106 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)107 xfs_dir_fsync(
108 	struct file		*file,
109 	loff_t			start,
110 	loff_t			end,
111 	int			datasync)
112 {
113 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
114 
115 	trace_xfs_dir_fsync(ip);
116 	return xfs_log_force_inode(ip);
117 }
118 
119 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)120 xfs_fsync_seq(
121 	struct xfs_inode	*ip,
122 	bool			datasync)
123 {
124 	if (!xfs_ipincount(ip))
125 		return 0;
126 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
127 		return 0;
128 	return ip->i_itemp->ili_commit_seq;
129 }
130 
131 /*
132  * All metadata updates are logged, which means that we just have to flush the
133  * log up to the latest LSN that touched the inode.
134  *
135  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
136  * the log force before we clear the ili_fsync_fields field. This ensures that
137  * we don't get a racing sync operation that does not wait for the metadata to
138  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
139  * then all that will happen is the log force will do nothing as the lsn will
140  * already be on disk.  We can't race with setting ili_fsync_fields because that
141  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
142  * shared until after the ili_fsync_fields is cleared.
143  */
144 static  int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)145 xfs_fsync_flush_log(
146 	struct xfs_inode	*ip,
147 	bool			datasync,
148 	int			*log_flushed)
149 {
150 	int			error = 0;
151 	xfs_csn_t		seq;
152 
153 	xfs_ilock(ip, XFS_ILOCK_SHARED);
154 	seq = xfs_fsync_seq(ip, datasync);
155 	if (seq) {
156 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
157 					  log_flushed);
158 
159 		spin_lock(&ip->i_itemp->ili_lock);
160 		ip->i_itemp->ili_fsync_fields = 0;
161 		spin_unlock(&ip->i_itemp->ili_lock);
162 	}
163 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
164 	return error;
165 }
166 
167 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)168 xfs_file_fsync(
169 	struct file		*file,
170 	loff_t			start,
171 	loff_t			end,
172 	int			datasync)
173 {
174 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
175 	struct xfs_mount	*mp = ip->i_mount;
176 	int			error = 0;
177 	int			log_flushed = 0;
178 
179 	trace_xfs_file_fsync(ip);
180 
181 	error = file_write_and_wait_range(file, start, end);
182 	if (error)
183 		return error;
184 
185 	if (XFS_FORCED_SHUTDOWN(mp))
186 		return -EIO;
187 
188 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
189 
190 	/*
191 	 * If we have an RT and/or log subvolume we need to make sure to flush
192 	 * the write cache the device used for file data first.  This is to
193 	 * ensure newly written file data make it to disk before logging the new
194 	 * inode size in case of an extending write.
195 	 */
196 	if (XFS_IS_REALTIME_INODE(ip))
197 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
198 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
199 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
200 
201 	error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
202 
203 	/*
204 	 * If we only have a single device, and the log force about was
205 	 * a no-op we might have to flush the data device cache here.
206 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
207 	 * an already allocated file and thus do not have any metadata to
208 	 * commit.
209 	 */
210 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
211 	    mp->m_logdev_targp == mp->m_ddev_targp)
212 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
213 
214 	return error;
215 }
216 
217 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)218 xfs_file_dio_aio_read(
219 	struct kiocb		*iocb,
220 	struct iov_iter		*to)
221 {
222 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
223 	size_t			count = iov_iter_count(to);
224 	ssize_t			ret;
225 
226 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
227 
228 	if (!count)
229 		return 0; /* skip atime */
230 
231 	file_accessed(iocb->ki_filp);
232 
233 	if (iocb->ki_flags & IOCB_NOWAIT) {
234 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
235 			return -EAGAIN;
236 	} else {
237 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
238 	}
239 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
240 			is_sync_kiocb(iocb));
241 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242 
243 	return ret;
244 }
245 
246 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)247 xfs_file_dax_read(
248 	struct kiocb		*iocb,
249 	struct iov_iter		*to)
250 {
251 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
252 	size_t			count = iov_iter_count(to);
253 	ssize_t			ret = 0;
254 
255 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
256 
257 	if (!count)
258 		return 0; /* skip atime */
259 
260 	if (iocb->ki_flags & IOCB_NOWAIT) {
261 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
262 			return -EAGAIN;
263 	} else {
264 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
265 	}
266 
267 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
268 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
269 
270 	file_accessed(iocb->ki_filp);
271 	return ret;
272 }
273 
274 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)275 xfs_file_buffered_aio_read(
276 	struct kiocb		*iocb,
277 	struct iov_iter		*to)
278 {
279 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
280 	ssize_t			ret;
281 
282 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
283 
284 	if (iocb->ki_flags & IOCB_NOWAIT) {
285 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
286 			return -EAGAIN;
287 	} else {
288 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
289 	}
290 	ret = generic_file_read_iter(iocb, to);
291 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
292 
293 	return ret;
294 }
295 
296 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)297 xfs_file_read_iter(
298 	struct kiocb		*iocb,
299 	struct iov_iter		*to)
300 {
301 	struct inode		*inode = file_inode(iocb->ki_filp);
302 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
303 	ssize_t			ret = 0;
304 
305 	XFS_STATS_INC(mp, xs_read_calls);
306 
307 	if (XFS_FORCED_SHUTDOWN(mp))
308 		return -EIO;
309 
310 	if (IS_DAX(inode))
311 		ret = xfs_file_dax_read(iocb, to);
312 	else if (iocb->ki_flags & IOCB_DIRECT)
313 		ret = xfs_file_dio_aio_read(iocb, to);
314 	else
315 		ret = xfs_file_buffered_aio_read(iocb, to);
316 
317 	if (ret > 0)
318 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
319 	return ret;
320 }
321 
322 /*
323  * Common pre-write limit and setup checks.
324  *
325  * Called with the iolocked held either shared and exclusive according to
326  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
327  * if called for a direct write beyond i_size.
328  */
329 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)330 xfs_file_aio_write_checks(
331 	struct kiocb		*iocb,
332 	struct iov_iter		*from,
333 	int			*iolock)
334 {
335 	struct file		*file = iocb->ki_filp;
336 	struct inode		*inode = file->f_mapping->host;
337 	struct xfs_inode	*ip = XFS_I(inode);
338 	ssize_t			error = 0;
339 	size_t			count = iov_iter_count(from);
340 	bool			drained_dio = false;
341 	loff_t			isize;
342 
343 restart:
344 	error = generic_write_checks(iocb, from);
345 	if (error <= 0)
346 		return error;
347 
348 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
349 	if (error)
350 		return error;
351 
352 	/*
353 	 * For changing security info in file_remove_privs() we need i_rwsem
354 	 * exclusively.
355 	 */
356 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
357 		xfs_iunlock(ip, *iolock);
358 		*iolock = XFS_IOLOCK_EXCL;
359 		xfs_ilock(ip, *iolock);
360 		goto restart;
361 	}
362 	/*
363 	 * If the offset is beyond the size of the file, we need to zero any
364 	 * blocks that fall between the existing EOF and the start of this
365 	 * write.  If zeroing is needed and we are currently holding the
366 	 * iolock shared, we need to update it to exclusive which implies
367 	 * having to redo all checks before.
368 	 *
369 	 * We need to serialise against EOF updates that occur in IO
370 	 * completions here. We want to make sure that nobody is changing the
371 	 * size while we do this check until we have placed an IO barrier (i.e.
372 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
373 	 * The spinlock effectively forms a memory barrier once we have the
374 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
375 	 * and hence be able to correctly determine if we need to run zeroing.
376 	 */
377 	spin_lock(&ip->i_flags_lock);
378 	isize = i_size_read(inode);
379 	if (iocb->ki_pos > isize) {
380 		spin_unlock(&ip->i_flags_lock);
381 		if (!drained_dio) {
382 			if (*iolock == XFS_IOLOCK_SHARED) {
383 				xfs_iunlock(ip, *iolock);
384 				*iolock = XFS_IOLOCK_EXCL;
385 				xfs_ilock(ip, *iolock);
386 				iov_iter_reexpand(from, count);
387 			}
388 			/*
389 			 * We now have an IO submission barrier in place, but
390 			 * AIO can do EOF updates during IO completion and hence
391 			 * we now need to wait for all of them to drain. Non-AIO
392 			 * DIO will have drained before we are given the
393 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
394 			 * no-op.
395 			 */
396 			inode_dio_wait(inode);
397 			drained_dio = true;
398 			goto restart;
399 		}
400 
401 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
402 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
403 				NULL, &xfs_buffered_write_iomap_ops);
404 		if (error)
405 			return error;
406 	} else
407 		spin_unlock(&ip->i_flags_lock);
408 
409 	/*
410 	 * Updating the timestamps will grab the ilock again from
411 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
412 	 * lock above.  Eventually we should look into a way to avoid
413 	 * the pointless lock roundtrip.
414 	 */
415 	return file_modified(file);
416 }
417 
418 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)419 xfs_dio_write_end_io(
420 	struct kiocb		*iocb,
421 	ssize_t			size,
422 	int			error,
423 	unsigned		flags)
424 {
425 	struct inode		*inode = file_inode(iocb->ki_filp);
426 	struct xfs_inode	*ip = XFS_I(inode);
427 	loff_t			offset = iocb->ki_pos;
428 	unsigned int		nofs_flag;
429 
430 	trace_xfs_end_io_direct_write(ip, offset, size);
431 
432 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
433 		return -EIO;
434 
435 	if (error)
436 		return error;
437 	if (!size)
438 		return 0;
439 
440 	/*
441 	 * Capture amount written on completion as we can't reliably account
442 	 * for it on submission.
443 	 */
444 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
445 
446 	/*
447 	 * We can allocate memory here while doing writeback on behalf of
448 	 * memory reclaim.  To avoid memory allocation deadlocks set the
449 	 * task-wide nofs context for the following operations.
450 	 */
451 	nofs_flag = memalloc_nofs_save();
452 
453 	if (flags & IOMAP_DIO_COW) {
454 		error = xfs_reflink_end_cow(ip, offset, size);
455 		if (error)
456 			goto out;
457 	}
458 
459 	/*
460 	 * Unwritten conversion updates the in-core isize after extent
461 	 * conversion but before updating the on-disk size. Updating isize any
462 	 * earlier allows a racing dio read to find unwritten extents before
463 	 * they are converted.
464 	 */
465 	if (flags & IOMAP_DIO_UNWRITTEN) {
466 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
467 		goto out;
468 	}
469 
470 	/*
471 	 * We need to update the in-core inode size here so that we don't end up
472 	 * with the on-disk inode size being outside the in-core inode size. We
473 	 * have no other method of updating EOF for AIO, so always do it here
474 	 * if necessary.
475 	 *
476 	 * We need to lock the test/set EOF update as we can be racing with
477 	 * other IO completions here to update the EOF. Failing to serialise
478 	 * here can result in EOF moving backwards and Bad Things Happen when
479 	 * that occurs.
480 	 */
481 	spin_lock(&ip->i_flags_lock);
482 	if (offset + size > i_size_read(inode)) {
483 		i_size_write(inode, offset + size);
484 		spin_unlock(&ip->i_flags_lock);
485 		error = xfs_setfilesize(ip, offset, size);
486 	} else {
487 		spin_unlock(&ip->i_flags_lock);
488 	}
489 
490 out:
491 	memalloc_nofs_restore(nofs_flag);
492 	return error;
493 }
494 
495 static const struct iomap_dio_ops xfs_dio_write_ops = {
496 	.end_io		= xfs_dio_write_end_io,
497 };
498 
499 /*
500  * xfs_file_dio_aio_write - handle direct IO writes
501  *
502  * Lock the inode appropriately to prepare for and issue a direct IO write.
503  * By separating it from the buffered write path we remove all the tricky to
504  * follow locking changes and looping.
505  *
506  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508  * pages are flushed out.
509  *
510  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511  * allowing them to be done in parallel with reads and other direct IO writes.
512  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513  * needs to do sub-block zeroing and that requires serialisation against other
514  * direct IOs to the same block. In this case we need to serialise the
515  * submission of the unaligned IOs so that we don't get racing block zeroing in
516  * the dio layer.  To avoid the problem with aio, we also need to wait for
517  * outstanding IOs to complete so that unwritten extent conversion is completed
518  * before we try to map the overlapping block. This is currently implemented by
519  * hitting it with a big hammer (i.e. inode_dio_wait()).
520  *
521  * Returns with locks held indicated by @iolock and errors indicated by
522  * negative return values.
523  */
524 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)525 xfs_file_dio_aio_write(
526 	struct kiocb		*iocb,
527 	struct iov_iter		*from)
528 {
529 	struct file		*file = iocb->ki_filp;
530 	struct address_space	*mapping = file->f_mapping;
531 	struct inode		*inode = mapping->host;
532 	struct xfs_inode	*ip = XFS_I(inode);
533 	struct xfs_mount	*mp = ip->i_mount;
534 	ssize_t			ret = 0;
535 	int			unaligned_io = 0;
536 	int			iolock;
537 	size_t			count = iov_iter_count(from);
538 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
539 
540 	/* DIO must be aligned to device logical sector size */
541 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
542 		return -EINVAL;
543 
544 	/*
545 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
546 	 * the file system block size.  We don't need to consider the EOF
547 	 * extension case here because xfs_file_aio_write_checks() will relock
548 	 * the inode as necessary for EOF zeroing cases and fill out the new
549 	 * inode size as appropriate.
550 	 */
551 	if ((iocb->ki_pos & mp->m_blockmask) ||
552 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
553 		unaligned_io = 1;
554 
555 		/*
556 		 * We can't properly handle unaligned direct I/O to reflink
557 		 * files yet, as we can't unshare a partial block.
558 		 */
559 		if (xfs_is_cow_inode(ip)) {
560 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
561 			return -ENOTBLK;
562 		}
563 		iolock = XFS_IOLOCK_EXCL;
564 	} else {
565 		iolock = XFS_IOLOCK_SHARED;
566 	}
567 
568 	if (iocb->ki_flags & IOCB_NOWAIT) {
569 		/* unaligned dio always waits, bail */
570 		if (unaligned_io)
571 			return -EAGAIN;
572 		if (!xfs_ilock_nowait(ip, iolock))
573 			return -EAGAIN;
574 	} else {
575 		xfs_ilock(ip, iolock);
576 	}
577 
578 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
579 	if (ret)
580 		goto out;
581 	count = iov_iter_count(from);
582 
583 	/*
584 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
585 	 * in-flight at the same time or we risk data corruption. Wait for all
586 	 * other IO to drain before we submit. If the IO is aligned, demote the
587 	 * iolock if we had to take the exclusive lock in
588 	 * xfs_file_aio_write_checks() for other reasons.
589 	 */
590 	if (unaligned_io) {
591 		inode_dio_wait(inode);
592 	} else if (iolock == XFS_IOLOCK_EXCL) {
593 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
594 		iolock = XFS_IOLOCK_SHARED;
595 	}
596 
597 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
598 	/*
599 	 * If unaligned, this is the only IO in-flight. Wait on it before we
600 	 * release the iolock to prevent subsequent overlapping IO.
601 	 */
602 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
603 			   &xfs_dio_write_ops,
604 			   is_sync_kiocb(iocb) || unaligned_io);
605 out:
606 	xfs_iunlock(ip, iolock);
607 
608 	/*
609 	 * No fallback to buffered IO after short writes for XFS, direct I/O
610 	 * will either complete fully or return an error.
611 	 */
612 	ASSERT(ret < 0 || ret == count);
613 	return ret;
614 }
615 
616 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)617 xfs_file_dax_write(
618 	struct kiocb		*iocb,
619 	struct iov_iter		*from)
620 {
621 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
622 	struct xfs_inode	*ip = XFS_I(inode);
623 	int			iolock = XFS_IOLOCK_EXCL;
624 	ssize_t			ret, error = 0;
625 	size_t			count;
626 	loff_t			pos;
627 
628 	if (iocb->ki_flags & IOCB_NOWAIT) {
629 		if (!xfs_ilock_nowait(ip, iolock))
630 			return -EAGAIN;
631 	} else {
632 		xfs_ilock(ip, iolock);
633 	}
634 
635 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
636 	if (ret)
637 		goto out;
638 
639 	pos = iocb->ki_pos;
640 	count = iov_iter_count(from);
641 
642 	trace_xfs_file_dax_write(ip, count, pos);
643 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
644 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
645 		i_size_write(inode, iocb->ki_pos);
646 		error = xfs_setfilesize(ip, pos, ret);
647 	}
648 out:
649 	xfs_iunlock(ip, iolock);
650 	if (error)
651 		return error;
652 
653 	if (ret > 0) {
654 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
655 
656 		/* Handle various SYNC-type writes */
657 		ret = generic_write_sync(iocb, ret);
658 	}
659 	return ret;
660 }
661 
662 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)663 xfs_file_buffered_aio_write(
664 	struct kiocb		*iocb,
665 	struct iov_iter		*from)
666 {
667 	struct file		*file = iocb->ki_filp;
668 	struct address_space	*mapping = file->f_mapping;
669 	struct inode		*inode = mapping->host;
670 	struct xfs_inode	*ip = XFS_I(inode);
671 	ssize_t			ret;
672 	int			enospc = 0;
673 	int			iolock;
674 
675 	if (iocb->ki_flags & IOCB_NOWAIT)
676 		return -EOPNOTSUPP;
677 
678 write_retry:
679 	iolock = XFS_IOLOCK_EXCL;
680 	xfs_ilock(ip, iolock);
681 
682 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
683 	if (ret)
684 		goto out;
685 
686 	/* We can write back this queue in page reclaim */
687 	current->backing_dev_info = inode_to_bdi(inode);
688 
689 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
690 	ret = iomap_file_buffered_write(iocb, from,
691 			&xfs_buffered_write_iomap_ops);
692 	if (likely(ret >= 0))
693 		iocb->ki_pos += ret;
694 
695 	/*
696 	 * If we hit a space limit, try to free up some lingering preallocated
697 	 * space before returning an error. In the case of ENOSPC, first try to
698 	 * write back all dirty inodes to free up some of the excess reserved
699 	 * metadata space. This reduces the chances that the eofblocks scan
700 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
701 	 * also behaves as a filter to prevent too many eofblocks scans from
702 	 * running at the same time.
703 	 */
704 	if (ret == -EDQUOT && !enospc) {
705 		xfs_iunlock(ip, iolock);
706 		enospc = xfs_inode_free_quota_eofblocks(ip);
707 		if (enospc)
708 			goto write_retry;
709 		enospc = xfs_inode_free_quota_cowblocks(ip);
710 		if (enospc)
711 			goto write_retry;
712 		iolock = 0;
713 	} else if (ret == -ENOSPC && !enospc) {
714 		struct xfs_eofblocks eofb = {0};
715 
716 		enospc = 1;
717 		xfs_flush_inodes(ip->i_mount);
718 
719 		xfs_iunlock(ip, iolock);
720 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
721 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
722 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
723 		goto write_retry;
724 	}
725 
726 	current->backing_dev_info = NULL;
727 out:
728 	if (iolock)
729 		xfs_iunlock(ip, iolock);
730 
731 	if (ret > 0) {
732 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
733 		/* Handle various SYNC-type writes */
734 		ret = generic_write_sync(iocb, ret);
735 	}
736 	return ret;
737 }
738 
739 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)740 xfs_file_write_iter(
741 	struct kiocb		*iocb,
742 	struct iov_iter		*from)
743 {
744 	struct file		*file = iocb->ki_filp;
745 	struct address_space	*mapping = file->f_mapping;
746 	struct inode		*inode = mapping->host;
747 	struct xfs_inode	*ip = XFS_I(inode);
748 	ssize_t			ret;
749 	size_t			ocount = iov_iter_count(from);
750 
751 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
752 
753 	if (ocount == 0)
754 		return 0;
755 
756 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
757 		return -EIO;
758 
759 	if (IS_DAX(inode))
760 		return xfs_file_dax_write(iocb, from);
761 
762 	if (iocb->ki_flags & IOCB_DIRECT) {
763 		/*
764 		 * Allow a directio write to fall back to a buffered
765 		 * write *only* in the case that we're doing a reflink
766 		 * CoW.  In all other directio scenarios we do not
767 		 * allow an operation to fall back to buffered mode.
768 		 */
769 		ret = xfs_file_dio_aio_write(iocb, from);
770 		if (ret != -ENOTBLK)
771 			return ret;
772 	}
773 
774 	return xfs_file_buffered_aio_write(iocb, from);
775 }
776 
777 static void
xfs_wait_dax_page(struct inode * inode)778 xfs_wait_dax_page(
779 	struct inode		*inode)
780 {
781 	struct xfs_inode        *ip = XFS_I(inode);
782 
783 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
784 	schedule();
785 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
786 }
787 
788 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)789 xfs_break_dax_layouts(
790 	struct inode		*inode,
791 	bool			*retry)
792 {
793 	struct page		*page;
794 
795 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
796 
797 	page = dax_layout_busy_page(inode->i_mapping);
798 	if (!page)
799 		return 0;
800 
801 	*retry = true;
802 	return ___wait_var_event(&page->_refcount,
803 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
804 			0, 0, xfs_wait_dax_page(inode));
805 }
806 
807 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)808 xfs_break_layouts(
809 	struct inode		*inode,
810 	uint			*iolock,
811 	enum layout_break_reason reason)
812 {
813 	bool			retry;
814 	int			error;
815 
816 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
817 
818 	do {
819 		retry = false;
820 		switch (reason) {
821 		case BREAK_UNMAP:
822 			error = xfs_break_dax_layouts(inode, &retry);
823 			if (error || retry)
824 				break;
825 			/* fall through */
826 		case BREAK_WRITE:
827 			error = xfs_break_leased_layouts(inode, iolock, &retry);
828 			break;
829 		default:
830 			WARN_ON_ONCE(1);
831 			error = -EINVAL;
832 		}
833 	} while (error == 0 && retry);
834 
835 	return error;
836 }
837 
838 #define	XFS_FALLOC_FL_SUPPORTED						\
839 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
840 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
841 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
842 
843 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)844 xfs_file_fallocate(
845 	struct file		*file,
846 	int			mode,
847 	loff_t			offset,
848 	loff_t			len)
849 {
850 	struct inode		*inode = file_inode(file);
851 	struct xfs_inode	*ip = XFS_I(inode);
852 	long			error;
853 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
854 	loff_t			new_size = 0;
855 	bool			do_file_insert = false;
856 
857 	if (!S_ISREG(inode->i_mode))
858 		return -EINVAL;
859 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
860 		return -EOPNOTSUPP;
861 
862 	xfs_ilock(ip, iolock);
863 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
864 	if (error)
865 		goto out_unlock;
866 
867 	/*
868 	 * Must wait for all AIO to complete before we continue as AIO can
869 	 * change the file size on completion without holding any locks we
870 	 * currently hold. We must do this first because AIO can update both
871 	 * the on disk and in memory inode sizes, and the operations that follow
872 	 * require the in-memory size to be fully up-to-date.
873 	 */
874 	inode_dio_wait(inode);
875 
876 	/*
877 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
878 	 * the cached range over the first operation we are about to run.
879 	 *
880 	 * We care about zero and collapse here because they both run a hole
881 	 * punch over the range first. Because that can zero data, and the range
882 	 * of invalidation for the shift operations is much larger, we still do
883 	 * the required flush for collapse in xfs_prepare_shift().
884 	 *
885 	 * Insert has the same range requirements as collapse, and we extend the
886 	 * file first which can zero data. Hence insert has the same
887 	 * flush/invalidate requirements as collapse and so they are both
888 	 * handled at the right time by xfs_prepare_shift().
889 	 */
890 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
891 		    FALLOC_FL_COLLAPSE_RANGE)) {
892 		error = xfs_flush_unmap_range(ip, offset, len);
893 		if (error)
894 			goto out_unlock;
895 	}
896 
897 	error = file_modified(file);
898 	if (error)
899 		goto out_unlock;
900 
901 	if (mode & FALLOC_FL_PUNCH_HOLE) {
902 		error = xfs_free_file_space(ip, offset, len);
903 		if (error)
904 			goto out_unlock;
905 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
906 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
907 			error = -EINVAL;
908 			goto out_unlock;
909 		}
910 
911 		/*
912 		 * There is no need to overlap collapse range with EOF,
913 		 * in which case it is effectively a truncate operation
914 		 */
915 		if (offset + len >= i_size_read(inode)) {
916 			error = -EINVAL;
917 			goto out_unlock;
918 		}
919 
920 		new_size = i_size_read(inode) - len;
921 
922 		error = xfs_collapse_file_space(ip, offset, len);
923 		if (error)
924 			goto out_unlock;
925 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
926 		loff_t		isize = i_size_read(inode);
927 
928 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
929 			error = -EINVAL;
930 			goto out_unlock;
931 		}
932 
933 		/*
934 		 * New inode size must not exceed ->s_maxbytes, accounting for
935 		 * possible signed overflow.
936 		 */
937 		if (inode->i_sb->s_maxbytes - isize < len) {
938 			error = -EFBIG;
939 			goto out_unlock;
940 		}
941 		new_size = isize + len;
942 
943 		/* Offset should be less than i_size */
944 		if (offset >= isize) {
945 			error = -EINVAL;
946 			goto out_unlock;
947 		}
948 		do_file_insert = true;
949 	} else {
950 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
951 		    offset + len > i_size_read(inode)) {
952 			new_size = offset + len;
953 			error = inode_newsize_ok(inode, new_size);
954 			if (error)
955 				goto out_unlock;
956 		}
957 
958 		if (mode & FALLOC_FL_ZERO_RANGE) {
959 			/*
960 			 * Punch a hole and prealloc the range.  We use a hole
961 			 * punch rather than unwritten extent conversion for two
962 			 * reasons:
963 			 *
964 			 *   1.) Hole punch handles partial block zeroing for us.
965 			 *   2.) If prealloc returns ENOSPC, the file range is
966 			 *       still zero-valued by virtue of the hole punch.
967 			 */
968 			unsigned int blksize = i_blocksize(inode);
969 
970 			trace_xfs_zero_file_space(ip);
971 
972 			error = xfs_free_file_space(ip, offset, len);
973 			if (error)
974 				goto out_unlock;
975 
976 			len = round_up(offset + len, blksize) -
977 			      round_down(offset, blksize);
978 			offset = round_down(offset, blksize);
979 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
980 			error = xfs_reflink_unshare(ip, offset, len);
981 			if (error)
982 				goto out_unlock;
983 		} else {
984 			/*
985 			 * If always_cow mode we can't use preallocations and
986 			 * thus should not create them.
987 			 */
988 			if (xfs_is_always_cow_inode(ip)) {
989 				error = -EOPNOTSUPP;
990 				goto out_unlock;
991 			}
992 		}
993 
994 		if (!xfs_is_always_cow_inode(ip)) {
995 			error = xfs_alloc_file_space(ip, offset, len,
996 						     XFS_BMAPI_PREALLOC);
997 			if (error)
998 				goto out_unlock;
999 		}
1000 	}
1001 
1002 	/* Change file size if needed */
1003 	if (new_size) {
1004 		struct iattr iattr;
1005 
1006 		iattr.ia_valid = ATTR_SIZE;
1007 		iattr.ia_size = new_size;
1008 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
1009 		if (error)
1010 			goto out_unlock;
1011 	}
1012 
1013 	/*
1014 	 * Perform hole insertion now that the file size has been
1015 	 * updated so that if we crash during the operation we don't
1016 	 * leave shifted extents past EOF and hence losing access to
1017 	 * the data that is contained within them.
1018 	 */
1019 	if (do_file_insert) {
1020 		error = xfs_insert_file_space(ip, offset, len);
1021 		if (error)
1022 			goto out_unlock;
1023 	}
1024 
1025 	if (file->f_flags & O_DSYNC)
1026 		error = xfs_log_force_inode(ip);
1027 
1028 out_unlock:
1029 	xfs_iunlock(ip, iolock);
1030 	return error;
1031 }
1032 
1033 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1034 xfs_file_fadvise(
1035 	struct file	*file,
1036 	loff_t		start,
1037 	loff_t		end,
1038 	int		advice)
1039 {
1040 	struct xfs_inode *ip = XFS_I(file_inode(file));
1041 	int ret;
1042 	int lockflags = 0;
1043 
1044 	/*
1045 	 * Operations creating pages in page cache need protection from hole
1046 	 * punching and similar ops
1047 	 */
1048 	if (advice == POSIX_FADV_WILLNEED) {
1049 		lockflags = XFS_IOLOCK_SHARED;
1050 		xfs_ilock(ip, lockflags);
1051 	}
1052 	ret = generic_fadvise(file, start, end, advice);
1053 	if (lockflags)
1054 		xfs_iunlock(ip, lockflags);
1055 	return ret;
1056 }
1057 
1058 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)1059 static inline bool xfs_file_sync_writes(struct file *filp)
1060 {
1061 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1062 
1063 	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1064 		return true;
1065 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1066 		return true;
1067 	if (IS_SYNC(file_inode(filp)))
1068 		return true;
1069 
1070 	return false;
1071 }
1072 
1073 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1074 xfs_file_remap_range(
1075 	struct file		*file_in,
1076 	loff_t			pos_in,
1077 	struct file		*file_out,
1078 	loff_t			pos_out,
1079 	loff_t			len,
1080 	unsigned int		remap_flags)
1081 {
1082 	struct inode		*inode_in = file_inode(file_in);
1083 	struct xfs_inode	*src = XFS_I(inode_in);
1084 	struct inode		*inode_out = file_inode(file_out);
1085 	struct xfs_inode	*dest = XFS_I(inode_out);
1086 	struct xfs_mount	*mp = src->i_mount;
1087 	loff_t			remapped = 0;
1088 	xfs_extlen_t		cowextsize;
1089 	int			ret;
1090 
1091 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1092 		return -EINVAL;
1093 
1094 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1095 		return -EOPNOTSUPP;
1096 
1097 	if (XFS_FORCED_SHUTDOWN(mp))
1098 		return -EIO;
1099 
1100 	/* Prepare and then clone file data. */
1101 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1102 			&len, remap_flags);
1103 	if (ret || len == 0)
1104 		return ret;
1105 
1106 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1107 
1108 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1109 			&remapped);
1110 	if (ret)
1111 		goto out_unlock;
1112 
1113 	/*
1114 	 * Carry the cowextsize hint from src to dest if we're sharing the
1115 	 * entire source file to the entire destination file, the source file
1116 	 * has a cowextsize hint, and the destination file does not.
1117 	 */
1118 	cowextsize = 0;
1119 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1120 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1121 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1122 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1123 		cowextsize = src->i_d.di_cowextsize;
1124 
1125 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1126 			remap_flags);
1127 	if (ret)
1128 		goto out_unlock;
1129 
1130 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1131 		xfs_log_force_inode(dest);
1132 out_unlock:
1133 	xfs_iunlock2_io_mmap(src, dest);
1134 	if (ret)
1135 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1136 	return remapped > 0 ? remapped : ret;
1137 }
1138 
1139 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1140 xfs_file_open(
1141 	struct inode	*inode,
1142 	struct file	*file)
1143 {
1144 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1145 		return -EFBIG;
1146 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1147 		return -EIO;
1148 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1149 	return 0;
1150 }
1151 
1152 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1153 xfs_dir_open(
1154 	struct inode	*inode,
1155 	struct file	*file)
1156 {
1157 	struct xfs_inode *ip = XFS_I(inode);
1158 	int		mode;
1159 	int		error;
1160 
1161 	error = xfs_file_open(inode, file);
1162 	if (error)
1163 		return error;
1164 
1165 	/*
1166 	 * If there are any blocks, read-ahead block 0 as we're almost
1167 	 * certain to have the next operation be a read there.
1168 	 */
1169 	mode = xfs_ilock_data_map_shared(ip);
1170 	if (ip->i_df.if_nextents > 0)
1171 		error = xfs_dir3_data_readahead(ip, 0, 0);
1172 	xfs_iunlock(ip, mode);
1173 	return error;
1174 }
1175 
1176 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1177 xfs_file_release(
1178 	struct inode	*inode,
1179 	struct file	*filp)
1180 {
1181 	return xfs_release(XFS_I(inode));
1182 }
1183 
1184 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1185 xfs_file_readdir(
1186 	struct file	*file,
1187 	struct dir_context *ctx)
1188 {
1189 	struct inode	*inode = file_inode(file);
1190 	xfs_inode_t	*ip = XFS_I(inode);
1191 	size_t		bufsize;
1192 
1193 	/*
1194 	 * The Linux API doesn't pass down the total size of the buffer
1195 	 * we read into down to the filesystem.  With the filldir concept
1196 	 * it's not needed for correct information, but the XFS dir2 leaf
1197 	 * code wants an estimate of the buffer size to calculate it's
1198 	 * readahead window and size the buffers used for mapping to
1199 	 * physical blocks.
1200 	 *
1201 	 * Try to give it an estimate that's good enough, maybe at some
1202 	 * point we can change the ->readdir prototype to include the
1203 	 * buffer size.  For now we use the current glibc buffer size.
1204 	 */
1205 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1206 
1207 	return xfs_readdir(NULL, ip, ctx, bufsize);
1208 }
1209 
1210 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1211 xfs_file_llseek(
1212 	struct file	*file,
1213 	loff_t		offset,
1214 	int		whence)
1215 {
1216 	struct inode		*inode = file->f_mapping->host;
1217 
1218 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1219 		return -EIO;
1220 
1221 	switch (whence) {
1222 	default:
1223 		return generic_file_llseek(file, offset, whence);
1224 	case SEEK_HOLE:
1225 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1226 		break;
1227 	case SEEK_DATA:
1228 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1229 		break;
1230 	}
1231 
1232 	if (offset < 0)
1233 		return offset;
1234 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1235 }
1236 
1237 /*
1238  * Locking for serialisation of IO during page faults. This results in a lock
1239  * ordering of:
1240  *
1241  * mmap_lock (MM)
1242  *   sb_start_pagefault(vfs, freeze)
1243  *     i_mmaplock (XFS - truncate serialisation)
1244  *       page_lock (MM)
1245  *         i_lock (XFS - extent map serialisation)
1246  */
1247 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1248 __xfs_filemap_fault(
1249 	struct vm_fault		*vmf,
1250 	enum page_entry_size	pe_size,
1251 	bool			write_fault)
1252 {
1253 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1254 	struct xfs_inode	*ip = XFS_I(inode);
1255 	vm_fault_t		ret;
1256 
1257 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1258 
1259 	if (write_fault) {
1260 		sb_start_pagefault(inode->i_sb);
1261 		file_update_time(vmf->vma->vm_file);
1262 	}
1263 
1264 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1265 	if (IS_DAX(inode)) {
1266 		pfn_t pfn;
1267 
1268 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1269 				(write_fault && !vmf->cow_page) ?
1270 				 &xfs_direct_write_iomap_ops :
1271 				 &xfs_read_iomap_ops);
1272 		if (ret & VM_FAULT_NEEDDSYNC)
1273 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1274 	} else {
1275 		if (write_fault)
1276 			ret = iomap_page_mkwrite(vmf,
1277 					&xfs_buffered_write_iomap_ops);
1278 		else
1279 			ret = filemap_fault(vmf);
1280 	}
1281 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1282 
1283 	if (write_fault)
1284 		sb_end_pagefault(inode->i_sb);
1285 	return ret;
1286 }
1287 
1288 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1289 xfs_is_write_fault(
1290 	struct vm_fault		*vmf)
1291 {
1292 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1293 	       (vmf->vma->vm_flags & VM_SHARED);
1294 }
1295 
1296 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1297 xfs_filemap_fault(
1298 	struct vm_fault		*vmf)
1299 {
1300 	/* DAX can shortcut the normal fault path on write faults! */
1301 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1302 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1303 			xfs_is_write_fault(vmf));
1304 }
1305 
1306 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1307 xfs_filemap_huge_fault(
1308 	struct vm_fault		*vmf,
1309 	enum page_entry_size	pe_size)
1310 {
1311 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1312 		return VM_FAULT_FALLBACK;
1313 
1314 	/* DAX can shortcut the normal fault path on write faults! */
1315 	return __xfs_filemap_fault(vmf, pe_size,
1316 			xfs_is_write_fault(vmf));
1317 }
1318 
1319 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1320 xfs_filemap_page_mkwrite(
1321 	struct vm_fault		*vmf)
1322 {
1323 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1324 }
1325 
1326 /*
1327  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1328  * on write faults. In reality, it needs to serialise against truncate and
1329  * prepare memory for writing so handle is as standard write fault.
1330  */
1331 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1332 xfs_filemap_pfn_mkwrite(
1333 	struct vm_fault		*vmf)
1334 {
1335 
1336 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1337 }
1338 
1339 static vm_fault_t
xfs_filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1340 xfs_filemap_map_pages(
1341 	struct vm_fault		*vmf,
1342 	pgoff_t			start_pgoff,
1343 	pgoff_t			end_pgoff)
1344 {
1345 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1346 	vm_fault_t ret;
1347 
1348 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1349 	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1350 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1351 	return ret;
1352 }
1353 
1354 static const struct vm_operations_struct xfs_file_vm_ops = {
1355 	.fault		= xfs_filemap_fault,
1356 	.huge_fault	= xfs_filemap_huge_fault,
1357 	.map_pages	= xfs_filemap_map_pages,
1358 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1359 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1360 };
1361 
1362 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1363 xfs_file_mmap(
1364 	struct file		*file,
1365 	struct vm_area_struct	*vma)
1366 {
1367 	struct inode		*inode = file_inode(file);
1368 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1369 
1370 	/*
1371 	 * We don't support synchronous mappings for non-DAX files and
1372 	 * for DAX files if underneath dax_device is not synchronous.
1373 	 */
1374 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1375 		return -EOPNOTSUPP;
1376 
1377 	file_accessed(file);
1378 	vma->vm_ops = &xfs_file_vm_ops;
1379 	if (IS_DAX(inode))
1380 		vma->vm_flags |= VM_HUGEPAGE;
1381 	return 0;
1382 }
1383 
1384 const struct file_operations xfs_file_operations = {
1385 	.llseek		= xfs_file_llseek,
1386 	.read_iter	= xfs_file_read_iter,
1387 	.write_iter	= xfs_file_write_iter,
1388 	.splice_read	= generic_file_splice_read,
1389 	.splice_write	= iter_file_splice_write,
1390 	.iopoll		= iomap_dio_iopoll,
1391 	.unlocked_ioctl	= xfs_file_ioctl,
1392 #ifdef CONFIG_COMPAT
1393 	.compat_ioctl	= xfs_file_compat_ioctl,
1394 #endif
1395 	.mmap		= xfs_file_mmap,
1396 	.mmap_supported_flags = MAP_SYNC,
1397 	.open		= xfs_file_open,
1398 	.release	= xfs_file_release,
1399 	.fsync		= xfs_file_fsync,
1400 	.get_unmapped_area = thp_get_unmapped_area,
1401 	.fallocate	= xfs_file_fallocate,
1402 	.fadvise	= xfs_file_fadvise,
1403 	.remap_file_range = xfs_file_remap_range,
1404 };
1405 
1406 const struct file_operations xfs_dir_file_operations = {
1407 	.open		= xfs_dir_open,
1408 	.read		= generic_read_dir,
1409 	.iterate_shared	= xfs_file_readdir,
1410 	.llseek		= generic_file_llseek,
1411 	.unlocked_ioctl	= xfs_file_ioctl,
1412 #ifdef CONFIG_COMPAT
1413 	.compat_ioctl	= xfs_file_compat_ioctl,
1414 #endif
1415 	.fsync		= xfs_dir_fsync,
1416 };
1417