1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 #ifndef __GENKSYMS__
465 /*
466 * ANDROID ABI HACK
467 *
468 * See the big comment in the linux/io_uring.h file for details. This
469 * structure definition should NOT be used if __GENKSYMS__ is enabled,
470 * as a "fake" structure definition has already been read in the
471 * linux/io_uring.h file in order to preserve the Android kernel ABI.
472 */
473 struct io_uring_task {
474 /* submission side */
475 int cached_refs;
476 struct xarray xa;
477 struct wait_queue_head wait;
478 const struct io_ring_ctx *last;
479 struct io_wq *io_wq;
480 struct percpu_counter inflight;
481 atomic_t inflight_tracked;
482 atomic_t in_idle;
483
484 spinlock_t task_lock;
485 struct io_wq_work_list task_list;
486 struct callback_head task_work;
487 bool task_running;
488 };
489 #endif
490
491 /*
492 * First field must be the file pointer in all the
493 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
494 */
495 struct io_poll_iocb {
496 struct file *file;
497 struct wait_queue_head *head;
498 __poll_t events;
499 int retries;
500 struct wait_queue_entry wait;
501 };
502
503 struct io_poll_update {
504 struct file *file;
505 u64 old_user_data;
506 u64 new_user_data;
507 __poll_t events;
508 bool update_events;
509 bool update_user_data;
510 };
511
512 struct io_close {
513 struct file *file;
514 int fd;
515 u32 file_slot;
516 };
517
518 struct io_timeout_data {
519 struct io_kiocb *req;
520 struct hrtimer timer;
521 struct timespec64 ts;
522 enum hrtimer_mode mode;
523 u32 flags;
524 };
525
526 struct io_accept {
527 struct file *file;
528 struct sockaddr __user *addr;
529 int __user *addr_len;
530 int flags;
531 u32 file_slot;
532 unsigned long nofile;
533 };
534
535 struct io_sync {
536 struct file *file;
537 loff_t len;
538 loff_t off;
539 int flags;
540 int mode;
541 };
542
543 struct io_cancel {
544 struct file *file;
545 u64 addr;
546 };
547
548 struct io_timeout {
549 struct file *file;
550 u32 off;
551 u32 target_seq;
552 struct list_head list;
553 /* head of the link, used by linked timeouts only */
554 struct io_kiocb *head;
555 /* for linked completions */
556 struct io_kiocb *prev;
557 };
558
559 struct io_timeout_rem {
560 struct file *file;
561 u64 addr;
562
563 /* timeout update */
564 struct timespec64 ts;
565 u32 flags;
566 bool ltimeout;
567 };
568
569 struct io_rw {
570 /* NOTE: kiocb has the file as the first member, so don't do it here */
571 struct kiocb kiocb;
572 u64 addr;
573 u64 len;
574 };
575
576 struct io_connect {
577 struct file *file;
578 struct sockaddr __user *addr;
579 int addr_len;
580 };
581
582 struct io_sr_msg {
583 struct file *file;
584 union {
585 struct compat_msghdr __user *umsg_compat;
586 struct user_msghdr __user *umsg;
587 void __user *buf;
588 };
589 int msg_flags;
590 int bgid;
591 size_t len;
592 size_t done_io;
593 struct io_buffer *kbuf;
594 void __user *msg_control;
595 };
596
597 struct io_open {
598 struct file *file;
599 int dfd;
600 u32 file_slot;
601 struct filename *filename;
602 struct open_how how;
603 unsigned long nofile;
604 };
605
606 struct io_rsrc_update {
607 struct file *file;
608 u64 arg;
609 u32 nr_args;
610 u32 offset;
611 };
612
613 struct io_fadvise {
614 struct file *file;
615 u64 offset;
616 u32 len;
617 u32 advice;
618 };
619
620 struct io_madvise {
621 struct file *file;
622 u64 addr;
623 u32 len;
624 u32 advice;
625 };
626
627 struct io_epoll {
628 struct file *file;
629 int epfd;
630 int op;
631 int fd;
632 struct epoll_event event;
633 };
634
635 struct io_splice {
636 struct file *file_out;
637 loff_t off_out;
638 loff_t off_in;
639 u64 len;
640 int splice_fd_in;
641 unsigned int flags;
642 };
643
644 struct io_provide_buf {
645 struct file *file;
646 __u64 addr;
647 __u32 len;
648 __u32 bgid;
649 __u16 nbufs;
650 __u16 bid;
651 };
652
653 struct io_statx {
654 struct file *file;
655 int dfd;
656 unsigned int mask;
657 unsigned int flags;
658 const char __user *filename;
659 struct statx __user *buffer;
660 };
661
662 struct io_shutdown {
663 struct file *file;
664 int how;
665 };
666
667 struct io_rename {
668 struct file *file;
669 int old_dfd;
670 int new_dfd;
671 struct filename *oldpath;
672 struct filename *newpath;
673 int flags;
674 };
675
676 struct io_unlink {
677 struct file *file;
678 int dfd;
679 int flags;
680 struct filename *filename;
681 };
682
683 struct io_mkdir {
684 struct file *file;
685 int dfd;
686 umode_t mode;
687 struct filename *filename;
688 };
689
690 struct io_symlink {
691 struct file *file;
692 int new_dfd;
693 struct filename *oldpath;
694 struct filename *newpath;
695 };
696
697 struct io_hardlink {
698 struct file *file;
699 int old_dfd;
700 int new_dfd;
701 struct filename *oldpath;
702 struct filename *newpath;
703 int flags;
704 };
705
706 struct io_completion {
707 struct file *file;
708 u32 cflags;
709 };
710
711 struct io_async_connect {
712 struct sockaddr_storage address;
713 };
714
715 struct io_async_msghdr {
716 struct iovec fast_iov[UIO_FASTIOV];
717 /* points to an allocated iov, if NULL we use fast_iov instead */
718 struct iovec *free_iov;
719 struct sockaddr __user *uaddr;
720 struct msghdr msg;
721 struct sockaddr_storage addr;
722 };
723
724 struct io_async_rw {
725 struct iovec fast_iov[UIO_FASTIOV];
726 const struct iovec *free_iovec;
727 struct iov_iter iter;
728 struct iov_iter_state iter_state;
729 size_t bytes_done;
730 struct wait_page_queue wpq;
731 };
732
733 enum {
734 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
735 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
736 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
737 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
738 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
739 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
740
741 /* first byte is taken by user flags, shift it to not overlap */
742 REQ_F_FAIL_BIT = 8,
743 REQ_F_INFLIGHT_BIT,
744 REQ_F_CUR_POS_BIT,
745 REQ_F_NOWAIT_BIT,
746 REQ_F_LINK_TIMEOUT_BIT,
747 REQ_F_NEED_CLEANUP_BIT,
748 REQ_F_POLLED_BIT,
749 REQ_F_BUFFER_SELECTED_BIT,
750 REQ_F_COMPLETE_INLINE_BIT,
751 REQ_F_REISSUE_BIT,
752 REQ_F_CREDS_BIT,
753 REQ_F_REFCOUNT_BIT,
754 REQ_F_ARM_LTIMEOUT_BIT,
755 REQ_F_PARTIAL_IO_BIT,
756 /* keep async read/write and isreg together and in order */
757 REQ_F_NOWAIT_READ_BIT,
758 REQ_F_NOWAIT_WRITE_BIT,
759 REQ_F_ISREG_BIT,
760
761 /* not a real bit, just to check we're not overflowing the space */
762 __REQ_F_LAST_BIT,
763 };
764
765 enum {
766 /* ctx owns file */
767 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
768 /* drain existing IO first */
769 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
770 /* linked sqes */
771 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
772 /* doesn't sever on completion < 0 */
773 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
774 /* IOSQE_ASYNC */
775 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
776 /* IOSQE_BUFFER_SELECT */
777 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
778
779 /* fail rest of links */
780 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
781 /* on inflight list, should be cancelled and waited on exit reliably */
782 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
783 /* read/write uses file position */
784 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
785 /* must not punt to workers */
786 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
787 /* has or had linked timeout */
788 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
789 /* needs cleanup */
790 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
791 /* already went through poll handler */
792 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
793 /* buffer already selected */
794 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
795 /* completion is deferred through io_comp_state */
796 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
797 /* caller should reissue async */
798 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
799 /* supports async reads */
800 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
801 /* supports async writes */
802 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
803 /* regular file */
804 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
805 /* has creds assigned */
806 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
807 /* skip refcounting if not set */
808 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
809 /* there is a linked timeout that has to be armed */
810 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
811 /* request has already done partial IO */
812 REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT),
813 };
814
815 struct async_poll {
816 struct io_poll_iocb poll;
817 struct io_poll_iocb *double_poll;
818 };
819
820 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
821
822 struct io_task_work {
823 union {
824 struct io_wq_work_node node;
825 struct llist_node fallback_node;
826 };
827 io_req_tw_func_t func;
828 };
829
830 enum {
831 IORING_RSRC_FILE = 0,
832 IORING_RSRC_BUFFER = 1,
833 };
834
835 /*
836 * NOTE! Each of the iocb union members has the file pointer
837 * as the first entry in their struct definition. So you can
838 * access the file pointer through any of the sub-structs,
839 * or directly as just 'ki_filp' in this struct.
840 */
841 struct io_kiocb {
842 union {
843 struct file *file;
844 struct io_rw rw;
845 struct io_poll_iocb poll;
846 struct io_poll_update poll_update;
847 struct io_accept accept;
848 struct io_sync sync;
849 struct io_cancel cancel;
850 struct io_timeout timeout;
851 struct io_timeout_rem timeout_rem;
852 struct io_connect connect;
853 struct io_sr_msg sr_msg;
854 struct io_open open;
855 struct io_close close;
856 struct io_rsrc_update rsrc_update;
857 struct io_fadvise fadvise;
858 struct io_madvise madvise;
859 struct io_epoll epoll;
860 struct io_splice splice;
861 struct io_provide_buf pbuf;
862 struct io_statx statx;
863 struct io_shutdown shutdown;
864 struct io_rename rename;
865 struct io_unlink unlink;
866 struct io_mkdir mkdir;
867 struct io_symlink symlink;
868 struct io_hardlink hardlink;
869 /* use only after cleaning per-op data, see io_clean_op() */
870 struct io_completion compl;
871 };
872
873 /* opcode allocated if it needs to store data for async defer */
874 void *async_data;
875 u8 opcode;
876 /* polled IO has completed */
877 u8 iopoll_completed;
878
879 u16 buf_index;
880 u32 result;
881
882 struct io_ring_ctx *ctx;
883 unsigned int flags;
884 atomic_t refs;
885 struct task_struct *task;
886 u64 user_data;
887
888 struct io_kiocb *link;
889 struct percpu_ref *fixed_rsrc_refs;
890
891 /* used with ctx->iopoll_list with reads/writes */
892 struct list_head inflight_entry;
893 struct io_task_work io_task_work;
894 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
895 struct hlist_node hash_node;
896 struct async_poll *apoll;
897 struct io_wq_work work;
898 const struct cred *creds;
899
900 /* store used ubuf, so we can prevent reloading */
901 struct io_mapped_ubuf *imu;
902 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
903 struct io_buffer *kbuf;
904 atomic_t poll_refs;
905 };
906
907 struct io_tctx_node {
908 struct list_head ctx_node;
909 struct task_struct *task;
910 struct io_ring_ctx *ctx;
911 };
912
913 struct io_defer_entry {
914 struct list_head list;
915 struct io_kiocb *req;
916 u32 seq;
917 };
918
919 struct io_op_def {
920 /* needs req->file assigned */
921 unsigned needs_file : 1;
922 /* hash wq insertion if file is a regular file */
923 unsigned hash_reg_file : 1;
924 /* unbound wq insertion if file is a non-regular file */
925 unsigned unbound_nonreg_file : 1;
926 /* opcode is not supported by this kernel */
927 unsigned not_supported : 1;
928 /* set if opcode supports polled "wait" */
929 unsigned pollin : 1;
930 unsigned pollout : 1;
931 /* op supports buffer selection */
932 unsigned buffer_select : 1;
933 /* do prep async if is going to be punted */
934 unsigned needs_async_setup : 1;
935 /* should block plug */
936 unsigned plug : 1;
937 /* size of async data needed, if any */
938 unsigned short async_size;
939 };
940
941 static const struct io_op_def io_op_defs[] = {
942 [IORING_OP_NOP] = {},
943 [IORING_OP_READV] = {
944 .needs_file = 1,
945 .unbound_nonreg_file = 1,
946 .pollin = 1,
947 .buffer_select = 1,
948 .needs_async_setup = 1,
949 .plug = 1,
950 .async_size = sizeof(struct io_async_rw),
951 },
952 [IORING_OP_WRITEV] = {
953 .needs_file = 1,
954 .hash_reg_file = 1,
955 .unbound_nonreg_file = 1,
956 .pollout = 1,
957 .needs_async_setup = 1,
958 .plug = 1,
959 .async_size = sizeof(struct io_async_rw),
960 },
961 [IORING_OP_FSYNC] = {
962 .needs_file = 1,
963 },
964 [IORING_OP_READ_FIXED] = {
965 .needs_file = 1,
966 .unbound_nonreg_file = 1,
967 .pollin = 1,
968 .plug = 1,
969 .async_size = sizeof(struct io_async_rw),
970 },
971 [IORING_OP_WRITE_FIXED] = {
972 .needs_file = 1,
973 .hash_reg_file = 1,
974 .unbound_nonreg_file = 1,
975 .pollout = 1,
976 .plug = 1,
977 .async_size = sizeof(struct io_async_rw),
978 },
979 [IORING_OP_POLL_ADD] = {
980 .needs_file = 1,
981 .unbound_nonreg_file = 1,
982 },
983 [IORING_OP_POLL_REMOVE] = {},
984 [IORING_OP_SYNC_FILE_RANGE] = {
985 .needs_file = 1,
986 },
987 [IORING_OP_SENDMSG] = {
988 .needs_file = 1,
989 .unbound_nonreg_file = 1,
990 .pollout = 1,
991 .needs_async_setup = 1,
992 .async_size = sizeof(struct io_async_msghdr),
993 },
994 [IORING_OP_RECVMSG] = {
995 .needs_file = 1,
996 .unbound_nonreg_file = 1,
997 .pollin = 1,
998 .buffer_select = 1,
999 .needs_async_setup = 1,
1000 .async_size = sizeof(struct io_async_msghdr),
1001 },
1002 [IORING_OP_TIMEOUT] = {
1003 .async_size = sizeof(struct io_timeout_data),
1004 },
1005 [IORING_OP_TIMEOUT_REMOVE] = {
1006 /* used by timeout updates' prep() */
1007 },
1008 [IORING_OP_ACCEPT] = {
1009 .needs_file = 1,
1010 .unbound_nonreg_file = 1,
1011 .pollin = 1,
1012 },
1013 [IORING_OP_ASYNC_CANCEL] = {},
1014 [IORING_OP_LINK_TIMEOUT] = {
1015 .async_size = sizeof(struct io_timeout_data),
1016 },
1017 [IORING_OP_CONNECT] = {
1018 .needs_file = 1,
1019 .unbound_nonreg_file = 1,
1020 .pollout = 1,
1021 .needs_async_setup = 1,
1022 .async_size = sizeof(struct io_async_connect),
1023 },
1024 [IORING_OP_FALLOCATE] = {
1025 .needs_file = 1,
1026 },
1027 [IORING_OP_OPENAT] = {},
1028 [IORING_OP_CLOSE] = {},
1029 [IORING_OP_FILES_UPDATE] = {},
1030 [IORING_OP_STATX] = {},
1031 [IORING_OP_READ] = {
1032 .needs_file = 1,
1033 .unbound_nonreg_file = 1,
1034 .pollin = 1,
1035 .buffer_select = 1,
1036 .plug = 1,
1037 .async_size = sizeof(struct io_async_rw),
1038 },
1039 [IORING_OP_WRITE] = {
1040 .needs_file = 1,
1041 .hash_reg_file = 1,
1042 .unbound_nonreg_file = 1,
1043 .pollout = 1,
1044 .plug = 1,
1045 .async_size = sizeof(struct io_async_rw),
1046 },
1047 [IORING_OP_FADVISE] = {
1048 .needs_file = 1,
1049 },
1050 [IORING_OP_MADVISE] = {},
1051 [IORING_OP_SEND] = {
1052 .needs_file = 1,
1053 .unbound_nonreg_file = 1,
1054 .pollout = 1,
1055 },
1056 [IORING_OP_RECV] = {
1057 .needs_file = 1,
1058 .unbound_nonreg_file = 1,
1059 .pollin = 1,
1060 .buffer_select = 1,
1061 },
1062 [IORING_OP_OPENAT2] = {
1063 },
1064 [IORING_OP_EPOLL_CTL] = {
1065 .unbound_nonreg_file = 1,
1066 },
1067 [IORING_OP_SPLICE] = {
1068 .needs_file = 1,
1069 .hash_reg_file = 1,
1070 .unbound_nonreg_file = 1,
1071 },
1072 [IORING_OP_PROVIDE_BUFFERS] = {},
1073 [IORING_OP_REMOVE_BUFFERS] = {},
1074 [IORING_OP_TEE] = {
1075 .needs_file = 1,
1076 .hash_reg_file = 1,
1077 .unbound_nonreg_file = 1,
1078 },
1079 [IORING_OP_SHUTDOWN] = {
1080 .needs_file = 1,
1081 },
1082 [IORING_OP_RENAMEAT] = {},
1083 [IORING_OP_UNLINKAT] = {},
1084 };
1085
1086 /* requests with any of those set should undergo io_disarm_next() */
1087 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1088
1089 static bool io_disarm_next(struct io_kiocb *req);
1090 static void io_uring_del_tctx_node(unsigned long index);
1091 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1092 struct task_struct *task,
1093 bool cancel_all);
1094 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1095
1096 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1097
1098 static void io_put_req(struct io_kiocb *req);
1099 static void io_put_req_deferred(struct io_kiocb *req);
1100 static void io_dismantle_req(struct io_kiocb *req);
1101 static void io_queue_linked_timeout(struct io_kiocb *req);
1102 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1103 struct io_uring_rsrc_update2 *up,
1104 unsigned nr_args);
1105 static void io_clean_op(struct io_kiocb *req);
1106 static struct file *io_file_get(struct io_ring_ctx *ctx,
1107 struct io_kiocb *req, int fd, bool fixed,
1108 unsigned int issue_flags);
1109 static void __io_queue_sqe(struct io_kiocb *req);
1110 static void io_rsrc_put_work(struct work_struct *work);
1111
1112 static void io_req_task_queue(struct io_kiocb *req);
1113 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1114 static int io_req_prep_async(struct io_kiocb *req);
1115
1116 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1117 unsigned int issue_flags, u32 slot_index);
1118 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1119
1120 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1121
1122 static struct kmem_cache *req_cachep;
1123
1124 static const struct file_operations io_uring_fops;
1125
io_uring_get_socket(struct file * file)1126 struct sock *io_uring_get_socket(struct file *file)
1127 {
1128 #if defined(CONFIG_UNIX)
1129 if (file->f_op == &io_uring_fops) {
1130 struct io_ring_ctx *ctx = file->private_data;
1131
1132 return ctx->ring_sock->sk;
1133 }
1134 #endif
1135 return NULL;
1136 }
1137 EXPORT_SYMBOL(io_uring_get_socket);
1138
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1139 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1140 {
1141 if (!*locked) {
1142 mutex_lock(&ctx->uring_lock);
1143 *locked = true;
1144 }
1145 }
1146
1147 #define io_for_each_link(pos, head) \
1148 for (pos = (head); pos; pos = pos->link)
1149
1150 /*
1151 * Shamelessly stolen from the mm implementation of page reference checking,
1152 * see commit f958d7b528b1 for details.
1153 */
1154 #define req_ref_zero_or_close_to_overflow(req) \
1155 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1156
req_ref_inc_not_zero(struct io_kiocb * req)1157 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 return atomic_inc_not_zero(&req->refs);
1161 }
1162
req_ref_put_and_test(struct io_kiocb * req)1163 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1164 {
1165 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1166 return true;
1167
1168 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1169 return atomic_dec_and_test(&req->refs);
1170 }
1171
req_ref_get(struct io_kiocb * req)1172 static inline void req_ref_get(struct io_kiocb *req)
1173 {
1174 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1175 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1176 atomic_inc(&req->refs);
1177 }
1178
__io_req_set_refcount(struct io_kiocb * req,int nr)1179 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1180 {
1181 if (!(req->flags & REQ_F_REFCOUNT)) {
1182 req->flags |= REQ_F_REFCOUNT;
1183 atomic_set(&req->refs, nr);
1184 }
1185 }
1186
io_req_set_refcount(struct io_kiocb * req)1187 static inline void io_req_set_refcount(struct io_kiocb *req)
1188 {
1189 __io_req_set_refcount(req, 1);
1190 }
1191
io_req_set_rsrc_node(struct io_kiocb * req)1192 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1193 {
1194 struct io_ring_ctx *ctx = req->ctx;
1195
1196 if (!req->fixed_rsrc_refs) {
1197 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1198 percpu_ref_get(req->fixed_rsrc_refs);
1199 }
1200 }
1201
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1202 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1203 {
1204 bool got = percpu_ref_tryget(ref);
1205
1206 /* already at zero, wait for ->release() */
1207 if (!got)
1208 wait_for_completion(compl);
1209 percpu_ref_resurrect(ref);
1210 if (got)
1211 percpu_ref_put(ref);
1212 }
1213
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1214 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1215 bool cancel_all)
1216 __must_hold(&req->ctx->timeout_lock)
1217 {
1218 struct io_kiocb *req;
1219
1220 if (task && head->task != task)
1221 return false;
1222 if (cancel_all)
1223 return true;
1224
1225 io_for_each_link(req, head) {
1226 if (req->flags & REQ_F_INFLIGHT)
1227 return true;
1228 }
1229 return false;
1230 }
1231
io_match_linked(struct io_kiocb * head)1232 static bool io_match_linked(struct io_kiocb *head)
1233 {
1234 struct io_kiocb *req;
1235
1236 io_for_each_link(req, head) {
1237 if (req->flags & REQ_F_INFLIGHT)
1238 return true;
1239 }
1240 return false;
1241 }
1242
1243 /*
1244 * As io_match_task() but protected against racing with linked timeouts.
1245 * User must not hold timeout_lock.
1246 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1247 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1248 bool cancel_all)
1249 {
1250 bool matched;
1251
1252 if (task && head->task != task)
1253 return false;
1254 if (cancel_all)
1255 return true;
1256
1257 if (head->flags & REQ_F_LINK_TIMEOUT) {
1258 struct io_ring_ctx *ctx = head->ctx;
1259
1260 /* protect against races with linked timeouts */
1261 spin_lock_irq(&ctx->timeout_lock);
1262 matched = io_match_linked(head);
1263 spin_unlock_irq(&ctx->timeout_lock);
1264 } else {
1265 matched = io_match_linked(head);
1266 }
1267 return matched;
1268 }
1269
req_set_fail(struct io_kiocb * req)1270 static inline void req_set_fail(struct io_kiocb *req)
1271 {
1272 req->flags |= REQ_F_FAIL;
1273 }
1274
req_fail_link_node(struct io_kiocb * req,int res)1275 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1276 {
1277 req_set_fail(req);
1278 req->result = res;
1279 }
1280
io_ring_ctx_ref_free(struct percpu_ref * ref)1281 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1282 {
1283 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1284
1285 complete(&ctx->ref_comp);
1286 }
1287
io_is_timeout_noseq(struct io_kiocb * req)1288 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1289 {
1290 return !req->timeout.off;
1291 }
1292
io_fallback_req_func(struct work_struct * work)1293 static void io_fallback_req_func(struct work_struct *work)
1294 {
1295 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1296 fallback_work.work);
1297 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1298 struct io_kiocb *req, *tmp;
1299 bool locked = false;
1300
1301 percpu_ref_get(&ctx->refs);
1302 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1303 req->io_task_work.func(req, &locked);
1304
1305 if (locked) {
1306 if (ctx->submit_state.compl_nr)
1307 io_submit_flush_completions(ctx);
1308 mutex_unlock(&ctx->uring_lock);
1309 }
1310 percpu_ref_put(&ctx->refs);
1311
1312 }
1313
io_ring_ctx_alloc(struct io_uring_params * p)1314 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1315 {
1316 struct io_ring_ctx *ctx;
1317 int hash_bits;
1318
1319 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1320 if (!ctx)
1321 return NULL;
1322
1323 /*
1324 * Use 5 bits less than the max cq entries, that should give us around
1325 * 32 entries per hash list if totally full and uniformly spread.
1326 */
1327 hash_bits = ilog2(p->cq_entries);
1328 hash_bits -= 5;
1329 if (hash_bits <= 0)
1330 hash_bits = 1;
1331 ctx->cancel_hash_bits = hash_bits;
1332 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1333 GFP_KERNEL);
1334 if (!ctx->cancel_hash)
1335 goto err;
1336 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1337
1338 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1339 if (!ctx->dummy_ubuf)
1340 goto err;
1341 /* set invalid range, so io_import_fixed() fails meeting it */
1342 ctx->dummy_ubuf->ubuf = -1UL;
1343
1344 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1345 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1346 goto err;
1347
1348 ctx->flags = p->flags;
1349 init_waitqueue_head(&ctx->sqo_sq_wait);
1350 INIT_LIST_HEAD(&ctx->sqd_list);
1351 init_waitqueue_head(&ctx->poll_wait);
1352 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1353 init_completion(&ctx->ref_comp);
1354 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1355 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1356 mutex_init(&ctx->uring_lock);
1357 init_waitqueue_head(&ctx->cq_wait);
1358 spin_lock_init(&ctx->completion_lock);
1359 spin_lock_init(&ctx->timeout_lock);
1360 INIT_LIST_HEAD(&ctx->iopoll_list);
1361 INIT_LIST_HEAD(&ctx->defer_list);
1362 INIT_LIST_HEAD(&ctx->timeout_list);
1363 INIT_LIST_HEAD(&ctx->ltimeout_list);
1364 spin_lock_init(&ctx->rsrc_ref_lock);
1365 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1366 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1367 init_llist_head(&ctx->rsrc_put_llist);
1368 INIT_LIST_HEAD(&ctx->tctx_list);
1369 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1370 INIT_LIST_HEAD(&ctx->locked_free_list);
1371 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1372 return ctx;
1373 err:
1374 kfree(ctx->dummy_ubuf);
1375 kfree(ctx->cancel_hash);
1376 kfree(ctx);
1377 return NULL;
1378 }
1379
io_account_cq_overflow(struct io_ring_ctx * ctx)1380 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1381 {
1382 struct io_rings *r = ctx->rings;
1383
1384 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1385 ctx->cq_extra--;
1386 }
1387
req_need_defer(struct io_kiocb * req,u32 seq)1388 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1389 {
1390 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1391 struct io_ring_ctx *ctx = req->ctx;
1392
1393 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1394 }
1395
1396 return false;
1397 }
1398
1399 #define FFS_ASYNC_READ 0x1UL
1400 #define FFS_ASYNC_WRITE 0x2UL
1401 #ifdef CONFIG_64BIT
1402 #define FFS_ISREG 0x4UL
1403 #else
1404 #define FFS_ISREG 0x0UL
1405 #endif
1406 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1407
io_req_ffs_set(struct io_kiocb * req)1408 static inline bool io_req_ffs_set(struct io_kiocb *req)
1409 {
1410 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1411 }
1412
io_req_track_inflight(struct io_kiocb * req)1413 static void io_req_track_inflight(struct io_kiocb *req)
1414 {
1415 if (!(req->flags & REQ_F_INFLIGHT)) {
1416 req->flags |= REQ_F_INFLIGHT;
1417 atomic_inc(&req->task->io_uring->inflight_tracked);
1418 }
1419 }
1420
__io_prep_linked_timeout(struct io_kiocb * req)1421 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1422 {
1423 if (WARN_ON_ONCE(!req->link))
1424 return NULL;
1425
1426 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1427 req->flags |= REQ_F_LINK_TIMEOUT;
1428
1429 /* linked timeouts should have two refs once prep'ed */
1430 io_req_set_refcount(req);
1431 __io_req_set_refcount(req->link, 2);
1432 return req->link;
1433 }
1434
io_prep_linked_timeout(struct io_kiocb * req)1435 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1436 {
1437 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1438 return NULL;
1439 return __io_prep_linked_timeout(req);
1440 }
1441
io_prep_async_work(struct io_kiocb * req)1442 static void io_prep_async_work(struct io_kiocb *req)
1443 {
1444 const struct io_op_def *def = &io_op_defs[req->opcode];
1445 struct io_ring_ctx *ctx = req->ctx;
1446
1447 if (!(req->flags & REQ_F_CREDS)) {
1448 req->flags |= REQ_F_CREDS;
1449 req->creds = get_current_cred();
1450 }
1451
1452 req->work.list.next = NULL;
1453 req->work.flags = 0;
1454 if (req->flags & REQ_F_FORCE_ASYNC)
1455 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1456
1457 if (req->flags & REQ_F_ISREG) {
1458 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1459 io_wq_hash_work(&req->work, file_inode(req->file));
1460 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1461 if (def->unbound_nonreg_file)
1462 req->work.flags |= IO_WQ_WORK_UNBOUND;
1463 }
1464 }
1465
io_prep_async_link(struct io_kiocb * req)1466 static void io_prep_async_link(struct io_kiocb *req)
1467 {
1468 struct io_kiocb *cur;
1469
1470 if (req->flags & REQ_F_LINK_TIMEOUT) {
1471 struct io_ring_ctx *ctx = req->ctx;
1472
1473 spin_lock_irq(&ctx->timeout_lock);
1474 io_for_each_link(cur, req)
1475 io_prep_async_work(cur);
1476 spin_unlock_irq(&ctx->timeout_lock);
1477 } else {
1478 io_for_each_link(cur, req)
1479 io_prep_async_work(cur);
1480 }
1481 }
1482
io_queue_async_work(struct io_kiocb * req,bool * locked)1483 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1484 {
1485 struct io_ring_ctx *ctx = req->ctx;
1486 struct io_kiocb *link = io_prep_linked_timeout(req);
1487 struct io_uring_task *tctx = req->task->io_uring;
1488
1489 /* must not take the lock, NULL it as a precaution */
1490 locked = NULL;
1491
1492 BUG_ON(!tctx);
1493 BUG_ON(!tctx->io_wq);
1494
1495 /* init ->work of the whole link before punting */
1496 io_prep_async_link(req);
1497
1498 /*
1499 * Not expected to happen, but if we do have a bug where this _can_
1500 * happen, catch it here and ensure the request is marked as
1501 * canceled. That will make io-wq go through the usual work cancel
1502 * procedure rather than attempt to run this request (or create a new
1503 * worker for it).
1504 */
1505 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1506 req->work.flags |= IO_WQ_WORK_CANCEL;
1507
1508 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1509 &req->work, req->flags);
1510 io_wq_enqueue(tctx->io_wq, &req->work);
1511 if (link)
1512 io_queue_linked_timeout(link);
1513 }
1514
io_kill_timeout(struct io_kiocb * req,int status)1515 static void io_kill_timeout(struct io_kiocb *req, int status)
1516 __must_hold(&req->ctx->completion_lock)
1517 __must_hold(&req->ctx->timeout_lock)
1518 {
1519 struct io_timeout_data *io = req->async_data;
1520
1521 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1522 if (status)
1523 req_set_fail(req);
1524 atomic_set(&req->ctx->cq_timeouts,
1525 atomic_read(&req->ctx->cq_timeouts) + 1);
1526 list_del_init(&req->timeout.list);
1527 io_fill_cqe_req(req, status, 0);
1528 io_put_req_deferred(req);
1529 }
1530 }
1531
io_queue_deferred(struct io_ring_ctx * ctx)1532 static void io_queue_deferred(struct io_ring_ctx *ctx)
1533 {
1534 lockdep_assert_held(&ctx->completion_lock);
1535
1536 while (!list_empty(&ctx->defer_list)) {
1537 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1538 struct io_defer_entry, list);
1539
1540 if (req_need_defer(de->req, de->seq))
1541 break;
1542 list_del_init(&de->list);
1543 io_req_task_queue(de->req);
1544 kfree(de);
1545 }
1546 }
1547
io_flush_timeouts(struct io_ring_ctx * ctx)1548 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1549 __must_hold(&ctx->completion_lock)
1550 {
1551 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1552 struct io_kiocb *req, *tmp;
1553
1554 spin_lock_irq(&ctx->timeout_lock);
1555 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1556 u32 events_needed, events_got;
1557
1558 if (io_is_timeout_noseq(req))
1559 break;
1560
1561 /*
1562 * Since seq can easily wrap around over time, subtract
1563 * the last seq at which timeouts were flushed before comparing.
1564 * Assuming not more than 2^31-1 events have happened since,
1565 * these subtractions won't have wrapped, so we can check if
1566 * target is in [last_seq, current_seq] by comparing the two.
1567 */
1568 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1569 events_got = seq - ctx->cq_last_tm_flush;
1570 if (events_got < events_needed)
1571 break;
1572
1573 io_kill_timeout(req, 0);
1574 }
1575 ctx->cq_last_tm_flush = seq;
1576 spin_unlock_irq(&ctx->timeout_lock);
1577 }
1578
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1579 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1580 {
1581 if (ctx->off_timeout_used)
1582 io_flush_timeouts(ctx);
1583 if (ctx->drain_active)
1584 io_queue_deferred(ctx);
1585 }
1586
io_commit_needs_flush(struct io_ring_ctx * ctx)1587 static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx)
1588 {
1589 return ctx->off_timeout_used || ctx->drain_active;
1590 }
1591
__io_commit_cqring(struct io_ring_ctx * ctx)1592 static inline void __io_commit_cqring(struct io_ring_ctx *ctx)
1593 {
1594 /* order cqe stores with ring update */
1595 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1596 }
1597
io_commit_cqring(struct io_ring_ctx * ctx)1598 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1599 {
1600 if (unlikely(io_commit_needs_flush(ctx)))
1601 __io_commit_cqring_flush(ctx);
1602 __io_commit_cqring(ctx);
1603 }
1604
io_sqring_full(struct io_ring_ctx * ctx)1605 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1606 {
1607 struct io_rings *r = ctx->rings;
1608
1609 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1610 }
1611
__io_cqring_events(struct io_ring_ctx * ctx)1612 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1613 {
1614 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1615 }
1616
io_get_cqe(struct io_ring_ctx * ctx)1617 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1618 {
1619 struct io_rings *rings = ctx->rings;
1620 unsigned tail, mask = ctx->cq_entries - 1;
1621
1622 /*
1623 * writes to the cq entry need to come after reading head; the
1624 * control dependency is enough as we're using WRITE_ONCE to
1625 * fill the cq entry
1626 */
1627 if (__io_cqring_events(ctx) == ctx->cq_entries)
1628 return NULL;
1629
1630 tail = ctx->cached_cq_tail++;
1631 return &rings->cqes[tail & mask];
1632 }
1633
io_should_trigger_evfd(struct io_ring_ctx * ctx)1634 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1635 {
1636 if (likely(!ctx->cq_ev_fd))
1637 return false;
1638 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1639 return false;
1640 return !ctx->eventfd_async || io_wq_current_is_worker();
1641 }
1642
1643 /*
1644 * This should only get called when at least one event has been posted.
1645 * Some applications rely on the eventfd notification count only changing
1646 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1647 * 1:1 relationship between how many times this function is called (and
1648 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1649 */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1650 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1651 {
1652 /*
1653 * wake_up_all() may seem excessive, but io_wake_function() and
1654 * io_should_wake() handle the termination of the loop and only
1655 * wake as many waiters as we need to.
1656 */
1657 if (wq_has_sleeper(&ctx->cq_wait))
1658 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1659 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1660 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1661 wake_up(&ctx->sq_data->wait);
1662 if (io_should_trigger_evfd(ctx))
1663 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1664 if (waitqueue_active(&ctx->poll_wait))
1665 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1666 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1667 }
1668
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1669 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1670 {
1671 /* see waitqueue_active() comment */
1672 smp_mb();
1673
1674 if (ctx->flags & IORING_SETUP_SQPOLL) {
1675 if (waitqueue_active(&ctx->cq_wait))
1676 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1677 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1678 }
1679 if (io_should_trigger_evfd(ctx))
1680 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1681 if (waitqueue_active(&ctx->poll_wait))
1682 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1683 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1684 }
1685
1686 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1687 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1688 {
1689 bool all_flushed, posted;
1690
1691 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1692 return false;
1693
1694 posted = false;
1695 spin_lock(&ctx->completion_lock);
1696 while (!list_empty(&ctx->cq_overflow_list)) {
1697 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1698 struct io_overflow_cqe *ocqe;
1699
1700 if (!cqe && !force)
1701 break;
1702 ocqe = list_first_entry(&ctx->cq_overflow_list,
1703 struct io_overflow_cqe, list);
1704 if (cqe)
1705 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1706 else
1707 io_account_cq_overflow(ctx);
1708
1709 posted = true;
1710 list_del(&ocqe->list);
1711 kfree(ocqe);
1712 }
1713
1714 all_flushed = list_empty(&ctx->cq_overflow_list);
1715 if (all_flushed) {
1716 clear_bit(0, &ctx->check_cq_overflow);
1717 WRITE_ONCE(ctx->rings->sq_flags,
1718 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1719 }
1720
1721 if (posted)
1722 io_commit_cqring(ctx);
1723 spin_unlock(&ctx->completion_lock);
1724 if (posted)
1725 io_cqring_ev_posted(ctx);
1726 return all_flushed;
1727 }
1728
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1729 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1730 {
1731 bool ret = true;
1732
1733 if (test_bit(0, &ctx->check_cq_overflow)) {
1734 /* iopoll syncs against uring_lock, not completion_lock */
1735 if (ctx->flags & IORING_SETUP_IOPOLL)
1736 mutex_lock(&ctx->uring_lock);
1737 ret = __io_cqring_overflow_flush(ctx, false);
1738 if (ctx->flags & IORING_SETUP_IOPOLL)
1739 mutex_unlock(&ctx->uring_lock);
1740 }
1741
1742 return ret;
1743 }
1744
1745 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1746 static inline void io_put_task(struct task_struct *task, int nr)
1747 {
1748 struct io_uring_task *tctx = task->io_uring;
1749
1750 if (likely(task == current)) {
1751 tctx->cached_refs += nr;
1752 } else {
1753 percpu_counter_sub(&tctx->inflight, nr);
1754 if (unlikely(atomic_read(&tctx->in_idle)))
1755 wake_up(&tctx->wait);
1756 put_task_struct_many(task, nr);
1757 }
1758 }
1759
io_task_refs_refill(struct io_uring_task * tctx)1760 static void io_task_refs_refill(struct io_uring_task *tctx)
1761 {
1762 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1763
1764 percpu_counter_add(&tctx->inflight, refill);
1765 refcount_add(refill, ¤t->usage);
1766 tctx->cached_refs += refill;
1767 }
1768
io_get_task_refs(int nr)1769 static inline void io_get_task_refs(int nr)
1770 {
1771 struct io_uring_task *tctx = current->io_uring;
1772
1773 tctx->cached_refs -= nr;
1774 if (unlikely(tctx->cached_refs < 0))
1775 io_task_refs_refill(tctx);
1776 }
1777
io_uring_drop_tctx_refs(struct task_struct * task)1778 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1779 {
1780 struct io_uring_task *tctx = task->io_uring;
1781 unsigned int refs = tctx->cached_refs;
1782
1783 if (refs) {
1784 tctx->cached_refs = 0;
1785 percpu_counter_sub(&tctx->inflight, refs);
1786 put_task_struct_many(task, refs);
1787 }
1788 }
1789
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1790 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1791 s32 res, u32 cflags)
1792 {
1793 struct io_overflow_cqe *ocqe;
1794
1795 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1796 if (!ocqe) {
1797 /*
1798 * If we're in ring overflow flush mode, or in task cancel mode,
1799 * or cannot allocate an overflow entry, then we need to drop it
1800 * on the floor.
1801 */
1802 io_account_cq_overflow(ctx);
1803 return false;
1804 }
1805 if (list_empty(&ctx->cq_overflow_list)) {
1806 set_bit(0, &ctx->check_cq_overflow);
1807 WRITE_ONCE(ctx->rings->sq_flags,
1808 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1809
1810 }
1811 ocqe->cqe.user_data = user_data;
1812 ocqe->cqe.res = res;
1813 ocqe->cqe.flags = cflags;
1814 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1815 return true;
1816 }
1817
__io_fill_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1818 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1819 s32 res, u32 cflags)
1820 {
1821 struct io_uring_cqe *cqe;
1822
1823 trace_io_uring_complete(ctx, user_data, res, cflags);
1824
1825 /*
1826 * If we can't get a cq entry, userspace overflowed the
1827 * submission (by quite a lot). Increment the overflow count in
1828 * the ring.
1829 */
1830 cqe = io_get_cqe(ctx);
1831 if (likely(cqe)) {
1832 WRITE_ONCE(cqe->user_data, user_data);
1833 WRITE_ONCE(cqe->res, res);
1834 WRITE_ONCE(cqe->flags, cflags);
1835 return true;
1836 }
1837 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1838 }
1839
io_fill_cqe_req(struct io_kiocb * req,s32 res,u32 cflags)1840 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1841 {
1842 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1843 }
1844
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1845 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1846 s32 res, u32 cflags)
1847 {
1848 ctx->cq_extra++;
1849 return __io_fill_cqe(ctx, user_data, res, cflags);
1850 }
1851
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)1852 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1853 u32 cflags)
1854 {
1855 struct io_ring_ctx *ctx = req->ctx;
1856
1857 spin_lock(&ctx->completion_lock);
1858 __io_fill_cqe(ctx, req->user_data, res, cflags);
1859 /*
1860 * If we're the last reference to this request, add to our locked
1861 * free_list cache.
1862 */
1863 if (req_ref_put_and_test(req)) {
1864 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1865 if (req->flags & IO_DISARM_MASK)
1866 io_disarm_next(req);
1867 if (req->link) {
1868 io_req_task_queue(req->link);
1869 req->link = NULL;
1870 }
1871 }
1872 io_dismantle_req(req);
1873 io_put_task(req->task, 1);
1874 list_add(&req->inflight_entry, &ctx->locked_free_list);
1875 ctx->locked_free_nr++;
1876 } else {
1877 if (!percpu_ref_tryget(&ctx->refs))
1878 req = NULL;
1879 }
1880 io_commit_cqring(ctx);
1881 spin_unlock(&ctx->completion_lock);
1882
1883 if (req) {
1884 io_cqring_ev_posted(ctx);
1885 percpu_ref_put(&ctx->refs);
1886 }
1887 }
1888
io_req_needs_clean(struct io_kiocb * req)1889 static inline bool io_req_needs_clean(struct io_kiocb *req)
1890 {
1891 return req->flags & IO_REQ_CLEAN_FLAGS;
1892 }
1893
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)1894 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1895 u32 cflags)
1896 {
1897 if (io_req_needs_clean(req))
1898 io_clean_op(req);
1899 req->result = res;
1900 req->compl.cflags = cflags;
1901 req->flags |= REQ_F_COMPLETE_INLINE;
1902 }
1903
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)1904 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1905 s32 res, u32 cflags)
1906 {
1907 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1908 io_req_complete_state(req, res, cflags);
1909 else
1910 io_req_complete_post(req, res, cflags);
1911 }
1912
io_req_complete(struct io_kiocb * req,s32 res)1913 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1914 {
1915 __io_req_complete(req, 0, res, 0);
1916 }
1917
io_req_complete_failed(struct io_kiocb * req,s32 res)1918 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1919 {
1920 req_set_fail(req);
1921 io_req_complete_post(req, res, 0);
1922 }
1923
io_req_complete_fail_submit(struct io_kiocb * req)1924 static void io_req_complete_fail_submit(struct io_kiocb *req)
1925 {
1926 /*
1927 * We don't submit, fail them all, for that replace hardlinks with
1928 * normal links. Extra REQ_F_LINK is tolerated.
1929 */
1930 req->flags &= ~REQ_F_HARDLINK;
1931 req->flags |= REQ_F_LINK;
1932 io_req_complete_failed(req, req->result);
1933 }
1934
1935 /*
1936 * Don't initialise the fields below on every allocation, but do that in
1937 * advance and keep them valid across allocations.
1938 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1939 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1940 {
1941 req->ctx = ctx;
1942 req->link = NULL;
1943 req->async_data = NULL;
1944 /* not necessary, but safer to zero */
1945 req->result = 0;
1946 }
1947
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1948 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1949 struct io_submit_state *state)
1950 {
1951 spin_lock(&ctx->completion_lock);
1952 list_splice_init(&ctx->locked_free_list, &state->free_list);
1953 ctx->locked_free_nr = 0;
1954 spin_unlock(&ctx->completion_lock);
1955 }
1956
1957 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1958 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1959 {
1960 struct io_submit_state *state = &ctx->submit_state;
1961 int nr;
1962
1963 /*
1964 * If we have more than a batch's worth of requests in our IRQ side
1965 * locked cache, grab the lock and move them over to our submission
1966 * side cache.
1967 */
1968 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1969 io_flush_cached_locked_reqs(ctx, state);
1970
1971 nr = state->free_reqs;
1972 while (!list_empty(&state->free_list)) {
1973 struct io_kiocb *req = list_first_entry(&state->free_list,
1974 struct io_kiocb, inflight_entry);
1975
1976 list_del(&req->inflight_entry);
1977 state->reqs[nr++] = req;
1978 if (nr == ARRAY_SIZE(state->reqs))
1979 break;
1980 }
1981
1982 state->free_reqs = nr;
1983 return nr != 0;
1984 }
1985
1986 /*
1987 * A request might get retired back into the request caches even before opcode
1988 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1989 * Because of that, io_alloc_req() should be called only under ->uring_lock
1990 * and with extra caution to not get a request that is still worked on.
1991 */
io_alloc_req(struct io_ring_ctx * ctx)1992 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1993 __must_hold(&ctx->uring_lock)
1994 {
1995 struct io_submit_state *state = &ctx->submit_state;
1996 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1997 int ret, i;
1998
1999 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
2000
2001 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
2002 goto got_req;
2003
2004 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
2005 state->reqs);
2006
2007 /*
2008 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2009 * retry single alloc to be on the safe side.
2010 */
2011 if (unlikely(ret <= 0)) {
2012 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2013 if (!state->reqs[0])
2014 return NULL;
2015 ret = 1;
2016 }
2017
2018 for (i = 0; i < ret; i++)
2019 io_preinit_req(state->reqs[i], ctx);
2020 state->free_reqs = ret;
2021 got_req:
2022 state->free_reqs--;
2023 return state->reqs[state->free_reqs];
2024 }
2025
io_put_file(struct file * file)2026 static inline void io_put_file(struct file *file)
2027 {
2028 if (file)
2029 fput(file);
2030 }
2031
io_dismantle_req(struct io_kiocb * req)2032 static void io_dismantle_req(struct io_kiocb *req)
2033 {
2034 unsigned int flags = req->flags;
2035
2036 if (io_req_needs_clean(req))
2037 io_clean_op(req);
2038 if (!(flags & REQ_F_FIXED_FILE))
2039 io_put_file(req->file);
2040 if (req->fixed_rsrc_refs)
2041 percpu_ref_put(req->fixed_rsrc_refs);
2042 if (req->async_data) {
2043 kfree(req->async_data);
2044 req->async_data = NULL;
2045 }
2046 }
2047
__io_free_req(struct io_kiocb * req)2048 static void __io_free_req(struct io_kiocb *req)
2049 {
2050 struct io_ring_ctx *ctx = req->ctx;
2051
2052 io_dismantle_req(req);
2053 io_put_task(req->task, 1);
2054
2055 spin_lock(&ctx->completion_lock);
2056 list_add(&req->inflight_entry, &ctx->locked_free_list);
2057 ctx->locked_free_nr++;
2058 spin_unlock(&ctx->completion_lock);
2059
2060 percpu_ref_put(&ctx->refs);
2061 }
2062
io_remove_next_linked(struct io_kiocb * req)2063 static inline void io_remove_next_linked(struct io_kiocb *req)
2064 {
2065 struct io_kiocb *nxt = req->link;
2066
2067 req->link = nxt->link;
2068 nxt->link = NULL;
2069 }
2070
io_kill_linked_timeout(struct io_kiocb * req)2071 static bool io_kill_linked_timeout(struct io_kiocb *req)
2072 __must_hold(&req->ctx->completion_lock)
2073 __must_hold(&req->ctx->timeout_lock)
2074 {
2075 struct io_kiocb *link = req->link;
2076
2077 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2078 struct io_timeout_data *io = link->async_data;
2079
2080 io_remove_next_linked(req);
2081 link->timeout.head = NULL;
2082 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2083 list_del(&link->timeout.list);
2084 io_fill_cqe_req(link, -ECANCELED, 0);
2085 io_put_req_deferred(link);
2086 return true;
2087 }
2088 }
2089 return false;
2090 }
2091
io_fail_links(struct io_kiocb * req)2092 static void io_fail_links(struct io_kiocb *req)
2093 __must_hold(&req->ctx->completion_lock)
2094 {
2095 struct io_kiocb *nxt, *link = req->link;
2096
2097 req->link = NULL;
2098 while (link) {
2099 long res = -ECANCELED;
2100
2101 if (link->flags & REQ_F_FAIL)
2102 res = link->result;
2103
2104 nxt = link->link;
2105 link->link = NULL;
2106
2107 trace_io_uring_fail_link(req, link);
2108 io_fill_cqe_req(link, res, 0);
2109 io_put_req_deferred(link);
2110 link = nxt;
2111 }
2112 }
2113
io_disarm_next(struct io_kiocb * req)2114 static bool io_disarm_next(struct io_kiocb *req)
2115 __must_hold(&req->ctx->completion_lock)
2116 {
2117 bool posted = false;
2118
2119 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2120 struct io_kiocb *link = req->link;
2121
2122 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2123 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2124 io_remove_next_linked(req);
2125 io_fill_cqe_req(link, -ECANCELED, 0);
2126 io_put_req_deferred(link);
2127 posted = true;
2128 }
2129 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2130 struct io_ring_ctx *ctx = req->ctx;
2131
2132 spin_lock_irq(&ctx->timeout_lock);
2133 posted = io_kill_linked_timeout(req);
2134 spin_unlock_irq(&ctx->timeout_lock);
2135 }
2136 if (unlikely((req->flags & REQ_F_FAIL) &&
2137 !(req->flags & REQ_F_HARDLINK))) {
2138 posted |= (req->link != NULL);
2139 io_fail_links(req);
2140 }
2141 return posted;
2142 }
2143
__io_req_find_next(struct io_kiocb * req)2144 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2145 {
2146 struct io_kiocb *nxt;
2147
2148 /*
2149 * If LINK is set, we have dependent requests in this chain. If we
2150 * didn't fail this request, queue the first one up, moving any other
2151 * dependencies to the next request. In case of failure, fail the rest
2152 * of the chain.
2153 */
2154 if (req->flags & IO_DISARM_MASK) {
2155 struct io_ring_ctx *ctx = req->ctx;
2156 bool posted;
2157
2158 spin_lock(&ctx->completion_lock);
2159 posted = io_disarm_next(req);
2160 if (posted)
2161 io_commit_cqring(req->ctx);
2162 spin_unlock(&ctx->completion_lock);
2163 if (posted)
2164 io_cqring_ev_posted(ctx);
2165 }
2166 nxt = req->link;
2167 req->link = NULL;
2168 return nxt;
2169 }
2170
io_req_find_next(struct io_kiocb * req)2171 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2172 {
2173 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2174 return NULL;
2175 return __io_req_find_next(req);
2176 }
2177
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2178 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2179 {
2180 if (!ctx)
2181 return;
2182 if (*locked) {
2183 if (ctx->submit_state.compl_nr)
2184 io_submit_flush_completions(ctx);
2185 mutex_unlock(&ctx->uring_lock);
2186 *locked = false;
2187 }
2188 percpu_ref_put(&ctx->refs);
2189 }
2190
tctx_task_work(struct callback_head * cb)2191 static void tctx_task_work(struct callback_head *cb)
2192 {
2193 bool locked = false;
2194 struct io_ring_ctx *ctx = NULL;
2195 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2196 task_work);
2197
2198 while (1) {
2199 struct io_wq_work_node *node;
2200
2201 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2202 io_submit_flush_completions(ctx);
2203
2204 spin_lock_irq(&tctx->task_lock);
2205 node = tctx->task_list.first;
2206 INIT_WQ_LIST(&tctx->task_list);
2207 if (!node)
2208 tctx->task_running = false;
2209 spin_unlock_irq(&tctx->task_lock);
2210 if (!node)
2211 break;
2212
2213 do {
2214 struct io_wq_work_node *next = node->next;
2215 struct io_kiocb *req = container_of(node, struct io_kiocb,
2216 io_task_work.node);
2217
2218 if (req->ctx != ctx) {
2219 ctx_flush_and_put(ctx, &locked);
2220 ctx = req->ctx;
2221 /* if not contended, grab and improve batching */
2222 locked = mutex_trylock(&ctx->uring_lock);
2223 percpu_ref_get(&ctx->refs);
2224 }
2225 req->io_task_work.func(req, &locked);
2226 node = next;
2227 if (unlikely(need_resched())) {
2228 ctx_flush_and_put(ctx, &locked);
2229 ctx = NULL;
2230 cond_resched();
2231 }
2232 } while (node);
2233 }
2234
2235 ctx_flush_and_put(ctx, &locked);
2236
2237 /* relaxed read is enough as only the task itself sets ->in_idle */
2238 if (unlikely(atomic_read(&tctx->in_idle)))
2239 io_uring_drop_tctx_refs(current);
2240 }
2241
io_req_task_work_add(struct io_kiocb * req)2242 static void io_req_task_work_add(struct io_kiocb *req)
2243 {
2244 struct task_struct *tsk = req->task;
2245 struct io_uring_task *tctx = tsk->io_uring;
2246 enum task_work_notify_mode notify;
2247 struct io_wq_work_node *node;
2248 unsigned long flags;
2249 bool running;
2250
2251 WARN_ON_ONCE(!tctx);
2252
2253 spin_lock_irqsave(&tctx->task_lock, flags);
2254 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2255 running = tctx->task_running;
2256 if (!running)
2257 tctx->task_running = true;
2258 spin_unlock_irqrestore(&tctx->task_lock, flags);
2259
2260 /* task_work already pending, we're done */
2261 if (running)
2262 return;
2263
2264 /*
2265 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2266 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2267 * processing task_work. There's no reliable way to tell if TWA_RESUME
2268 * will do the job.
2269 */
2270 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2271 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2272 wake_up_process(tsk);
2273 return;
2274 }
2275
2276 spin_lock_irqsave(&tctx->task_lock, flags);
2277 tctx->task_running = false;
2278 node = tctx->task_list.first;
2279 INIT_WQ_LIST(&tctx->task_list);
2280 spin_unlock_irqrestore(&tctx->task_lock, flags);
2281
2282 while (node) {
2283 req = container_of(node, struct io_kiocb, io_task_work.node);
2284 node = node->next;
2285 if (llist_add(&req->io_task_work.fallback_node,
2286 &req->ctx->fallback_llist))
2287 schedule_delayed_work(&req->ctx->fallback_work, 1);
2288 }
2289 }
2290
io_req_task_cancel(struct io_kiocb * req,bool * locked)2291 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2292 {
2293 struct io_ring_ctx *ctx = req->ctx;
2294
2295 /* not needed for normal modes, but SQPOLL depends on it */
2296 io_tw_lock(ctx, locked);
2297 io_req_complete_failed(req, req->result);
2298 }
2299
io_req_task_submit(struct io_kiocb * req,bool * locked)2300 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2301 {
2302 struct io_ring_ctx *ctx = req->ctx;
2303
2304 io_tw_lock(ctx, locked);
2305 /* req->task == current here, checking PF_EXITING is safe */
2306 if (likely(!(req->task->flags & PF_EXITING)))
2307 __io_queue_sqe(req);
2308 else
2309 io_req_complete_failed(req, -EFAULT);
2310 }
2311
io_req_task_queue_fail(struct io_kiocb * req,int ret)2312 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2313 {
2314 req->result = ret;
2315 req->io_task_work.func = io_req_task_cancel;
2316 io_req_task_work_add(req);
2317 }
2318
io_req_task_queue(struct io_kiocb * req)2319 static void io_req_task_queue(struct io_kiocb *req)
2320 {
2321 req->io_task_work.func = io_req_task_submit;
2322 io_req_task_work_add(req);
2323 }
2324
io_req_task_queue_reissue(struct io_kiocb * req)2325 static void io_req_task_queue_reissue(struct io_kiocb *req)
2326 {
2327 req->io_task_work.func = io_queue_async_work;
2328 io_req_task_work_add(req);
2329 }
2330
io_queue_next(struct io_kiocb * req)2331 static inline void io_queue_next(struct io_kiocb *req)
2332 {
2333 struct io_kiocb *nxt = io_req_find_next(req);
2334
2335 if (nxt)
2336 io_req_task_queue(nxt);
2337 }
2338
io_free_req(struct io_kiocb * req)2339 static void io_free_req(struct io_kiocb *req)
2340 {
2341 io_queue_next(req);
2342 __io_free_req(req);
2343 }
2344
io_free_req_work(struct io_kiocb * req,bool * locked)2345 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2346 {
2347 io_free_req(req);
2348 }
2349
2350 struct req_batch {
2351 struct task_struct *task;
2352 int task_refs;
2353 int ctx_refs;
2354 };
2355
io_init_req_batch(struct req_batch * rb)2356 static inline void io_init_req_batch(struct req_batch *rb)
2357 {
2358 rb->task_refs = 0;
2359 rb->ctx_refs = 0;
2360 rb->task = NULL;
2361 }
2362
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2363 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2364 struct req_batch *rb)
2365 {
2366 if (rb->ctx_refs)
2367 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2368 if (rb->task)
2369 io_put_task(rb->task, rb->task_refs);
2370 }
2371
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2372 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2373 struct io_submit_state *state)
2374 {
2375 io_queue_next(req);
2376 io_dismantle_req(req);
2377
2378 if (req->task != rb->task) {
2379 if (rb->task)
2380 io_put_task(rb->task, rb->task_refs);
2381 rb->task = req->task;
2382 rb->task_refs = 0;
2383 }
2384 rb->task_refs++;
2385 rb->ctx_refs++;
2386
2387 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2388 state->reqs[state->free_reqs++] = req;
2389 else
2390 list_add(&req->inflight_entry, &state->free_list);
2391 }
2392
io_submit_flush_completions(struct io_ring_ctx * ctx)2393 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2394 __must_hold(&ctx->uring_lock)
2395 {
2396 struct io_submit_state *state = &ctx->submit_state;
2397 int i, nr = state->compl_nr;
2398 struct req_batch rb;
2399
2400 spin_lock(&ctx->completion_lock);
2401 for (i = 0; i < nr; i++) {
2402 struct io_kiocb *req = state->compl_reqs[i];
2403
2404 __io_fill_cqe(ctx, req->user_data, req->result,
2405 req->compl.cflags);
2406 }
2407 io_commit_cqring(ctx);
2408 spin_unlock(&ctx->completion_lock);
2409 io_cqring_ev_posted(ctx);
2410
2411 io_init_req_batch(&rb);
2412 for (i = 0; i < nr; i++) {
2413 struct io_kiocb *req = state->compl_reqs[i];
2414
2415 if (req_ref_put_and_test(req))
2416 io_req_free_batch(&rb, req, &ctx->submit_state);
2417 }
2418
2419 io_req_free_batch_finish(ctx, &rb);
2420 state->compl_nr = 0;
2421 }
2422
2423 /*
2424 * Drop reference to request, return next in chain (if there is one) if this
2425 * was the last reference to this request.
2426 */
io_put_req_find_next(struct io_kiocb * req)2427 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2428 {
2429 struct io_kiocb *nxt = NULL;
2430
2431 if (req_ref_put_and_test(req)) {
2432 nxt = io_req_find_next(req);
2433 __io_free_req(req);
2434 }
2435 return nxt;
2436 }
2437
io_put_req(struct io_kiocb * req)2438 static inline void io_put_req(struct io_kiocb *req)
2439 {
2440 if (req_ref_put_and_test(req))
2441 io_free_req(req);
2442 }
2443
io_put_req_deferred(struct io_kiocb * req)2444 static inline void io_put_req_deferred(struct io_kiocb *req)
2445 {
2446 if (req_ref_put_and_test(req)) {
2447 req->io_task_work.func = io_free_req_work;
2448 io_req_task_work_add(req);
2449 }
2450 }
2451
io_cqring_events(struct io_ring_ctx * ctx)2452 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2453 {
2454 /* See comment at the top of this file */
2455 smp_rmb();
2456 return __io_cqring_events(ctx);
2457 }
2458
io_sqring_entries(struct io_ring_ctx * ctx)2459 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2460 {
2461 struct io_rings *rings = ctx->rings;
2462
2463 /* make sure SQ entry isn't read before tail */
2464 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2465 }
2466
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2467 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2468 {
2469 unsigned int cflags;
2470
2471 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2472 cflags |= IORING_CQE_F_BUFFER;
2473 req->flags &= ~REQ_F_BUFFER_SELECTED;
2474 kfree(kbuf);
2475 return cflags;
2476 }
2477
io_put_rw_kbuf(struct io_kiocb * req)2478 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2479 {
2480 struct io_buffer *kbuf;
2481
2482 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2483 return 0;
2484 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2485 return io_put_kbuf(req, kbuf);
2486 }
2487
io_run_task_work(void)2488 static inline bool io_run_task_work(void)
2489 {
2490 /*
2491 * PF_IO_WORKER never returns to userspace, so check here if we have
2492 * notify work that needs processing.
2493 */
2494 if (current->flags & PF_IO_WORKER &&
2495 test_thread_flag(TIF_NOTIFY_RESUME)) {
2496 __set_current_state(TASK_RUNNING);
2497 tracehook_notify_resume(NULL);
2498 }
2499 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2500 __set_current_state(TASK_RUNNING);
2501 tracehook_notify_signal();
2502 return true;
2503 }
2504
2505 return false;
2506 }
2507
2508 /*
2509 * Find and free completed poll iocbs
2510 */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2511 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2512 struct list_head *done)
2513 {
2514 struct req_batch rb;
2515 struct io_kiocb *req;
2516
2517 /* order with ->result store in io_complete_rw_iopoll() */
2518 smp_rmb();
2519
2520 io_init_req_batch(&rb);
2521 while (!list_empty(done)) {
2522 struct io_uring_cqe *cqe;
2523 unsigned cflags;
2524
2525 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2526 list_del(&req->inflight_entry);
2527 cflags = io_put_rw_kbuf(req);
2528 (*nr_events)++;
2529
2530 cqe = io_get_cqe(ctx);
2531 if (cqe) {
2532 WRITE_ONCE(cqe->user_data, req->user_data);
2533 WRITE_ONCE(cqe->res, req->result);
2534 WRITE_ONCE(cqe->flags, cflags);
2535 } else {
2536 spin_lock(&ctx->completion_lock);
2537 io_cqring_event_overflow(ctx, req->user_data,
2538 req->result, cflags);
2539 spin_unlock(&ctx->completion_lock);
2540 }
2541
2542 if (req_ref_put_and_test(req))
2543 io_req_free_batch(&rb, req, &ctx->submit_state);
2544 }
2545
2546 if (io_commit_needs_flush(ctx)) {
2547 spin_lock(&ctx->completion_lock);
2548 __io_commit_cqring_flush(ctx);
2549 spin_unlock(&ctx->completion_lock);
2550 }
2551 __io_commit_cqring(ctx);
2552 io_cqring_ev_posted_iopoll(ctx);
2553 io_req_free_batch_finish(ctx, &rb);
2554 }
2555
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2556 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2557 long min)
2558 {
2559 struct io_kiocb *req, *tmp;
2560 LIST_HEAD(done);
2561 bool spin;
2562
2563 /*
2564 * Only spin for completions if we don't have multiple devices hanging
2565 * off our complete list, and we're under the requested amount.
2566 */
2567 spin = !ctx->poll_multi_queue && *nr_events < min;
2568
2569 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2570 struct kiocb *kiocb = &req->rw.kiocb;
2571 int ret;
2572
2573 /*
2574 * Move completed and retryable entries to our local lists.
2575 * If we find a request that requires polling, break out
2576 * and complete those lists first, if we have entries there.
2577 */
2578 if (READ_ONCE(req->iopoll_completed)) {
2579 list_move_tail(&req->inflight_entry, &done);
2580 continue;
2581 }
2582 if (!list_empty(&done))
2583 break;
2584
2585 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2586 if (unlikely(ret < 0))
2587 return ret;
2588 else if (ret)
2589 spin = false;
2590
2591 /* iopoll may have completed current req */
2592 if (READ_ONCE(req->iopoll_completed))
2593 list_move_tail(&req->inflight_entry, &done);
2594 }
2595
2596 if (!list_empty(&done))
2597 io_iopoll_complete(ctx, nr_events, &done);
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * We can't just wait for polled events to come to us, we have to actively
2604 * find and complete them.
2605 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2606 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2607 {
2608 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2609 return;
2610
2611 mutex_lock(&ctx->uring_lock);
2612 while (!list_empty(&ctx->iopoll_list)) {
2613 unsigned int nr_events = 0;
2614
2615 io_do_iopoll(ctx, &nr_events, 0);
2616
2617 /* let it sleep and repeat later if can't complete a request */
2618 if (nr_events == 0)
2619 break;
2620 /*
2621 * Ensure we allow local-to-the-cpu processing to take place,
2622 * in this case we need to ensure that we reap all events.
2623 * Also let task_work, etc. to progress by releasing the mutex
2624 */
2625 if (need_resched()) {
2626 mutex_unlock(&ctx->uring_lock);
2627 cond_resched();
2628 mutex_lock(&ctx->uring_lock);
2629 }
2630 }
2631 mutex_unlock(&ctx->uring_lock);
2632 }
2633
io_iopoll_check(struct io_ring_ctx * ctx,long min)2634 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2635 {
2636 unsigned int nr_events = 0;
2637 int ret = 0;
2638
2639 /*
2640 * We disallow the app entering submit/complete with polling, but we
2641 * still need to lock the ring to prevent racing with polled issue
2642 * that got punted to a workqueue.
2643 */
2644 mutex_lock(&ctx->uring_lock);
2645 /*
2646 * Don't enter poll loop if we already have events pending.
2647 * If we do, we can potentially be spinning for commands that
2648 * already triggered a CQE (eg in error).
2649 */
2650 if (test_bit(0, &ctx->check_cq_overflow))
2651 __io_cqring_overflow_flush(ctx, false);
2652 if (io_cqring_events(ctx))
2653 goto out;
2654 do {
2655 /*
2656 * If a submit got punted to a workqueue, we can have the
2657 * application entering polling for a command before it gets
2658 * issued. That app will hold the uring_lock for the duration
2659 * of the poll right here, so we need to take a breather every
2660 * now and then to ensure that the issue has a chance to add
2661 * the poll to the issued list. Otherwise we can spin here
2662 * forever, while the workqueue is stuck trying to acquire the
2663 * very same mutex.
2664 */
2665 if (list_empty(&ctx->iopoll_list)) {
2666 u32 tail = ctx->cached_cq_tail;
2667
2668 mutex_unlock(&ctx->uring_lock);
2669 io_run_task_work();
2670 mutex_lock(&ctx->uring_lock);
2671
2672 /* some requests don't go through iopoll_list */
2673 if (tail != ctx->cached_cq_tail ||
2674 list_empty(&ctx->iopoll_list))
2675 break;
2676 }
2677 ret = io_do_iopoll(ctx, &nr_events, min);
2678
2679 if (task_sigpending(current)) {
2680 ret = -EINTR;
2681 goto out;
2682 }
2683 } while (!ret && nr_events < min && !need_resched());
2684 out:
2685 mutex_unlock(&ctx->uring_lock);
2686 return ret;
2687 }
2688
kiocb_end_write(struct io_kiocb * req)2689 static void kiocb_end_write(struct io_kiocb *req)
2690 {
2691 /*
2692 * Tell lockdep we inherited freeze protection from submission
2693 * thread.
2694 */
2695 if (req->flags & REQ_F_ISREG) {
2696 struct super_block *sb = file_inode(req->file)->i_sb;
2697
2698 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2699 sb_end_write(sb);
2700 }
2701 }
2702
2703 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2704 static bool io_resubmit_prep(struct io_kiocb *req)
2705 {
2706 struct io_async_rw *rw = req->async_data;
2707
2708 if (!rw)
2709 return !io_req_prep_async(req);
2710 iov_iter_restore(&rw->iter, &rw->iter_state);
2711 return true;
2712 }
2713
io_rw_should_reissue(struct io_kiocb * req)2714 static bool io_rw_should_reissue(struct io_kiocb *req)
2715 {
2716 umode_t mode = file_inode(req->file)->i_mode;
2717 struct io_ring_ctx *ctx = req->ctx;
2718
2719 if (!S_ISBLK(mode) && !S_ISREG(mode))
2720 return false;
2721 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2722 !(ctx->flags & IORING_SETUP_IOPOLL)))
2723 return false;
2724 /*
2725 * If ref is dying, we might be running poll reap from the exit work.
2726 * Don't attempt to reissue from that path, just let it fail with
2727 * -EAGAIN.
2728 */
2729 if (percpu_ref_is_dying(&ctx->refs))
2730 return false;
2731 /*
2732 * Play it safe and assume not safe to re-import and reissue if we're
2733 * not in the original thread group (or in task context).
2734 */
2735 if (!same_thread_group(req->task, current) || !in_task())
2736 return false;
2737 return true;
2738 }
2739 #else
io_resubmit_prep(struct io_kiocb * req)2740 static bool io_resubmit_prep(struct io_kiocb *req)
2741 {
2742 return false;
2743 }
io_rw_should_reissue(struct io_kiocb * req)2744 static bool io_rw_should_reissue(struct io_kiocb *req)
2745 {
2746 return false;
2747 }
2748 #endif
2749
2750 /*
2751 * Trigger the notifications after having done some IO, and finish the write
2752 * accounting, if any.
2753 */
io_req_io_end(struct io_kiocb * req)2754 static void io_req_io_end(struct io_kiocb *req)
2755 {
2756 struct io_rw *rw = &req->rw;
2757
2758 if (rw->kiocb.ki_flags & IOCB_WRITE) {
2759 kiocb_end_write(req);
2760 fsnotify_modify(req->file);
2761 } else {
2762 fsnotify_access(req->file);
2763 }
2764 }
2765
__io_complete_rw_common(struct io_kiocb * req,long res)2766 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2767 {
2768 if (res != req->result) {
2769 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2770 io_rw_should_reissue(req)) {
2771 /*
2772 * Reissue will start accounting again, finish the
2773 * current cycle.
2774 */
2775 io_req_io_end(req);
2776 req->flags |= REQ_F_REISSUE;
2777 return true;
2778 }
2779 req_set_fail(req);
2780 req->result = res;
2781 }
2782 return false;
2783 }
2784
io_fixup_rw_res(struct io_kiocb * req,long res)2785 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2786 {
2787 struct io_async_rw *io = req->async_data;
2788
2789 /* add previously done IO, if any */
2790 if (io && io->bytes_done > 0) {
2791 if (res < 0)
2792 res = io->bytes_done;
2793 else
2794 res += io->bytes_done;
2795 }
2796 return res;
2797 }
2798
io_req_task_complete(struct io_kiocb * req,bool * locked)2799 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2800 {
2801 unsigned int cflags = io_put_rw_kbuf(req);
2802 int res = req->result;
2803
2804 if (*locked) {
2805 struct io_ring_ctx *ctx = req->ctx;
2806 struct io_submit_state *state = &ctx->submit_state;
2807
2808 io_req_complete_state(req, res, cflags);
2809 state->compl_reqs[state->compl_nr++] = req;
2810 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2811 io_submit_flush_completions(ctx);
2812 } else {
2813 io_req_complete_post(req, res, cflags);
2814 }
2815 }
2816
io_req_rw_complete(struct io_kiocb * req,bool * locked)2817 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2818 {
2819 io_req_io_end(req);
2820 io_req_task_complete(req, locked);
2821 }
2822
io_complete_rw(struct kiocb * kiocb,long res,long res2)2823 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2824 {
2825 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2826
2827 if (__io_complete_rw_common(req, res))
2828 return;
2829 req->result = io_fixup_rw_res(req, res);
2830 req->io_task_work.func = io_req_rw_complete;
2831 io_req_task_work_add(req);
2832 }
2833
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2834 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2835 {
2836 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2837
2838 if (kiocb->ki_flags & IOCB_WRITE)
2839 kiocb_end_write(req);
2840 if (unlikely(res != req->result)) {
2841 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2842 req->flags |= REQ_F_REISSUE;
2843 return;
2844 }
2845 }
2846
2847 WRITE_ONCE(req->result, res);
2848 /* order with io_iopoll_complete() checking ->result */
2849 smp_wmb();
2850 WRITE_ONCE(req->iopoll_completed, 1);
2851 }
2852
2853 /*
2854 * After the iocb has been issued, it's safe to be found on the poll list.
2855 * Adding the kiocb to the list AFTER submission ensures that we don't
2856 * find it from a io_do_iopoll() thread before the issuer is done
2857 * accessing the kiocb cookie.
2858 */
io_iopoll_req_issued(struct io_kiocb * req)2859 static void io_iopoll_req_issued(struct io_kiocb *req)
2860 {
2861 struct io_ring_ctx *ctx = req->ctx;
2862 const bool in_async = io_wq_current_is_worker();
2863
2864 /* workqueue context doesn't hold uring_lock, grab it now */
2865 if (unlikely(in_async))
2866 mutex_lock(&ctx->uring_lock);
2867
2868 /*
2869 * Track whether we have multiple files in our lists. This will impact
2870 * how we do polling eventually, not spinning if we're on potentially
2871 * different devices.
2872 */
2873 if (list_empty(&ctx->iopoll_list)) {
2874 ctx->poll_multi_queue = false;
2875 } else if (!ctx->poll_multi_queue) {
2876 struct io_kiocb *list_req;
2877 unsigned int queue_num0, queue_num1;
2878
2879 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2880 inflight_entry);
2881
2882 if (list_req->file != req->file) {
2883 ctx->poll_multi_queue = true;
2884 } else {
2885 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2886 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2887 if (queue_num0 != queue_num1)
2888 ctx->poll_multi_queue = true;
2889 }
2890 }
2891
2892 /*
2893 * For fast devices, IO may have already completed. If it has, add
2894 * it to the front so we find it first.
2895 */
2896 if (READ_ONCE(req->iopoll_completed))
2897 list_add(&req->inflight_entry, &ctx->iopoll_list);
2898 else
2899 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2900
2901 if (unlikely(in_async)) {
2902 /*
2903 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2904 * in sq thread task context or in io worker task context. If
2905 * current task context is sq thread, we don't need to check
2906 * whether should wake up sq thread.
2907 */
2908 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2909 wq_has_sleeper(&ctx->sq_data->wait))
2910 wake_up(&ctx->sq_data->wait);
2911
2912 mutex_unlock(&ctx->uring_lock);
2913 }
2914 }
2915
io_bdev_nowait(struct block_device * bdev)2916 static bool io_bdev_nowait(struct block_device *bdev)
2917 {
2918 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2919 }
2920
2921 /*
2922 * If we tracked the file through the SCM inflight mechanism, we could support
2923 * any file. For now, just ensure that anything potentially problematic is done
2924 * inline.
2925 */
__io_file_supports_nowait(struct file * file,int rw)2926 static bool __io_file_supports_nowait(struct file *file, int rw)
2927 {
2928 umode_t mode = file_inode(file)->i_mode;
2929
2930 if (S_ISBLK(mode)) {
2931 if (IS_ENABLED(CONFIG_BLOCK) &&
2932 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2933 return true;
2934 return false;
2935 }
2936 if (S_ISSOCK(mode))
2937 return true;
2938 if (S_ISREG(mode)) {
2939 if (IS_ENABLED(CONFIG_BLOCK) &&
2940 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2941 file->f_op != &io_uring_fops)
2942 return true;
2943 return false;
2944 }
2945
2946 /* any ->read/write should understand O_NONBLOCK */
2947 if (file->f_flags & O_NONBLOCK)
2948 return true;
2949
2950 if (!(file->f_mode & FMODE_NOWAIT))
2951 return false;
2952
2953 if (rw == READ)
2954 return file->f_op->read_iter != NULL;
2955
2956 return file->f_op->write_iter != NULL;
2957 }
2958
io_file_supports_nowait(struct io_kiocb * req,int rw)2959 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2960 {
2961 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2962 return true;
2963 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2964 return true;
2965
2966 return __io_file_supports_nowait(req->file, rw);
2967 }
2968
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2969 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2970 int rw)
2971 {
2972 struct io_ring_ctx *ctx = req->ctx;
2973 struct kiocb *kiocb = &req->rw.kiocb;
2974 struct file *file = req->file;
2975 unsigned ioprio;
2976 int ret;
2977
2978 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2979 req->flags |= REQ_F_ISREG;
2980
2981 kiocb->ki_pos = READ_ONCE(sqe->off);
2982 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2983 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2984 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2985 if (unlikely(ret))
2986 return ret;
2987
2988 /*
2989 * If the file is marked O_NONBLOCK, still allow retry for it if it
2990 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2991 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2992 */
2993 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2994 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2995 req->flags |= REQ_F_NOWAIT;
2996
2997 ioprio = READ_ONCE(sqe->ioprio);
2998 if (ioprio) {
2999 ret = ioprio_check_cap(ioprio);
3000 if (ret)
3001 return ret;
3002
3003 kiocb->ki_ioprio = ioprio;
3004 } else
3005 kiocb->ki_ioprio = get_current_ioprio();
3006
3007 if (ctx->flags & IORING_SETUP_IOPOLL) {
3008 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3009 !kiocb->ki_filp->f_op->iopoll)
3010 return -EOPNOTSUPP;
3011
3012 kiocb->ki_flags |= IOCB_HIPRI;
3013 kiocb->ki_complete = io_complete_rw_iopoll;
3014 req->iopoll_completed = 0;
3015 } else {
3016 if (kiocb->ki_flags & IOCB_HIPRI)
3017 return -EINVAL;
3018 kiocb->ki_complete = io_complete_rw;
3019 }
3020
3021 /* used for fixed read/write too - just read unconditionally */
3022 req->buf_index = READ_ONCE(sqe->buf_index);
3023 req->imu = NULL;
3024
3025 if (req->opcode == IORING_OP_READ_FIXED ||
3026 req->opcode == IORING_OP_WRITE_FIXED) {
3027 struct io_ring_ctx *ctx = req->ctx;
3028 u16 index;
3029
3030 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3031 return -EFAULT;
3032 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3033 req->imu = ctx->user_bufs[index];
3034 io_req_set_rsrc_node(req);
3035 }
3036
3037 req->rw.addr = READ_ONCE(sqe->addr);
3038 req->rw.len = READ_ONCE(sqe->len);
3039 return 0;
3040 }
3041
io_rw_done(struct kiocb * kiocb,ssize_t ret)3042 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3043 {
3044 switch (ret) {
3045 case -EIOCBQUEUED:
3046 break;
3047 case -ERESTARTSYS:
3048 case -ERESTARTNOINTR:
3049 case -ERESTARTNOHAND:
3050 case -ERESTART_RESTARTBLOCK:
3051 /*
3052 * We can't just restart the syscall, since previously
3053 * submitted sqes may already be in progress. Just fail this
3054 * IO with EINTR.
3055 */
3056 ret = -EINTR;
3057 fallthrough;
3058 default:
3059 kiocb->ki_complete(kiocb, ret, 0);
3060 }
3061 }
3062
io_kiocb_update_pos(struct io_kiocb * req)3063 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3064 {
3065 struct kiocb *kiocb = &req->rw.kiocb;
3066
3067 if (kiocb->ki_pos != -1)
3068 return &kiocb->ki_pos;
3069
3070 if (!(req->file->f_mode & FMODE_STREAM)) {
3071 req->flags |= REQ_F_CUR_POS;
3072 kiocb->ki_pos = req->file->f_pos;
3073 return &kiocb->ki_pos;
3074 }
3075
3076 kiocb->ki_pos = 0;
3077 return NULL;
3078 }
3079
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)3080 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3081 unsigned int issue_flags)
3082 {
3083 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3084
3085 if (req->flags & REQ_F_CUR_POS)
3086 req->file->f_pos = kiocb->ki_pos;
3087 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3088 if (!__io_complete_rw_common(req, ret)) {
3089 /*
3090 * Safe to call io_end from here as we're inline
3091 * from the submission path.
3092 */
3093 io_req_io_end(req);
3094 __io_req_complete(req, issue_flags,
3095 io_fixup_rw_res(req, ret),
3096 io_put_rw_kbuf(req));
3097 }
3098 } else {
3099 io_rw_done(kiocb, ret);
3100 }
3101
3102 if (req->flags & REQ_F_REISSUE) {
3103 req->flags &= ~REQ_F_REISSUE;
3104 if (io_resubmit_prep(req)) {
3105 io_req_task_queue_reissue(req);
3106 } else {
3107 unsigned int cflags = io_put_rw_kbuf(req);
3108 struct io_ring_ctx *ctx = req->ctx;
3109
3110 ret = io_fixup_rw_res(req, ret);
3111 req_set_fail(req);
3112 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3113 mutex_lock(&ctx->uring_lock);
3114 __io_req_complete(req, issue_flags, ret, cflags);
3115 mutex_unlock(&ctx->uring_lock);
3116 } else {
3117 __io_req_complete(req, issue_flags, ret, cflags);
3118 }
3119 }
3120 }
3121 }
3122
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3123 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3124 struct io_mapped_ubuf *imu)
3125 {
3126 size_t len = req->rw.len;
3127 u64 buf_end, buf_addr = req->rw.addr;
3128 size_t offset;
3129
3130 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3131 return -EFAULT;
3132 /* not inside the mapped region */
3133 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3134 return -EFAULT;
3135
3136 /*
3137 * May not be a start of buffer, set size appropriately
3138 * and advance us to the beginning.
3139 */
3140 offset = buf_addr - imu->ubuf;
3141 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3142
3143 if (offset) {
3144 /*
3145 * Don't use iov_iter_advance() here, as it's really slow for
3146 * using the latter parts of a big fixed buffer - it iterates
3147 * over each segment manually. We can cheat a bit here, because
3148 * we know that:
3149 *
3150 * 1) it's a BVEC iter, we set it up
3151 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3152 * first and last bvec
3153 *
3154 * So just find our index, and adjust the iterator afterwards.
3155 * If the offset is within the first bvec (or the whole first
3156 * bvec, just use iov_iter_advance(). This makes it easier
3157 * since we can just skip the first segment, which may not
3158 * be PAGE_SIZE aligned.
3159 */
3160 const struct bio_vec *bvec = imu->bvec;
3161
3162 if (offset < bvec->bv_len) {
3163 iov_iter_advance(iter, offset);
3164 } else {
3165 unsigned long seg_skip;
3166
3167 /* skip first vec */
3168 offset -= bvec->bv_len;
3169 seg_skip = 1 + (offset >> PAGE_SHIFT);
3170
3171 iter->bvec = bvec + seg_skip;
3172 iter->nr_segs -= seg_skip;
3173 iter->count -= bvec->bv_len + offset;
3174 iter->iov_offset = offset & ~PAGE_MASK;
3175 }
3176 }
3177
3178 return 0;
3179 }
3180
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3181 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3182 {
3183 if (WARN_ON_ONCE(!req->imu))
3184 return -EFAULT;
3185 return __io_import_fixed(req, rw, iter, req->imu);
3186 }
3187
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3188 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3189 {
3190 if (needs_lock)
3191 mutex_unlock(&ctx->uring_lock);
3192 }
3193
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3194 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3195 {
3196 /*
3197 * "Normal" inline submissions always hold the uring_lock, since we
3198 * grab it from the system call. Same is true for the SQPOLL offload.
3199 * The only exception is when we've detached the request and issue it
3200 * from an async worker thread, grab the lock for that case.
3201 */
3202 if (needs_lock)
3203 mutex_lock(&ctx->uring_lock);
3204 }
3205
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3206 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3207 int bgid, struct io_buffer *kbuf,
3208 bool needs_lock)
3209 {
3210 struct io_buffer *head;
3211
3212 if (req->flags & REQ_F_BUFFER_SELECTED)
3213 return kbuf;
3214
3215 io_ring_submit_lock(req->ctx, needs_lock);
3216
3217 lockdep_assert_held(&req->ctx->uring_lock);
3218
3219 head = xa_load(&req->ctx->io_buffers, bgid);
3220 if (head) {
3221 if (!list_empty(&head->list)) {
3222 kbuf = list_last_entry(&head->list, struct io_buffer,
3223 list);
3224 list_del(&kbuf->list);
3225 } else {
3226 kbuf = head;
3227 xa_erase(&req->ctx->io_buffers, bgid);
3228 }
3229 if (*len > kbuf->len)
3230 *len = kbuf->len;
3231 } else {
3232 kbuf = ERR_PTR(-ENOBUFS);
3233 }
3234
3235 io_ring_submit_unlock(req->ctx, needs_lock);
3236
3237 return kbuf;
3238 }
3239
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3240 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3241 bool needs_lock)
3242 {
3243 struct io_buffer *kbuf;
3244 u16 bgid;
3245
3246 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3247 bgid = req->buf_index;
3248 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3249 if (IS_ERR(kbuf))
3250 return kbuf;
3251 req->rw.addr = (u64) (unsigned long) kbuf;
3252 req->flags |= REQ_F_BUFFER_SELECTED;
3253 return u64_to_user_ptr(kbuf->addr);
3254 }
3255
3256 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3257 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3258 bool needs_lock)
3259 {
3260 struct compat_iovec __user *uiov;
3261 compat_ssize_t clen;
3262 void __user *buf;
3263 ssize_t len;
3264
3265 uiov = u64_to_user_ptr(req->rw.addr);
3266 if (!access_ok(uiov, sizeof(*uiov)))
3267 return -EFAULT;
3268 if (__get_user(clen, &uiov->iov_len))
3269 return -EFAULT;
3270 if (clen < 0)
3271 return -EINVAL;
3272
3273 len = clen;
3274 buf = io_rw_buffer_select(req, &len, needs_lock);
3275 if (IS_ERR(buf))
3276 return PTR_ERR(buf);
3277 iov[0].iov_base = buf;
3278 iov[0].iov_len = (compat_size_t) len;
3279 return 0;
3280 }
3281 #endif
3282
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3283 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3284 bool needs_lock)
3285 {
3286 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3287 void __user *buf;
3288 ssize_t len;
3289
3290 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3291 return -EFAULT;
3292
3293 len = iov[0].iov_len;
3294 if (len < 0)
3295 return -EINVAL;
3296 buf = io_rw_buffer_select(req, &len, needs_lock);
3297 if (IS_ERR(buf))
3298 return PTR_ERR(buf);
3299 iov[0].iov_base = buf;
3300 iov[0].iov_len = len;
3301 return 0;
3302 }
3303
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3304 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3305 bool needs_lock)
3306 {
3307 if (req->flags & REQ_F_BUFFER_SELECTED) {
3308 struct io_buffer *kbuf;
3309
3310 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3311 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3312 iov[0].iov_len = kbuf->len;
3313 return 0;
3314 }
3315 if (req->rw.len != 1)
3316 return -EINVAL;
3317
3318 #ifdef CONFIG_COMPAT
3319 if (req->ctx->compat)
3320 return io_compat_import(req, iov, needs_lock);
3321 #endif
3322
3323 return __io_iov_buffer_select(req, iov, needs_lock);
3324 }
3325
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3326 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3327 struct iov_iter *iter, bool needs_lock)
3328 {
3329 void __user *buf = u64_to_user_ptr(req->rw.addr);
3330 size_t sqe_len = req->rw.len;
3331 u8 opcode = req->opcode;
3332 ssize_t ret;
3333
3334 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3335 *iovec = NULL;
3336 return io_import_fixed(req, rw, iter);
3337 }
3338
3339 /* buffer index only valid with fixed read/write, or buffer select */
3340 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3341 return -EINVAL;
3342
3343 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3344 if (req->flags & REQ_F_BUFFER_SELECT) {
3345 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3346 if (IS_ERR(buf))
3347 return PTR_ERR(buf);
3348 req->rw.len = sqe_len;
3349 }
3350
3351 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3352 *iovec = NULL;
3353 return ret;
3354 }
3355
3356 if (req->flags & REQ_F_BUFFER_SELECT) {
3357 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3358 if (!ret)
3359 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3360 *iovec = NULL;
3361 return ret;
3362 }
3363
3364 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3365 req->ctx->compat);
3366 }
3367
io_kiocb_ppos(struct kiocb * kiocb)3368 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3369 {
3370 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3371 }
3372
3373 /*
3374 * For files that don't have ->read_iter() and ->write_iter(), handle them
3375 * by looping over ->read() or ->write() manually.
3376 */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3377 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3378 {
3379 struct kiocb *kiocb = &req->rw.kiocb;
3380 struct file *file = req->file;
3381 ssize_t ret = 0;
3382 loff_t *ppos;
3383
3384 /*
3385 * Don't support polled IO through this interface, and we can't
3386 * support non-blocking either. For the latter, this just causes
3387 * the kiocb to be handled from an async context.
3388 */
3389 if (kiocb->ki_flags & IOCB_HIPRI)
3390 return -EOPNOTSUPP;
3391 if (kiocb->ki_flags & IOCB_NOWAIT)
3392 return -EAGAIN;
3393
3394 ppos = io_kiocb_ppos(kiocb);
3395
3396 while (iov_iter_count(iter)) {
3397 struct iovec iovec;
3398 ssize_t nr;
3399
3400 if (!iov_iter_is_bvec(iter)) {
3401 iovec = iov_iter_iovec(iter);
3402 } else {
3403 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3404 iovec.iov_len = req->rw.len;
3405 }
3406
3407 if (rw == READ) {
3408 nr = file->f_op->read(file, iovec.iov_base,
3409 iovec.iov_len, ppos);
3410 } else {
3411 nr = file->f_op->write(file, iovec.iov_base,
3412 iovec.iov_len, ppos);
3413 }
3414
3415 if (nr < 0) {
3416 if (!ret)
3417 ret = nr;
3418 break;
3419 }
3420 ret += nr;
3421 if (!iov_iter_is_bvec(iter)) {
3422 iov_iter_advance(iter, nr);
3423 } else {
3424 req->rw.addr += nr;
3425 req->rw.len -= nr;
3426 if (!req->rw.len)
3427 break;
3428 }
3429 if (nr != iovec.iov_len)
3430 break;
3431 }
3432
3433 return ret;
3434 }
3435
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3436 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3437 const struct iovec *fast_iov, struct iov_iter *iter)
3438 {
3439 struct io_async_rw *rw = req->async_data;
3440
3441 memcpy(&rw->iter, iter, sizeof(*iter));
3442 rw->free_iovec = iovec;
3443 rw->bytes_done = 0;
3444 /* can only be fixed buffers, no need to do anything */
3445 if (iov_iter_is_bvec(iter))
3446 return;
3447 if (!iovec) {
3448 unsigned iov_off = 0;
3449
3450 rw->iter.iov = rw->fast_iov;
3451 if (iter->iov != fast_iov) {
3452 iov_off = iter->iov - fast_iov;
3453 rw->iter.iov += iov_off;
3454 }
3455 if (rw->fast_iov != fast_iov)
3456 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3457 sizeof(struct iovec) * iter->nr_segs);
3458 } else {
3459 req->flags |= REQ_F_NEED_CLEANUP;
3460 }
3461 }
3462
io_alloc_async_data(struct io_kiocb * req)3463 static inline int io_alloc_async_data(struct io_kiocb *req)
3464 {
3465 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3466 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3467 return req->async_data == NULL;
3468 }
3469
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3470 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3471 const struct iovec *fast_iov,
3472 struct iov_iter *iter, bool force)
3473 {
3474 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3475 return 0;
3476 if (!req->async_data) {
3477 struct io_async_rw *iorw;
3478
3479 if (io_alloc_async_data(req)) {
3480 kfree(iovec);
3481 return -ENOMEM;
3482 }
3483
3484 io_req_map_rw(req, iovec, fast_iov, iter);
3485 iorw = req->async_data;
3486 /* we've copied and mapped the iter, ensure state is saved */
3487 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3488 }
3489 return 0;
3490 }
3491
io_rw_prep_async(struct io_kiocb * req,int rw)3492 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3493 {
3494 struct io_async_rw *iorw = req->async_data;
3495 struct iovec *iov = iorw->fast_iov;
3496 int ret;
3497
3498 iorw->bytes_done = 0;
3499 iorw->free_iovec = NULL;
3500
3501 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3502 if (unlikely(ret < 0))
3503 return ret;
3504
3505 if (iov) {
3506 iorw->free_iovec = iov;
3507 req->flags |= REQ_F_NEED_CLEANUP;
3508 }
3509 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3510 return 0;
3511 }
3512
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3513 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3514 {
3515 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3516 return -EBADF;
3517 return io_prep_rw(req, sqe, READ);
3518 }
3519
3520 /*
3521 * This is our waitqueue callback handler, registered through lock_page_async()
3522 * when we initially tried to do the IO with the iocb armed our waitqueue.
3523 * This gets called when the page is unlocked, and we generally expect that to
3524 * happen when the page IO is completed and the page is now uptodate. This will
3525 * queue a task_work based retry of the operation, attempting to copy the data
3526 * again. If the latter fails because the page was NOT uptodate, then we will
3527 * do a thread based blocking retry of the operation. That's the unexpected
3528 * slow path.
3529 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3530 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3531 int sync, void *arg)
3532 {
3533 struct wait_page_queue *wpq;
3534 struct io_kiocb *req = wait->private;
3535 struct wait_page_key *key = arg;
3536
3537 wpq = container_of(wait, struct wait_page_queue, wait);
3538
3539 if (!wake_page_match(wpq, key))
3540 return 0;
3541
3542 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3543 list_del_init(&wait->entry);
3544 io_req_task_queue(req);
3545 return 1;
3546 }
3547
3548 /*
3549 * This controls whether a given IO request should be armed for async page
3550 * based retry. If we return false here, the request is handed to the async
3551 * worker threads for retry. If we're doing buffered reads on a regular file,
3552 * we prepare a private wait_page_queue entry and retry the operation. This
3553 * will either succeed because the page is now uptodate and unlocked, or it
3554 * will register a callback when the page is unlocked at IO completion. Through
3555 * that callback, io_uring uses task_work to setup a retry of the operation.
3556 * That retry will attempt the buffered read again. The retry will generally
3557 * succeed, or in rare cases where it fails, we then fall back to using the
3558 * async worker threads for a blocking retry.
3559 */
io_rw_should_retry(struct io_kiocb * req)3560 static bool io_rw_should_retry(struct io_kiocb *req)
3561 {
3562 struct io_async_rw *rw = req->async_data;
3563 struct wait_page_queue *wait = &rw->wpq;
3564 struct kiocb *kiocb = &req->rw.kiocb;
3565
3566 /* never retry for NOWAIT, we just complete with -EAGAIN */
3567 if (req->flags & REQ_F_NOWAIT)
3568 return false;
3569
3570 /* Only for buffered IO */
3571 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3572 return false;
3573
3574 /*
3575 * just use poll if we can, and don't attempt if the fs doesn't
3576 * support callback based unlocks
3577 */
3578 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3579 return false;
3580
3581 wait->wait.func = io_async_buf_func;
3582 wait->wait.private = req;
3583 wait->wait.flags = 0;
3584 INIT_LIST_HEAD(&wait->wait.entry);
3585 kiocb->ki_flags |= IOCB_WAITQ;
3586 kiocb->ki_flags &= ~IOCB_NOWAIT;
3587 kiocb->ki_waitq = wait;
3588 return true;
3589 }
3590
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3591 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3592 {
3593 if (req->file->f_op->read_iter)
3594 return call_read_iter(req->file, &req->rw.kiocb, iter);
3595 else if (req->file->f_op->read)
3596 return loop_rw_iter(READ, req, iter);
3597 else
3598 return -EINVAL;
3599 }
3600
need_read_all(struct io_kiocb * req)3601 static bool need_read_all(struct io_kiocb *req)
3602 {
3603 return req->flags & REQ_F_ISREG ||
3604 S_ISBLK(file_inode(req->file)->i_mode);
3605 }
3606
io_read(struct io_kiocb * req,unsigned int issue_flags)3607 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3608 {
3609 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3610 struct kiocb *kiocb = &req->rw.kiocb;
3611 struct iov_iter __iter, *iter = &__iter;
3612 struct io_async_rw *rw = req->async_data;
3613 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3614 struct iov_iter_state __state, *state;
3615 ssize_t ret, ret2;
3616 loff_t *ppos;
3617
3618 if (rw) {
3619 iter = &rw->iter;
3620 state = &rw->iter_state;
3621 /*
3622 * We come here from an earlier attempt, restore our state to
3623 * match in case it doesn't. It's cheap enough that we don't
3624 * need to make this conditional.
3625 */
3626 iov_iter_restore(iter, state);
3627 iovec = NULL;
3628 } else {
3629 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3630 if (ret < 0)
3631 return ret;
3632 state = &__state;
3633 iov_iter_save_state(iter, state);
3634 }
3635 req->result = iov_iter_count(iter);
3636
3637 /* Ensure we clear previously set non-block flag */
3638 if (!force_nonblock)
3639 kiocb->ki_flags &= ~IOCB_NOWAIT;
3640 else
3641 kiocb->ki_flags |= IOCB_NOWAIT;
3642
3643 /* If the file doesn't support async, just async punt */
3644 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3645 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3646 return ret ?: -EAGAIN;
3647 }
3648
3649 ppos = io_kiocb_update_pos(req);
3650
3651 ret = rw_verify_area(READ, req->file, ppos, req->result);
3652 if (unlikely(ret)) {
3653 kfree(iovec);
3654 return ret;
3655 }
3656
3657 ret = io_iter_do_read(req, iter);
3658
3659 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3660 req->flags &= ~REQ_F_REISSUE;
3661 /* IOPOLL retry should happen for io-wq threads */
3662 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3663 goto done;
3664 /* no retry on NONBLOCK nor RWF_NOWAIT */
3665 if (req->flags & REQ_F_NOWAIT)
3666 goto done;
3667 ret = 0;
3668 } else if (ret == -EIOCBQUEUED) {
3669 goto out_free;
3670 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3671 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3672 /* read all, failed, already did sync or don't want to retry */
3673 goto done;
3674 }
3675
3676 /*
3677 * Don't depend on the iter state matching what was consumed, or being
3678 * untouched in case of error. Restore it and we'll advance it
3679 * manually if we need to.
3680 */
3681 iov_iter_restore(iter, state);
3682
3683 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3684 if (ret2)
3685 return ret2;
3686
3687 iovec = NULL;
3688 rw = req->async_data;
3689 /*
3690 * Now use our persistent iterator and state, if we aren't already.
3691 * We've restored and mapped the iter to match.
3692 */
3693 if (iter != &rw->iter) {
3694 iter = &rw->iter;
3695 state = &rw->iter_state;
3696 }
3697
3698 do {
3699 /*
3700 * We end up here because of a partial read, either from
3701 * above or inside this loop. Advance the iter by the bytes
3702 * that were consumed.
3703 */
3704 iov_iter_advance(iter, ret);
3705 if (!iov_iter_count(iter))
3706 break;
3707 rw->bytes_done += ret;
3708 iov_iter_save_state(iter, state);
3709
3710 /* if we can retry, do so with the callbacks armed */
3711 if (!io_rw_should_retry(req)) {
3712 kiocb->ki_flags &= ~IOCB_WAITQ;
3713 return -EAGAIN;
3714 }
3715
3716 req->result = iov_iter_count(iter);
3717 /*
3718 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3719 * we get -EIOCBQUEUED, then we'll get a notification when the
3720 * desired page gets unlocked. We can also get a partial read
3721 * here, and if we do, then just retry at the new offset.
3722 */
3723 ret = io_iter_do_read(req, iter);
3724 if (ret == -EIOCBQUEUED)
3725 return 0;
3726 /* we got some bytes, but not all. retry. */
3727 kiocb->ki_flags &= ~IOCB_WAITQ;
3728 iov_iter_restore(iter, state);
3729 } while (ret > 0);
3730 done:
3731 kiocb_done(kiocb, ret, issue_flags);
3732 out_free:
3733 /* it's faster to check here then delegate to kfree */
3734 if (iovec)
3735 kfree(iovec);
3736 return 0;
3737 }
3738
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3739 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3740 {
3741 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3742 return -EBADF;
3743 return io_prep_rw(req, sqe, WRITE);
3744 }
3745
io_write(struct io_kiocb * req,unsigned int issue_flags)3746 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3747 {
3748 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3749 struct kiocb *kiocb = &req->rw.kiocb;
3750 struct iov_iter __iter, *iter = &__iter;
3751 struct io_async_rw *rw = req->async_data;
3752 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3753 struct iov_iter_state __state, *state;
3754 ssize_t ret, ret2;
3755 loff_t *ppos;
3756
3757 if (rw) {
3758 iter = &rw->iter;
3759 state = &rw->iter_state;
3760 iov_iter_restore(iter, state);
3761 iovec = NULL;
3762 } else {
3763 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3764 if (ret < 0)
3765 return ret;
3766 state = &__state;
3767 iov_iter_save_state(iter, state);
3768 }
3769 req->result = iov_iter_count(iter);
3770
3771 /* Ensure we clear previously set non-block flag */
3772 if (!force_nonblock)
3773 kiocb->ki_flags &= ~IOCB_NOWAIT;
3774 else
3775 kiocb->ki_flags |= IOCB_NOWAIT;
3776
3777 /* If the file doesn't support async, just async punt */
3778 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3779 goto copy_iov;
3780
3781 /* file path doesn't support NOWAIT for non-direct_IO */
3782 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3783 (req->flags & REQ_F_ISREG))
3784 goto copy_iov;
3785
3786 ppos = io_kiocb_update_pos(req);
3787
3788 ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3789 if (unlikely(ret))
3790 goto out_free;
3791
3792 /*
3793 * Open-code file_start_write here to grab freeze protection,
3794 * which will be released by another thread in
3795 * io_complete_rw(). Fool lockdep by telling it the lock got
3796 * released so that it doesn't complain about the held lock when
3797 * we return to userspace.
3798 */
3799 if (req->flags & REQ_F_ISREG) {
3800 sb_start_write(file_inode(req->file)->i_sb);
3801 __sb_writers_release(file_inode(req->file)->i_sb,
3802 SB_FREEZE_WRITE);
3803 }
3804 kiocb->ki_flags |= IOCB_WRITE;
3805
3806 if (req->file->f_op->write_iter)
3807 ret2 = call_write_iter(req->file, kiocb, iter);
3808 else if (req->file->f_op->write)
3809 ret2 = loop_rw_iter(WRITE, req, iter);
3810 else
3811 ret2 = -EINVAL;
3812
3813 if (req->flags & REQ_F_REISSUE) {
3814 req->flags &= ~REQ_F_REISSUE;
3815 ret2 = -EAGAIN;
3816 }
3817
3818 /*
3819 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3820 * retry them without IOCB_NOWAIT.
3821 */
3822 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3823 ret2 = -EAGAIN;
3824 /* no retry on NONBLOCK nor RWF_NOWAIT */
3825 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3826 goto done;
3827 if (!force_nonblock || ret2 != -EAGAIN) {
3828 /* IOPOLL retry should happen for io-wq threads */
3829 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3830 goto copy_iov;
3831 done:
3832 kiocb_done(kiocb, ret2, issue_flags);
3833 } else {
3834 copy_iov:
3835 iov_iter_restore(iter, state);
3836 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3837 if (!ret) {
3838 if (kiocb->ki_flags & IOCB_WRITE)
3839 kiocb_end_write(req);
3840 return -EAGAIN;
3841 }
3842 return ret;
3843 }
3844 out_free:
3845 /* it's reportedly faster than delegating the null check to kfree() */
3846 if (iovec)
3847 kfree(iovec);
3848 return ret;
3849 }
3850
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3851 static int io_renameat_prep(struct io_kiocb *req,
3852 const struct io_uring_sqe *sqe)
3853 {
3854 struct io_rename *ren = &req->rename;
3855 const char __user *oldf, *newf;
3856
3857 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3858 return -EINVAL;
3859 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3860 return -EINVAL;
3861 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3862 return -EBADF;
3863
3864 ren->old_dfd = READ_ONCE(sqe->fd);
3865 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3866 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3867 ren->new_dfd = READ_ONCE(sqe->len);
3868 ren->flags = READ_ONCE(sqe->rename_flags);
3869
3870 ren->oldpath = getname(oldf);
3871 if (IS_ERR(ren->oldpath))
3872 return PTR_ERR(ren->oldpath);
3873
3874 ren->newpath = getname(newf);
3875 if (IS_ERR(ren->newpath)) {
3876 putname(ren->oldpath);
3877 return PTR_ERR(ren->newpath);
3878 }
3879
3880 req->flags |= REQ_F_NEED_CLEANUP;
3881 return 0;
3882 }
3883
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3884 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3885 {
3886 struct io_rename *ren = &req->rename;
3887 int ret;
3888
3889 if (issue_flags & IO_URING_F_NONBLOCK)
3890 return -EAGAIN;
3891
3892 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3893 ren->newpath, ren->flags);
3894
3895 req->flags &= ~REQ_F_NEED_CLEANUP;
3896 if (ret < 0)
3897 req_set_fail(req);
3898 io_req_complete(req, ret);
3899 return 0;
3900 }
3901
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3902 static int io_unlinkat_prep(struct io_kiocb *req,
3903 const struct io_uring_sqe *sqe)
3904 {
3905 struct io_unlink *un = &req->unlink;
3906 const char __user *fname;
3907
3908 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3909 return -EINVAL;
3910 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3911 sqe->splice_fd_in)
3912 return -EINVAL;
3913 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3914 return -EBADF;
3915
3916 un->dfd = READ_ONCE(sqe->fd);
3917
3918 un->flags = READ_ONCE(sqe->unlink_flags);
3919 if (un->flags & ~AT_REMOVEDIR)
3920 return -EINVAL;
3921
3922 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3923 un->filename = getname(fname);
3924 if (IS_ERR(un->filename))
3925 return PTR_ERR(un->filename);
3926
3927 req->flags |= REQ_F_NEED_CLEANUP;
3928 return 0;
3929 }
3930
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3931 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3932 {
3933 struct io_unlink *un = &req->unlink;
3934 int ret;
3935
3936 if (issue_flags & IO_URING_F_NONBLOCK)
3937 return -EAGAIN;
3938
3939 if (un->flags & AT_REMOVEDIR)
3940 ret = do_rmdir(un->dfd, un->filename);
3941 else
3942 ret = do_unlinkat(un->dfd, un->filename);
3943
3944 req->flags &= ~REQ_F_NEED_CLEANUP;
3945 if (ret < 0)
3946 req_set_fail(req);
3947 io_req_complete(req, ret);
3948 return 0;
3949 }
3950
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3951 static int io_shutdown_prep(struct io_kiocb *req,
3952 const struct io_uring_sqe *sqe)
3953 {
3954 #if defined(CONFIG_NET)
3955 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3956 return -EINVAL;
3957 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3958 sqe->buf_index || sqe->splice_fd_in))
3959 return -EINVAL;
3960
3961 req->shutdown.how = READ_ONCE(sqe->len);
3962 return 0;
3963 #else
3964 return -EOPNOTSUPP;
3965 #endif
3966 }
3967
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)3968 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3969 {
3970 #if defined(CONFIG_NET)
3971 struct socket *sock;
3972 int ret;
3973
3974 if (issue_flags & IO_URING_F_NONBLOCK)
3975 return -EAGAIN;
3976
3977 sock = sock_from_file(req->file, &ret);
3978 if (unlikely(!sock))
3979 return ret;
3980
3981 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3982 if (ret < 0)
3983 req_set_fail(req);
3984 io_req_complete(req, ret);
3985 return 0;
3986 #else
3987 return -EOPNOTSUPP;
3988 #endif
3989 }
3990
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3991 static int __io_splice_prep(struct io_kiocb *req,
3992 const struct io_uring_sqe *sqe)
3993 {
3994 struct io_splice *sp = &req->splice;
3995 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3996
3997 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3998 return -EINVAL;
3999
4000 sp->len = READ_ONCE(sqe->len);
4001 sp->flags = READ_ONCE(sqe->splice_flags);
4002 if (unlikely(sp->flags & ~valid_flags))
4003 return -EINVAL;
4004 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4005 return 0;
4006 }
4007
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4008 static int io_tee_prep(struct io_kiocb *req,
4009 const struct io_uring_sqe *sqe)
4010 {
4011 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4012 return -EINVAL;
4013 return __io_splice_prep(req, sqe);
4014 }
4015
io_tee(struct io_kiocb * req,unsigned int issue_flags)4016 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4017 {
4018 struct io_splice *sp = &req->splice;
4019 struct file *out = sp->file_out;
4020 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4021 struct file *in;
4022 long ret = 0;
4023
4024 if (issue_flags & IO_URING_F_NONBLOCK)
4025 return -EAGAIN;
4026
4027 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4028 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4029 if (!in) {
4030 ret = -EBADF;
4031 goto done;
4032 }
4033
4034 if (sp->len)
4035 ret = do_tee(in, out, sp->len, flags);
4036
4037 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4038 io_put_file(in);
4039 done:
4040 if (ret != sp->len)
4041 req_set_fail(req);
4042 io_req_complete(req, ret);
4043 return 0;
4044 }
4045
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4046 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4047 {
4048 struct io_splice *sp = &req->splice;
4049
4050 sp->off_in = READ_ONCE(sqe->splice_off_in);
4051 sp->off_out = READ_ONCE(sqe->off);
4052 return __io_splice_prep(req, sqe);
4053 }
4054
io_splice(struct io_kiocb * req,unsigned int issue_flags)4055 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4056 {
4057 struct io_splice *sp = &req->splice;
4058 struct file *out = sp->file_out;
4059 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4060 loff_t *poff_in, *poff_out;
4061 struct file *in;
4062 long ret = 0;
4063
4064 if (issue_flags & IO_URING_F_NONBLOCK)
4065 return -EAGAIN;
4066
4067 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4068 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4069 if (!in) {
4070 ret = -EBADF;
4071 goto done;
4072 }
4073
4074 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4075 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4076
4077 if (sp->len)
4078 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4079
4080 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4081 io_put_file(in);
4082 done:
4083 if (ret != sp->len)
4084 req_set_fail(req);
4085 io_req_complete(req, ret);
4086 return 0;
4087 }
4088
4089 /*
4090 * IORING_OP_NOP just posts a completion event, nothing else.
4091 */
io_nop(struct io_kiocb * req,unsigned int issue_flags)4092 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4093 {
4094 struct io_ring_ctx *ctx = req->ctx;
4095
4096 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4097 return -EINVAL;
4098
4099 __io_req_complete(req, issue_flags, 0, 0);
4100 return 0;
4101 }
4102
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4103 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4104 {
4105 struct io_ring_ctx *ctx = req->ctx;
4106
4107 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4108 return -EINVAL;
4109 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4110 sqe->splice_fd_in))
4111 return -EINVAL;
4112
4113 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4114 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4115 return -EINVAL;
4116
4117 req->sync.off = READ_ONCE(sqe->off);
4118 req->sync.len = READ_ONCE(sqe->len);
4119 return 0;
4120 }
4121
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4122 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4123 {
4124 loff_t end = req->sync.off + req->sync.len;
4125 int ret;
4126
4127 /* fsync always requires a blocking context */
4128 if (issue_flags & IO_URING_F_NONBLOCK)
4129 return -EAGAIN;
4130
4131 ret = vfs_fsync_range(req->file, req->sync.off,
4132 end > 0 ? end : LLONG_MAX,
4133 req->sync.flags & IORING_FSYNC_DATASYNC);
4134 if (ret < 0)
4135 req_set_fail(req);
4136 io_req_complete(req, ret);
4137 return 0;
4138 }
4139
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4140 static int io_fallocate_prep(struct io_kiocb *req,
4141 const struct io_uring_sqe *sqe)
4142 {
4143 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4144 sqe->splice_fd_in)
4145 return -EINVAL;
4146 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4147 return -EINVAL;
4148
4149 req->sync.off = READ_ONCE(sqe->off);
4150 req->sync.len = READ_ONCE(sqe->addr);
4151 req->sync.mode = READ_ONCE(sqe->len);
4152 return 0;
4153 }
4154
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4155 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4156 {
4157 int ret;
4158
4159 /* fallocate always requiring blocking context */
4160 if (issue_flags & IO_URING_F_NONBLOCK)
4161 return -EAGAIN;
4162 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4163 req->sync.len);
4164 if (ret < 0)
4165 req_set_fail(req);
4166 else
4167 fsnotify_modify(req->file);
4168 io_req_complete(req, ret);
4169 return 0;
4170 }
4171
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4172 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4173 {
4174 const char __user *fname;
4175 int ret;
4176
4177 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4178 return -EINVAL;
4179 if (unlikely(sqe->ioprio || sqe->buf_index))
4180 return -EINVAL;
4181 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4182 return -EBADF;
4183
4184 /* open.how should be already initialised */
4185 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4186 req->open.how.flags |= O_LARGEFILE;
4187
4188 req->open.dfd = READ_ONCE(sqe->fd);
4189 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4190 req->open.filename = getname(fname);
4191 if (IS_ERR(req->open.filename)) {
4192 ret = PTR_ERR(req->open.filename);
4193 req->open.filename = NULL;
4194 return ret;
4195 }
4196
4197 req->open.file_slot = READ_ONCE(sqe->file_index);
4198 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4199 return -EINVAL;
4200
4201 req->open.nofile = rlimit(RLIMIT_NOFILE);
4202 req->flags |= REQ_F_NEED_CLEANUP;
4203 return 0;
4204 }
4205
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4206 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4207 {
4208 u64 mode = READ_ONCE(sqe->len);
4209 u64 flags = READ_ONCE(sqe->open_flags);
4210
4211 req->open.how = build_open_how(flags, mode);
4212 return __io_openat_prep(req, sqe);
4213 }
4214
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4215 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4216 {
4217 struct open_how __user *how;
4218 size_t len;
4219 int ret;
4220
4221 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4222 len = READ_ONCE(sqe->len);
4223 if (len < OPEN_HOW_SIZE_VER0)
4224 return -EINVAL;
4225
4226 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4227 len);
4228 if (ret)
4229 return ret;
4230
4231 return __io_openat_prep(req, sqe);
4232 }
4233
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4234 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4235 {
4236 struct open_flags op;
4237 struct file *file;
4238 bool resolve_nonblock, nonblock_set;
4239 bool fixed = !!req->open.file_slot;
4240 int ret;
4241
4242 ret = build_open_flags(&req->open.how, &op);
4243 if (ret)
4244 goto err;
4245 nonblock_set = op.open_flag & O_NONBLOCK;
4246 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4247 if (issue_flags & IO_URING_F_NONBLOCK) {
4248 /*
4249 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4250 * it'll always -EAGAIN. Note that we test for __O_TMPFILE
4251 * because O_TMPFILE includes O_DIRECTORY, which isn't a flag
4252 * we need to force async for.
4253 */
4254 if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE))
4255 return -EAGAIN;
4256 op.lookup_flags |= LOOKUP_CACHED;
4257 op.open_flag |= O_NONBLOCK;
4258 }
4259
4260 if (!fixed) {
4261 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4262 if (ret < 0)
4263 goto err;
4264 }
4265
4266 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4267 if (IS_ERR(file)) {
4268 /*
4269 * We could hang on to this 'fd' on retrying, but seems like
4270 * marginal gain for something that is now known to be a slower
4271 * path. So just put it, and we'll get a new one when we retry.
4272 */
4273 if (!fixed)
4274 put_unused_fd(ret);
4275
4276 ret = PTR_ERR(file);
4277 /* only retry if RESOLVE_CACHED wasn't already set by application */
4278 if (ret == -EAGAIN &&
4279 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4280 return -EAGAIN;
4281 goto err;
4282 }
4283
4284 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4285 file->f_flags &= ~O_NONBLOCK;
4286 fsnotify_open(file);
4287
4288 if (!fixed)
4289 fd_install(ret, file);
4290 else
4291 ret = io_install_fixed_file(req, file, issue_flags,
4292 req->open.file_slot - 1);
4293 err:
4294 putname(req->open.filename);
4295 req->flags &= ~REQ_F_NEED_CLEANUP;
4296 if (ret < 0)
4297 req_set_fail(req);
4298 __io_req_complete(req, issue_flags, ret, 0);
4299 return 0;
4300 }
4301
io_openat(struct io_kiocb * req,unsigned int issue_flags)4302 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4303 {
4304 return io_openat2(req, issue_flags);
4305 }
4306
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4307 static int io_remove_buffers_prep(struct io_kiocb *req,
4308 const struct io_uring_sqe *sqe)
4309 {
4310 struct io_provide_buf *p = &req->pbuf;
4311 u64 tmp;
4312
4313 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4314 sqe->splice_fd_in)
4315 return -EINVAL;
4316
4317 tmp = READ_ONCE(sqe->fd);
4318 if (!tmp || tmp > USHRT_MAX)
4319 return -EINVAL;
4320
4321 memset(p, 0, sizeof(*p));
4322 p->nbufs = tmp;
4323 p->bgid = READ_ONCE(sqe->buf_group);
4324 return 0;
4325 }
4326
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4327 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4328 int bgid, unsigned nbufs)
4329 {
4330 unsigned i = 0;
4331
4332 /* shouldn't happen */
4333 if (!nbufs)
4334 return 0;
4335
4336 /* the head kbuf is the list itself */
4337 while (!list_empty(&buf->list)) {
4338 struct io_buffer *nxt;
4339
4340 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4341 list_del(&nxt->list);
4342 kfree(nxt);
4343 if (++i == nbufs)
4344 return i;
4345 cond_resched();
4346 }
4347 i++;
4348 kfree(buf);
4349 xa_erase(&ctx->io_buffers, bgid);
4350
4351 return i;
4352 }
4353
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4354 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4355 {
4356 struct io_provide_buf *p = &req->pbuf;
4357 struct io_ring_ctx *ctx = req->ctx;
4358 struct io_buffer *head;
4359 int ret = 0;
4360 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4361
4362 io_ring_submit_lock(ctx, !force_nonblock);
4363
4364 lockdep_assert_held(&ctx->uring_lock);
4365
4366 ret = -ENOENT;
4367 head = xa_load(&ctx->io_buffers, p->bgid);
4368 if (head)
4369 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4370 if (ret < 0)
4371 req_set_fail(req);
4372
4373 /* complete before unlock, IOPOLL may need the lock */
4374 __io_req_complete(req, issue_flags, ret, 0);
4375 io_ring_submit_unlock(ctx, !force_nonblock);
4376 return 0;
4377 }
4378
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4379 static int io_provide_buffers_prep(struct io_kiocb *req,
4380 const struct io_uring_sqe *sqe)
4381 {
4382 unsigned long size, tmp_check;
4383 struct io_provide_buf *p = &req->pbuf;
4384 u64 tmp;
4385
4386 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4387 return -EINVAL;
4388
4389 tmp = READ_ONCE(sqe->fd);
4390 if (!tmp || tmp > USHRT_MAX)
4391 return -E2BIG;
4392 p->nbufs = tmp;
4393 p->addr = READ_ONCE(sqe->addr);
4394 p->len = READ_ONCE(sqe->len);
4395
4396 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4397 &size))
4398 return -EOVERFLOW;
4399 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4400 return -EOVERFLOW;
4401
4402 size = (unsigned long)p->len * p->nbufs;
4403 if (!access_ok(u64_to_user_ptr(p->addr), size))
4404 return -EFAULT;
4405
4406 p->bgid = READ_ONCE(sqe->buf_group);
4407 tmp = READ_ONCE(sqe->off);
4408 if (tmp > USHRT_MAX)
4409 return -E2BIG;
4410 p->bid = tmp;
4411 return 0;
4412 }
4413
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4414 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4415 {
4416 struct io_buffer *buf;
4417 u64 addr = pbuf->addr;
4418 int i, bid = pbuf->bid;
4419
4420 for (i = 0; i < pbuf->nbufs; i++) {
4421 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4422 if (!buf)
4423 break;
4424
4425 buf->addr = addr;
4426 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4427 buf->bid = bid;
4428 addr += pbuf->len;
4429 bid++;
4430 if (!*head) {
4431 INIT_LIST_HEAD(&buf->list);
4432 *head = buf;
4433 } else {
4434 list_add_tail(&buf->list, &(*head)->list);
4435 }
4436 cond_resched();
4437 }
4438
4439 return i ? i : -ENOMEM;
4440 }
4441
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4442 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4443 {
4444 struct io_provide_buf *p = &req->pbuf;
4445 struct io_ring_ctx *ctx = req->ctx;
4446 struct io_buffer *head, *list;
4447 int ret = 0;
4448 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4449
4450 io_ring_submit_lock(ctx, !force_nonblock);
4451
4452 lockdep_assert_held(&ctx->uring_lock);
4453
4454 list = head = xa_load(&ctx->io_buffers, p->bgid);
4455
4456 ret = io_add_buffers(p, &head);
4457 if (ret >= 0 && !list) {
4458 ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4459 GFP_KERNEL_ACCOUNT);
4460 if (ret < 0)
4461 __io_remove_buffers(ctx, head, p->bgid, -1U);
4462 }
4463 if (ret < 0)
4464 req_set_fail(req);
4465 /* complete before unlock, IOPOLL may need the lock */
4466 __io_req_complete(req, issue_flags, ret, 0);
4467 io_ring_submit_unlock(ctx, !force_nonblock);
4468 return 0;
4469 }
4470
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4471 static int io_epoll_ctl_prep(struct io_kiocb *req,
4472 const struct io_uring_sqe *sqe)
4473 {
4474 #if defined(CONFIG_EPOLL)
4475 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4476 return -EINVAL;
4477 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4478 return -EINVAL;
4479
4480 req->epoll.epfd = READ_ONCE(sqe->fd);
4481 req->epoll.op = READ_ONCE(sqe->len);
4482 req->epoll.fd = READ_ONCE(sqe->off);
4483
4484 if (ep_op_has_event(req->epoll.op)) {
4485 struct epoll_event __user *ev;
4486
4487 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4488 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4489 return -EFAULT;
4490 }
4491
4492 return 0;
4493 #else
4494 return -EOPNOTSUPP;
4495 #endif
4496 }
4497
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4498 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4499 {
4500 #if defined(CONFIG_EPOLL)
4501 struct io_epoll *ie = &req->epoll;
4502 int ret;
4503 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4504
4505 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4506 if (force_nonblock && ret == -EAGAIN)
4507 return -EAGAIN;
4508
4509 if (ret < 0)
4510 req_set_fail(req);
4511 __io_req_complete(req, issue_flags, ret, 0);
4512 return 0;
4513 #else
4514 return -EOPNOTSUPP;
4515 #endif
4516 }
4517
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4518 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4519 {
4520 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4521 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4522 return -EINVAL;
4523 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4524 return -EINVAL;
4525
4526 req->madvise.addr = READ_ONCE(sqe->addr);
4527 req->madvise.len = READ_ONCE(sqe->len);
4528 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4529 return 0;
4530 #else
4531 return -EOPNOTSUPP;
4532 #endif
4533 }
4534
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4535 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4536 {
4537 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4538 struct io_madvise *ma = &req->madvise;
4539 int ret;
4540
4541 if (issue_flags & IO_URING_F_NONBLOCK)
4542 return -EAGAIN;
4543
4544 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4545 if (ret < 0)
4546 req_set_fail(req);
4547 io_req_complete(req, ret);
4548 return 0;
4549 #else
4550 return -EOPNOTSUPP;
4551 #endif
4552 }
4553
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4554 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4555 {
4556 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4557 return -EINVAL;
4558 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4559 return -EINVAL;
4560
4561 req->fadvise.offset = READ_ONCE(sqe->off);
4562 req->fadvise.len = READ_ONCE(sqe->len);
4563 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4564 return 0;
4565 }
4566
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4567 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4568 {
4569 struct io_fadvise *fa = &req->fadvise;
4570 int ret;
4571
4572 if (issue_flags & IO_URING_F_NONBLOCK) {
4573 switch (fa->advice) {
4574 case POSIX_FADV_NORMAL:
4575 case POSIX_FADV_RANDOM:
4576 case POSIX_FADV_SEQUENTIAL:
4577 break;
4578 default:
4579 return -EAGAIN;
4580 }
4581 }
4582
4583 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4584 if (ret < 0)
4585 req_set_fail(req);
4586 __io_req_complete(req, issue_flags, ret, 0);
4587 return 0;
4588 }
4589
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4590 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4591 {
4592 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4593 return -EINVAL;
4594 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4595 return -EINVAL;
4596 if (req->flags & REQ_F_FIXED_FILE)
4597 return -EBADF;
4598
4599 req->statx.dfd = READ_ONCE(sqe->fd);
4600 req->statx.mask = READ_ONCE(sqe->len);
4601 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4602 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4603 req->statx.flags = READ_ONCE(sqe->statx_flags);
4604
4605 return 0;
4606 }
4607
io_statx(struct io_kiocb * req,unsigned int issue_flags)4608 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4609 {
4610 struct io_statx *ctx = &req->statx;
4611 int ret;
4612
4613 if (issue_flags & IO_URING_F_NONBLOCK)
4614 return -EAGAIN;
4615
4616 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4617 ctx->buffer);
4618
4619 if (ret < 0)
4620 req_set_fail(req);
4621 io_req_complete(req, ret);
4622 return 0;
4623 }
4624
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4625 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4626 {
4627 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4628 return -EINVAL;
4629 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4630 sqe->rw_flags || sqe->buf_index)
4631 return -EINVAL;
4632 if (req->flags & REQ_F_FIXED_FILE)
4633 return -EBADF;
4634
4635 req->close.fd = READ_ONCE(sqe->fd);
4636 req->close.file_slot = READ_ONCE(sqe->file_index);
4637 if (req->close.file_slot && req->close.fd)
4638 return -EINVAL;
4639
4640 return 0;
4641 }
4642
io_close(struct io_kiocb * req,unsigned int issue_flags)4643 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4644 {
4645 struct files_struct *files = current->files;
4646 struct io_close *close = &req->close;
4647 struct fdtable *fdt;
4648 struct file *file = NULL;
4649 int ret = -EBADF;
4650
4651 if (req->close.file_slot) {
4652 ret = io_close_fixed(req, issue_flags);
4653 goto err;
4654 }
4655
4656 spin_lock(&files->file_lock);
4657 fdt = files_fdtable(files);
4658 if (close->fd >= fdt->max_fds) {
4659 spin_unlock(&files->file_lock);
4660 goto err;
4661 }
4662 file = fdt->fd[close->fd];
4663 if (!file || file->f_op == &io_uring_fops) {
4664 spin_unlock(&files->file_lock);
4665 file = NULL;
4666 goto err;
4667 }
4668
4669 /* if the file has a flush method, be safe and punt to async */
4670 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4671 spin_unlock(&files->file_lock);
4672 return -EAGAIN;
4673 }
4674
4675 ret = __close_fd_get_file(close->fd, &file);
4676 spin_unlock(&files->file_lock);
4677 if (ret < 0) {
4678 if (ret == -ENOENT)
4679 ret = -EBADF;
4680 goto err;
4681 }
4682
4683 /* No ->flush() or already async, safely close from here */
4684 ret = filp_close(file, current->files);
4685 err:
4686 if (ret < 0)
4687 req_set_fail(req);
4688 if (file)
4689 fput(file);
4690 __io_req_complete(req, issue_flags, ret, 0);
4691 return 0;
4692 }
4693
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4694 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4695 {
4696 struct io_ring_ctx *ctx = req->ctx;
4697
4698 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4699 return -EINVAL;
4700 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4701 sqe->splice_fd_in))
4702 return -EINVAL;
4703
4704 req->sync.off = READ_ONCE(sqe->off);
4705 req->sync.len = READ_ONCE(sqe->len);
4706 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4707 return 0;
4708 }
4709
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4710 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4711 {
4712 int ret;
4713
4714 /* sync_file_range always requires a blocking context */
4715 if (issue_flags & IO_URING_F_NONBLOCK)
4716 return -EAGAIN;
4717
4718 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4719 req->sync.flags);
4720 if (ret < 0)
4721 req_set_fail(req);
4722 io_req_complete(req, ret);
4723 return 0;
4724 }
4725
4726 #if defined(CONFIG_NET)
io_net_retry(struct socket * sock,int flags)4727 static bool io_net_retry(struct socket *sock, int flags)
4728 {
4729 if (!(flags & MSG_WAITALL))
4730 return false;
4731 return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4732 }
4733
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4734 static int io_setup_async_msg(struct io_kiocb *req,
4735 struct io_async_msghdr *kmsg)
4736 {
4737 struct io_async_msghdr *async_msg = req->async_data;
4738
4739 if (async_msg)
4740 return -EAGAIN;
4741 if (io_alloc_async_data(req)) {
4742 kfree(kmsg->free_iov);
4743 return -ENOMEM;
4744 }
4745 async_msg = req->async_data;
4746 req->flags |= REQ_F_NEED_CLEANUP;
4747 memcpy(async_msg, kmsg, sizeof(*kmsg));
4748 if (async_msg->msg.msg_name)
4749 async_msg->msg.msg_name = &async_msg->addr;
4750 /* if were using fast_iov, set it to the new one */
4751 if (!kmsg->free_iov) {
4752 size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4753 async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4754 }
4755
4756 return -EAGAIN;
4757 }
4758
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4759 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4760 struct io_async_msghdr *iomsg)
4761 {
4762 struct io_sr_msg *sr = &req->sr_msg;
4763 int ret;
4764
4765 iomsg->msg.msg_name = &iomsg->addr;
4766 iomsg->free_iov = iomsg->fast_iov;
4767 ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4768 req->sr_msg.msg_flags, &iomsg->free_iov);
4769 /* save msg_control as sys_sendmsg() overwrites it */
4770 sr->msg_control = iomsg->msg.msg_control;
4771 return ret;
4772 }
4773
io_sendmsg_prep_async(struct io_kiocb * req)4774 static int io_sendmsg_prep_async(struct io_kiocb *req)
4775 {
4776 int ret;
4777
4778 ret = io_sendmsg_copy_hdr(req, req->async_data);
4779 if (!ret)
4780 req->flags |= REQ_F_NEED_CLEANUP;
4781 return ret;
4782 }
4783
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4784 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4785 {
4786 struct io_sr_msg *sr = &req->sr_msg;
4787
4788 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4789 return -EINVAL;
4790 if (unlikely(sqe->addr2 || sqe->file_index))
4791 return -EINVAL;
4792 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4793 return -EINVAL;
4794
4795 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4796 sr->len = READ_ONCE(sqe->len);
4797 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4798 if (sr->msg_flags & MSG_DONTWAIT)
4799 req->flags |= REQ_F_NOWAIT;
4800
4801 #ifdef CONFIG_COMPAT
4802 if (req->ctx->compat)
4803 sr->msg_flags |= MSG_CMSG_COMPAT;
4804 #endif
4805 sr->done_io = 0;
4806 return 0;
4807 }
4808
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4809 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4810 {
4811 struct io_async_msghdr iomsg, *kmsg;
4812 struct io_sr_msg *sr = &req->sr_msg;
4813 struct socket *sock;
4814 unsigned flags;
4815 int min_ret = 0;
4816 int ret;
4817
4818 sock = sock_from_file(req->file, &ret);
4819 if (unlikely(!sock))
4820 return ret;
4821
4822 kmsg = req->async_data;
4823 if (!kmsg) {
4824 ret = io_sendmsg_copy_hdr(req, &iomsg);
4825 if (ret)
4826 return ret;
4827 kmsg = &iomsg;
4828 } else {
4829 kmsg->msg.msg_control = sr->msg_control;
4830 }
4831
4832 flags = req->sr_msg.msg_flags;
4833 if (issue_flags & IO_URING_F_NONBLOCK)
4834 flags |= MSG_DONTWAIT;
4835 if (flags & MSG_WAITALL)
4836 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4837
4838 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4839
4840 if (ret < min_ret) {
4841 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4842 return io_setup_async_msg(req, kmsg);
4843 if (ret == -ERESTARTSYS)
4844 ret = -EINTR;
4845 if (ret > 0 && io_net_retry(sock, flags)) {
4846 sr->done_io += ret;
4847 req->flags |= REQ_F_PARTIAL_IO;
4848 return io_setup_async_msg(req, kmsg);
4849 }
4850 req_set_fail(req);
4851 }
4852 /* fast path, check for non-NULL to avoid function call */
4853 if (kmsg->free_iov)
4854 kfree(kmsg->free_iov);
4855 req->flags &= ~REQ_F_NEED_CLEANUP;
4856 if (ret >= 0)
4857 ret += sr->done_io;
4858 else if (sr->done_io)
4859 ret = sr->done_io;
4860 __io_req_complete(req, issue_flags, ret, 0);
4861 return 0;
4862 }
4863
io_send(struct io_kiocb * req,unsigned int issue_flags)4864 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4865 {
4866 struct io_sr_msg *sr = &req->sr_msg;
4867 struct msghdr msg;
4868 struct iovec iov;
4869 struct socket *sock;
4870 unsigned flags;
4871 int min_ret = 0;
4872 int ret;
4873
4874 sock = sock_from_file(req->file, &ret);
4875 if (unlikely(!sock))
4876 return ret;
4877
4878 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4879 if (unlikely(ret))
4880 return ret;
4881
4882 msg.msg_name = NULL;
4883 msg.msg_control = NULL;
4884 msg.msg_controllen = 0;
4885 msg.msg_namelen = 0;
4886
4887 flags = req->sr_msg.msg_flags;
4888 if (issue_flags & IO_URING_F_NONBLOCK)
4889 flags |= MSG_DONTWAIT;
4890 if (flags & MSG_WAITALL)
4891 min_ret = iov_iter_count(&msg.msg_iter);
4892
4893 msg.msg_flags = flags;
4894 ret = sock_sendmsg(sock, &msg);
4895 if (ret < min_ret) {
4896 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4897 return -EAGAIN;
4898 if (ret == -ERESTARTSYS)
4899 ret = -EINTR;
4900 if (ret > 0 && io_net_retry(sock, flags)) {
4901 sr->len -= ret;
4902 sr->buf += ret;
4903 sr->done_io += ret;
4904 req->flags |= REQ_F_PARTIAL_IO;
4905 return -EAGAIN;
4906 }
4907 req_set_fail(req);
4908 }
4909 if (ret >= 0)
4910 ret += sr->done_io;
4911 else if (sr->done_io)
4912 ret = sr->done_io;
4913 __io_req_complete(req, issue_flags, ret, 0);
4914 return 0;
4915 }
4916
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4917 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4918 struct io_async_msghdr *iomsg)
4919 {
4920 struct io_sr_msg *sr = &req->sr_msg;
4921 struct iovec __user *uiov;
4922 size_t iov_len;
4923 int ret;
4924
4925 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4926 &iomsg->uaddr, &uiov, &iov_len);
4927 if (ret)
4928 return ret;
4929
4930 if (req->flags & REQ_F_BUFFER_SELECT) {
4931 if (iov_len > 1)
4932 return -EINVAL;
4933 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4934 return -EFAULT;
4935 sr->len = iomsg->fast_iov[0].iov_len;
4936 iomsg->free_iov = NULL;
4937 } else {
4938 iomsg->free_iov = iomsg->fast_iov;
4939 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4940 &iomsg->free_iov, &iomsg->msg.msg_iter,
4941 false);
4942 if (ret > 0)
4943 ret = 0;
4944 }
4945
4946 return ret;
4947 }
4948
4949 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4950 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4951 struct io_async_msghdr *iomsg)
4952 {
4953 struct io_sr_msg *sr = &req->sr_msg;
4954 struct compat_iovec __user *uiov;
4955 compat_uptr_t ptr;
4956 compat_size_t len;
4957 int ret;
4958
4959 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4960 &ptr, &len);
4961 if (ret)
4962 return ret;
4963
4964 uiov = compat_ptr(ptr);
4965 if (req->flags & REQ_F_BUFFER_SELECT) {
4966 compat_ssize_t clen;
4967
4968 if (len > 1)
4969 return -EINVAL;
4970 if (!access_ok(uiov, sizeof(*uiov)))
4971 return -EFAULT;
4972 if (__get_user(clen, &uiov->iov_len))
4973 return -EFAULT;
4974 if (clen < 0)
4975 return -EINVAL;
4976 sr->len = clen;
4977 iomsg->free_iov = NULL;
4978 } else {
4979 iomsg->free_iov = iomsg->fast_iov;
4980 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4981 UIO_FASTIOV, &iomsg->free_iov,
4982 &iomsg->msg.msg_iter, true);
4983 if (ret < 0)
4984 return ret;
4985 }
4986
4987 return 0;
4988 }
4989 #endif
4990
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4991 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4992 struct io_async_msghdr *iomsg)
4993 {
4994 iomsg->msg.msg_name = &iomsg->addr;
4995
4996 #ifdef CONFIG_COMPAT
4997 if (req->ctx->compat)
4998 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4999 #endif
5000
5001 return __io_recvmsg_copy_hdr(req, iomsg);
5002 }
5003
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)5004 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
5005 bool needs_lock)
5006 {
5007 struct io_sr_msg *sr = &req->sr_msg;
5008 struct io_buffer *kbuf;
5009
5010 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
5011 if (IS_ERR(kbuf))
5012 return kbuf;
5013
5014 sr->kbuf = kbuf;
5015 req->flags |= REQ_F_BUFFER_SELECTED;
5016 return kbuf;
5017 }
5018
io_put_recv_kbuf(struct io_kiocb * req)5019 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5020 {
5021 return io_put_kbuf(req, req->sr_msg.kbuf);
5022 }
5023
io_recvmsg_prep_async(struct io_kiocb * req)5024 static int io_recvmsg_prep_async(struct io_kiocb *req)
5025 {
5026 int ret;
5027
5028 ret = io_recvmsg_copy_hdr(req, req->async_data);
5029 if (!ret)
5030 req->flags |= REQ_F_NEED_CLEANUP;
5031 return ret;
5032 }
5033
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5034 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5035 {
5036 struct io_sr_msg *sr = &req->sr_msg;
5037
5038 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5039 return -EINVAL;
5040 if (unlikely(sqe->addr2 || sqe->file_index))
5041 return -EINVAL;
5042 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5043 return -EINVAL;
5044
5045 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5046 sr->len = READ_ONCE(sqe->len);
5047 sr->bgid = READ_ONCE(sqe->buf_group);
5048 sr->msg_flags = READ_ONCE(sqe->msg_flags);
5049 if (sr->msg_flags & MSG_DONTWAIT)
5050 req->flags |= REQ_F_NOWAIT;
5051
5052 #ifdef CONFIG_COMPAT
5053 if (req->ctx->compat)
5054 sr->msg_flags |= MSG_CMSG_COMPAT;
5055 #endif
5056 sr->done_io = 0;
5057 return 0;
5058 }
5059
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)5060 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5061 {
5062 struct io_async_msghdr iomsg, *kmsg;
5063 struct io_sr_msg *sr = &req->sr_msg;
5064 struct socket *sock;
5065 struct io_buffer *kbuf;
5066 unsigned flags;
5067 int min_ret = 0;
5068 int ret, cflags = 0;
5069 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5070
5071 sock = sock_from_file(req->file, &ret);
5072 if (unlikely(!sock))
5073 return ret;
5074
5075 kmsg = req->async_data;
5076 if (!kmsg) {
5077 ret = io_recvmsg_copy_hdr(req, &iomsg);
5078 if (ret)
5079 return ret;
5080 kmsg = &iomsg;
5081 }
5082
5083 if (req->flags & REQ_F_BUFFER_SELECT) {
5084 kbuf = io_recv_buffer_select(req, !force_nonblock);
5085 if (IS_ERR(kbuf))
5086 return PTR_ERR(kbuf);
5087 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5088 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5089 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5090 1, req->sr_msg.len);
5091 }
5092
5093 flags = req->sr_msg.msg_flags;
5094 if (force_nonblock)
5095 flags |= MSG_DONTWAIT;
5096 if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
5097 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5098
5099 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5100 kmsg->uaddr, flags);
5101 if (ret < min_ret) {
5102 if (ret == -EAGAIN && force_nonblock)
5103 return io_setup_async_msg(req, kmsg);
5104 if (ret == -ERESTARTSYS)
5105 ret = -EINTR;
5106 if (ret > 0 && io_net_retry(sock, flags)) {
5107 kmsg->msg.msg_controllen = 0;
5108 kmsg->msg.msg_control = NULL;
5109 sr->done_io += ret;
5110 req->flags |= REQ_F_PARTIAL_IO;
5111 return io_setup_async_msg(req, kmsg);
5112 }
5113 req_set_fail(req);
5114 } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5115 req_set_fail(req);
5116 }
5117
5118 if (req->flags & REQ_F_BUFFER_SELECTED)
5119 cflags = io_put_recv_kbuf(req);
5120 /* fast path, check for non-NULL to avoid function call */
5121 if (kmsg->free_iov)
5122 kfree(kmsg->free_iov);
5123 req->flags &= ~REQ_F_NEED_CLEANUP;
5124 if (ret >= 0)
5125 ret += sr->done_io;
5126 else if (sr->done_io)
5127 ret = sr->done_io;
5128 __io_req_complete(req, issue_flags, ret, cflags);
5129 return 0;
5130 }
5131
io_recv(struct io_kiocb * req,unsigned int issue_flags)5132 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5133 {
5134 struct io_buffer *kbuf;
5135 struct io_sr_msg *sr = &req->sr_msg;
5136 struct msghdr msg;
5137 void __user *buf = sr->buf;
5138 struct socket *sock;
5139 struct iovec iov;
5140 unsigned flags;
5141 int min_ret = 0;
5142 int ret, cflags = 0;
5143 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5144
5145 sock = sock_from_file(req->file, &ret);
5146 if (unlikely(!sock))
5147 return ret;
5148
5149 if (req->flags & REQ_F_BUFFER_SELECT) {
5150 kbuf = io_recv_buffer_select(req, !force_nonblock);
5151 if (IS_ERR(kbuf))
5152 return PTR_ERR(kbuf);
5153 buf = u64_to_user_ptr(kbuf->addr);
5154 }
5155
5156 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5157 if (unlikely(ret))
5158 goto out_free;
5159
5160 msg.msg_name = NULL;
5161 msg.msg_control = NULL;
5162 msg.msg_controllen = 0;
5163 msg.msg_namelen = 0;
5164 msg.msg_iocb = NULL;
5165 msg.msg_flags = 0;
5166
5167 flags = req->sr_msg.msg_flags;
5168 if (force_nonblock)
5169 flags |= MSG_DONTWAIT;
5170 if (flags & MSG_WAITALL)
5171 min_ret = iov_iter_count(&msg.msg_iter);
5172
5173 ret = sock_recvmsg(sock, &msg, flags);
5174 if (ret < min_ret) {
5175 if (ret == -EAGAIN && force_nonblock)
5176 return -EAGAIN;
5177 if (ret == -ERESTARTSYS)
5178 ret = -EINTR;
5179 if (ret > 0 && io_net_retry(sock, flags)) {
5180 sr->len -= ret;
5181 sr->buf += ret;
5182 sr->done_io += ret;
5183 req->flags |= REQ_F_PARTIAL_IO;
5184 return -EAGAIN;
5185 }
5186 req_set_fail(req);
5187 } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5188 out_free:
5189 req_set_fail(req);
5190 }
5191 if (req->flags & REQ_F_BUFFER_SELECTED)
5192 cflags = io_put_recv_kbuf(req);
5193 if (ret >= 0)
5194 ret += sr->done_io;
5195 else if (sr->done_io)
5196 ret = sr->done_io;
5197 __io_req_complete(req, issue_flags, ret, cflags);
5198 return 0;
5199 }
5200
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5201 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5202 {
5203 struct io_accept *accept = &req->accept;
5204
5205 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5206 return -EINVAL;
5207 if (sqe->ioprio || sqe->len || sqe->buf_index)
5208 return -EINVAL;
5209
5210 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5211 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5212 accept->flags = READ_ONCE(sqe->accept_flags);
5213 accept->nofile = rlimit(RLIMIT_NOFILE);
5214
5215 accept->file_slot = READ_ONCE(sqe->file_index);
5216 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5217 return -EINVAL;
5218 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5219 return -EINVAL;
5220 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5221 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5222 return 0;
5223 }
5224
io_accept(struct io_kiocb * req,unsigned int issue_flags)5225 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5226 {
5227 struct io_accept *accept = &req->accept;
5228 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5229 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5230 bool fixed = !!accept->file_slot;
5231 struct file *file;
5232 int ret, fd;
5233
5234 if (!fixed) {
5235 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5236 if (unlikely(fd < 0))
5237 return fd;
5238 }
5239 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5240 accept->flags);
5241
5242 if (IS_ERR(file)) {
5243 if (!fixed)
5244 put_unused_fd(fd);
5245 ret = PTR_ERR(file);
5246 /* safe to retry */
5247 req->flags |= REQ_F_PARTIAL_IO;
5248 if (ret == -EAGAIN && force_nonblock)
5249 return -EAGAIN;
5250 if (ret == -ERESTARTSYS)
5251 ret = -EINTR;
5252 req_set_fail(req);
5253 } else if (!fixed) {
5254 fd_install(fd, file);
5255 ret = fd;
5256 } else {
5257 ret = io_install_fixed_file(req, file, issue_flags,
5258 accept->file_slot - 1);
5259 }
5260 __io_req_complete(req, issue_flags, ret, 0);
5261 return 0;
5262 }
5263
io_connect_prep_async(struct io_kiocb * req)5264 static int io_connect_prep_async(struct io_kiocb *req)
5265 {
5266 struct io_async_connect *io = req->async_data;
5267 struct io_connect *conn = &req->connect;
5268
5269 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5270 }
5271
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5272 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5273 {
5274 struct io_connect *conn = &req->connect;
5275
5276 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5277 return -EINVAL;
5278 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5279 sqe->splice_fd_in)
5280 return -EINVAL;
5281
5282 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5283 conn->addr_len = READ_ONCE(sqe->addr2);
5284 return 0;
5285 }
5286
io_connect(struct io_kiocb * req,unsigned int issue_flags)5287 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5288 {
5289 struct io_async_connect __io, *io;
5290 unsigned file_flags;
5291 int ret;
5292 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5293
5294 if (req->async_data) {
5295 io = req->async_data;
5296 } else {
5297 ret = move_addr_to_kernel(req->connect.addr,
5298 req->connect.addr_len,
5299 &__io.address);
5300 if (ret)
5301 goto out;
5302 io = &__io;
5303 }
5304
5305 file_flags = force_nonblock ? O_NONBLOCK : 0;
5306
5307 ret = __sys_connect_file(req->file, &io->address,
5308 req->connect.addr_len, file_flags);
5309 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5310 if (req->async_data)
5311 return -EAGAIN;
5312 if (io_alloc_async_data(req)) {
5313 ret = -ENOMEM;
5314 goto out;
5315 }
5316 memcpy(req->async_data, &__io, sizeof(__io));
5317 return -EAGAIN;
5318 }
5319 if (ret == -ERESTARTSYS)
5320 ret = -EINTR;
5321 out:
5322 if (ret < 0)
5323 req_set_fail(req);
5324 __io_req_complete(req, issue_flags, ret, 0);
5325 return 0;
5326 }
5327 #else /* !CONFIG_NET */
5328 #define IO_NETOP_FN(op) \
5329 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5330 { \
5331 return -EOPNOTSUPP; \
5332 }
5333
5334 #define IO_NETOP_PREP(op) \
5335 IO_NETOP_FN(op) \
5336 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5337 { \
5338 return -EOPNOTSUPP; \
5339 } \
5340
5341 #define IO_NETOP_PREP_ASYNC(op) \
5342 IO_NETOP_PREP(op) \
5343 static int io_##op##_prep_async(struct io_kiocb *req) \
5344 { \
5345 return -EOPNOTSUPP; \
5346 }
5347
5348 IO_NETOP_PREP_ASYNC(sendmsg);
5349 IO_NETOP_PREP_ASYNC(recvmsg);
5350 IO_NETOP_PREP_ASYNC(connect);
5351 IO_NETOP_PREP(accept);
5352 IO_NETOP_FN(send);
5353 IO_NETOP_FN(recv);
5354 #endif /* CONFIG_NET */
5355
5356 struct io_poll_table {
5357 struct poll_table_struct pt;
5358 struct io_kiocb *req;
5359 int nr_entries;
5360 int error;
5361 };
5362
5363 #define IO_POLL_CANCEL_FLAG BIT(31)
5364 #define IO_POLL_RETRY_FLAG BIT(30)
5365 #define IO_POLL_REF_MASK GENMASK(29, 0)
5366
5367 /*
5368 * We usually have 1-2 refs taken, 128 is more than enough and we want to
5369 * maximise the margin between this amount and the moment when it overflows.
5370 */
5371 #define IO_POLL_REF_BIAS 128
5372
io_poll_get_ownership_slowpath(struct io_kiocb * req)5373 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5374 {
5375 int v;
5376
5377 /*
5378 * poll_refs are already elevated and we don't have much hope for
5379 * grabbing the ownership. Instead of incrementing set a retry flag
5380 * to notify the loop that there might have been some change.
5381 */
5382 v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5383 if (v & IO_POLL_REF_MASK)
5384 return false;
5385 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5386 }
5387
5388 /*
5389 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5390 * bump it and acquire ownership. It's disallowed to modify requests while not
5391 * owning it, that prevents from races for enqueueing task_work's and b/w
5392 * arming poll and wakeups.
5393 */
io_poll_get_ownership(struct io_kiocb * req)5394 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5395 {
5396 if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5397 return io_poll_get_ownership_slowpath(req);
5398 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5399 }
5400
io_poll_mark_cancelled(struct io_kiocb * req)5401 static void io_poll_mark_cancelled(struct io_kiocb *req)
5402 {
5403 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5404 }
5405
io_poll_get_double(struct io_kiocb * req)5406 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5407 {
5408 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5409 if (req->opcode == IORING_OP_POLL_ADD)
5410 return req->async_data;
5411 return req->apoll->double_poll;
5412 }
5413
io_poll_get_single(struct io_kiocb * req)5414 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5415 {
5416 if (req->opcode == IORING_OP_POLL_ADD)
5417 return &req->poll;
5418 return &req->apoll->poll;
5419 }
5420
io_poll_req_insert(struct io_kiocb * req)5421 static void io_poll_req_insert(struct io_kiocb *req)
5422 {
5423 struct io_ring_ctx *ctx = req->ctx;
5424 struct hlist_head *list;
5425
5426 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5427 hlist_add_head(&req->hash_node, list);
5428 }
5429
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5430 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5431 wait_queue_func_t wake_func)
5432 {
5433 poll->head = NULL;
5434 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5435 /* mask in events that we always want/need */
5436 poll->events = events | IO_POLL_UNMASK;
5437 INIT_LIST_HEAD(&poll->wait.entry);
5438 init_waitqueue_func_entry(&poll->wait, wake_func);
5439 }
5440
io_poll_remove_entry(struct io_poll_iocb * poll)5441 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5442 {
5443 struct wait_queue_head *head = smp_load_acquire(&poll->head);
5444
5445 if (head) {
5446 spin_lock_irq(&head->lock);
5447 list_del_init(&poll->wait.entry);
5448 poll->head = NULL;
5449 spin_unlock_irq(&head->lock);
5450 }
5451 }
5452
io_poll_remove_entries(struct io_kiocb * req)5453 static void io_poll_remove_entries(struct io_kiocb *req)
5454 {
5455 struct io_poll_iocb *poll = io_poll_get_single(req);
5456 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5457
5458 /*
5459 * While we hold the waitqueue lock and the waitqueue is nonempty,
5460 * wake_up_pollfree() will wait for us. However, taking the waitqueue
5461 * lock in the first place can race with the waitqueue being freed.
5462 *
5463 * We solve this as eventpoll does: by taking advantage of the fact that
5464 * all users of wake_up_pollfree() will RCU-delay the actual free. If
5465 * we enter rcu_read_lock() and see that the pointer to the queue is
5466 * non-NULL, we can then lock it without the memory being freed out from
5467 * under us.
5468 *
5469 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5470 * case the caller deletes the entry from the queue, leaving it empty.
5471 * In that case, only RCU prevents the queue memory from being freed.
5472 */
5473 rcu_read_lock();
5474 io_poll_remove_entry(poll);
5475 if (poll_double)
5476 io_poll_remove_entry(poll_double);
5477 rcu_read_unlock();
5478 }
5479
5480 /*
5481 * All poll tw should go through this. Checks for poll events, manages
5482 * references, does rewait, etc.
5483 *
5484 * Returns a negative error on failure. >0 when no action require, which is
5485 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5486 * the request, then the mask is stored in req->result.
5487 */
io_poll_check_events(struct io_kiocb * req)5488 static int io_poll_check_events(struct io_kiocb *req)
5489 {
5490 struct io_ring_ctx *ctx = req->ctx;
5491 struct io_poll_iocb *poll = io_poll_get_single(req);
5492 int v;
5493
5494 /* req->task == current here, checking PF_EXITING is safe */
5495 if (unlikely(req->task->flags & PF_EXITING))
5496 io_poll_mark_cancelled(req);
5497
5498 do {
5499 v = atomic_read(&req->poll_refs);
5500
5501 /* tw handler should be the owner, and so have some references */
5502 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5503 return 0;
5504 if (v & IO_POLL_CANCEL_FLAG)
5505 return -ECANCELED;
5506 /*
5507 * cqe.res contains only events of the first wake up
5508 * and all others are be lost. Redo vfs_poll() to get
5509 * up to date state.
5510 */
5511 if ((v & IO_POLL_REF_MASK) != 1)
5512 req->result = 0;
5513 if (v & IO_POLL_RETRY_FLAG) {
5514 req->result = 0;
5515 /*
5516 * We won't find new events that came in between
5517 * vfs_poll and the ref put unless we clear the
5518 * flag in advance.
5519 */
5520 atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5521 v &= ~IO_POLL_RETRY_FLAG;
5522 }
5523
5524 if (!req->result) {
5525 struct poll_table_struct pt = { ._key = poll->events };
5526
5527 req->result = vfs_poll(req->file, &pt) & poll->events;
5528 }
5529
5530 /* multishot, just fill an CQE and proceed */
5531 if (req->result && !(poll->events & EPOLLONESHOT)) {
5532 __poll_t mask = mangle_poll(req->result & poll->events);
5533 bool filled;
5534
5535 spin_lock(&ctx->completion_lock);
5536 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5537 IORING_CQE_F_MORE);
5538 io_commit_cqring(ctx);
5539 spin_unlock(&ctx->completion_lock);
5540 if (unlikely(!filled))
5541 return -ECANCELED;
5542 io_cqring_ev_posted(ctx);
5543 } else if (req->result) {
5544 return 0;
5545 }
5546
5547 /* force the next iteration to vfs_poll() */
5548 req->result = 0;
5549
5550 /*
5551 * Release all references, retry if someone tried to restart
5552 * task_work while we were executing it.
5553 */
5554 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5555 IO_POLL_REF_MASK);
5556
5557 return 1;
5558 }
5559
io_poll_task_func(struct io_kiocb * req,bool * locked)5560 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5561 {
5562 struct io_ring_ctx *ctx = req->ctx;
5563 int ret;
5564
5565 ret = io_poll_check_events(req);
5566 if (ret > 0)
5567 return;
5568
5569 if (!ret) {
5570 req->result = mangle_poll(req->result & req->poll.events);
5571 } else {
5572 req->result = ret;
5573 req_set_fail(req);
5574 }
5575
5576 io_poll_remove_entries(req);
5577 spin_lock(&ctx->completion_lock);
5578 hash_del(&req->hash_node);
5579 spin_unlock(&ctx->completion_lock);
5580 io_req_complete_post(req, req->result, 0);
5581 }
5582
io_apoll_task_func(struct io_kiocb * req,bool * locked)5583 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5584 {
5585 struct io_ring_ctx *ctx = req->ctx;
5586 int ret;
5587
5588 ret = io_poll_check_events(req);
5589 if (ret > 0)
5590 return;
5591
5592 io_tw_lock(req->ctx, locked);
5593 io_poll_remove_entries(req);
5594 spin_lock(&ctx->completion_lock);
5595 hash_del(&req->hash_node);
5596 spin_unlock(&ctx->completion_lock);
5597
5598 if (!ret)
5599 io_req_task_submit(req, locked);
5600 else
5601 io_req_complete_failed(req, ret);
5602 }
5603
__io_poll_execute(struct io_kiocb * req,int mask)5604 static void __io_poll_execute(struct io_kiocb *req, int mask)
5605 {
5606 req->result = mask;
5607 if (req->opcode == IORING_OP_POLL_ADD)
5608 req->io_task_work.func = io_poll_task_func;
5609 else
5610 req->io_task_work.func = io_apoll_task_func;
5611
5612 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5613 io_req_task_work_add(req);
5614 }
5615
io_poll_execute(struct io_kiocb * req,int res)5616 static inline void io_poll_execute(struct io_kiocb *req, int res)
5617 {
5618 if (io_poll_get_ownership(req))
5619 __io_poll_execute(req, res);
5620 }
5621
io_poll_cancel_req(struct io_kiocb * req)5622 static void io_poll_cancel_req(struct io_kiocb *req)
5623 {
5624 io_poll_mark_cancelled(req);
5625 /* kick tw, which should complete the request */
5626 io_poll_execute(req, 0);
5627 }
5628
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5629 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5630 void *key)
5631 {
5632 struct io_kiocb *req = wait->private;
5633 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5634 wait);
5635 __poll_t mask = key_to_poll(key);
5636
5637 if (unlikely(mask & POLLFREE)) {
5638 io_poll_mark_cancelled(req);
5639 /* we have to kick tw in case it's not already */
5640 io_poll_execute(req, 0);
5641
5642 /*
5643 * If the waitqueue is being freed early but someone is already
5644 * holds ownership over it, we have to tear down the request as
5645 * best we can. That means immediately removing the request from
5646 * its waitqueue and preventing all further accesses to the
5647 * waitqueue via the request.
5648 */
5649 list_del_init(&poll->wait.entry);
5650
5651 /*
5652 * Careful: this *must* be the last step, since as soon
5653 * as req->head is NULL'ed out, the request can be
5654 * completed and freed, since aio_poll_complete_work()
5655 * will no longer need to take the waitqueue lock.
5656 */
5657 smp_store_release(&poll->head, NULL);
5658 return 1;
5659 }
5660
5661 /* for instances that support it check for an event match first */
5662 if (mask && !(mask & poll->events))
5663 return 0;
5664
5665 if (io_poll_get_ownership(req)) {
5666 /*
5667 * If we trigger a multishot poll off our own wakeup path,
5668 * disable multishot as there is a circular dependency between
5669 * CQ posting and triggering the event.
5670 */
5671 if (mask & EPOLL_URING_WAKE)
5672 poll->events |= EPOLLONESHOT;
5673
5674 __io_poll_execute(req, mask);
5675 }
5676 return 1;
5677 }
5678
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5679 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5680 struct wait_queue_head *head,
5681 struct io_poll_iocb **poll_ptr)
5682 {
5683 struct io_kiocb *req = pt->req;
5684
5685 /*
5686 * The file being polled uses multiple waitqueues for poll handling
5687 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5688 * if this happens.
5689 */
5690 if (unlikely(pt->nr_entries)) {
5691 struct io_poll_iocb *first = poll;
5692
5693 /* double add on the same waitqueue head, ignore */
5694 if (first->head == head)
5695 return;
5696 /* already have a 2nd entry, fail a third attempt */
5697 if (*poll_ptr) {
5698 if ((*poll_ptr)->head == head)
5699 return;
5700 pt->error = -EINVAL;
5701 return;
5702 }
5703
5704 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5705 if (!poll) {
5706 pt->error = -ENOMEM;
5707 return;
5708 }
5709 io_init_poll_iocb(poll, first->events, first->wait.func);
5710 *poll_ptr = poll;
5711 }
5712
5713 pt->nr_entries++;
5714 poll->head = head;
5715 poll->wait.private = req;
5716
5717 if (poll->events & EPOLLEXCLUSIVE)
5718 add_wait_queue_exclusive(head, &poll->wait);
5719 else
5720 add_wait_queue(head, &poll->wait);
5721 }
5722
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5723 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5724 struct poll_table_struct *p)
5725 {
5726 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5727
5728 __io_queue_proc(&pt->req->poll, pt, head,
5729 (struct io_poll_iocb **) &pt->req->async_data);
5730 }
5731
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)5732 static int __io_arm_poll_handler(struct io_kiocb *req,
5733 struct io_poll_iocb *poll,
5734 struct io_poll_table *ipt, __poll_t mask)
5735 {
5736 struct io_ring_ctx *ctx = req->ctx;
5737
5738 INIT_HLIST_NODE(&req->hash_node);
5739 io_init_poll_iocb(poll, mask, io_poll_wake);
5740 poll->file = req->file;
5741 poll->wait.private = req;
5742
5743 ipt->pt._key = mask;
5744 ipt->req = req;
5745 ipt->error = 0;
5746 ipt->nr_entries = 0;
5747
5748 /*
5749 * Take the ownership to delay any tw execution up until we're done
5750 * with poll arming. see io_poll_get_ownership().
5751 */
5752 atomic_set(&req->poll_refs, 1);
5753 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5754
5755 if (mask && (poll->events & EPOLLONESHOT)) {
5756 io_poll_remove_entries(req);
5757 /* no one else has access to the req, forget about the ref */
5758 return mask;
5759 }
5760 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5761 io_poll_remove_entries(req);
5762 if (!ipt->error)
5763 ipt->error = -EINVAL;
5764 return 0;
5765 }
5766
5767 spin_lock(&ctx->completion_lock);
5768 io_poll_req_insert(req);
5769 spin_unlock(&ctx->completion_lock);
5770
5771 if (mask) {
5772 /* can't multishot if failed, just queue the event we've got */
5773 if (unlikely(ipt->error || !ipt->nr_entries)) {
5774 poll->events |= EPOLLONESHOT;
5775 ipt->error = 0;
5776 }
5777 __io_poll_execute(req, mask);
5778 return 0;
5779 }
5780
5781 /*
5782 * Try to release ownership. If we see a change of state, e.g.
5783 * poll was waken up, queue up a tw, it'll deal with it.
5784 */
5785 if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5786 __io_poll_execute(req, 0);
5787 return 0;
5788 }
5789
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5790 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5791 struct poll_table_struct *p)
5792 {
5793 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5794 struct async_poll *apoll = pt->req->apoll;
5795
5796 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5797 }
5798
5799 enum {
5800 IO_APOLL_OK,
5801 IO_APOLL_ABORTED,
5802 IO_APOLL_READY
5803 };
5804
5805 /*
5806 * We can't reliably detect loops in repeated poll triggers and issue
5807 * subsequently failing. But rather than fail these immediately, allow a
5808 * certain amount of retries before we give up. Given that this condition
5809 * should _rarely_ trigger even once, we should be fine with a larger value.
5810 */
5811 #define APOLL_MAX_RETRY 128
5812
io_arm_poll_handler(struct io_kiocb * req)5813 static int io_arm_poll_handler(struct io_kiocb *req)
5814 {
5815 const struct io_op_def *def = &io_op_defs[req->opcode];
5816 struct io_ring_ctx *ctx = req->ctx;
5817 struct async_poll *apoll;
5818 struct io_poll_table ipt;
5819 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5820 int ret;
5821
5822 if (!req->file || !file_can_poll(req->file))
5823 return IO_APOLL_ABORTED;
5824 if (!def->pollin && !def->pollout)
5825 return IO_APOLL_ABORTED;
5826
5827 if (def->pollin) {
5828 mask |= POLLIN | POLLRDNORM;
5829
5830 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5831 if ((req->opcode == IORING_OP_RECVMSG) &&
5832 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5833 mask &= ~POLLIN;
5834 } else {
5835 mask |= POLLOUT | POLLWRNORM;
5836 }
5837
5838 if (req->flags & REQ_F_POLLED) {
5839 apoll = req->apoll;
5840 kfree(apoll->double_poll);
5841 if (unlikely(!--apoll->poll.retries)) {
5842 apoll->double_poll = NULL;
5843 return IO_APOLL_ABORTED;
5844 }
5845 } else {
5846 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5847 if (unlikely(!apoll))
5848 return IO_APOLL_ABORTED;
5849 apoll->poll.retries = APOLL_MAX_RETRY;
5850 }
5851 apoll->double_poll = NULL;
5852 req->apoll = apoll;
5853 req->flags |= REQ_F_POLLED;
5854 ipt.pt._qproc = io_async_queue_proc;
5855
5856 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5857 if (ret || ipt.error)
5858 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5859
5860 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5861 mask, apoll->poll.events);
5862 return IO_APOLL_OK;
5863 }
5864
5865 /*
5866 * Returns true if we found and killed one or more poll requests
5867 */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)5868 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5869 bool cancel_all)
5870 {
5871 struct hlist_node *tmp;
5872 struct io_kiocb *req;
5873 bool found = false;
5874 int i;
5875
5876 spin_lock(&ctx->completion_lock);
5877 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5878 struct hlist_head *list;
5879
5880 list = &ctx->cancel_hash[i];
5881 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5882 if (io_match_task_safe(req, tsk, cancel_all)) {
5883 hlist_del_init(&req->hash_node);
5884 io_poll_cancel_req(req);
5885 found = true;
5886 }
5887 }
5888 }
5889 spin_unlock(&ctx->completion_lock);
5890 return found;
5891 }
5892
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5893 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5894 bool poll_only)
5895 __must_hold(&ctx->completion_lock)
5896 {
5897 struct hlist_head *list;
5898 struct io_kiocb *req;
5899
5900 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5901 hlist_for_each_entry(req, list, hash_node) {
5902 if (sqe_addr != req->user_data)
5903 continue;
5904 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5905 continue;
5906 return req;
5907 }
5908 return NULL;
5909 }
5910
io_poll_disarm(struct io_kiocb * req)5911 static bool io_poll_disarm(struct io_kiocb *req)
5912 __must_hold(&ctx->completion_lock)
5913 {
5914 if (!io_poll_get_ownership(req))
5915 return false;
5916 io_poll_remove_entries(req);
5917 hash_del(&req->hash_node);
5918 return true;
5919 }
5920
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5921 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5922 bool poll_only)
5923 __must_hold(&ctx->completion_lock)
5924 {
5925 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5926
5927 if (!req)
5928 return -ENOENT;
5929 io_poll_cancel_req(req);
5930 return 0;
5931 }
5932
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)5933 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5934 unsigned int flags)
5935 {
5936 u32 events;
5937
5938 events = READ_ONCE(sqe->poll32_events);
5939 #ifdef __BIG_ENDIAN
5940 events = swahw32(events);
5941 #endif
5942 if (!(flags & IORING_POLL_ADD_MULTI))
5943 events |= EPOLLONESHOT;
5944 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5945 }
5946
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5947 static int io_poll_update_prep(struct io_kiocb *req,
5948 const struct io_uring_sqe *sqe)
5949 {
5950 struct io_poll_update *upd = &req->poll_update;
5951 u32 flags;
5952
5953 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5954 return -EINVAL;
5955 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5956 return -EINVAL;
5957 flags = READ_ONCE(sqe->len);
5958 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5959 IORING_POLL_ADD_MULTI))
5960 return -EINVAL;
5961 /* meaningless without update */
5962 if (flags == IORING_POLL_ADD_MULTI)
5963 return -EINVAL;
5964
5965 upd->old_user_data = READ_ONCE(sqe->addr);
5966 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5967 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5968
5969 upd->new_user_data = READ_ONCE(sqe->off);
5970 if (!upd->update_user_data && upd->new_user_data)
5971 return -EINVAL;
5972 if (upd->update_events)
5973 upd->events = io_poll_parse_events(sqe, flags);
5974 else if (sqe->poll32_events)
5975 return -EINVAL;
5976
5977 return 0;
5978 }
5979
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5980 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5981 {
5982 struct io_poll_iocb *poll = &req->poll;
5983 u32 flags;
5984
5985 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5986 return -EINVAL;
5987 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5988 return -EINVAL;
5989 flags = READ_ONCE(sqe->len);
5990 if (flags & ~IORING_POLL_ADD_MULTI)
5991 return -EINVAL;
5992
5993 io_req_set_refcount(req);
5994 poll->events = io_poll_parse_events(sqe, flags);
5995 return 0;
5996 }
5997
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)5998 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5999 {
6000 struct io_poll_iocb *poll = &req->poll;
6001 struct io_poll_table ipt;
6002 int ret;
6003
6004 ipt.pt._qproc = io_poll_queue_proc;
6005
6006 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
6007 if (!ret && ipt.error)
6008 req_set_fail(req);
6009 ret = ret ?: ipt.error;
6010 if (ret)
6011 __io_req_complete(req, issue_flags, ret, 0);
6012 return 0;
6013 }
6014
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)6015 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6016 {
6017 struct io_ring_ctx *ctx = req->ctx;
6018 struct io_kiocb *preq;
6019 int ret2, ret = 0;
6020
6021 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6022
6023 spin_lock(&ctx->completion_lock);
6024 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6025 if (!preq || !io_poll_disarm(preq)) {
6026 spin_unlock(&ctx->completion_lock);
6027 ret = preq ? -EALREADY : -ENOENT;
6028 goto out;
6029 }
6030 spin_unlock(&ctx->completion_lock);
6031
6032 if (req->poll_update.update_events || req->poll_update.update_user_data) {
6033 /* only mask one event flags, keep behavior flags */
6034 if (req->poll_update.update_events) {
6035 preq->poll.events &= ~0xffff;
6036 preq->poll.events |= req->poll_update.events & 0xffff;
6037 preq->poll.events |= IO_POLL_UNMASK;
6038 }
6039 if (req->poll_update.update_user_data)
6040 preq->user_data = req->poll_update.new_user_data;
6041
6042 ret2 = io_poll_add(preq, issue_flags);
6043 /* successfully updated, don't complete poll request */
6044 if (!ret2)
6045 goto out;
6046 }
6047 req_set_fail(preq);
6048 io_req_complete(preq, -ECANCELED);
6049 out:
6050 if (ret < 0)
6051 req_set_fail(req);
6052 /* complete update request, we're done with it */
6053 io_req_complete(req, ret);
6054 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6055 return 0;
6056 }
6057
io_req_task_timeout(struct io_kiocb * req,bool * locked)6058 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
6059 {
6060 req_set_fail(req);
6061 io_req_complete_post(req, -ETIME, 0);
6062 }
6063
io_timeout_fn(struct hrtimer * timer)6064 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6065 {
6066 struct io_timeout_data *data = container_of(timer,
6067 struct io_timeout_data, timer);
6068 struct io_kiocb *req = data->req;
6069 struct io_ring_ctx *ctx = req->ctx;
6070 unsigned long flags;
6071
6072 spin_lock_irqsave(&ctx->timeout_lock, flags);
6073 list_del_init(&req->timeout.list);
6074 atomic_set(&req->ctx->cq_timeouts,
6075 atomic_read(&req->ctx->cq_timeouts) + 1);
6076 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6077
6078 req->io_task_work.func = io_req_task_timeout;
6079 io_req_task_work_add(req);
6080 return HRTIMER_NORESTART;
6081 }
6082
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)6083 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6084 __u64 user_data)
6085 __must_hold(&ctx->timeout_lock)
6086 {
6087 struct io_timeout_data *io;
6088 struct io_kiocb *req;
6089 bool found = false;
6090
6091 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6092 found = user_data == req->user_data;
6093 if (found)
6094 break;
6095 }
6096 if (!found)
6097 return ERR_PTR(-ENOENT);
6098
6099 io = req->async_data;
6100 if (hrtimer_try_to_cancel(&io->timer) == -1)
6101 return ERR_PTR(-EALREADY);
6102 list_del_init(&req->timeout.list);
6103 return req;
6104 }
6105
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)6106 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6107 __must_hold(&ctx->completion_lock)
6108 __must_hold(&ctx->timeout_lock)
6109 {
6110 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6111
6112 if (IS_ERR(req))
6113 return PTR_ERR(req);
6114
6115 req_set_fail(req);
6116 io_fill_cqe_req(req, -ECANCELED, 0);
6117 io_put_req_deferred(req);
6118 return 0;
6119 }
6120
io_timeout_get_clock(struct io_timeout_data * data)6121 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6122 {
6123 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6124 case IORING_TIMEOUT_BOOTTIME:
6125 return CLOCK_BOOTTIME;
6126 case IORING_TIMEOUT_REALTIME:
6127 return CLOCK_REALTIME;
6128 default:
6129 /* can't happen, vetted at prep time */
6130 WARN_ON_ONCE(1);
6131 fallthrough;
6132 case 0:
6133 return CLOCK_MONOTONIC;
6134 }
6135 }
6136
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6137 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6138 struct timespec64 *ts, enum hrtimer_mode mode)
6139 __must_hold(&ctx->timeout_lock)
6140 {
6141 struct io_timeout_data *io;
6142 struct io_kiocb *req;
6143 bool found = false;
6144
6145 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6146 found = user_data == req->user_data;
6147 if (found)
6148 break;
6149 }
6150 if (!found)
6151 return -ENOENT;
6152
6153 io = req->async_data;
6154 if (hrtimer_try_to_cancel(&io->timer) == -1)
6155 return -EALREADY;
6156 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6157 io->timer.function = io_link_timeout_fn;
6158 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6159 return 0;
6160 }
6161
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6162 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6163 struct timespec64 *ts, enum hrtimer_mode mode)
6164 __must_hold(&ctx->timeout_lock)
6165 {
6166 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6167 struct io_timeout_data *data;
6168
6169 if (IS_ERR(req))
6170 return PTR_ERR(req);
6171
6172 req->timeout.off = 0; /* noseq */
6173 data = req->async_data;
6174 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6175 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6176 data->timer.function = io_timeout_fn;
6177 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6178 return 0;
6179 }
6180
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6181 static int io_timeout_remove_prep(struct io_kiocb *req,
6182 const struct io_uring_sqe *sqe)
6183 {
6184 struct io_timeout_rem *tr = &req->timeout_rem;
6185
6186 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6187 return -EINVAL;
6188 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6189 return -EINVAL;
6190 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6191 return -EINVAL;
6192
6193 tr->ltimeout = false;
6194 tr->addr = READ_ONCE(sqe->addr);
6195 tr->flags = READ_ONCE(sqe->timeout_flags);
6196 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6197 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6198 return -EINVAL;
6199 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6200 tr->ltimeout = true;
6201 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6202 return -EINVAL;
6203 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6204 return -EFAULT;
6205 } else if (tr->flags) {
6206 /* timeout removal doesn't support flags */
6207 return -EINVAL;
6208 }
6209
6210 return 0;
6211 }
6212
io_translate_timeout_mode(unsigned int flags)6213 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6214 {
6215 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6216 : HRTIMER_MODE_REL;
6217 }
6218
6219 /*
6220 * Remove or update an existing timeout command
6221 */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6222 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6223 {
6224 struct io_timeout_rem *tr = &req->timeout_rem;
6225 struct io_ring_ctx *ctx = req->ctx;
6226 int ret;
6227
6228 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6229 spin_lock(&ctx->completion_lock);
6230 spin_lock_irq(&ctx->timeout_lock);
6231 ret = io_timeout_cancel(ctx, tr->addr);
6232 spin_unlock_irq(&ctx->timeout_lock);
6233 spin_unlock(&ctx->completion_lock);
6234 } else {
6235 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6236
6237 spin_lock_irq(&ctx->timeout_lock);
6238 if (tr->ltimeout)
6239 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6240 else
6241 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6242 spin_unlock_irq(&ctx->timeout_lock);
6243 }
6244
6245 if (ret < 0)
6246 req_set_fail(req);
6247 io_req_complete_post(req, ret, 0);
6248 return 0;
6249 }
6250
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6251 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6252 bool is_timeout_link)
6253 {
6254 struct io_timeout_data *data;
6255 unsigned flags;
6256 u32 off = READ_ONCE(sqe->off);
6257
6258 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6259 return -EINVAL;
6260 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6261 sqe->splice_fd_in)
6262 return -EINVAL;
6263 if (off && is_timeout_link)
6264 return -EINVAL;
6265 flags = READ_ONCE(sqe->timeout_flags);
6266 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6267 return -EINVAL;
6268 /* more than one clock specified is invalid, obviously */
6269 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6270 return -EINVAL;
6271
6272 INIT_LIST_HEAD(&req->timeout.list);
6273 req->timeout.off = off;
6274 if (unlikely(off && !req->ctx->off_timeout_used))
6275 req->ctx->off_timeout_used = true;
6276
6277 if (!req->async_data && io_alloc_async_data(req))
6278 return -ENOMEM;
6279
6280 data = req->async_data;
6281 data->req = req;
6282 data->flags = flags;
6283
6284 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6285 return -EFAULT;
6286
6287 INIT_LIST_HEAD(&req->timeout.list);
6288 data->mode = io_translate_timeout_mode(flags);
6289 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6290
6291 if (is_timeout_link) {
6292 struct io_submit_link *link = &req->ctx->submit_state.link;
6293
6294 if (!link->head)
6295 return -EINVAL;
6296 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6297 return -EINVAL;
6298 req->timeout.head = link->last;
6299 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6300 }
6301 return 0;
6302 }
6303
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6304 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6305 {
6306 struct io_ring_ctx *ctx = req->ctx;
6307 struct io_timeout_data *data = req->async_data;
6308 struct list_head *entry;
6309 u32 tail, off = req->timeout.off;
6310
6311 spin_lock_irq(&ctx->timeout_lock);
6312
6313 /*
6314 * sqe->off holds how many events that need to occur for this
6315 * timeout event to be satisfied. If it isn't set, then this is
6316 * a pure timeout request, sequence isn't used.
6317 */
6318 if (io_is_timeout_noseq(req)) {
6319 entry = ctx->timeout_list.prev;
6320 goto add;
6321 }
6322
6323 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6324 req->timeout.target_seq = tail + off;
6325
6326 /* Update the last seq here in case io_flush_timeouts() hasn't.
6327 * This is safe because ->completion_lock is held, and submissions
6328 * and completions are never mixed in the same ->completion_lock section.
6329 */
6330 ctx->cq_last_tm_flush = tail;
6331
6332 /*
6333 * Insertion sort, ensuring the first entry in the list is always
6334 * the one we need first.
6335 */
6336 list_for_each_prev(entry, &ctx->timeout_list) {
6337 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6338 timeout.list);
6339
6340 if (io_is_timeout_noseq(nxt))
6341 continue;
6342 /* nxt.seq is behind @tail, otherwise would've been completed */
6343 if (off >= nxt->timeout.target_seq - tail)
6344 break;
6345 }
6346 add:
6347 list_add(&req->timeout.list, entry);
6348 data->timer.function = io_timeout_fn;
6349 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6350 spin_unlock_irq(&ctx->timeout_lock);
6351 return 0;
6352 }
6353
6354 struct io_cancel_data {
6355 struct io_ring_ctx *ctx;
6356 u64 user_data;
6357 };
6358
io_cancel_cb(struct io_wq_work * work,void * data)6359 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6360 {
6361 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6362 struct io_cancel_data *cd = data;
6363
6364 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6365 }
6366
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6367 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6368 struct io_ring_ctx *ctx)
6369 {
6370 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6371 enum io_wq_cancel cancel_ret;
6372 int ret = 0;
6373
6374 if (!tctx || !tctx->io_wq)
6375 return -ENOENT;
6376
6377 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6378 switch (cancel_ret) {
6379 case IO_WQ_CANCEL_OK:
6380 ret = 0;
6381 break;
6382 case IO_WQ_CANCEL_RUNNING:
6383 ret = -EALREADY;
6384 break;
6385 case IO_WQ_CANCEL_NOTFOUND:
6386 ret = -ENOENT;
6387 break;
6388 }
6389
6390 return ret;
6391 }
6392
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6393 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6394 {
6395 struct io_ring_ctx *ctx = req->ctx;
6396 int ret;
6397
6398 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6399
6400 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6401 if (ret != -ENOENT)
6402 return ret;
6403
6404 spin_lock(&ctx->completion_lock);
6405 spin_lock_irq(&ctx->timeout_lock);
6406 ret = io_timeout_cancel(ctx, sqe_addr);
6407 spin_unlock_irq(&ctx->timeout_lock);
6408 if (ret != -ENOENT)
6409 goto out;
6410 ret = io_poll_cancel(ctx, sqe_addr, false);
6411 out:
6412 spin_unlock(&ctx->completion_lock);
6413 return ret;
6414 }
6415
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6416 static int io_async_cancel_prep(struct io_kiocb *req,
6417 const struct io_uring_sqe *sqe)
6418 {
6419 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6420 return -EINVAL;
6421 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6422 return -EINVAL;
6423 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6424 sqe->splice_fd_in)
6425 return -EINVAL;
6426
6427 req->cancel.addr = READ_ONCE(sqe->addr);
6428 return 0;
6429 }
6430
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6431 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6432 {
6433 struct io_ring_ctx *ctx = req->ctx;
6434 u64 sqe_addr = req->cancel.addr;
6435 struct io_tctx_node *node;
6436 int ret;
6437
6438 ret = io_try_cancel_userdata(req, sqe_addr);
6439 if (ret != -ENOENT)
6440 goto done;
6441
6442 /* slow path, try all io-wq's */
6443 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6444 ret = -ENOENT;
6445 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6446 struct io_uring_task *tctx = node->task->io_uring;
6447
6448 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6449 if (ret != -ENOENT)
6450 break;
6451 }
6452 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6453 done:
6454 if (ret < 0)
6455 req_set_fail(req);
6456 io_req_complete_post(req, ret, 0);
6457 return 0;
6458 }
6459
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6460 static int io_rsrc_update_prep(struct io_kiocb *req,
6461 const struct io_uring_sqe *sqe)
6462 {
6463 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6464 return -EINVAL;
6465 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6466 return -EINVAL;
6467
6468 req->rsrc_update.offset = READ_ONCE(sqe->off);
6469 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6470 if (!req->rsrc_update.nr_args)
6471 return -EINVAL;
6472 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6473 return 0;
6474 }
6475
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6476 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6477 {
6478 struct io_ring_ctx *ctx = req->ctx;
6479 struct io_uring_rsrc_update2 up;
6480 int ret;
6481
6482 up.offset = req->rsrc_update.offset;
6483 up.data = req->rsrc_update.arg;
6484 up.nr = 0;
6485 up.tags = 0;
6486 up.resv = 0;
6487 up.resv2 = 0;
6488
6489 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6490 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6491 &up, req->rsrc_update.nr_args);
6492 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6493
6494 if (ret < 0)
6495 req_set_fail(req);
6496 __io_req_complete(req, issue_flags, ret, 0);
6497 return 0;
6498 }
6499
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6500 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6501 {
6502 switch (req->opcode) {
6503 case IORING_OP_NOP:
6504 return 0;
6505 case IORING_OP_READV:
6506 case IORING_OP_READ_FIXED:
6507 case IORING_OP_READ:
6508 return io_read_prep(req, sqe);
6509 case IORING_OP_WRITEV:
6510 case IORING_OP_WRITE_FIXED:
6511 case IORING_OP_WRITE:
6512 return io_write_prep(req, sqe);
6513 case IORING_OP_POLL_ADD:
6514 return io_poll_add_prep(req, sqe);
6515 case IORING_OP_POLL_REMOVE:
6516 return io_poll_update_prep(req, sqe);
6517 case IORING_OP_FSYNC:
6518 return io_fsync_prep(req, sqe);
6519 case IORING_OP_SYNC_FILE_RANGE:
6520 return io_sfr_prep(req, sqe);
6521 case IORING_OP_SENDMSG:
6522 case IORING_OP_SEND:
6523 return io_sendmsg_prep(req, sqe);
6524 case IORING_OP_RECVMSG:
6525 case IORING_OP_RECV:
6526 return io_recvmsg_prep(req, sqe);
6527 case IORING_OP_CONNECT:
6528 return io_connect_prep(req, sqe);
6529 case IORING_OP_TIMEOUT:
6530 return io_timeout_prep(req, sqe, false);
6531 case IORING_OP_TIMEOUT_REMOVE:
6532 return io_timeout_remove_prep(req, sqe);
6533 case IORING_OP_ASYNC_CANCEL:
6534 return io_async_cancel_prep(req, sqe);
6535 case IORING_OP_LINK_TIMEOUT:
6536 return io_timeout_prep(req, sqe, true);
6537 case IORING_OP_ACCEPT:
6538 return io_accept_prep(req, sqe);
6539 case IORING_OP_FALLOCATE:
6540 return io_fallocate_prep(req, sqe);
6541 case IORING_OP_OPENAT:
6542 return io_openat_prep(req, sqe);
6543 case IORING_OP_CLOSE:
6544 return io_close_prep(req, sqe);
6545 case IORING_OP_FILES_UPDATE:
6546 return io_rsrc_update_prep(req, sqe);
6547 case IORING_OP_STATX:
6548 return io_statx_prep(req, sqe);
6549 case IORING_OP_FADVISE:
6550 return io_fadvise_prep(req, sqe);
6551 case IORING_OP_MADVISE:
6552 return io_madvise_prep(req, sqe);
6553 case IORING_OP_OPENAT2:
6554 return io_openat2_prep(req, sqe);
6555 case IORING_OP_EPOLL_CTL:
6556 return io_epoll_ctl_prep(req, sqe);
6557 case IORING_OP_SPLICE:
6558 return io_splice_prep(req, sqe);
6559 case IORING_OP_PROVIDE_BUFFERS:
6560 return io_provide_buffers_prep(req, sqe);
6561 case IORING_OP_REMOVE_BUFFERS:
6562 return io_remove_buffers_prep(req, sqe);
6563 case IORING_OP_TEE:
6564 return io_tee_prep(req, sqe);
6565 case IORING_OP_SHUTDOWN:
6566 return io_shutdown_prep(req, sqe);
6567 case IORING_OP_RENAMEAT:
6568 return io_renameat_prep(req, sqe);
6569 case IORING_OP_UNLINKAT:
6570 return io_unlinkat_prep(req, sqe);
6571 }
6572
6573 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6574 req->opcode);
6575 return -EINVAL;
6576 }
6577
io_req_prep_async(struct io_kiocb * req)6578 static int io_req_prep_async(struct io_kiocb *req)
6579 {
6580 if (!io_op_defs[req->opcode].needs_async_setup)
6581 return 0;
6582 if (WARN_ON_ONCE(req->async_data))
6583 return -EFAULT;
6584 if (io_alloc_async_data(req))
6585 return -EAGAIN;
6586
6587 switch (req->opcode) {
6588 case IORING_OP_READV:
6589 return io_rw_prep_async(req, READ);
6590 case IORING_OP_WRITEV:
6591 return io_rw_prep_async(req, WRITE);
6592 case IORING_OP_SENDMSG:
6593 return io_sendmsg_prep_async(req);
6594 case IORING_OP_RECVMSG:
6595 return io_recvmsg_prep_async(req);
6596 case IORING_OP_CONNECT:
6597 return io_connect_prep_async(req);
6598 }
6599 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6600 req->opcode);
6601 return -EFAULT;
6602 }
6603
io_get_sequence(struct io_kiocb * req)6604 static u32 io_get_sequence(struct io_kiocb *req)
6605 {
6606 u32 seq = req->ctx->cached_sq_head;
6607
6608 /* need original cached_sq_head, but it was increased for each req */
6609 io_for_each_link(req, req)
6610 seq--;
6611 return seq;
6612 }
6613
io_drain_req(struct io_kiocb * req)6614 static bool io_drain_req(struct io_kiocb *req)
6615 {
6616 struct io_kiocb *pos;
6617 struct io_ring_ctx *ctx = req->ctx;
6618 struct io_defer_entry *de;
6619 int ret;
6620 u32 seq;
6621
6622 if (req->flags & REQ_F_FAIL) {
6623 io_req_complete_fail_submit(req);
6624 return true;
6625 }
6626
6627 /*
6628 * If we need to drain a request in the middle of a link, drain the
6629 * head request and the next request/link after the current link.
6630 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6631 * maintained for every request of our link.
6632 */
6633 if (ctx->drain_next) {
6634 req->flags |= REQ_F_IO_DRAIN;
6635 ctx->drain_next = false;
6636 }
6637 /* not interested in head, start from the first linked */
6638 io_for_each_link(pos, req->link) {
6639 if (pos->flags & REQ_F_IO_DRAIN) {
6640 ctx->drain_next = true;
6641 req->flags |= REQ_F_IO_DRAIN;
6642 break;
6643 }
6644 }
6645
6646 /* Still need defer if there is pending req in defer list. */
6647 spin_lock(&ctx->completion_lock);
6648 if (likely(list_empty_careful(&ctx->defer_list) &&
6649 !(req->flags & REQ_F_IO_DRAIN))) {
6650 spin_unlock(&ctx->completion_lock);
6651 ctx->drain_active = false;
6652 return false;
6653 }
6654 spin_unlock(&ctx->completion_lock);
6655
6656 seq = io_get_sequence(req);
6657 /* Still a chance to pass the sequence check */
6658 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6659 return false;
6660
6661 ret = io_req_prep_async(req);
6662 if (ret)
6663 goto fail;
6664 io_prep_async_link(req);
6665 de = kmalloc(sizeof(*de), GFP_KERNEL);
6666 if (!de) {
6667 ret = -ENOMEM;
6668 fail:
6669 io_req_complete_failed(req, ret);
6670 return true;
6671 }
6672
6673 spin_lock(&ctx->completion_lock);
6674 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6675 spin_unlock(&ctx->completion_lock);
6676 kfree(de);
6677 io_queue_async_work(req, NULL);
6678 return true;
6679 }
6680
6681 trace_io_uring_defer(ctx, req, req->user_data);
6682 de->req = req;
6683 de->seq = seq;
6684 list_add_tail(&de->list, &ctx->defer_list);
6685 spin_unlock(&ctx->completion_lock);
6686 return true;
6687 }
6688
io_clean_op(struct io_kiocb * req)6689 static void io_clean_op(struct io_kiocb *req)
6690 {
6691 if (req->flags & REQ_F_BUFFER_SELECTED) {
6692 switch (req->opcode) {
6693 case IORING_OP_READV:
6694 case IORING_OP_READ_FIXED:
6695 case IORING_OP_READ:
6696 kfree((void *)(unsigned long)req->rw.addr);
6697 break;
6698 case IORING_OP_RECVMSG:
6699 case IORING_OP_RECV:
6700 kfree(req->sr_msg.kbuf);
6701 break;
6702 }
6703 }
6704
6705 if (req->flags & REQ_F_NEED_CLEANUP) {
6706 switch (req->opcode) {
6707 case IORING_OP_READV:
6708 case IORING_OP_READ_FIXED:
6709 case IORING_OP_READ:
6710 case IORING_OP_WRITEV:
6711 case IORING_OP_WRITE_FIXED:
6712 case IORING_OP_WRITE: {
6713 struct io_async_rw *io = req->async_data;
6714
6715 kfree(io->free_iovec);
6716 break;
6717 }
6718 case IORING_OP_RECVMSG:
6719 case IORING_OP_SENDMSG: {
6720 struct io_async_msghdr *io = req->async_data;
6721
6722 kfree(io->free_iov);
6723 break;
6724 }
6725 case IORING_OP_OPENAT:
6726 case IORING_OP_OPENAT2:
6727 if (req->open.filename)
6728 putname(req->open.filename);
6729 break;
6730 case IORING_OP_RENAMEAT:
6731 putname(req->rename.oldpath);
6732 putname(req->rename.newpath);
6733 break;
6734 case IORING_OP_UNLINKAT:
6735 putname(req->unlink.filename);
6736 break;
6737 }
6738 }
6739 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6740 kfree(req->apoll->double_poll);
6741 kfree(req->apoll);
6742 req->apoll = NULL;
6743 }
6744 if (req->flags & REQ_F_INFLIGHT) {
6745 struct io_uring_task *tctx = req->task->io_uring;
6746
6747 atomic_dec(&tctx->inflight_tracked);
6748 }
6749 if (req->flags & REQ_F_CREDS)
6750 put_cred(req->creds);
6751
6752 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6753 }
6754
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6755 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6756 {
6757 struct io_ring_ctx *ctx = req->ctx;
6758 const struct cred *creds = NULL;
6759 int ret;
6760
6761 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6762 creds = override_creds(req->creds);
6763
6764 switch (req->opcode) {
6765 case IORING_OP_NOP:
6766 ret = io_nop(req, issue_flags);
6767 break;
6768 case IORING_OP_READV:
6769 case IORING_OP_READ_FIXED:
6770 case IORING_OP_READ:
6771 ret = io_read(req, issue_flags);
6772 break;
6773 case IORING_OP_WRITEV:
6774 case IORING_OP_WRITE_FIXED:
6775 case IORING_OP_WRITE:
6776 ret = io_write(req, issue_flags);
6777 break;
6778 case IORING_OP_FSYNC:
6779 ret = io_fsync(req, issue_flags);
6780 break;
6781 case IORING_OP_POLL_ADD:
6782 ret = io_poll_add(req, issue_flags);
6783 break;
6784 case IORING_OP_POLL_REMOVE:
6785 ret = io_poll_update(req, issue_flags);
6786 break;
6787 case IORING_OP_SYNC_FILE_RANGE:
6788 ret = io_sync_file_range(req, issue_flags);
6789 break;
6790 case IORING_OP_SENDMSG:
6791 ret = io_sendmsg(req, issue_flags);
6792 break;
6793 case IORING_OP_SEND:
6794 ret = io_send(req, issue_flags);
6795 break;
6796 case IORING_OP_RECVMSG:
6797 ret = io_recvmsg(req, issue_flags);
6798 break;
6799 case IORING_OP_RECV:
6800 ret = io_recv(req, issue_flags);
6801 break;
6802 case IORING_OP_TIMEOUT:
6803 ret = io_timeout(req, issue_flags);
6804 break;
6805 case IORING_OP_TIMEOUT_REMOVE:
6806 ret = io_timeout_remove(req, issue_flags);
6807 break;
6808 case IORING_OP_ACCEPT:
6809 ret = io_accept(req, issue_flags);
6810 break;
6811 case IORING_OP_CONNECT:
6812 ret = io_connect(req, issue_flags);
6813 break;
6814 case IORING_OP_ASYNC_CANCEL:
6815 ret = io_async_cancel(req, issue_flags);
6816 break;
6817 case IORING_OP_FALLOCATE:
6818 ret = io_fallocate(req, issue_flags);
6819 break;
6820 case IORING_OP_OPENAT:
6821 ret = io_openat(req, issue_flags);
6822 break;
6823 case IORING_OP_CLOSE:
6824 ret = io_close(req, issue_flags);
6825 break;
6826 case IORING_OP_FILES_UPDATE:
6827 ret = io_files_update(req, issue_flags);
6828 break;
6829 case IORING_OP_STATX:
6830 ret = io_statx(req, issue_flags);
6831 break;
6832 case IORING_OP_FADVISE:
6833 ret = io_fadvise(req, issue_flags);
6834 break;
6835 case IORING_OP_MADVISE:
6836 ret = io_madvise(req, issue_flags);
6837 break;
6838 case IORING_OP_OPENAT2:
6839 ret = io_openat2(req, issue_flags);
6840 break;
6841 case IORING_OP_EPOLL_CTL:
6842 ret = io_epoll_ctl(req, issue_flags);
6843 break;
6844 case IORING_OP_SPLICE:
6845 ret = io_splice(req, issue_flags);
6846 break;
6847 case IORING_OP_PROVIDE_BUFFERS:
6848 ret = io_provide_buffers(req, issue_flags);
6849 break;
6850 case IORING_OP_REMOVE_BUFFERS:
6851 ret = io_remove_buffers(req, issue_flags);
6852 break;
6853 case IORING_OP_TEE:
6854 ret = io_tee(req, issue_flags);
6855 break;
6856 case IORING_OP_SHUTDOWN:
6857 ret = io_shutdown(req, issue_flags);
6858 break;
6859 case IORING_OP_RENAMEAT:
6860 ret = io_renameat(req, issue_flags);
6861 break;
6862 case IORING_OP_UNLINKAT:
6863 ret = io_unlinkat(req, issue_flags);
6864 break;
6865 default:
6866 ret = -EINVAL;
6867 break;
6868 }
6869
6870 if (creds)
6871 revert_creds(creds);
6872 if (ret)
6873 return ret;
6874 /* If the op doesn't have a file, we're not polling for it */
6875 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6876 io_iopoll_req_issued(req);
6877
6878 return 0;
6879 }
6880
io_wq_free_work(struct io_wq_work * work)6881 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6882 {
6883 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6884
6885 req = io_put_req_find_next(req);
6886 return req ? &req->work : NULL;
6887 }
6888
io_wq_submit_work(struct io_wq_work * work)6889 static void io_wq_submit_work(struct io_wq_work *work)
6890 {
6891 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6892 struct io_kiocb *timeout;
6893 int ret = 0;
6894
6895 /* one will be dropped by ->io_free_work() after returning to io-wq */
6896 if (!(req->flags & REQ_F_REFCOUNT))
6897 __io_req_set_refcount(req, 2);
6898 else
6899 req_ref_get(req);
6900
6901 timeout = io_prep_linked_timeout(req);
6902 if (timeout)
6903 io_queue_linked_timeout(timeout);
6904
6905 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6906 if (work->flags & IO_WQ_WORK_CANCEL)
6907 ret = -ECANCELED;
6908
6909 if (!ret) {
6910 do {
6911 ret = io_issue_sqe(req, 0);
6912 /*
6913 * We can get EAGAIN for polled IO even though we're
6914 * forcing a sync submission from here, since we can't
6915 * wait for request slots on the block side.
6916 */
6917 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6918 break;
6919 if (io_wq_worker_stopped())
6920 break;
6921 /*
6922 * If REQ_F_NOWAIT is set, then don't wait or retry with
6923 * poll. -EAGAIN is final for that case.
6924 */
6925 if (req->flags & REQ_F_NOWAIT)
6926 break;
6927
6928 cond_resched();
6929 } while (1);
6930 }
6931
6932 /* avoid locking problems by failing it from a clean context */
6933 if (ret)
6934 io_req_task_queue_fail(req, ret);
6935 }
6936
io_fixed_file_slot(struct io_file_table * table,unsigned i)6937 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6938 unsigned i)
6939 {
6940 return &table->files[i];
6941 }
6942
io_file_from_index(struct io_ring_ctx * ctx,int index)6943 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6944 int index)
6945 {
6946 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6947
6948 return (struct file *) (slot->file_ptr & FFS_MASK);
6949 }
6950
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)6951 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6952 {
6953 unsigned long file_ptr = (unsigned long) file;
6954
6955 if (__io_file_supports_nowait(file, READ))
6956 file_ptr |= FFS_ASYNC_READ;
6957 if (__io_file_supports_nowait(file, WRITE))
6958 file_ptr |= FFS_ASYNC_WRITE;
6959 if (S_ISREG(file_inode(file)->i_mode))
6960 file_ptr |= FFS_ISREG;
6961 file_slot->file_ptr = file_ptr;
6962 }
6963
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,unsigned int issue_flags)6964 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6965 struct io_kiocb *req, int fd,
6966 unsigned int issue_flags)
6967 {
6968 struct file *file = NULL;
6969 unsigned long file_ptr;
6970
6971 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6972
6973 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6974 goto out;
6975 fd = array_index_nospec(fd, ctx->nr_user_files);
6976 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6977 file = (struct file *) (file_ptr & FFS_MASK);
6978 file_ptr &= ~FFS_MASK;
6979 /* mask in overlapping REQ_F and FFS bits */
6980 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6981 io_req_set_rsrc_node(req);
6982 out:
6983 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6984 return file;
6985 }
6986
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6987 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6988 struct io_kiocb *req, int fd)
6989 {
6990 struct file *file = fget(fd);
6991
6992 trace_io_uring_file_get(ctx, fd);
6993
6994 /* we don't allow fixed io_uring files */
6995 if (file && unlikely(file->f_op == &io_uring_fops))
6996 io_req_track_inflight(req);
6997 return file;
6998 }
6999
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed,unsigned int issue_flags)7000 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
7001 struct io_kiocb *req, int fd, bool fixed,
7002 unsigned int issue_flags)
7003 {
7004 if (fixed)
7005 return io_file_get_fixed(ctx, req, fd, issue_flags);
7006 else
7007 return io_file_get_normal(ctx, req, fd);
7008 }
7009
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)7010 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
7011 {
7012 struct io_kiocb *prev = req->timeout.prev;
7013 int ret = -ENOENT;
7014
7015 if (prev) {
7016 if (!(req->task->flags & PF_EXITING))
7017 ret = io_try_cancel_userdata(req, prev->user_data);
7018 io_req_complete_post(req, ret ?: -ETIME, 0);
7019 io_put_req(prev);
7020 } else {
7021 io_req_complete_post(req, -ETIME, 0);
7022 }
7023 }
7024
io_link_timeout_fn(struct hrtimer * timer)7025 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7026 {
7027 struct io_timeout_data *data = container_of(timer,
7028 struct io_timeout_data, timer);
7029 struct io_kiocb *prev, *req = data->req;
7030 struct io_ring_ctx *ctx = req->ctx;
7031 unsigned long flags;
7032
7033 spin_lock_irqsave(&ctx->timeout_lock, flags);
7034 prev = req->timeout.head;
7035 req->timeout.head = NULL;
7036
7037 /*
7038 * We don't expect the list to be empty, that will only happen if we
7039 * race with the completion of the linked work.
7040 */
7041 if (prev) {
7042 io_remove_next_linked(prev);
7043 if (!req_ref_inc_not_zero(prev))
7044 prev = NULL;
7045 }
7046 list_del(&req->timeout.list);
7047 req->timeout.prev = prev;
7048 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7049
7050 req->io_task_work.func = io_req_task_link_timeout;
7051 io_req_task_work_add(req);
7052 return HRTIMER_NORESTART;
7053 }
7054
io_queue_linked_timeout(struct io_kiocb * req)7055 static void io_queue_linked_timeout(struct io_kiocb *req)
7056 {
7057 struct io_ring_ctx *ctx = req->ctx;
7058
7059 spin_lock_irq(&ctx->timeout_lock);
7060 /*
7061 * If the back reference is NULL, then our linked request finished
7062 * before we got a chance to setup the timer
7063 */
7064 if (req->timeout.head) {
7065 struct io_timeout_data *data = req->async_data;
7066
7067 data->timer.function = io_link_timeout_fn;
7068 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7069 data->mode);
7070 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7071 }
7072 spin_unlock_irq(&ctx->timeout_lock);
7073 /* drop submission reference */
7074 io_put_req(req);
7075 }
7076
__io_queue_sqe(struct io_kiocb * req)7077 static void __io_queue_sqe(struct io_kiocb *req)
7078 __must_hold(&req->ctx->uring_lock)
7079 {
7080 struct io_kiocb *linked_timeout;
7081 int ret;
7082
7083 issue_sqe:
7084 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7085
7086 /*
7087 * We async punt it if the file wasn't marked NOWAIT, or if the file
7088 * doesn't support non-blocking read/write attempts
7089 */
7090 if (likely(!ret)) {
7091 if (req->flags & REQ_F_COMPLETE_INLINE) {
7092 struct io_ring_ctx *ctx = req->ctx;
7093 struct io_submit_state *state = &ctx->submit_state;
7094
7095 state->compl_reqs[state->compl_nr++] = req;
7096 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7097 io_submit_flush_completions(ctx);
7098 return;
7099 }
7100
7101 linked_timeout = io_prep_linked_timeout(req);
7102 if (linked_timeout)
7103 io_queue_linked_timeout(linked_timeout);
7104 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7105 linked_timeout = io_prep_linked_timeout(req);
7106
7107 switch (io_arm_poll_handler(req)) {
7108 case IO_APOLL_READY:
7109 if (linked_timeout)
7110 io_queue_linked_timeout(linked_timeout);
7111 goto issue_sqe;
7112 case IO_APOLL_ABORTED:
7113 /*
7114 * Queued up for async execution, worker will release
7115 * submit reference when the iocb is actually submitted.
7116 */
7117 io_queue_async_work(req, NULL);
7118 break;
7119 }
7120
7121 if (linked_timeout)
7122 io_queue_linked_timeout(linked_timeout);
7123 } else {
7124 io_req_complete_failed(req, ret);
7125 }
7126 }
7127
io_queue_sqe(struct io_kiocb * req)7128 static inline void io_queue_sqe(struct io_kiocb *req)
7129 __must_hold(&req->ctx->uring_lock)
7130 {
7131 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7132 return;
7133
7134 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7135 __io_queue_sqe(req);
7136 } else if (req->flags & REQ_F_FAIL) {
7137 io_req_complete_fail_submit(req);
7138 } else {
7139 int ret = io_req_prep_async(req);
7140
7141 if (unlikely(ret))
7142 io_req_complete_failed(req, ret);
7143 else
7144 io_queue_async_work(req, NULL);
7145 }
7146 }
7147
7148 /*
7149 * Check SQE restrictions (opcode and flags).
7150 *
7151 * Returns 'true' if SQE is allowed, 'false' otherwise.
7152 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)7153 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7154 struct io_kiocb *req,
7155 unsigned int sqe_flags)
7156 {
7157 if (likely(!ctx->restricted))
7158 return true;
7159
7160 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7161 return false;
7162
7163 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7164 ctx->restrictions.sqe_flags_required)
7165 return false;
7166
7167 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7168 ctx->restrictions.sqe_flags_required))
7169 return false;
7170
7171 return true;
7172 }
7173
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7174 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7175 const struct io_uring_sqe *sqe)
7176 __must_hold(&ctx->uring_lock)
7177 {
7178 struct io_submit_state *state;
7179 unsigned int sqe_flags;
7180 int personality, ret = 0;
7181
7182 /* req is partially pre-initialised, see io_preinit_req() */
7183 req->opcode = READ_ONCE(sqe->opcode);
7184 /* same numerical values with corresponding REQ_F_*, safe to copy */
7185 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7186 req->user_data = READ_ONCE(sqe->user_data);
7187 req->file = NULL;
7188 req->fixed_rsrc_refs = NULL;
7189 req->task = current;
7190
7191 /* enforce forwards compatibility on users */
7192 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7193 return -EINVAL;
7194 if (unlikely(req->opcode >= IORING_OP_LAST))
7195 return -EINVAL;
7196 if (!io_check_restriction(ctx, req, sqe_flags))
7197 return -EACCES;
7198
7199 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7200 !io_op_defs[req->opcode].buffer_select)
7201 return -EOPNOTSUPP;
7202 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7203 ctx->drain_active = true;
7204
7205 personality = READ_ONCE(sqe->personality);
7206 if (personality) {
7207 req->creds = xa_load(&ctx->personalities, personality);
7208 if (!req->creds)
7209 return -EINVAL;
7210 get_cred(req->creds);
7211 req->flags |= REQ_F_CREDS;
7212 }
7213 state = &ctx->submit_state;
7214
7215 /*
7216 * Plug now if we have more than 1 IO left after this, and the target
7217 * is potentially a read/write to block based storage.
7218 */
7219 if (!state->plug_started && state->ios_left > 1 &&
7220 io_op_defs[req->opcode].plug) {
7221 blk_start_plug(&state->plug);
7222 state->plug_started = true;
7223 }
7224
7225 if (io_op_defs[req->opcode].needs_file) {
7226 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7227 (sqe_flags & IOSQE_FIXED_FILE),
7228 IO_URING_F_NONBLOCK);
7229 if (unlikely(!req->file))
7230 ret = -EBADF;
7231 }
7232
7233 state->ios_left--;
7234 return ret;
7235 }
7236
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7237 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7238 const struct io_uring_sqe *sqe)
7239 __must_hold(&ctx->uring_lock)
7240 {
7241 struct io_submit_link *link = &ctx->submit_state.link;
7242 int ret;
7243
7244 ret = io_init_req(ctx, req, sqe);
7245 if (unlikely(ret)) {
7246 fail_req:
7247 /* fail even hard links since we don't submit */
7248 if (link->head) {
7249 /*
7250 * we can judge a link req is failed or cancelled by if
7251 * REQ_F_FAIL is set, but the head is an exception since
7252 * it may be set REQ_F_FAIL because of other req's failure
7253 * so let's leverage req->result to distinguish if a head
7254 * is set REQ_F_FAIL because of its failure or other req's
7255 * failure so that we can set the correct ret code for it.
7256 * init result here to avoid affecting the normal path.
7257 */
7258 if (!(link->head->flags & REQ_F_FAIL))
7259 req_fail_link_node(link->head, -ECANCELED);
7260 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7261 /*
7262 * the current req is a normal req, we should return
7263 * error and thus break the submittion loop.
7264 */
7265 io_req_complete_failed(req, ret);
7266 return ret;
7267 }
7268 req_fail_link_node(req, ret);
7269 } else {
7270 ret = io_req_prep(req, sqe);
7271 if (unlikely(ret))
7272 goto fail_req;
7273 }
7274
7275 /* don't need @sqe from now on */
7276 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7277 req->flags, true,
7278 ctx->flags & IORING_SETUP_SQPOLL);
7279
7280 /*
7281 * If we already have a head request, queue this one for async
7282 * submittal once the head completes. If we don't have a head but
7283 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7284 * submitted sync once the chain is complete. If none of those
7285 * conditions are true (normal request), then just queue it.
7286 */
7287 if (link->head) {
7288 struct io_kiocb *head = link->head;
7289
7290 if (!(req->flags & REQ_F_FAIL)) {
7291 ret = io_req_prep_async(req);
7292 if (unlikely(ret)) {
7293 req_fail_link_node(req, ret);
7294 if (!(head->flags & REQ_F_FAIL))
7295 req_fail_link_node(head, -ECANCELED);
7296 }
7297 }
7298 trace_io_uring_link(ctx, req, head);
7299 link->last->link = req;
7300 link->last = req;
7301
7302 /* last request of a link, enqueue the link */
7303 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7304 link->head = NULL;
7305 io_queue_sqe(head);
7306 }
7307 } else {
7308 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7309 link->head = req;
7310 link->last = req;
7311 } else {
7312 io_queue_sqe(req);
7313 }
7314 }
7315
7316 return 0;
7317 }
7318
7319 /*
7320 * Batched submission is done, ensure local IO is flushed out.
7321 */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7322 static void io_submit_state_end(struct io_submit_state *state,
7323 struct io_ring_ctx *ctx)
7324 {
7325 if (state->link.head)
7326 io_queue_sqe(state->link.head);
7327 if (state->compl_nr)
7328 io_submit_flush_completions(ctx);
7329 if (state->plug_started)
7330 blk_finish_plug(&state->plug);
7331 }
7332
7333 /*
7334 * Start submission side cache.
7335 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7336 static void io_submit_state_start(struct io_submit_state *state,
7337 unsigned int max_ios)
7338 {
7339 state->plug_started = false;
7340 state->ios_left = max_ios;
7341 /* set only head, no need to init link_last in advance */
7342 state->link.head = NULL;
7343 }
7344
io_commit_sqring(struct io_ring_ctx * ctx)7345 static void io_commit_sqring(struct io_ring_ctx *ctx)
7346 {
7347 struct io_rings *rings = ctx->rings;
7348
7349 /*
7350 * Ensure any loads from the SQEs are done at this point,
7351 * since once we write the new head, the application could
7352 * write new data to them.
7353 */
7354 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7355 }
7356
7357 /*
7358 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7359 * that is mapped by userspace. This means that care needs to be taken to
7360 * ensure that reads are stable, as we cannot rely on userspace always
7361 * being a good citizen. If members of the sqe are validated and then later
7362 * used, it's important that those reads are done through READ_ONCE() to
7363 * prevent a re-load down the line.
7364 */
io_get_sqe(struct io_ring_ctx * ctx)7365 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7366 {
7367 unsigned head, mask = ctx->sq_entries - 1;
7368 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7369
7370 /*
7371 * The cached sq head (or cq tail) serves two purposes:
7372 *
7373 * 1) allows us to batch the cost of updating the user visible
7374 * head updates.
7375 * 2) allows the kernel side to track the head on its own, even
7376 * though the application is the one updating it.
7377 */
7378 head = READ_ONCE(ctx->sq_array[sq_idx]);
7379 if (likely(head < ctx->sq_entries))
7380 return &ctx->sq_sqes[head];
7381
7382 /* drop invalid entries */
7383 ctx->cq_extra--;
7384 WRITE_ONCE(ctx->rings->sq_dropped,
7385 READ_ONCE(ctx->rings->sq_dropped) + 1);
7386 return NULL;
7387 }
7388
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7389 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7390 __must_hold(&ctx->uring_lock)
7391 {
7392 int submitted = 0;
7393
7394 /* make sure SQ entry isn't read before tail */
7395 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7396 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7397 return -EAGAIN;
7398 io_get_task_refs(nr);
7399
7400 io_submit_state_start(&ctx->submit_state, nr);
7401 while (submitted < nr) {
7402 const struct io_uring_sqe *sqe;
7403 struct io_kiocb *req;
7404
7405 req = io_alloc_req(ctx);
7406 if (unlikely(!req)) {
7407 if (!submitted)
7408 submitted = -EAGAIN;
7409 break;
7410 }
7411 sqe = io_get_sqe(ctx);
7412 if (unlikely(!sqe)) {
7413 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7414 break;
7415 }
7416 /* will complete beyond this point, count as submitted */
7417 submitted++;
7418 if (io_submit_sqe(ctx, req, sqe))
7419 break;
7420 }
7421
7422 if (unlikely(submitted != nr)) {
7423 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7424 int unused = nr - ref_used;
7425
7426 current->io_uring->cached_refs += unused;
7427 percpu_ref_put_many(&ctx->refs, unused);
7428 }
7429
7430 io_submit_state_end(&ctx->submit_state, ctx);
7431 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7432 io_commit_sqring(ctx);
7433
7434 return submitted;
7435 }
7436
io_sqd_events_pending(struct io_sq_data * sqd)7437 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7438 {
7439 return READ_ONCE(sqd->state);
7440 }
7441
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7442 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7443 {
7444 /* Tell userspace we may need a wakeup call */
7445 spin_lock(&ctx->completion_lock);
7446 WRITE_ONCE(ctx->rings->sq_flags,
7447 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7448 spin_unlock(&ctx->completion_lock);
7449 }
7450
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7451 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7452 {
7453 spin_lock(&ctx->completion_lock);
7454 WRITE_ONCE(ctx->rings->sq_flags,
7455 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7456 spin_unlock(&ctx->completion_lock);
7457 }
7458
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7459 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7460 {
7461 unsigned int to_submit;
7462 int ret = 0;
7463
7464 to_submit = io_sqring_entries(ctx);
7465 /* if we're handling multiple rings, cap submit size for fairness */
7466 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7467 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7468
7469 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7470 unsigned nr_events = 0;
7471 const struct cred *creds = NULL;
7472
7473 if (ctx->sq_creds != current_cred())
7474 creds = override_creds(ctx->sq_creds);
7475
7476 mutex_lock(&ctx->uring_lock);
7477 if (!list_empty(&ctx->iopoll_list))
7478 io_do_iopoll(ctx, &nr_events, 0);
7479
7480 /*
7481 * Don't submit if refs are dying, good for io_uring_register(),
7482 * but also it is relied upon by io_ring_exit_work()
7483 */
7484 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7485 !(ctx->flags & IORING_SETUP_R_DISABLED))
7486 ret = io_submit_sqes(ctx, to_submit);
7487 mutex_unlock(&ctx->uring_lock);
7488
7489 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7490 wake_up(&ctx->sqo_sq_wait);
7491 if (creds)
7492 revert_creds(creds);
7493 }
7494
7495 return ret;
7496 }
7497
io_sqd_update_thread_idle(struct io_sq_data * sqd)7498 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7499 {
7500 struct io_ring_ctx *ctx;
7501 unsigned sq_thread_idle = 0;
7502
7503 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7504 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7505 sqd->sq_thread_idle = sq_thread_idle;
7506 }
7507
io_sqd_handle_event(struct io_sq_data * sqd)7508 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7509 {
7510 bool did_sig = false;
7511 struct ksignal ksig;
7512
7513 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7514 signal_pending(current)) {
7515 mutex_unlock(&sqd->lock);
7516 if (signal_pending(current))
7517 did_sig = get_signal(&ksig);
7518 cond_resched();
7519 mutex_lock(&sqd->lock);
7520 }
7521 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7522 }
7523
io_sq_thread(void * data)7524 static int io_sq_thread(void *data)
7525 {
7526 struct io_sq_data *sqd = data;
7527 struct io_ring_ctx *ctx;
7528 unsigned long timeout = 0;
7529 char buf[TASK_COMM_LEN];
7530 DEFINE_WAIT(wait);
7531
7532 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7533 set_task_comm(current, buf);
7534
7535 if (sqd->sq_cpu != -1)
7536 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7537 else
7538 set_cpus_allowed_ptr(current, cpu_online_mask);
7539 current->flags |= PF_NO_SETAFFINITY;
7540
7541 mutex_lock(&sqd->lock);
7542 while (1) {
7543 bool cap_entries, sqt_spin = false;
7544
7545 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7546 if (io_sqd_handle_event(sqd))
7547 break;
7548 timeout = jiffies + sqd->sq_thread_idle;
7549 }
7550
7551 cap_entries = !list_is_singular(&sqd->ctx_list);
7552 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7553 int ret = __io_sq_thread(ctx, cap_entries);
7554
7555 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7556 sqt_spin = true;
7557 }
7558 if (io_run_task_work())
7559 sqt_spin = true;
7560
7561 if (sqt_spin || !time_after(jiffies, timeout)) {
7562 cond_resched();
7563 if (sqt_spin)
7564 timeout = jiffies + sqd->sq_thread_idle;
7565 continue;
7566 }
7567
7568 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7569 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7570 bool needs_sched = true;
7571
7572 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7573 io_ring_set_wakeup_flag(ctx);
7574
7575 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7576 !list_empty_careful(&ctx->iopoll_list)) {
7577 needs_sched = false;
7578 break;
7579 }
7580 if (io_sqring_entries(ctx)) {
7581 needs_sched = false;
7582 break;
7583 }
7584 }
7585
7586 if (needs_sched) {
7587 mutex_unlock(&sqd->lock);
7588 schedule();
7589 mutex_lock(&sqd->lock);
7590 }
7591 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7592 io_ring_clear_wakeup_flag(ctx);
7593 }
7594
7595 finish_wait(&sqd->wait, &wait);
7596 timeout = jiffies + sqd->sq_thread_idle;
7597 }
7598
7599 io_uring_cancel_generic(true, sqd);
7600 sqd->thread = NULL;
7601 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7602 io_ring_set_wakeup_flag(ctx);
7603 io_run_task_work();
7604 mutex_unlock(&sqd->lock);
7605
7606 complete(&sqd->exited);
7607 do_exit(0);
7608 }
7609
7610 struct io_wait_queue {
7611 struct wait_queue_entry wq;
7612 struct io_ring_ctx *ctx;
7613 unsigned cq_tail;
7614 unsigned nr_timeouts;
7615 };
7616
io_should_wake(struct io_wait_queue * iowq)7617 static inline bool io_should_wake(struct io_wait_queue *iowq)
7618 {
7619 struct io_ring_ctx *ctx = iowq->ctx;
7620 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7621
7622 /*
7623 * Wake up if we have enough events, or if a timeout occurred since we
7624 * started waiting. For timeouts, we always want to return to userspace,
7625 * regardless of event count.
7626 */
7627 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7628 }
7629
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7630 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7631 int wake_flags, void *key)
7632 {
7633 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7634 wq);
7635
7636 /*
7637 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7638 * the task, and the next invocation will do it.
7639 */
7640 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7641 return autoremove_wake_function(curr, mode, wake_flags, key);
7642 return -1;
7643 }
7644
io_run_task_work_sig(void)7645 static int io_run_task_work_sig(void)
7646 {
7647 if (io_run_task_work())
7648 return 1;
7649 if (!signal_pending(current))
7650 return 0;
7651 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7652 return -ERESTARTSYS;
7653 return -EINTR;
7654 }
7655
current_pending_io(void)7656 static bool current_pending_io(void)
7657 {
7658 struct io_uring_task *tctx = current->io_uring;
7659
7660 if (!tctx)
7661 return false;
7662 return percpu_counter_read_positive(&tctx->inflight);
7663 }
7664
7665 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t * timeout)7666 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7667 struct io_wait_queue *iowq,
7668 ktime_t *timeout)
7669 {
7670 int io_wait, ret;
7671
7672 /* make sure we run task_work before checking for signals */
7673 ret = io_run_task_work_sig();
7674 if (ret || io_should_wake(iowq))
7675 return ret;
7676 /* let the caller flush overflows, retry */
7677 if (test_bit(0, &ctx->check_cq_overflow))
7678 return 1;
7679
7680 /*
7681 * Mark us as being in io_wait if we have pending requests, so cpufreq
7682 * can take into account that the task is waiting for IO - turns out
7683 * to be important for low QD IO.
7684 */
7685 io_wait = current->in_iowait;
7686 if (current_pending_io())
7687 current->in_iowait = 1;
7688 ret = 1;
7689 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7690 ret = -ETIME;
7691 current->in_iowait = io_wait;
7692 return ret;
7693 }
7694
7695 /*
7696 * Wait until events become available, if we don't already have some. The
7697 * application must reap them itself, as they reside on the shared cq ring.
7698 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7699 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7700 const sigset_t __user *sig, size_t sigsz,
7701 struct __kernel_timespec __user *uts)
7702 {
7703 struct io_wait_queue iowq;
7704 struct io_rings *rings = ctx->rings;
7705 ktime_t timeout = KTIME_MAX;
7706 int ret;
7707
7708 do {
7709 io_cqring_overflow_flush(ctx);
7710 if (io_cqring_events(ctx) >= min_events)
7711 return 0;
7712 if (!io_run_task_work())
7713 break;
7714 } while (1);
7715
7716 if (uts) {
7717 struct timespec64 ts;
7718
7719 if (get_timespec64(&ts, uts))
7720 return -EFAULT;
7721 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7722 }
7723
7724 if (sig) {
7725 #ifdef CONFIG_COMPAT
7726 if (in_compat_syscall())
7727 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7728 sigsz);
7729 else
7730 #endif
7731 ret = set_user_sigmask(sig, sigsz);
7732
7733 if (ret)
7734 return ret;
7735 }
7736
7737 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7738 iowq.wq.private = current;
7739 INIT_LIST_HEAD(&iowq.wq.entry);
7740 iowq.ctx = ctx;
7741 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7742 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7743
7744 trace_io_uring_cqring_wait(ctx, min_events);
7745 do {
7746 /* if we can't even flush overflow, don't wait for more */
7747 if (!io_cqring_overflow_flush(ctx)) {
7748 ret = -EBUSY;
7749 break;
7750 }
7751 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7752 TASK_INTERRUPTIBLE);
7753 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7754 finish_wait(&ctx->cq_wait, &iowq.wq);
7755 cond_resched();
7756 } while (ret > 0);
7757
7758 restore_saved_sigmask_unless(ret == -EINTR);
7759
7760 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7761 }
7762
io_free_page_table(void ** table,size_t size)7763 static void io_free_page_table(void **table, size_t size)
7764 {
7765 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7766
7767 for (i = 0; i < nr_tables; i++)
7768 kfree(table[i]);
7769 kfree(table);
7770 }
7771
io_alloc_page_table(size_t size)7772 static void **io_alloc_page_table(size_t size)
7773 {
7774 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7775 size_t init_size = size;
7776 void **table;
7777
7778 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7779 if (!table)
7780 return NULL;
7781
7782 for (i = 0; i < nr_tables; i++) {
7783 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7784
7785 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7786 if (!table[i]) {
7787 io_free_page_table(table, init_size);
7788 return NULL;
7789 }
7790 size -= this_size;
7791 }
7792 return table;
7793 }
7794
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7795 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7796 {
7797 percpu_ref_exit(&ref_node->refs);
7798 kfree(ref_node);
7799 }
7800
io_rsrc_node_ref_zero(struct percpu_ref * ref)7801 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7802 {
7803 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7804 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7805 unsigned long flags;
7806 bool first_add = false;
7807 unsigned long delay = HZ;
7808
7809 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7810 node->done = true;
7811
7812 /* if we are mid-quiesce then do not delay */
7813 if (node->rsrc_data->quiesce)
7814 delay = 0;
7815
7816 while (!list_empty(&ctx->rsrc_ref_list)) {
7817 node = list_first_entry(&ctx->rsrc_ref_list,
7818 struct io_rsrc_node, node);
7819 /* recycle ref nodes in order */
7820 if (!node->done)
7821 break;
7822 list_del(&node->node);
7823 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7824 }
7825 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7826
7827 if (first_add)
7828 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7829 }
7830
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7831 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7832 {
7833 struct io_rsrc_node *ref_node;
7834
7835 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7836 if (!ref_node)
7837 return NULL;
7838
7839 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7840 0, GFP_KERNEL)) {
7841 kfree(ref_node);
7842 return NULL;
7843 }
7844 INIT_LIST_HEAD(&ref_node->node);
7845 INIT_LIST_HEAD(&ref_node->rsrc_list);
7846 ref_node->done = false;
7847 return ref_node;
7848 }
7849
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)7850 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7851 struct io_rsrc_data *data_to_kill)
7852 {
7853 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7854 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7855
7856 if (data_to_kill) {
7857 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7858
7859 rsrc_node->rsrc_data = data_to_kill;
7860 spin_lock_irq(&ctx->rsrc_ref_lock);
7861 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7862 spin_unlock_irq(&ctx->rsrc_ref_lock);
7863
7864 atomic_inc(&data_to_kill->refs);
7865 percpu_ref_kill(&rsrc_node->refs);
7866 ctx->rsrc_node = NULL;
7867 }
7868
7869 if (!ctx->rsrc_node) {
7870 ctx->rsrc_node = ctx->rsrc_backup_node;
7871 ctx->rsrc_backup_node = NULL;
7872 }
7873 }
7874
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)7875 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7876 {
7877 if (ctx->rsrc_backup_node)
7878 return 0;
7879 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7880 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7881 }
7882
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)7883 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7884 {
7885 int ret;
7886
7887 /* As we may drop ->uring_lock, other task may have started quiesce */
7888 if (data->quiesce)
7889 return -ENXIO;
7890
7891 data->quiesce = true;
7892 do {
7893 ret = io_rsrc_node_switch_start(ctx);
7894 if (ret)
7895 break;
7896 io_rsrc_node_switch(ctx, data);
7897
7898 /* kill initial ref, already quiesced if zero */
7899 if (atomic_dec_and_test(&data->refs))
7900 break;
7901 mutex_unlock(&ctx->uring_lock);
7902 flush_delayed_work(&ctx->rsrc_put_work);
7903 ret = wait_for_completion_interruptible(&data->done);
7904 if (!ret) {
7905 mutex_lock(&ctx->uring_lock);
7906 if (atomic_read(&data->refs) > 0) {
7907 /*
7908 * it has been revived by another thread while
7909 * we were unlocked
7910 */
7911 mutex_unlock(&ctx->uring_lock);
7912 } else {
7913 break;
7914 }
7915 }
7916
7917 atomic_inc(&data->refs);
7918 /* wait for all works potentially completing data->done */
7919 flush_delayed_work(&ctx->rsrc_put_work);
7920 reinit_completion(&data->done);
7921
7922 ret = io_run_task_work_sig();
7923 mutex_lock(&ctx->uring_lock);
7924 } while (ret >= 0);
7925 data->quiesce = false;
7926
7927 return ret;
7928 }
7929
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)7930 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7931 {
7932 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7933 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7934
7935 return &data->tags[table_idx][off];
7936 }
7937
io_rsrc_data_free(struct io_rsrc_data * data)7938 static void io_rsrc_data_free(struct io_rsrc_data *data)
7939 {
7940 size_t size = data->nr * sizeof(data->tags[0][0]);
7941
7942 if (data->tags)
7943 io_free_page_table((void **)data->tags, size);
7944 kfree(data);
7945 }
7946
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)7947 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7948 u64 __user *utags, unsigned nr,
7949 struct io_rsrc_data **pdata)
7950 {
7951 struct io_rsrc_data *data;
7952 int ret = -ENOMEM;
7953 unsigned i;
7954
7955 data = kzalloc(sizeof(*data), GFP_KERNEL);
7956 if (!data)
7957 return -ENOMEM;
7958 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7959 if (!data->tags) {
7960 kfree(data);
7961 return -ENOMEM;
7962 }
7963
7964 data->nr = nr;
7965 data->ctx = ctx;
7966 data->do_put = do_put;
7967 if (utags) {
7968 ret = -EFAULT;
7969 for (i = 0; i < nr; i++) {
7970 u64 *tag_slot = io_get_tag_slot(data, i);
7971
7972 if (copy_from_user(tag_slot, &utags[i],
7973 sizeof(*tag_slot)))
7974 goto fail;
7975 }
7976 }
7977
7978 atomic_set(&data->refs, 1);
7979 init_completion(&data->done);
7980 *pdata = data;
7981 return 0;
7982 fail:
7983 io_rsrc_data_free(data);
7984 return ret;
7985 }
7986
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)7987 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7988 {
7989 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7990 GFP_KERNEL_ACCOUNT);
7991 return !!table->files;
7992 }
7993
io_free_file_tables(struct io_file_table * table)7994 static void io_free_file_tables(struct io_file_table *table)
7995 {
7996 kvfree(table->files);
7997 table->files = NULL;
7998 }
7999
__io_sqe_files_unregister(struct io_ring_ctx * ctx)8000 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
8001 {
8002 #if defined(CONFIG_UNIX)
8003 if (ctx->ring_sock) {
8004 struct sock *sock = ctx->ring_sock->sk;
8005 struct sk_buff *skb;
8006
8007 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
8008 kfree_skb(skb);
8009 }
8010 #else
8011 int i;
8012
8013 for (i = 0; i < ctx->nr_user_files; i++) {
8014 struct file *file;
8015
8016 file = io_file_from_index(ctx, i);
8017 if (file)
8018 fput(file);
8019 }
8020 #endif
8021 io_free_file_tables(&ctx->file_table);
8022 io_rsrc_data_free(ctx->file_data);
8023 ctx->file_data = NULL;
8024 ctx->nr_user_files = 0;
8025 }
8026
io_sqe_files_unregister(struct io_ring_ctx * ctx)8027 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8028 {
8029 unsigned nr = ctx->nr_user_files;
8030 int ret;
8031
8032 if (!ctx->file_data)
8033 return -ENXIO;
8034
8035 /*
8036 * Quiesce may unlock ->uring_lock, and while it's not held
8037 * prevent new requests using the table.
8038 */
8039 ctx->nr_user_files = 0;
8040 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8041 ctx->nr_user_files = nr;
8042 if (!ret)
8043 __io_sqe_files_unregister(ctx);
8044 return ret;
8045 }
8046
io_sq_thread_unpark(struct io_sq_data * sqd)8047 static void io_sq_thread_unpark(struct io_sq_data *sqd)
8048 __releases(&sqd->lock)
8049 {
8050 WARN_ON_ONCE(sqd->thread == current);
8051
8052 /*
8053 * Do the dance but not conditional clear_bit() because it'd race with
8054 * other threads incrementing park_pending and setting the bit.
8055 */
8056 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8057 if (atomic_dec_return(&sqd->park_pending))
8058 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8059 mutex_unlock(&sqd->lock);
8060 }
8061
io_sq_thread_park(struct io_sq_data * sqd)8062 static void io_sq_thread_park(struct io_sq_data *sqd)
8063 __acquires(&sqd->lock)
8064 {
8065 WARN_ON_ONCE(sqd->thread == current);
8066
8067 atomic_inc(&sqd->park_pending);
8068 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8069 mutex_lock(&sqd->lock);
8070 if (sqd->thread)
8071 wake_up_process(sqd->thread);
8072 }
8073
io_sq_thread_stop(struct io_sq_data * sqd)8074 static void io_sq_thread_stop(struct io_sq_data *sqd)
8075 {
8076 WARN_ON_ONCE(sqd->thread == current);
8077 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8078
8079 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8080 mutex_lock(&sqd->lock);
8081 if (sqd->thread)
8082 wake_up_process(sqd->thread);
8083 mutex_unlock(&sqd->lock);
8084 wait_for_completion(&sqd->exited);
8085 }
8086
io_put_sq_data(struct io_sq_data * sqd)8087 static void io_put_sq_data(struct io_sq_data *sqd)
8088 {
8089 if (refcount_dec_and_test(&sqd->refs)) {
8090 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8091
8092 io_sq_thread_stop(sqd);
8093 kfree(sqd);
8094 }
8095 }
8096
io_sq_thread_finish(struct io_ring_ctx * ctx)8097 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8098 {
8099 struct io_sq_data *sqd = ctx->sq_data;
8100
8101 if (sqd) {
8102 io_sq_thread_park(sqd);
8103 list_del_init(&ctx->sqd_list);
8104 io_sqd_update_thread_idle(sqd);
8105 io_sq_thread_unpark(sqd);
8106
8107 io_put_sq_data(sqd);
8108 ctx->sq_data = NULL;
8109 }
8110 }
8111
io_attach_sq_data(struct io_uring_params * p)8112 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8113 {
8114 struct io_ring_ctx *ctx_attach;
8115 struct io_sq_data *sqd;
8116 struct fd f;
8117
8118 f = fdget(p->wq_fd);
8119 if (!f.file)
8120 return ERR_PTR(-ENXIO);
8121 if (f.file->f_op != &io_uring_fops) {
8122 fdput(f);
8123 return ERR_PTR(-EINVAL);
8124 }
8125
8126 ctx_attach = f.file->private_data;
8127 sqd = ctx_attach->sq_data;
8128 if (!sqd) {
8129 fdput(f);
8130 return ERR_PTR(-EINVAL);
8131 }
8132 if (sqd->task_tgid != current->tgid) {
8133 fdput(f);
8134 return ERR_PTR(-EPERM);
8135 }
8136
8137 refcount_inc(&sqd->refs);
8138 fdput(f);
8139 return sqd;
8140 }
8141
io_get_sq_data(struct io_uring_params * p,bool * attached)8142 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8143 bool *attached)
8144 {
8145 struct io_sq_data *sqd;
8146
8147 *attached = false;
8148 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8149 sqd = io_attach_sq_data(p);
8150 if (!IS_ERR(sqd)) {
8151 *attached = true;
8152 return sqd;
8153 }
8154 /* fall through for EPERM case, setup new sqd/task */
8155 if (PTR_ERR(sqd) != -EPERM)
8156 return sqd;
8157 }
8158
8159 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8160 if (!sqd)
8161 return ERR_PTR(-ENOMEM);
8162
8163 atomic_set(&sqd->park_pending, 0);
8164 refcount_set(&sqd->refs, 1);
8165 INIT_LIST_HEAD(&sqd->ctx_list);
8166 mutex_init(&sqd->lock);
8167 init_waitqueue_head(&sqd->wait);
8168 init_completion(&sqd->exited);
8169 return sqd;
8170 }
8171
8172 #if defined(CONFIG_UNIX)
8173 /*
8174 * Ensure the UNIX gc is aware of our file set, so we are certain that
8175 * the io_uring can be safely unregistered on process exit, even if we have
8176 * loops in the file referencing.
8177 */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)8178 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8179 {
8180 struct sock *sk = ctx->ring_sock->sk;
8181 struct scm_fp_list *fpl;
8182 struct sk_buff *skb;
8183 int i, nr_files;
8184
8185 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8186 if (!fpl)
8187 return -ENOMEM;
8188
8189 skb = alloc_skb(0, GFP_KERNEL);
8190 if (!skb) {
8191 kfree(fpl);
8192 return -ENOMEM;
8193 }
8194
8195 skb->sk = sk;
8196 skb->scm_io_uring = 1;
8197
8198 nr_files = 0;
8199 fpl->user = get_uid(current_user());
8200 for (i = 0; i < nr; i++) {
8201 struct file *file = io_file_from_index(ctx, i + offset);
8202
8203 if (!file)
8204 continue;
8205 fpl->fp[nr_files] = get_file(file);
8206 unix_inflight(fpl->user, fpl->fp[nr_files]);
8207 nr_files++;
8208 }
8209
8210 if (nr_files) {
8211 fpl->max = SCM_MAX_FD;
8212 fpl->count = nr_files;
8213 UNIXCB(skb).fp = fpl;
8214 skb->destructor = unix_destruct_scm;
8215 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8216 skb_queue_head(&sk->sk_receive_queue, skb);
8217
8218 for (i = 0; i < nr; i++) {
8219 struct file *file = io_file_from_index(ctx, i + offset);
8220
8221 if (file)
8222 fput(file);
8223 }
8224 } else {
8225 kfree_skb(skb);
8226 free_uid(fpl->user);
8227 kfree(fpl);
8228 }
8229
8230 return 0;
8231 }
8232
8233 /*
8234 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8235 * causes regular reference counting to break down. We rely on the UNIX
8236 * garbage collection to take care of this problem for us.
8237 */
io_sqe_files_scm(struct io_ring_ctx * ctx)8238 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8239 {
8240 unsigned left, total;
8241 int ret = 0;
8242
8243 total = 0;
8244 left = ctx->nr_user_files;
8245 while (left) {
8246 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8247
8248 ret = __io_sqe_files_scm(ctx, this_files, total);
8249 if (ret)
8250 break;
8251 left -= this_files;
8252 total += this_files;
8253 }
8254
8255 if (!ret)
8256 return 0;
8257
8258 while (total < ctx->nr_user_files) {
8259 struct file *file = io_file_from_index(ctx, total);
8260
8261 if (file)
8262 fput(file);
8263 total++;
8264 }
8265
8266 return ret;
8267 }
8268 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8269 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8270 {
8271 return 0;
8272 }
8273 #endif
8274
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8275 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8276 {
8277 struct file *file = prsrc->file;
8278 #if defined(CONFIG_UNIX)
8279 struct sock *sock = ctx->ring_sock->sk;
8280 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8281 struct sk_buff *skb;
8282 int i;
8283
8284 __skb_queue_head_init(&list);
8285
8286 /*
8287 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8288 * remove this entry and rearrange the file array.
8289 */
8290 skb = skb_dequeue(head);
8291 while (skb) {
8292 struct scm_fp_list *fp;
8293
8294 fp = UNIXCB(skb).fp;
8295 for (i = 0; i < fp->count; i++) {
8296 int left;
8297
8298 if (fp->fp[i] != file)
8299 continue;
8300
8301 unix_notinflight(fp->user, fp->fp[i]);
8302 left = fp->count - 1 - i;
8303 if (left) {
8304 memmove(&fp->fp[i], &fp->fp[i + 1],
8305 left * sizeof(struct file *));
8306 }
8307 fp->count--;
8308 if (!fp->count) {
8309 kfree_skb(skb);
8310 skb = NULL;
8311 } else {
8312 __skb_queue_tail(&list, skb);
8313 }
8314 fput(file);
8315 file = NULL;
8316 break;
8317 }
8318
8319 if (!file)
8320 break;
8321
8322 __skb_queue_tail(&list, skb);
8323
8324 skb = skb_dequeue(head);
8325 }
8326
8327 if (skb_peek(&list)) {
8328 spin_lock_irq(&head->lock);
8329 while ((skb = __skb_dequeue(&list)) != NULL)
8330 __skb_queue_tail(head, skb);
8331 spin_unlock_irq(&head->lock);
8332 }
8333 #else
8334 fput(file);
8335 #endif
8336 }
8337
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8338 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8339 {
8340 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8341 struct io_ring_ctx *ctx = rsrc_data->ctx;
8342 struct io_rsrc_put *prsrc, *tmp;
8343
8344 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8345 list_del(&prsrc->list);
8346
8347 if (prsrc->tag) {
8348 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8349
8350 io_ring_submit_lock(ctx, lock_ring);
8351 spin_lock(&ctx->completion_lock);
8352 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8353 io_commit_cqring(ctx);
8354 spin_unlock(&ctx->completion_lock);
8355 io_cqring_ev_posted(ctx);
8356 io_ring_submit_unlock(ctx, lock_ring);
8357 }
8358
8359 rsrc_data->do_put(ctx, prsrc);
8360 kfree(prsrc);
8361 }
8362
8363 io_rsrc_node_destroy(ref_node);
8364 if (atomic_dec_and_test(&rsrc_data->refs))
8365 complete(&rsrc_data->done);
8366 }
8367
io_rsrc_put_work(struct work_struct * work)8368 static void io_rsrc_put_work(struct work_struct *work)
8369 {
8370 struct io_ring_ctx *ctx;
8371 struct llist_node *node;
8372
8373 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8374 node = llist_del_all(&ctx->rsrc_put_llist);
8375
8376 while (node) {
8377 struct io_rsrc_node *ref_node;
8378 struct llist_node *next = node->next;
8379
8380 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8381 __io_rsrc_put_work(ref_node);
8382 node = next;
8383 }
8384 }
8385
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8386 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8387 unsigned nr_args, u64 __user *tags)
8388 {
8389 __s32 __user *fds = (__s32 __user *) arg;
8390 struct file *file;
8391 int fd, ret;
8392 unsigned i;
8393
8394 if (ctx->file_data)
8395 return -EBUSY;
8396 if (!nr_args)
8397 return -EINVAL;
8398 if (nr_args > IORING_MAX_FIXED_FILES)
8399 return -EMFILE;
8400 if (nr_args > rlimit(RLIMIT_NOFILE))
8401 return -EMFILE;
8402 ret = io_rsrc_node_switch_start(ctx);
8403 if (ret)
8404 return ret;
8405 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8406 &ctx->file_data);
8407 if (ret)
8408 return ret;
8409
8410 ret = -ENOMEM;
8411 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8412 goto out_free;
8413
8414 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8415 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8416 ret = -EFAULT;
8417 goto out_fput;
8418 }
8419 /* allow sparse sets */
8420 if (fd == -1) {
8421 ret = -EINVAL;
8422 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8423 goto out_fput;
8424 continue;
8425 }
8426
8427 file = fget(fd);
8428 ret = -EBADF;
8429 if (unlikely(!file))
8430 goto out_fput;
8431
8432 /*
8433 * Don't allow io_uring instances to be registered. If UNIX
8434 * isn't enabled, then this causes a reference cycle and this
8435 * instance can never get freed. If UNIX is enabled we'll
8436 * handle it just fine, but there's still no point in allowing
8437 * a ring fd as it doesn't support regular read/write anyway.
8438 */
8439 if (file->f_op == &io_uring_fops) {
8440 fput(file);
8441 goto out_fput;
8442 }
8443 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8444 }
8445
8446 ret = io_sqe_files_scm(ctx);
8447 if (ret) {
8448 __io_sqe_files_unregister(ctx);
8449 return ret;
8450 }
8451
8452 io_rsrc_node_switch(ctx, NULL);
8453 return ret;
8454 out_fput:
8455 for (i = 0; i < ctx->nr_user_files; i++) {
8456 file = io_file_from_index(ctx, i);
8457 if (file)
8458 fput(file);
8459 }
8460 io_free_file_tables(&ctx->file_table);
8461 ctx->nr_user_files = 0;
8462 out_free:
8463 io_rsrc_data_free(ctx->file_data);
8464 ctx->file_data = NULL;
8465 return ret;
8466 }
8467
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8468 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8469 struct io_rsrc_node *node, void *rsrc)
8470 {
8471 u64 *tag_slot = io_get_tag_slot(data, idx);
8472 struct io_rsrc_put *prsrc;
8473
8474 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8475 if (!prsrc)
8476 return -ENOMEM;
8477
8478 prsrc->tag = *tag_slot;
8479 *tag_slot = 0;
8480 prsrc->rsrc = rsrc;
8481 list_add(&prsrc->list, &node->rsrc_list);
8482 return 0;
8483 }
8484
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8485 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8486 unsigned int issue_flags, u32 slot_index)
8487 {
8488 struct io_ring_ctx *ctx = req->ctx;
8489 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8490 bool needs_switch = false;
8491 struct io_fixed_file *file_slot;
8492 int ret = -EBADF;
8493
8494 io_ring_submit_lock(ctx, !force_nonblock);
8495 if (file->f_op == &io_uring_fops)
8496 goto err;
8497 ret = -ENXIO;
8498 if (!ctx->file_data)
8499 goto err;
8500 ret = -EINVAL;
8501 if (slot_index >= ctx->nr_user_files)
8502 goto err;
8503
8504 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8505 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8506
8507 if (file_slot->file_ptr) {
8508 struct file *old_file;
8509
8510 ret = io_rsrc_node_switch_start(ctx);
8511 if (ret)
8512 goto err;
8513
8514 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8515 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8516 ctx->rsrc_node, old_file);
8517 if (ret)
8518 goto err;
8519 file_slot->file_ptr = 0;
8520 needs_switch = true;
8521 }
8522
8523 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8524 io_fixed_file_set(file_slot, file);
8525 ret = 0;
8526 err:
8527 if (needs_switch)
8528 io_rsrc_node_switch(ctx, ctx->file_data);
8529 io_ring_submit_unlock(ctx, !force_nonblock);
8530 if (ret)
8531 fput(file);
8532 return ret;
8533 }
8534
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8535 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8536 {
8537 unsigned int offset = req->close.file_slot - 1;
8538 struct io_ring_ctx *ctx = req->ctx;
8539 struct io_fixed_file *file_slot;
8540 struct file *file;
8541 int ret;
8542
8543 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8544 ret = -ENXIO;
8545 if (unlikely(!ctx->file_data))
8546 goto out;
8547 ret = -EINVAL;
8548 if (offset >= ctx->nr_user_files)
8549 goto out;
8550 ret = io_rsrc_node_switch_start(ctx);
8551 if (ret)
8552 goto out;
8553
8554 offset = array_index_nospec(offset, ctx->nr_user_files);
8555 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8556 ret = -EBADF;
8557 if (!file_slot->file_ptr)
8558 goto out;
8559
8560 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8561 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8562 if (ret)
8563 goto out;
8564
8565 file_slot->file_ptr = 0;
8566 io_rsrc_node_switch(ctx, ctx->file_data);
8567 ret = 0;
8568 out:
8569 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8570 return ret;
8571 }
8572
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8573 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8574 struct io_uring_rsrc_update2 *up,
8575 unsigned nr_args)
8576 {
8577 u64 __user *tags = u64_to_user_ptr(up->tags);
8578 __s32 __user *fds = u64_to_user_ptr(up->data);
8579 struct io_rsrc_data *data = ctx->file_data;
8580 struct io_fixed_file *file_slot;
8581 struct file *file;
8582 int fd, i, err = 0;
8583 unsigned int done;
8584 bool needs_switch = false;
8585
8586 if (!ctx->file_data)
8587 return -ENXIO;
8588 if (up->offset + nr_args > ctx->nr_user_files)
8589 return -EINVAL;
8590
8591 for (done = 0; done < nr_args; done++) {
8592 u64 tag = 0;
8593
8594 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8595 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8596 err = -EFAULT;
8597 break;
8598 }
8599 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8600 err = -EINVAL;
8601 break;
8602 }
8603 if (fd == IORING_REGISTER_FILES_SKIP)
8604 continue;
8605
8606 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8607 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8608
8609 if (file_slot->file_ptr) {
8610 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8611 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8612 if (err)
8613 break;
8614 file_slot->file_ptr = 0;
8615 needs_switch = true;
8616 }
8617 if (fd != -1) {
8618 file = fget(fd);
8619 if (!file) {
8620 err = -EBADF;
8621 break;
8622 }
8623 /*
8624 * Don't allow io_uring instances to be registered. If
8625 * UNIX isn't enabled, then this causes a reference
8626 * cycle and this instance can never get freed. If UNIX
8627 * is enabled we'll handle it just fine, but there's
8628 * still no point in allowing a ring fd as it doesn't
8629 * support regular read/write anyway.
8630 */
8631 if (file->f_op == &io_uring_fops) {
8632 fput(file);
8633 err = -EBADF;
8634 break;
8635 }
8636 *io_get_tag_slot(data, i) = tag;
8637 io_fixed_file_set(file_slot, file);
8638 }
8639 }
8640
8641 if (needs_switch)
8642 io_rsrc_node_switch(ctx, data);
8643 return done ? done : err;
8644 }
8645
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8646 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8647 struct task_struct *task)
8648 {
8649 struct io_wq_hash *hash;
8650 struct io_wq_data data;
8651 unsigned int concurrency;
8652
8653 mutex_lock(&ctx->uring_lock);
8654 hash = ctx->hash_map;
8655 if (!hash) {
8656 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8657 if (!hash) {
8658 mutex_unlock(&ctx->uring_lock);
8659 return ERR_PTR(-ENOMEM);
8660 }
8661 refcount_set(&hash->refs, 1);
8662 init_waitqueue_head(&hash->wait);
8663 ctx->hash_map = hash;
8664 }
8665 mutex_unlock(&ctx->uring_lock);
8666
8667 data.hash = hash;
8668 data.task = task;
8669 data.free_work = io_wq_free_work;
8670 data.do_work = io_wq_submit_work;
8671
8672 /* Do QD, or 4 * CPUS, whatever is smallest */
8673 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8674
8675 return io_wq_create(concurrency, &data);
8676 }
8677
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8678 static int io_uring_alloc_task_context(struct task_struct *task,
8679 struct io_ring_ctx *ctx)
8680 {
8681 struct io_uring_task *tctx;
8682 int ret;
8683
8684 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8685 if (unlikely(!tctx))
8686 return -ENOMEM;
8687
8688 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8689 if (unlikely(ret)) {
8690 kfree(tctx);
8691 return ret;
8692 }
8693
8694 tctx->io_wq = io_init_wq_offload(ctx, task);
8695 if (IS_ERR(tctx->io_wq)) {
8696 ret = PTR_ERR(tctx->io_wq);
8697 percpu_counter_destroy(&tctx->inflight);
8698 kfree(tctx);
8699 return ret;
8700 }
8701
8702 xa_init(&tctx->xa);
8703 init_waitqueue_head(&tctx->wait);
8704 atomic_set(&tctx->in_idle, 0);
8705 atomic_set(&tctx->inflight_tracked, 0);
8706 task->io_uring = tctx;
8707 spin_lock_init(&tctx->task_lock);
8708 INIT_WQ_LIST(&tctx->task_list);
8709 init_task_work(&tctx->task_work, tctx_task_work);
8710 return 0;
8711 }
8712
__io_uring_free(struct task_struct * tsk)8713 void __io_uring_free(struct task_struct *tsk)
8714 {
8715 struct io_uring_task *tctx = tsk->io_uring;
8716
8717 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8718 WARN_ON_ONCE(tctx->io_wq);
8719 WARN_ON_ONCE(tctx->cached_refs);
8720
8721 percpu_counter_destroy(&tctx->inflight);
8722 kfree(tctx);
8723 tsk->io_uring = NULL;
8724 }
8725
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8726 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8727 struct io_uring_params *p)
8728 {
8729 int ret;
8730
8731 /* Retain compatibility with failing for an invalid attach attempt */
8732 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8733 IORING_SETUP_ATTACH_WQ) {
8734 struct fd f;
8735
8736 f = fdget(p->wq_fd);
8737 if (!f.file)
8738 return -ENXIO;
8739 if (f.file->f_op != &io_uring_fops) {
8740 fdput(f);
8741 return -EINVAL;
8742 }
8743 fdput(f);
8744 }
8745 if (ctx->flags & IORING_SETUP_SQPOLL) {
8746 struct task_struct *tsk;
8747 struct io_sq_data *sqd;
8748 bool attached;
8749
8750 sqd = io_get_sq_data(p, &attached);
8751 if (IS_ERR(sqd)) {
8752 ret = PTR_ERR(sqd);
8753 goto err;
8754 }
8755
8756 ctx->sq_creds = get_current_cred();
8757 ctx->sq_data = sqd;
8758 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8759 if (!ctx->sq_thread_idle)
8760 ctx->sq_thread_idle = HZ;
8761
8762 io_sq_thread_park(sqd);
8763 list_add(&ctx->sqd_list, &sqd->ctx_list);
8764 io_sqd_update_thread_idle(sqd);
8765 /* don't attach to a dying SQPOLL thread, would be racy */
8766 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8767 io_sq_thread_unpark(sqd);
8768
8769 if (ret < 0)
8770 goto err;
8771 if (attached)
8772 return 0;
8773
8774 if (p->flags & IORING_SETUP_SQ_AFF) {
8775 int cpu = p->sq_thread_cpu;
8776
8777 ret = -EINVAL;
8778 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8779 goto err_sqpoll;
8780 sqd->sq_cpu = cpu;
8781 } else {
8782 sqd->sq_cpu = -1;
8783 }
8784
8785 sqd->task_pid = current->pid;
8786 sqd->task_tgid = current->tgid;
8787 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8788 if (IS_ERR(tsk)) {
8789 ret = PTR_ERR(tsk);
8790 goto err_sqpoll;
8791 }
8792
8793 sqd->thread = tsk;
8794 ret = io_uring_alloc_task_context(tsk, ctx);
8795 wake_up_new_task(tsk);
8796 if (ret)
8797 goto err;
8798 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8799 /* Can't have SQ_AFF without SQPOLL */
8800 ret = -EINVAL;
8801 goto err;
8802 }
8803
8804 return 0;
8805 err_sqpoll:
8806 complete(&ctx->sq_data->exited);
8807 err:
8808 io_sq_thread_finish(ctx);
8809 return ret;
8810 }
8811
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8812 static inline void __io_unaccount_mem(struct user_struct *user,
8813 unsigned long nr_pages)
8814 {
8815 atomic_long_sub(nr_pages, &user->locked_vm);
8816 }
8817
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8818 static inline int __io_account_mem(struct user_struct *user,
8819 unsigned long nr_pages)
8820 {
8821 unsigned long page_limit, cur_pages, new_pages;
8822
8823 /* Don't allow more pages than we can safely lock */
8824 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8825
8826 do {
8827 cur_pages = atomic_long_read(&user->locked_vm);
8828 new_pages = cur_pages + nr_pages;
8829 if (new_pages > page_limit)
8830 return -ENOMEM;
8831 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8832 new_pages) != cur_pages);
8833
8834 return 0;
8835 }
8836
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8837 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8838 {
8839 if (ctx->user)
8840 __io_unaccount_mem(ctx->user, nr_pages);
8841
8842 if (ctx->mm_account)
8843 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8844 }
8845
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8846 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8847 {
8848 int ret;
8849
8850 if (ctx->user) {
8851 ret = __io_account_mem(ctx->user, nr_pages);
8852 if (ret)
8853 return ret;
8854 }
8855
8856 if (ctx->mm_account)
8857 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8858
8859 return 0;
8860 }
8861
io_mem_free(void * ptr)8862 static void io_mem_free(void *ptr)
8863 {
8864 struct page *page;
8865
8866 if (!ptr)
8867 return;
8868
8869 page = virt_to_head_page(ptr);
8870 if (put_page_testzero(page))
8871 free_compound_page(page);
8872 }
8873
io_mem_alloc(size_t size)8874 static void *io_mem_alloc(size_t size)
8875 {
8876 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8877
8878 return (void *) __get_free_pages(gfp, get_order(size));
8879 }
8880
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)8881 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8882 size_t *sq_offset)
8883 {
8884 struct io_rings *rings;
8885 size_t off, sq_array_size;
8886
8887 off = struct_size(rings, cqes, cq_entries);
8888 if (off == SIZE_MAX)
8889 return SIZE_MAX;
8890
8891 #ifdef CONFIG_SMP
8892 off = ALIGN(off, SMP_CACHE_BYTES);
8893 if (off == 0)
8894 return SIZE_MAX;
8895 #endif
8896
8897 if (sq_offset)
8898 *sq_offset = off;
8899
8900 sq_array_size = array_size(sizeof(u32), sq_entries);
8901 if (sq_array_size == SIZE_MAX)
8902 return SIZE_MAX;
8903
8904 if (check_add_overflow(off, sq_array_size, &off))
8905 return SIZE_MAX;
8906
8907 return off;
8908 }
8909
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)8910 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8911 {
8912 struct io_mapped_ubuf *imu = *slot;
8913 unsigned int i;
8914
8915 if (imu != ctx->dummy_ubuf) {
8916 for (i = 0; i < imu->nr_bvecs; i++)
8917 unpin_user_page(imu->bvec[i].bv_page);
8918 if (imu->acct_pages)
8919 io_unaccount_mem(ctx, imu->acct_pages);
8920 kvfree(imu);
8921 }
8922 *slot = NULL;
8923 }
8924
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8925 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8926 {
8927 io_buffer_unmap(ctx, &prsrc->buf);
8928 prsrc->buf = NULL;
8929 }
8930
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8931 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8932 {
8933 unsigned int i;
8934
8935 for (i = 0; i < ctx->nr_user_bufs; i++)
8936 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8937 kfree(ctx->user_bufs);
8938 io_rsrc_data_free(ctx->buf_data);
8939 ctx->user_bufs = NULL;
8940 ctx->buf_data = NULL;
8941 ctx->nr_user_bufs = 0;
8942 }
8943
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8944 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8945 {
8946 unsigned nr = ctx->nr_user_bufs;
8947 int ret;
8948
8949 if (!ctx->buf_data)
8950 return -ENXIO;
8951
8952 /*
8953 * Quiesce may unlock ->uring_lock, and while it's not held
8954 * prevent new requests using the table.
8955 */
8956 ctx->nr_user_bufs = 0;
8957 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8958 ctx->nr_user_bufs = nr;
8959 if (!ret)
8960 __io_sqe_buffers_unregister(ctx);
8961 return ret;
8962 }
8963
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8964 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8965 void __user *arg, unsigned index)
8966 {
8967 struct iovec __user *src;
8968
8969 #ifdef CONFIG_COMPAT
8970 if (ctx->compat) {
8971 struct compat_iovec __user *ciovs;
8972 struct compat_iovec ciov;
8973
8974 ciovs = (struct compat_iovec __user *) arg;
8975 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8976 return -EFAULT;
8977
8978 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8979 dst->iov_len = ciov.iov_len;
8980 return 0;
8981 }
8982 #endif
8983 src = (struct iovec __user *) arg;
8984 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8985 return -EFAULT;
8986 return 0;
8987 }
8988
8989 /*
8990 * Not super efficient, but this is just a registration time. And we do cache
8991 * the last compound head, so generally we'll only do a full search if we don't
8992 * match that one.
8993 *
8994 * We check if the given compound head page has already been accounted, to
8995 * avoid double accounting it. This allows us to account the full size of the
8996 * page, not just the constituent pages of a huge page.
8997 */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8998 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8999 int nr_pages, struct page *hpage)
9000 {
9001 int i, j;
9002
9003 /* check current page array */
9004 for (i = 0; i < nr_pages; i++) {
9005 if (!PageCompound(pages[i]))
9006 continue;
9007 if (compound_head(pages[i]) == hpage)
9008 return true;
9009 }
9010
9011 /* check previously registered pages */
9012 for (i = 0; i < ctx->nr_user_bufs; i++) {
9013 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9014
9015 for (j = 0; j < imu->nr_bvecs; j++) {
9016 if (!PageCompound(imu->bvec[j].bv_page))
9017 continue;
9018 if (compound_head(imu->bvec[j].bv_page) == hpage)
9019 return true;
9020 }
9021 }
9022
9023 return false;
9024 }
9025
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)9026 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9027 int nr_pages, struct io_mapped_ubuf *imu,
9028 struct page **last_hpage)
9029 {
9030 int i, ret;
9031
9032 imu->acct_pages = 0;
9033 for (i = 0; i < nr_pages; i++) {
9034 if (!PageCompound(pages[i])) {
9035 imu->acct_pages++;
9036 } else {
9037 struct page *hpage;
9038
9039 hpage = compound_head(pages[i]);
9040 if (hpage == *last_hpage)
9041 continue;
9042 *last_hpage = hpage;
9043 if (headpage_already_acct(ctx, pages, i, hpage))
9044 continue;
9045 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9046 }
9047 }
9048
9049 if (!imu->acct_pages)
9050 return 0;
9051
9052 ret = io_account_mem(ctx, imu->acct_pages);
9053 if (ret)
9054 imu->acct_pages = 0;
9055 return ret;
9056 }
9057
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)9058 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9059 struct io_mapped_ubuf **pimu,
9060 struct page **last_hpage)
9061 {
9062 struct io_mapped_ubuf *imu = NULL;
9063 struct vm_area_struct **vmas = NULL;
9064 struct page **pages = NULL;
9065 unsigned long off, start, end, ubuf;
9066 size_t size;
9067 int ret, pret, nr_pages, i;
9068
9069 if (!iov->iov_base) {
9070 *pimu = ctx->dummy_ubuf;
9071 return 0;
9072 }
9073
9074 ubuf = (unsigned long) iov->iov_base;
9075 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9076 start = ubuf >> PAGE_SHIFT;
9077 nr_pages = end - start;
9078
9079 *pimu = NULL;
9080 ret = -ENOMEM;
9081
9082 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9083 if (!pages)
9084 goto done;
9085
9086 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9087 GFP_KERNEL);
9088 if (!vmas)
9089 goto done;
9090
9091 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9092 if (!imu)
9093 goto done;
9094
9095 ret = 0;
9096 mmap_read_lock(current->mm);
9097 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9098 pages, vmas);
9099 if (pret == nr_pages) {
9100 struct file *file = vmas[0]->vm_file;
9101
9102 /* don't support file backed memory */
9103 for (i = 0; i < nr_pages; i++) {
9104 if (vmas[i]->vm_file != file) {
9105 ret = -EINVAL;
9106 break;
9107 }
9108 if (!file)
9109 continue;
9110 if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) {
9111 ret = -EOPNOTSUPP;
9112 break;
9113 }
9114 }
9115 } else {
9116 ret = pret < 0 ? pret : -EFAULT;
9117 }
9118 mmap_read_unlock(current->mm);
9119 if (ret) {
9120 /*
9121 * if we did partial map, or found file backed vmas,
9122 * release any pages we did get
9123 */
9124 if (pret > 0)
9125 unpin_user_pages(pages, pret);
9126 goto done;
9127 }
9128
9129 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9130 if (ret) {
9131 unpin_user_pages(pages, pret);
9132 goto done;
9133 }
9134
9135 off = ubuf & ~PAGE_MASK;
9136 size = iov->iov_len;
9137 for (i = 0; i < nr_pages; i++) {
9138 size_t vec_len;
9139
9140 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9141 imu->bvec[i].bv_page = pages[i];
9142 imu->bvec[i].bv_len = vec_len;
9143 imu->bvec[i].bv_offset = off;
9144 off = 0;
9145 size -= vec_len;
9146 }
9147 /* store original address for later verification */
9148 imu->ubuf = ubuf;
9149 imu->ubuf_end = ubuf + iov->iov_len;
9150 imu->nr_bvecs = nr_pages;
9151 *pimu = imu;
9152 ret = 0;
9153 done:
9154 if (ret)
9155 kvfree(imu);
9156 kvfree(pages);
9157 kvfree(vmas);
9158 return ret;
9159 }
9160
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)9161 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9162 {
9163 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9164 return ctx->user_bufs ? 0 : -ENOMEM;
9165 }
9166
io_buffer_validate(struct iovec * iov)9167 static int io_buffer_validate(struct iovec *iov)
9168 {
9169 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9170
9171 /*
9172 * Don't impose further limits on the size and buffer
9173 * constraints here, we'll -EINVAL later when IO is
9174 * submitted if they are wrong.
9175 */
9176 if (!iov->iov_base)
9177 return iov->iov_len ? -EFAULT : 0;
9178 if (!iov->iov_len)
9179 return -EFAULT;
9180
9181 /* arbitrary limit, but we need something */
9182 if (iov->iov_len > SZ_1G)
9183 return -EFAULT;
9184
9185 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9186 return -EOVERFLOW;
9187
9188 return 0;
9189 }
9190
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9191 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9192 unsigned int nr_args, u64 __user *tags)
9193 {
9194 struct page *last_hpage = NULL;
9195 struct io_rsrc_data *data;
9196 int i, ret;
9197 struct iovec iov;
9198
9199 if (ctx->user_bufs)
9200 return -EBUSY;
9201 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9202 return -EINVAL;
9203 ret = io_rsrc_node_switch_start(ctx);
9204 if (ret)
9205 return ret;
9206 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9207 if (ret)
9208 return ret;
9209 ret = io_buffers_map_alloc(ctx, nr_args);
9210 if (ret) {
9211 io_rsrc_data_free(data);
9212 return ret;
9213 }
9214
9215 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9216 ret = io_copy_iov(ctx, &iov, arg, i);
9217 if (ret)
9218 break;
9219 ret = io_buffer_validate(&iov);
9220 if (ret)
9221 break;
9222 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9223 ret = -EINVAL;
9224 break;
9225 }
9226
9227 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9228 &last_hpage);
9229 if (ret)
9230 break;
9231 }
9232
9233 WARN_ON_ONCE(ctx->buf_data);
9234
9235 ctx->buf_data = data;
9236 if (ret)
9237 __io_sqe_buffers_unregister(ctx);
9238 else
9239 io_rsrc_node_switch(ctx, NULL);
9240 return ret;
9241 }
9242
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9243 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9244 struct io_uring_rsrc_update2 *up,
9245 unsigned int nr_args)
9246 {
9247 u64 __user *tags = u64_to_user_ptr(up->tags);
9248 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9249 struct page *last_hpage = NULL;
9250 bool needs_switch = false;
9251 __u32 done;
9252 int i, err;
9253
9254 if (!ctx->buf_data)
9255 return -ENXIO;
9256 if (up->offset + nr_args > ctx->nr_user_bufs)
9257 return -EINVAL;
9258
9259 for (done = 0; done < nr_args; done++) {
9260 struct io_mapped_ubuf *imu;
9261 int offset = up->offset + done;
9262 u64 tag = 0;
9263
9264 err = io_copy_iov(ctx, &iov, iovs, done);
9265 if (err)
9266 break;
9267 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9268 err = -EFAULT;
9269 break;
9270 }
9271 err = io_buffer_validate(&iov);
9272 if (err)
9273 break;
9274 if (!iov.iov_base && tag) {
9275 err = -EINVAL;
9276 break;
9277 }
9278 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9279 if (err)
9280 break;
9281
9282 i = array_index_nospec(offset, ctx->nr_user_bufs);
9283 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9284 err = io_queue_rsrc_removal(ctx->buf_data, i,
9285 ctx->rsrc_node, ctx->user_bufs[i]);
9286 if (unlikely(err)) {
9287 io_buffer_unmap(ctx, &imu);
9288 break;
9289 }
9290 ctx->user_bufs[i] = NULL;
9291 needs_switch = true;
9292 }
9293
9294 ctx->user_bufs[i] = imu;
9295 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9296 }
9297
9298 if (needs_switch)
9299 io_rsrc_node_switch(ctx, ctx->buf_data);
9300 return done ? done : err;
9301 }
9302
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9303 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9304 {
9305 __s32 __user *fds = arg;
9306 int fd;
9307
9308 if (ctx->cq_ev_fd)
9309 return -EBUSY;
9310
9311 if (copy_from_user(&fd, fds, sizeof(*fds)))
9312 return -EFAULT;
9313
9314 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9315 if (IS_ERR(ctx->cq_ev_fd)) {
9316 int ret = PTR_ERR(ctx->cq_ev_fd);
9317
9318 ctx->cq_ev_fd = NULL;
9319 return ret;
9320 }
9321
9322 return 0;
9323 }
9324
io_eventfd_unregister(struct io_ring_ctx * ctx)9325 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9326 {
9327 if (ctx->cq_ev_fd) {
9328 eventfd_ctx_put(ctx->cq_ev_fd);
9329 ctx->cq_ev_fd = NULL;
9330 return 0;
9331 }
9332
9333 return -ENXIO;
9334 }
9335
io_destroy_buffers(struct io_ring_ctx * ctx)9336 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9337 {
9338 struct io_buffer *buf;
9339 unsigned long index;
9340
9341 xa_for_each(&ctx->io_buffers, index, buf)
9342 __io_remove_buffers(ctx, buf, index, -1U);
9343 }
9344
io_req_cache_free(struct list_head * list)9345 static void io_req_cache_free(struct list_head *list)
9346 {
9347 struct io_kiocb *req, *nxt;
9348
9349 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9350 list_del(&req->inflight_entry);
9351 kmem_cache_free(req_cachep, req);
9352 }
9353 }
9354
io_req_caches_free(struct io_ring_ctx * ctx)9355 static void io_req_caches_free(struct io_ring_ctx *ctx)
9356 {
9357 struct io_submit_state *state = &ctx->submit_state;
9358
9359 mutex_lock(&ctx->uring_lock);
9360
9361 if (state->free_reqs) {
9362 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9363 state->free_reqs = 0;
9364 }
9365
9366 io_flush_cached_locked_reqs(ctx, state);
9367 io_req_cache_free(&state->free_list);
9368 mutex_unlock(&ctx->uring_lock);
9369 }
9370
io_wait_rsrc_data(struct io_rsrc_data * data)9371 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9372 {
9373 if (data && !atomic_dec_and_test(&data->refs))
9374 wait_for_completion(&data->done);
9375 }
9376
io_ring_ctx_free(struct io_ring_ctx * ctx)9377 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9378 {
9379 io_sq_thread_finish(ctx);
9380
9381 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9382 io_wait_rsrc_data(ctx->buf_data);
9383 io_wait_rsrc_data(ctx->file_data);
9384
9385 mutex_lock(&ctx->uring_lock);
9386 if (ctx->buf_data)
9387 __io_sqe_buffers_unregister(ctx);
9388 if (ctx->file_data)
9389 __io_sqe_files_unregister(ctx);
9390 if (ctx->rings)
9391 __io_cqring_overflow_flush(ctx, true);
9392 mutex_unlock(&ctx->uring_lock);
9393 io_eventfd_unregister(ctx);
9394 io_destroy_buffers(ctx);
9395 if (ctx->sq_creds)
9396 put_cred(ctx->sq_creds);
9397
9398 /* there are no registered resources left, nobody uses it */
9399 if (ctx->rsrc_node)
9400 io_rsrc_node_destroy(ctx->rsrc_node);
9401 if (ctx->rsrc_backup_node)
9402 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9403 flush_delayed_work(&ctx->rsrc_put_work);
9404
9405 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9406 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9407
9408 #if defined(CONFIG_UNIX)
9409 if (ctx->ring_sock) {
9410 ctx->ring_sock->file = NULL; /* so that iput() is called */
9411 sock_release(ctx->ring_sock);
9412 }
9413 #endif
9414 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9415
9416 if (ctx->mm_account) {
9417 mmdrop(ctx->mm_account);
9418 ctx->mm_account = NULL;
9419 }
9420
9421 io_mem_free(ctx->rings);
9422 io_mem_free(ctx->sq_sqes);
9423
9424 percpu_ref_exit(&ctx->refs);
9425 free_uid(ctx->user);
9426 io_req_caches_free(ctx);
9427 if (ctx->hash_map)
9428 io_wq_put_hash(ctx->hash_map);
9429 kfree(ctx->cancel_hash);
9430 kfree(ctx->dummy_ubuf);
9431 kfree(ctx);
9432 }
9433
io_uring_poll(struct file * file,poll_table * wait)9434 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9435 {
9436 struct io_ring_ctx *ctx = file->private_data;
9437 __poll_t mask = 0;
9438
9439 poll_wait(file, &ctx->poll_wait, wait);
9440 /*
9441 * synchronizes with barrier from wq_has_sleeper call in
9442 * io_commit_cqring
9443 */
9444 smp_rmb();
9445 if (!io_sqring_full(ctx))
9446 mask |= EPOLLOUT | EPOLLWRNORM;
9447
9448 /*
9449 * Don't flush cqring overflow list here, just do a simple check.
9450 * Otherwise there could possible be ABBA deadlock:
9451 * CPU0 CPU1
9452 * ---- ----
9453 * lock(&ctx->uring_lock);
9454 * lock(&ep->mtx);
9455 * lock(&ctx->uring_lock);
9456 * lock(&ep->mtx);
9457 *
9458 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9459 * pushs them to do the flush.
9460 */
9461 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9462 mask |= EPOLLIN | EPOLLRDNORM;
9463
9464 return mask;
9465 }
9466
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9467 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9468 {
9469 const struct cred *creds;
9470
9471 creds = xa_erase(&ctx->personalities, id);
9472 if (creds) {
9473 put_cred(creds);
9474 return 0;
9475 }
9476
9477 return -EINVAL;
9478 }
9479
9480 struct io_tctx_exit {
9481 struct callback_head task_work;
9482 struct completion completion;
9483 struct io_ring_ctx *ctx;
9484 };
9485
io_tctx_exit_cb(struct callback_head * cb)9486 static void io_tctx_exit_cb(struct callback_head *cb)
9487 {
9488 struct io_uring_task *tctx = current->io_uring;
9489 struct io_tctx_exit *work;
9490
9491 work = container_of(cb, struct io_tctx_exit, task_work);
9492 /*
9493 * When @in_idle, we're in cancellation and it's racy to remove the
9494 * node. It'll be removed by the end of cancellation, just ignore it.
9495 * tctx can be NULL if the queueing of this task_work raced with
9496 * work cancelation off the exec path.
9497 */
9498 if (tctx && !atomic_read(&tctx->in_idle))
9499 io_uring_del_tctx_node((unsigned long)work->ctx);
9500 complete(&work->completion);
9501 }
9502
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9503 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9504 {
9505 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9506
9507 return req->ctx == data;
9508 }
9509
io_ring_exit_work(struct work_struct * work)9510 static void io_ring_exit_work(struct work_struct *work)
9511 {
9512 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9513 unsigned long timeout = jiffies + HZ * 60 * 5;
9514 unsigned long interval = HZ / 20;
9515 struct io_tctx_exit exit;
9516 struct io_tctx_node *node;
9517 int ret;
9518
9519 /*
9520 * If we're doing polled IO and end up having requests being
9521 * submitted async (out-of-line), then completions can come in while
9522 * we're waiting for refs to drop. We need to reap these manually,
9523 * as nobody else will be looking for them.
9524 */
9525 do {
9526 io_uring_try_cancel_requests(ctx, NULL, true);
9527 if (ctx->sq_data) {
9528 struct io_sq_data *sqd = ctx->sq_data;
9529 struct task_struct *tsk;
9530
9531 io_sq_thread_park(sqd);
9532 tsk = sqd->thread;
9533 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9534 io_wq_cancel_cb(tsk->io_uring->io_wq,
9535 io_cancel_ctx_cb, ctx, true);
9536 io_sq_thread_unpark(sqd);
9537 }
9538
9539 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9540 /* there is little hope left, don't run it too often */
9541 interval = HZ * 60;
9542 }
9543 /*
9544 * This is really an uninterruptible wait, as it has to be
9545 * complete. But it's also run from a kworker, which doesn't
9546 * take signals, so it's fine to make it interruptible. This
9547 * avoids scenarios where we knowingly can wait much longer
9548 * on completions, for example if someone does a SIGSTOP on
9549 * a task that needs to finish task_work to make this loop
9550 * complete. That's a synthetic situation that should not
9551 * cause a stuck task backtrace, and hence a potential panic
9552 * on stuck tasks if that is enabled.
9553 */
9554 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
9555
9556 init_completion(&exit.completion);
9557 init_task_work(&exit.task_work, io_tctx_exit_cb);
9558 exit.ctx = ctx;
9559 /*
9560 * Some may use context even when all refs and requests have been put,
9561 * and they are free to do so while still holding uring_lock or
9562 * completion_lock, see io_req_task_submit(). Apart from other work,
9563 * this lock/unlock section also waits them to finish.
9564 */
9565 mutex_lock(&ctx->uring_lock);
9566 while (!list_empty(&ctx->tctx_list)) {
9567 WARN_ON_ONCE(time_after(jiffies, timeout));
9568
9569 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9570 ctx_node);
9571 /* don't spin on a single task if cancellation failed */
9572 list_rotate_left(&ctx->tctx_list);
9573 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9574 if (WARN_ON_ONCE(ret))
9575 continue;
9576 wake_up_process(node->task);
9577
9578 mutex_unlock(&ctx->uring_lock);
9579 /*
9580 * See comment above for
9581 * wait_for_completion_interruptible_timeout() on why this
9582 * wait is marked as interruptible.
9583 */
9584 wait_for_completion_interruptible(&exit.completion);
9585 mutex_lock(&ctx->uring_lock);
9586 }
9587 mutex_unlock(&ctx->uring_lock);
9588 spin_lock(&ctx->completion_lock);
9589 spin_unlock(&ctx->completion_lock);
9590
9591 io_ring_ctx_free(ctx);
9592 }
9593
9594 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9595 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9596 bool cancel_all)
9597 {
9598 struct io_kiocb *req, *tmp;
9599 int canceled = 0;
9600
9601 spin_lock(&ctx->completion_lock);
9602 spin_lock_irq(&ctx->timeout_lock);
9603 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9604 if (io_match_task(req, tsk, cancel_all)) {
9605 io_kill_timeout(req, -ECANCELED);
9606 canceled++;
9607 }
9608 }
9609 spin_unlock_irq(&ctx->timeout_lock);
9610 if (canceled != 0)
9611 io_commit_cqring(ctx);
9612 spin_unlock(&ctx->completion_lock);
9613 if (canceled != 0)
9614 io_cqring_ev_posted(ctx);
9615 return canceled != 0;
9616 }
9617
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9618 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9619 {
9620 unsigned long index;
9621 struct creds *creds;
9622
9623 mutex_lock(&ctx->uring_lock);
9624 percpu_ref_kill(&ctx->refs);
9625 if (ctx->rings)
9626 __io_cqring_overflow_flush(ctx, true);
9627 xa_for_each(&ctx->personalities, index, creds)
9628 io_unregister_personality(ctx, index);
9629 mutex_unlock(&ctx->uring_lock);
9630
9631 io_kill_timeouts(ctx, NULL, true);
9632 io_poll_remove_all(ctx, NULL, true);
9633
9634 /* if we failed setting up the ctx, we might not have any rings */
9635 io_iopoll_try_reap_events(ctx);
9636
9637 /* drop cached put refs after potentially doing completions */
9638 if (current->io_uring)
9639 io_uring_drop_tctx_refs(current);
9640
9641 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9642 /*
9643 * Use system_unbound_wq to avoid spawning tons of event kworkers
9644 * if we're exiting a ton of rings at the same time. It just adds
9645 * noise and overhead, there's no discernable change in runtime
9646 * over using system_wq.
9647 */
9648 queue_work(system_unbound_wq, &ctx->exit_work);
9649 }
9650
io_uring_release(struct inode * inode,struct file * file)9651 static int io_uring_release(struct inode *inode, struct file *file)
9652 {
9653 struct io_ring_ctx *ctx = file->private_data;
9654
9655 file->private_data = NULL;
9656 io_ring_ctx_wait_and_kill(ctx);
9657 return 0;
9658 }
9659
9660 struct io_task_cancel {
9661 struct task_struct *task;
9662 bool all;
9663 };
9664
io_cancel_task_cb(struct io_wq_work * work,void * data)9665 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9666 {
9667 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9668 struct io_task_cancel *cancel = data;
9669
9670 return io_match_task_safe(req, cancel->task, cancel->all);
9671 }
9672
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9673 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9674 struct task_struct *task, bool cancel_all)
9675 {
9676 struct io_defer_entry *de;
9677 LIST_HEAD(list);
9678
9679 spin_lock(&ctx->completion_lock);
9680 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9681 if (io_match_task_safe(de->req, task, cancel_all)) {
9682 list_cut_position(&list, &ctx->defer_list, &de->list);
9683 break;
9684 }
9685 }
9686 spin_unlock(&ctx->completion_lock);
9687 if (list_empty(&list))
9688 return false;
9689
9690 while (!list_empty(&list)) {
9691 de = list_first_entry(&list, struct io_defer_entry, list);
9692 list_del_init(&de->list);
9693 io_req_complete_failed(de->req, -ECANCELED);
9694 kfree(de);
9695 }
9696 return true;
9697 }
9698
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9699 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9700 {
9701 struct io_tctx_node *node;
9702 enum io_wq_cancel cret;
9703 bool ret = false;
9704
9705 mutex_lock(&ctx->uring_lock);
9706 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9707 struct io_uring_task *tctx = node->task->io_uring;
9708
9709 /*
9710 * io_wq will stay alive while we hold uring_lock, because it's
9711 * killed after ctx nodes, which requires to take the lock.
9712 */
9713 if (!tctx || !tctx->io_wq)
9714 continue;
9715 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9716 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9717 }
9718 mutex_unlock(&ctx->uring_lock);
9719
9720 return ret;
9721 }
9722
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9723 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9724 struct task_struct *task,
9725 bool cancel_all)
9726 {
9727 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9728 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9729
9730 while (1) {
9731 enum io_wq_cancel cret;
9732 bool ret = false;
9733
9734 if (!task) {
9735 ret |= io_uring_try_cancel_iowq(ctx);
9736 } else if (tctx && tctx->io_wq) {
9737 /*
9738 * Cancels requests of all rings, not only @ctx, but
9739 * it's fine as the task is in exit/exec.
9740 */
9741 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9742 &cancel, true);
9743 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9744 }
9745
9746 /* SQPOLL thread does its own polling */
9747 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9748 (ctx->sq_data && ctx->sq_data->thread == current)) {
9749 while (!list_empty_careful(&ctx->iopoll_list)) {
9750 io_iopoll_try_reap_events(ctx);
9751 ret = true;
9752 cond_resched();
9753 }
9754 }
9755
9756 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9757 ret |= io_poll_remove_all(ctx, task, cancel_all);
9758 ret |= io_kill_timeouts(ctx, task, cancel_all);
9759 if (task)
9760 ret |= io_run_task_work();
9761 if (!ret)
9762 break;
9763 cond_resched();
9764 }
9765 }
9766
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9767 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9768 {
9769 struct io_uring_task *tctx = current->io_uring;
9770 struct io_tctx_node *node;
9771 int ret;
9772
9773 if (unlikely(!tctx)) {
9774 ret = io_uring_alloc_task_context(current, ctx);
9775 if (unlikely(ret))
9776 return ret;
9777
9778 tctx = current->io_uring;
9779 if (ctx->iowq_limits_set) {
9780 unsigned int limits[2] = { ctx->iowq_limits[0],
9781 ctx->iowq_limits[1], };
9782
9783 ret = io_wq_max_workers(tctx->io_wq, limits);
9784 if (ret)
9785 return ret;
9786 }
9787 }
9788 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9789 node = kmalloc(sizeof(*node), GFP_KERNEL);
9790 if (!node)
9791 return -ENOMEM;
9792 node->ctx = ctx;
9793 node->task = current;
9794
9795 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9796 node, GFP_KERNEL));
9797 if (ret) {
9798 kfree(node);
9799 return ret;
9800 }
9801
9802 mutex_lock(&ctx->uring_lock);
9803 list_add(&node->ctx_node, &ctx->tctx_list);
9804 mutex_unlock(&ctx->uring_lock);
9805 }
9806 tctx->last = ctx;
9807 return 0;
9808 }
9809
9810 /*
9811 * Note that this task has used io_uring. We use it for cancelation purposes.
9812 */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9813 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9814 {
9815 struct io_uring_task *tctx = current->io_uring;
9816
9817 if (likely(tctx && tctx->last == ctx))
9818 return 0;
9819 return __io_uring_add_tctx_node(ctx);
9820 }
9821
9822 /*
9823 * Remove this io_uring_file -> task mapping.
9824 */
io_uring_del_tctx_node(unsigned long index)9825 static void io_uring_del_tctx_node(unsigned long index)
9826 {
9827 struct io_uring_task *tctx = current->io_uring;
9828 struct io_tctx_node *node;
9829
9830 if (!tctx)
9831 return;
9832 node = xa_erase(&tctx->xa, index);
9833 if (!node)
9834 return;
9835
9836 WARN_ON_ONCE(current != node->task);
9837 WARN_ON_ONCE(list_empty(&node->ctx_node));
9838
9839 mutex_lock(&node->ctx->uring_lock);
9840 list_del(&node->ctx_node);
9841 mutex_unlock(&node->ctx->uring_lock);
9842
9843 if (tctx->last == node->ctx)
9844 tctx->last = NULL;
9845 kfree(node);
9846 }
9847
io_uring_clean_tctx(struct io_uring_task * tctx)9848 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9849 {
9850 struct io_wq *wq = tctx->io_wq;
9851 struct io_tctx_node *node;
9852 unsigned long index;
9853
9854 xa_for_each(&tctx->xa, index, node) {
9855 io_uring_del_tctx_node(index);
9856 cond_resched();
9857 }
9858 if (wq) {
9859 /*
9860 * Must be after io_uring_del_task_file() (removes nodes under
9861 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9862 */
9863 io_wq_put_and_exit(wq);
9864 tctx->io_wq = NULL;
9865 }
9866 }
9867
tctx_inflight(struct io_uring_task * tctx,bool tracked)9868 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9869 {
9870 if (tracked)
9871 return atomic_read(&tctx->inflight_tracked);
9872 return percpu_counter_sum(&tctx->inflight);
9873 }
9874
9875 /*
9876 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9877 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9878 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)9879 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9880 {
9881 struct io_uring_task *tctx = current->io_uring;
9882 struct io_ring_ctx *ctx;
9883 s64 inflight;
9884 DEFINE_WAIT(wait);
9885
9886 WARN_ON_ONCE(sqd && sqd->thread != current);
9887
9888 if (!current->io_uring)
9889 return;
9890 if (tctx->io_wq)
9891 io_wq_exit_start(tctx->io_wq);
9892
9893 atomic_inc(&tctx->in_idle);
9894 do {
9895 io_uring_drop_tctx_refs(current);
9896 /* read completions before cancelations */
9897 inflight = tctx_inflight(tctx, !cancel_all);
9898 if (!inflight)
9899 break;
9900
9901 if (!sqd) {
9902 struct io_tctx_node *node;
9903 unsigned long index;
9904
9905 xa_for_each(&tctx->xa, index, node) {
9906 /* sqpoll task will cancel all its requests */
9907 if (node->ctx->sq_data)
9908 continue;
9909 io_uring_try_cancel_requests(node->ctx, current,
9910 cancel_all);
9911 }
9912 } else {
9913 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9914 io_uring_try_cancel_requests(ctx, current,
9915 cancel_all);
9916 }
9917
9918 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9919 io_run_task_work();
9920 io_uring_drop_tctx_refs(current);
9921
9922 /*
9923 * If we've seen completions, retry without waiting. This
9924 * avoids a race where a completion comes in before we did
9925 * prepare_to_wait().
9926 */
9927 if (inflight == tctx_inflight(tctx, !cancel_all))
9928 schedule();
9929 finish_wait(&tctx->wait, &wait);
9930 } while (1);
9931
9932 io_uring_clean_tctx(tctx);
9933 if (cancel_all) {
9934 /*
9935 * We shouldn't run task_works after cancel, so just leave
9936 * ->in_idle set for normal exit.
9937 */
9938 atomic_dec(&tctx->in_idle);
9939 /* for exec all current's requests should be gone, kill tctx */
9940 __io_uring_free(current);
9941 }
9942 }
9943
__io_uring_cancel(bool cancel_all)9944 void __io_uring_cancel(bool cancel_all)
9945 {
9946 io_uring_cancel_generic(cancel_all, NULL);
9947 }
9948
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)9949 static void *io_uring_validate_mmap_request(struct file *file,
9950 loff_t pgoff, size_t sz)
9951 {
9952 struct io_ring_ctx *ctx = file->private_data;
9953 loff_t offset = pgoff << PAGE_SHIFT;
9954 struct page *page;
9955 void *ptr;
9956
9957 switch (offset) {
9958 case IORING_OFF_SQ_RING:
9959 case IORING_OFF_CQ_RING:
9960 ptr = ctx->rings;
9961 break;
9962 case IORING_OFF_SQES:
9963 ptr = ctx->sq_sqes;
9964 break;
9965 default:
9966 return ERR_PTR(-EINVAL);
9967 }
9968
9969 page = virt_to_head_page(ptr);
9970 if (sz > page_size(page))
9971 return ERR_PTR(-EINVAL);
9972
9973 return ptr;
9974 }
9975
9976 #ifdef CONFIG_MMU
9977
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9978 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9979 {
9980 size_t sz = vma->vm_end - vma->vm_start;
9981 unsigned long pfn;
9982 void *ptr;
9983
9984 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9985 if (IS_ERR(ptr))
9986 return PTR_ERR(ptr);
9987
9988 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9989 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9990 }
9991
9992 #else /* !CONFIG_MMU */
9993
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9994 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9995 {
9996 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9997 }
9998
io_uring_nommu_mmap_capabilities(struct file * file)9999 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
10000 {
10001 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
10002 }
10003
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)10004 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
10005 unsigned long addr, unsigned long len,
10006 unsigned long pgoff, unsigned long flags)
10007 {
10008 void *ptr;
10009
10010 ptr = io_uring_validate_mmap_request(file, pgoff, len);
10011 if (IS_ERR(ptr))
10012 return PTR_ERR(ptr);
10013
10014 return (unsigned long) ptr;
10015 }
10016
10017 #endif /* !CONFIG_MMU */
10018
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)10019 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10020 {
10021 DEFINE_WAIT(wait);
10022
10023 do {
10024 if (!io_sqring_full(ctx))
10025 break;
10026 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10027
10028 if (!io_sqring_full(ctx))
10029 break;
10030 schedule();
10031 } while (!signal_pending(current));
10032
10033 finish_wait(&ctx->sqo_sq_wait, &wait);
10034 return 0;
10035 }
10036
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)10037 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10038 struct __kernel_timespec __user **ts,
10039 const sigset_t __user **sig)
10040 {
10041 struct io_uring_getevents_arg arg;
10042
10043 /*
10044 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10045 * is just a pointer to the sigset_t.
10046 */
10047 if (!(flags & IORING_ENTER_EXT_ARG)) {
10048 *sig = (const sigset_t __user *) argp;
10049 *ts = NULL;
10050 return 0;
10051 }
10052
10053 /*
10054 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10055 * timespec and sigset_t pointers if good.
10056 */
10057 if (*argsz != sizeof(arg))
10058 return -EINVAL;
10059 if (copy_from_user(&arg, argp, sizeof(arg)))
10060 return -EFAULT;
10061 if (arg.pad)
10062 return -EINVAL;
10063 *sig = u64_to_user_ptr(arg.sigmask);
10064 *argsz = arg.sigmask_sz;
10065 *ts = u64_to_user_ptr(arg.ts);
10066 return 0;
10067 }
10068
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)10069 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10070 u32, min_complete, u32, flags, const void __user *, argp,
10071 size_t, argsz)
10072 {
10073 struct io_ring_ctx *ctx;
10074 int submitted = 0;
10075 struct fd f;
10076 long ret;
10077
10078 io_run_task_work();
10079
10080 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10081 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10082 return -EINVAL;
10083
10084 f = fdget(fd);
10085 if (unlikely(!f.file))
10086 return -EBADF;
10087
10088 ret = -EOPNOTSUPP;
10089 if (unlikely(f.file->f_op != &io_uring_fops))
10090 goto out_fput;
10091
10092 ret = -ENXIO;
10093 ctx = f.file->private_data;
10094 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10095 goto out_fput;
10096
10097 ret = -EBADFD;
10098 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10099 goto out;
10100
10101 /*
10102 * For SQ polling, the thread will do all submissions and completions.
10103 * Just return the requested submit count, and wake the thread if
10104 * we were asked to.
10105 */
10106 ret = 0;
10107 if (ctx->flags & IORING_SETUP_SQPOLL) {
10108 io_cqring_overflow_flush(ctx);
10109
10110 if (unlikely(ctx->sq_data->thread == NULL)) {
10111 ret = -EOWNERDEAD;
10112 goto out;
10113 }
10114 if (flags & IORING_ENTER_SQ_WAKEUP)
10115 wake_up(&ctx->sq_data->wait);
10116 if (flags & IORING_ENTER_SQ_WAIT) {
10117 ret = io_sqpoll_wait_sq(ctx);
10118 if (ret)
10119 goto out;
10120 }
10121 submitted = to_submit;
10122 } else if (to_submit) {
10123 ret = io_uring_add_tctx_node(ctx);
10124 if (unlikely(ret))
10125 goto out;
10126 mutex_lock(&ctx->uring_lock);
10127 submitted = io_submit_sqes(ctx, to_submit);
10128 mutex_unlock(&ctx->uring_lock);
10129
10130 if (submitted != to_submit)
10131 goto out;
10132 }
10133 if (flags & IORING_ENTER_GETEVENTS) {
10134 const sigset_t __user *sig;
10135 struct __kernel_timespec __user *ts;
10136
10137 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10138 if (unlikely(ret))
10139 goto out;
10140
10141 min_complete = min(min_complete, ctx->cq_entries);
10142
10143 /*
10144 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10145 * space applications don't need to do io completion events
10146 * polling again, they can rely on io_sq_thread to do polling
10147 * work, which can reduce cpu usage and uring_lock contention.
10148 */
10149 if (ctx->flags & IORING_SETUP_IOPOLL &&
10150 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10151 ret = io_iopoll_check(ctx, min_complete);
10152 } else {
10153 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10154 }
10155 }
10156
10157 out:
10158 percpu_ref_put(&ctx->refs);
10159 out_fput:
10160 fdput(f);
10161 return submitted ? submitted : ret;
10162 }
10163
10164 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)10165 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10166 const struct cred *cred)
10167 {
10168 struct user_namespace *uns = seq_user_ns(m);
10169 struct group_info *gi;
10170 kernel_cap_t cap;
10171 unsigned __capi;
10172 int g;
10173
10174 seq_printf(m, "%5d\n", id);
10175 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10176 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10177 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10178 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10179 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10180 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10181 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10182 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10183 seq_puts(m, "\n\tGroups:\t");
10184 gi = cred->group_info;
10185 for (g = 0; g < gi->ngroups; g++) {
10186 seq_put_decimal_ull(m, g ? " " : "",
10187 from_kgid_munged(uns, gi->gid[g]));
10188 }
10189 seq_puts(m, "\n\tCapEff:\t");
10190 cap = cred->cap_effective;
10191 CAP_FOR_EACH_U32(__capi)
10192 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10193 seq_putc(m, '\n');
10194 return 0;
10195 }
10196
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10197 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10198 {
10199 int sq_pid = -1, sq_cpu = -1;
10200 bool has_lock;
10201 int i;
10202
10203 /*
10204 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10205 * since fdinfo case grabs it in the opposite direction of normal use
10206 * cases. If we fail to get the lock, we just don't iterate any
10207 * structures that could be going away outside the io_uring mutex.
10208 */
10209 has_lock = mutex_trylock(&ctx->uring_lock);
10210
10211 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10212 struct io_sq_data *sq = ctx->sq_data;
10213
10214 if (mutex_trylock(&sq->lock)) {
10215 if (sq->thread) {
10216 sq_pid = task_pid_nr(sq->thread);
10217 sq_cpu = task_cpu(sq->thread);
10218 }
10219 mutex_unlock(&sq->lock);
10220 }
10221 }
10222
10223 seq_printf(m, "SqThread:\t%d\n", sq_pid);
10224 seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu);
10225 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10226 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10227 struct file *f = io_file_from_index(ctx, i);
10228
10229 if (f)
10230 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10231 else
10232 seq_printf(m, "%5u: <none>\n", i);
10233 }
10234 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10235 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10236 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10237 unsigned int len = buf->ubuf_end - buf->ubuf;
10238
10239 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10240 }
10241 if (has_lock && !xa_empty(&ctx->personalities)) {
10242 unsigned long index;
10243 const struct cred *cred;
10244
10245 seq_printf(m, "Personalities:\n");
10246 xa_for_each(&ctx->personalities, index, cred)
10247 io_uring_show_cred(m, index, cred);
10248 }
10249 seq_printf(m, "PollList:\n");
10250 spin_lock(&ctx->completion_lock);
10251 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10252 struct hlist_head *list = &ctx->cancel_hash[i];
10253 struct io_kiocb *req;
10254
10255 hlist_for_each_entry(req, list, hash_node)
10256 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10257 req->task->task_works != NULL);
10258 }
10259 spin_unlock(&ctx->completion_lock);
10260 if (has_lock)
10261 mutex_unlock(&ctx->uring_lock);
10262 }
10263
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10264 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10265 {
10266 struct io_ring_ctx *ctx = f->private_data;
10267
10268 if (percpu_ref_tryget(&ctx->refs)) {
10269 __io_uring_show_fdinfo(ctx, m);
10270 percpu_ref_put(&ctx->refs);
10271 }
10272 }
10273 #endif
10274
10275 static const struct file_operations io_uring_fops = {
10276 .release = io_uring_release,
10277 .mmap = io_uring_mmap,
10278 #ifndef CONFIG_MMU
10279 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10280 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10281 #endif
10282 .poll = io_uring_poll,
10283 #ifdef CONFIG_PROC_FS
10284 .show_fdinfo = io_uring_show_fdinfo,
10285 #endif
10286 };
10287
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10288 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10289 struct io_uring_params *p)
10290 {
10291 struct io_rings *rings;
10292 size_t size, sq_array_offset;
10293
10294 /* make sure these are sane, as we already accounted them */
10295 ctx->sq_entries = p->sq_entries;
10296 ctx->cq_entries = p->cq_entries;
10297
10298 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10299 if (size == SIZE_MAX)
10300 return -EOVERFLOW;
10301
10302 rings = io_mem_alloc(size);
10303 if (!rings)
10304 return -ENOMEM;
10305
10306 ctx->rings = rings;
10307 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10308 rings->sq_ring_mask = p->sq_entries - 1;
10309 rings->cq_ring_mask = p->cq_entries - 1;
10310 rings->sq_ring_entries = p->sq_entries;
10311 rings->cq_ring_entries = p->cq_entries;
10312
10313 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10314 if (size == SIZE_MAX) {
10315 io_mem_free(ctx->rings);
10316 ctx->rings = NULL;
10317 return -EOVERFLOW;
10318 }
10319
10320 ctx->sq_sqes = io_mem_alloc(size);
10321 if (!ctx->sq_sqes) {
10322 io_mem_free(ctx->rings);
10323 ctx->rings = NULL;
10324 return -ENOMEM;
10325 }
10326
10327 return 0;
10328 }
10329
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10330 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10331 {
10332 int ret, fd;
10333
10334 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10335 if (fd < 0)
10336 return fd;
10337
10338 ret = io_uring_add_tctx_node(ctx);
10339 if (ret) {
10340 put_unused_fd(fd);
10341 return ret;
10342 }
10343 fd_install(fd, file);
10344 return fd;
10345 }
10346
10347 /*
10348 * Allocate an anonymous fd, this is what constitutes the application
10349 * visible backing of an io_uring instance. The application mmaps this
10350 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10351 * we have to tie this fd to a socket for file garbage collection purposes.
10352 */
io_uring_get_file(struct io_ring_ctx * ctx)10353 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10354 {
10355 struct file *file;
10356 #if defined(CONFIG_UNIX)
10357 int ret;
10358
10359 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10360 &ctx->ring_sock);
10361 if (ret)
10362 return ERR_PTR(ret);
10363 #endif
10364
10365 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10366 O_RDWR | O_CLOEXEC);
10367 #if defined(CONFIG_UNIX)
10368 if (IS_ERR(file)) {
10369 sock_release(ctx->ring_sock);
10370 ctx->ring_sock = NULL;
10371 } else {
10372 ctx->ring_sock->file = file;
10373 }
10374 #endif
10375 return file;
10376 }
10377
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10378 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10379 struct io_uring_params __user *params)
10380 {
10381 struct io_ring_ctx *ctx;
10382 struct file *file;
10383 int ret;
10384
10385 if (!entries)
10386 return -EINVAL;
10387 if (entries > IORING_MAX_ENTRIES) {
10388 if (!(p->flags & IORING_SETUP_CLAMP))
10389 return -EINVAL;
10390 entries = IORING_MAX_ENTRIES;
10391 }
10392
10393 /*
10394 * Use twice as many entries for the CQ ring. It's possible for the
10395 * application to drive a higher depth than the size of the SQ ring,
10396 * since the sqes are only used at submission time. This allows for
10397 * some flexibility in overcommitting a bit. If the application has
10398 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10399 * of CQ ring entries manually.
10400 */
10401 p->sq_entries = roundup_pow_of_two(entries);
10402 if (p->flags & IORING_SETUP_CQSIZE) {
10403 /*
10404 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10405 * to a power-of-two, if it isn't already. We do NOT impose
10406 * any cq vs sq ring sizing.
10407 */
10408 if (!p->cq_entries)
10409 return -EINVAL;
10410 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10411 if (!(p->flags & IORING_SETUP_CLAMP))
10412 return -EINVAL;
10413 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10414 }
10415 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10416 if (p->cq_entries < p->sq_entries)
10417 return -EINVAL;
10418 } else {
10419 p->cq_entries = 2 * p->sq_entries;
10420 }
10421
10422 ctx = io_ring_ctx_alloc(p);
10423 if (!ctx)
10424 return -ENOMEM;
10425 ctx->compat = in_compat_syscall();
10426 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
10427 ctx->user = get_uid(current_user());
10428
10429 /*
10430 * This is just grabbed for accounting purposes. When a process exits,
10431 * the mm is exited and dropped before the files, hence we need to hang
10432 * on to this mm purely for the purposes of being able to unaccount
10433 * memory (locked/pinned vm). It's not used for anything else.
10434 */
10435 mmgrab(current->mm);
10436 ctx->mm_account = current->mm;
10437
10438 ret = io_allocate_scq_urings(ctx, p);
10439 if (ret)
10440 goto err;
10441
10442 ret = io_sq_offload_create(ctx, p);
10443 if (ret)
10444 goto err;
10445 /* always set a rsrc node */
10446 ret = io_rsrc_node_switch_start(ctx);
10447 if (ret)
10448 goto err;
10449 io_rsrc_node_switch(ctx, NULL);
10450
10451 memset(&p->sq_off, 0, sizeof(p->sq_off));
10452 p->sq_off.head = offsetof(struct io_rings, sq.head);
10453 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10454 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10455 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10456 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10457 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10458 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10459
10460 memset(&p->cq_off, 0, sizeof(p->cq_off));
10461 p->cq_off.head = offsetof(struct io_rings, cq.head);
10462 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10463 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10464 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10465 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10466 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10467 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10468
10469 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10470 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10471 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10472 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10473 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10474 IORING_FEAT_RSRC_TAGS;
10475
10476 if (copy_to_user(params, p, sizeof(*p))) {
10477 ret = -EFAULT;
10478 goto err;
10479 }
10480
10481 file = io_uring_get_file(ctx);
10482 if (IS_ERR(file)) {
10483 ret = PTR_ERR(file);
10484 goto err;
10485 }
10486
10487 /*
10488 * Install ring fd as the very last thing, so we don't risk someone
10489 * having closed it before we finish setup
10490 */
10491 ret = io_uring_install_fd(ctx, file);
10492 if (ret < 0) {
10493 /* fput will clean it up */
10494 fput(file);
10495 return ret;
10496 }
10497
10498 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10499 return ret;
10500 err:
10501 io_ring_ctx_wait_and_kill(ctx);
10502 return ret;
10503 }
10504
10505 /*
10506 * Sets up an aio uring context, and returns the fd. Applications asks for a
10507 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10508 * params structure passed in.
10509 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10510 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10511 {
10512 struct io_uring_params p;
10513 int i;
10514
10515 if (copy_from_user(&p, params, sizeof(p)))
10516 return -EFAULT;
10517 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10518 if (p.resv[i])
10519 return -EINVAL;
10520 }
10521
10522 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10523 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10524 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10525 IORING_SETUP_R_DISABLED))
10526 return -EINVAL;
10527
10528 return io_uring_create(entries, &p, params);
10529 }
10530
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10531 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10532 struct io_uring_params __user *, params)
10533 {
10534 return io_uring_setup(entries, params);
10535 }
10536
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10537 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10538 {
10539 struct io_uring_probe *p;
10540 size_t size;
10541 int i, ret;
10542
10543 size = struct_size(p, ops, nr_args);
10544 if (size == SIZE_MAX)
10545 return -EOVERFLOW;
10546 p = kzalloc(size, GFP_KERNEL);
10547 if (!p)
10548 return -ENOMEM;
10549
10550 ret = -EFAULT;
10551 if (copy_from_user(p, arg, size))
10552 goto out;
10553 ret = -EINVAL;
10554 if (memchr_inv(p, 0, size))
10555 goto out;
10556
10557 p->last_op = IORING_OP_LAST - 1;
10558 if (nr_args > IORING_OP_LAST)
10559 nr_args = IORING_OP_LAST;
10560
10561 for (i = 0; i < nr_args; i++) {
10562 p->ops[i].op = i;
10563 if (!io_op_defs[i].not_supported)
10564 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10565 }
10566 p->ops_len = i;
10567
10568 ret = 0;
10569 if (copy_to_user(arg, p, size))
10570 ret = -EFAULT;
10571 out:
10572 kfree(p);
10573 return ret;
10574 }
10575
io_register_personality(struct io_ring_ctx * ctx)10576 static int io_register_personality(struct io_ring_ctx *ctx)
10577 {
10578 const struct cred *creds;
10579 u32 id;
10580 int ret;
10581
10582 creds = get_current_cred();
10583
10584 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10585 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10586 if (ret < 0) {
10587 put_cred(creds);
10588 return ret;
10589 }
10590 return id;
10591 }
10592
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10593 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10594 unsigned int nr_args)
10595 {
10596 struct io_uring_restriction *res;
10597 size_t size;
10598 int i, ret;
10599
10600 /* Restrictions allowed only if rings started disabled */
10601 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10602 return -EBADFD;
10603
10604 /* We allow only a single restrictions registration */
10605 if (ctx->restrictions.registered)
10606 return -EBUSY;
10607
10608 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10609 return -EINVAL;
10610
10611 size = array_size(nr_args, sizeof(*res));
10612 if (size == SIZE_MAX)
10613 return -EOVERFLOW;
10614
10615 res = memdup_user(arg, size);
10616 if (IS_ERR(res))
10617 return PTR_ERR(res);
10618
10619 ret = 0;
10620
10621 for (i = 0; i < nr_args; i++) {
10622 switch (res[i].opcode) {
10623 case IORING_RESTRICTION_REGISTER_OP:
10624 if (res[i].register_op >= IORING_REGISTER_LAST) {
10625 ret = -EINVAL;
10626 goto out;
10627 }
10628
10629 __set_bit(res[i].register_op,
10630 ctx->restrictions.register_op);
10631 break;
10632 case IORING_RESTRICTION_SQE_OP:
10633 if (res[i].sqe_op >= IORING_OP_LAST) {
10634 ret = -EINVAL;
10635 goto out;
10636 }
10637
10638 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10639 break;
10640 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10641 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10642 break;
10643 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10644 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10645 break;
10646 default:
10647 ret = -EINVAL;
10648 goto out;
10649 }
10650 }
10651
10652 out:
10653 /* Reset all restrictions if an error happened */
10654 if (ret != 0)
10655 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10656 else
10657 ctx->restrictions.registered = true;
10658
10659 kfree(res);
10660 return ret;
10661 }
10662
io_register_enable_rings(struct io_ring_ctx * ctx)10663 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10664 {
10665 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10666 return -EBADFD;
10667
10668 if (ctx->restrictions.registered)
10669 ctx->restricted = 1;
10670
10671 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10672 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10673 wake_up(&ctx->sq_data->wait);
10674 return 0;
10675 }
10676
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10677 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10678 struct io_uring_rsrc_update2 *up,
10679 unsigned nr_args)
10680 {
10681 __u32 tmp;
10682 int err;
10683
10684 if (check_add_overflow(up->offset, nr_args, &tmp))
10685 return -EOVERFLOW;
10686 err = io_rsrc_node_switch_start(ctx);
10687 if (err)
10688 return err;
10689
10690 switch (type) {
10691 case IORING_RSRC_FILE:
10692 return __io_sqe_files_update(ctx, up, nr_args);
10693 case IORING_RSRC_BUFFER:
10694 return __io_sqe_buffers_update(ctx, up, nr_args);
10695 }
10696 return -EINVAL;
10697 }
10698
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10699 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10700 unsigned nr_args)
10701 {
10702 struct io_uring_rsrc_update2 up;
10703
10704 if (!nr_args)
10705 return -EINVAL;
10706 memset(&up, 0, sizeof(up));
10707 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10708 return -EFAULT;
10709 if (up.resv || up.resv2)
10710 return -EINVAL;
10711 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10712 }
10713
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10714 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10715 unsigned size, unsigned type)
10716 {
10717 struct io_uring_rsrc_update2 up;
10718
10719 if (size != sizeof(up))
10720 return -EINVAL;
10721 if (copy_from_user(&up, arg, sizeof(up)))
10722 return -EFAULT;
10723 if (!up.nr || up.resv || up.resv2)
10724 return -EINVAL;
10725 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10726 }
10727
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10728 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10729 unsigned int size, unsigned int type)
10730 {
10731 struct io_uring_rsrc_register rr;
10732
10733 /* keep it extendible */
10734 if (size != sizeof(rr))
10735 return -EINVAL;
10736
10737 memset(&rr, 0, sizeof(rr));
10738 if (copy_from_user(&rr, arg, size))
10739 return -EFAULT;
10740 if (!rr.nr || rr.resv || rr.resv2)
10741 return -EINVAL;
10742
10743 switch (type) {
10744 case IORING_RSRC_FILE:
10745 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10746 rr.nr, u64_to_user_ptr(rr.tags));
10747 case IORING_RSRC_BUFFER:
10748 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10749 rr.nr, u64_to_user_ptr(rr.tags));
10750 }
10751 return -EINVAL;
10752 }
10753
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10754 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10755 unsigned len)
10756 {
10757 struct io_uring_task *tctx = current->io_uring;
10758 cpumask_var_t new_mask;
10759 int ret;
10760
10761 if (!tctx || !tctx->io_wq)
10762 return -EINVAL;
10763
10764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10765 return -ENOMEM;
10766
10767 cpumask_clear(new_mask);
10768 if (len > cpumask_size())
10769 len = cpumask_size();
10770
10771 #ifdef CONFIG_COMPAT
10772 if (in_compat_syscall()) {
10773 ret = compat_get_bitmap(cpumask_bits(new_mask),
10774 (const compat_ulong_t __user *)arg,
10775 len * 8 /* CHAR_BIT */);
10776 } else {
10777 ret = copy_from_user(new_mask, arg, len);
10778 }
10779 #else
10780 ret = copy_from_user(new_mask, arg, len);
10781 #endif
10782
10783 if (ret) {
10784 free_cpumask_var(new_mask);
10785 return -EFAULT;
10786 }
10787
10788 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10789 free_cpumask_var(new_mask);
10790 return ret;
10791 }
10792
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10793 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10794 {
10795 struct io_uring_task *tctx = current->io_uring;
10796
10797 if (!tctx || !tctx->io_wq)
10798 return -EINVAL;
10799
10800 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10801 }
10802
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10803 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10804 void __user *arg)
10805 __must_hold(&ctx->uring_lock)
10806 {
10807 struct io_tctx_node *node;
10808 struct io_uring_task *tctx = NULL;
10809 struct io_sq_data *sqd = NULL;
10810 __u32 new_count[2];
10811 int i, ret;
10812
10813 if (copy_from_user(new_count, arg, sizeof(new_count)))
10814 return -EFAULT;
10815 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10816 if (new_count[i] > INT_MAX)
10817 return -EINVAL;
10818
10819 if (ctx->flags & IORING_SETUP_SQPOLL) {
10820 sqd = ctx->sq_data;
10821 if (sqd) {
10822 /*
10823 * Observe the correct sqd->lock -> ctx->uring_lock
10824 * ordering. Fine to drop uring_lock here, we hold
10825 * a ref to the ctx.
10826 */
10827 refcount_inc(&sqd->refs);
10828 mutex_unlock(&ctx->uring_lock);
10829 mutex_lock(&sqd->lock);
10830 mutex_lock(&ctx->uring_lock);
10831 if (sqd->thread)
10832 tctx = sqd->thread->io_uring;
10833 }
10834 } else {
10835 tctx = current->io_uring;
10836 }
10837
10838 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10839
10840 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10841 if (new_count[i])
10842 ctx->iowq_limits[i] = new_count[i];
10843 ctx->iowq_limits_set = true;
10844
10845 ret = -EINVAL;
10846 if (tctx && tctx->io_wq) {
10847 ret = io_wq_max_workers(tctx->io_wq, new_count);
10848 if (ret)
10849 goto err;
10850 } else {
10851 memset(new_count, 0, sizeof(new_count));
10852 }
10853
10854 if (sqd) {
10855 mutex_unlock(&sqd->lock);
10856 io_put_sq_data(sqd);
10857 }
10858
10859 if (copy_to_user(arg, new_count, sizeof(new_count)))
10860 return -EFAULT;
10861
10862 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10863 if (sqd)
10864 return 0;
10865
10866 /* now propagate the restriction to all registered users */
10867 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10868 struct io_uring_task *tctx = node->task->io_uring;
10869
10870 if (WARN_ON_ONCE(!tctx->io_wq))
10871 continue;
10872
10873 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10874 new_count[i] = ctx->iowq_limits[i];
10875 /* ignore errors, it always returns zero anyway */
10876 (void)io_wq_max_workers(tctx->io_wq, new_count);
10877 }
10878 return 0;
10879 err:
10880 if (sqd) {
10881 mutex_unlock(&sqd->lock);
10882 io_put_sq_data(sqd);
10883 }
10884 return ret;
10885 }
10886
io_register_op_must_quiesce(int op)10887 static bool io_register_op_must_quiesce(int op)
10888 {
10889 switch (op) {
10890 case IORING_REGISTER_BUFFERS:
10891 case IORING_UNREGISTER_BUFFERS:
10892 case IORING_REGISTER_FILES:
10893 case IORING_UNREGISTER_FILES:
10894 case IORING_REGISTER_FILES_UPDATE:
10895 case IORING_REGISTER_PROBE:
10896 case IORING_REGISTER_PERSONALITY:
10897 case IORING_UNREGISTER_PERSONALITY:
10898 case IORING_REGISTER_FILES2:
10899 case IORING_REGISTER_FILES_UPDATE2:
10900 case IORING_REGISTER_BUFFERS2:
10901 case IORING_REGISTER_BUFFERS_UPDATE:
10902 case IORING_REGISTER_IOWQ_AFF:
10903 case IORING_UNREGISTER_IOWQ_AFF:
10904 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10905 return false;
10906 default:
10907 return true;
10908 }
10909 }
10910
io_ctx_quiesce(struct io_ring_ctx * ctx)10911 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10912 {
10913 long ret;
10914
10915 percpu_ref_kill(&ctx->refs);
10916
10917 /*
10918 * Drop uring mutex before waiting for references to exit. If another
10919 * thread is currently inside io_uring_enter() it might need to grab the
10920 * uring_lock to make progress. If we hold it here across the drain
10921 * wait, then we can deadlock. It's safe to drop the mutex here, since
10922 * no new references will come in after we've killed the percpu ref.
10923 */
10924 mutex_unlock(&ctx->uring_lock);
10925 do {
10926 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10927 if (!ret)
10928 break;
10929 ret = io_run_task_work_sig();
10930 } while (ret >= 0);
10931 mutex_lock(&ctx->uring_lock);
10932
10933 if (ret)
10934 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10935 return ret;
10936 }
10937
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)10938 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10939 void __user *arg, unsigned nr_args)
10940 __releases(ctx->uring_lock)
10941 __acquires(ctx->uring_lock)
10942 {
10943 int ret;
10944
10945 /*
10946 * We're inside the ring mutex, if the ref is already dying, then
10947 * someone else killed the ctx or is already going through
10948 * io_uring_register().
10949 */
10950 if (percpu_ref_is_dying(&ctx->refs))
10951 return -ENXIO;
10952
10953 if (ctx->restricted) {
10954 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10955 if (!test_bit(opcode, ctx->restrictions.register_op))
10956 return -EACCES;
10957 }
10958
10959 if (io_register_op_must_quiesce(opcode)) {
10960 ret = io_ctx_quiesce(ctx);
10961 if (ret)
10962 return ret;
10963 }
10964
10965 switch (opcode) {
10966 case IORING_REGISTER_BUFFERS:
10967 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10968 break;
10969 case IORING_UNREGISTER_BUFFERS:
10970 ret = -EINVAL;
10971 if (arg || nr_args)
10972 break;
10973 ret = io_sqe_buffers_unregister(ctx);
10974 break;
10975 case IORING_REGISTER_FILES:
10976 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10977 break;
10978 case IORING_UNREGISTER_FILES:
10979 ret = -EINVAL;
10980 if (arg || nr_args)
10981 break;
10982 ret = io_sqe_files_unregister(ctx);
10983 break;
10984 case IORING_REGISTER_FILES_UPDATE:
10985 ret = io_register_files_update(ctx, arg, nr_args);
10986 break;
10987 case IORING_REGISTER_EVENTFD:
10988 case IORING_REGISTER_EVENTFD_ASYNC:
10989 ret = -EINVAL;
10990 if (nr_args != 1)
10991 break;
10992 ret = io_eventfd_register(ctx, arg);
10993 if (ret)
10994 break;
10995 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10996 ctx->eventfd_async = 1;
10997 else
10998 ctx->eventfd_async = 0;
10999 break;
11000 case IORING_UNREGISTER_EVENTFD:
11001 ret = -EINVAL;
11002 if (arg || nr_args)
11003 break;
11004 ret = io_eventfd_unregister(ctx);
11005 break;
11006 case IORING_REGISTER_PROBE:
11007 ret = -EINVAL;
11008 if (!arg || nr_args > 256)
11009 break;
11010 ret = io_probe(ctx, arg, nr_args);
11011 break;
11012 case IORING_REGISTER_PERSONALITY:
11013 ret = -EINVAL;
11014 if (arg || nr_args)
11015 break;
11016 ret = io_register_personality(ctx);
11017 break;
11018 case IORING_UNREGISTER_PERSONALITY:
11019 ret = -EINVAL;
11020 if (arg)
11021 break;
11022 ret = io_unregister_personality(ctx, nr_args);
11023 break;
11024 case IORING_REGISTER_ENABLE_RINGS:
11025 ret = -EINVAL;
11026 if (arg || nr_args)
11027 break;
11028 ret = io_register_enable_rings(ctx);
11029 break;
11030 case IORING_REGISTER_RESTRICTIONS:
11031 ret = io_register_restrictions(ctx, arg, nr_args);
11032 break;
11033 case IORING_REGISTER_FILES2:
11034 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11035 break;
11036 case IORING_REGISTER_FILES_UPDATE2:
11037 ret = io_register_rsrc_update(ctx, arg, nr_args,
11038 IORING_RSRC_FILE);
11039 break;
11040 case IORING_REGISTER_BUFFERS2:
11041 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11042 break;
11043 case IORING_REGISTER_BUFFERS_UPDATE:
11044 ret = io_register_rsrc_update(ctx, arg, nr_args,
11045 IORING_RSRC_BUFFER);
11046 break;
11047 case IORING_REGISTER_IOWQ_AFF:
11048 ret = -EINVAL;
11049 if (!arg || !nr_args)
11050 break;
11051 ret = io_register_iowq_aff(ctx, arg, nr_args);
11052 break;
11053 case IORING_UNREGISTER_IOWQ_AFF:
11054 ret = -EINVAL;
11055 if (arg || nr_args)
11056 break;
11057 ret = io_unregister_iowq_aff(ctx);
11058 break;
11059 case IORING_REGISTER_IOWQ_MAX_WORKERS:
11060 ret = -EINVAL;
11061 if (!arg || nr_args != 2)
11062 break;
11063 ret = io_register_iowq_max_workers(ctx, arg);
11064 break;
11065 default:
11066 ret = -EINVAL;
11067 break;
11068 }
11069
11070 if (io_register_op_must_quiesce(opcode)) {
11071 /* bring the ctx back to life */
11072 percpu_ref_reinit(&ctx->refs);
11073 reinit_completion(&ctx->ref_comp);
11074 }
11075 return ret;
11076 }
11077
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)11078 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11079 void __user *, arg, unsigned int, nr_args)
11080 {
11081 struct io_ring_ctx *ctx;
11082 long ret = -EBADF;
11083 struct fd f;
11084
11085 if (opcode >= IORING_REGISTER_LAST)
11086 return -EINVAL;
11087
11088 f = fdget(fd);
11089 if (!f.file)
11090 return -EBADF;
11091
11092 ret = -EOPNOTSUPP;
11093 if (f.file->f_op != &io_uring_fops)
11094 goto out_fput;
11095
11096 ctx = f.file->private_data;
11097
11098 io_run_task_work();
11099
11100 mutex_lock(&ctx->uring_lock);
11101 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11102 mutex_unlock(&ctx->uring_lock);
11103 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11104 ctx->cq_ev_fd != NULL, ret);
11105 out_fput:
11106 fdput(f);
11107 return ret;
11108 }
11109
io_uring_init(void)11110 static int __init io_uring_init(void)
11111 {
11112 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11113 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11114 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11115 } while (0)
11116
11117 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11118 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11119 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11120 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11121 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11122 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11123 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11124 BUILD_BUG_SQE_ELEM(8, __u64, off);
11125 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11126 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11127 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11128 BUILD_BUG_SQE_ELEM(24, __u32, len);
11129 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11130 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11131 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11132 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11133 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11134 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11135 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11136 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11137 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11138 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11139 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11140 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11141 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11142 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11143 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11144 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11145 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11146 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11147 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11148 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11149 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11150
11151 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11152 sizeof(struct io_uring_rsrc_update));
11153 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11154 sizeof(struct io_uring_rsrc_update2));
11155
11156 /* ->buf_index is u16 */
11157 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11158
11159 /* should fit into one byte */
11160 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11161
11162 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11163 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11164
11165 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11166 SLAB_ACCOUNT);
11167 return 0;
11168 };
11169 __initcall(io_uring_init);
11170