1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 #include <trace/hooks/sched.h>
71 #include <trace/hooks/cgroup.h>
72
73 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
74 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
75
76 /* See "Frequency meter" comments, below. */
77
78 struct fmeter {
79 int cnt; /* unprocessed events count */
80 int val; /* most recent output value */
81 time64_t time; /* clock (secs) when val computed */
82 spinlock_t lock; /* guards read or write of above */
83 };
84
85 struct cpuset {
86 struct cgroup_subsys_state css;
87
88 unsigned long flags; /* "unsigned long" so bitops work */
89
90 /*
91 * On default hierarchy:
92 *
93 * The user-configured masks can only be changed by writing to
94 * cpuset.cpus and cpuset.mems, and won't be limited by the
95 * parent masks.
96 *
97 * The effective masks is the real masks that apply to the tasks
98 * in the cpuset. They may be changed if the configured masks are
99 * changed or hotplug happens.
100 *
101 * effective_mask == configured_mask & parent's effective_mask,
102 * and if it ends up empty, it will inherit the parent's mask.
103 *
104 *
105 * On legacy hierachy:
106 *
107 * The user-configured masks are always the same with effective masks.
108 */
109
110 /* user-configured CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t cpus_allowed;
112 cpumask_var_t cpus_requested;
113 nodemask_t mems_allowed;
114
115 /* effective CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t effective_cpus;
117 nodemask_t effective_mems;
118
119 /*
120 * CPUs allocated to child sub-partitions (default hierarchy only)
121 * - CPUs granted by the parent = effective_cpus U subparts_cpus
122 * - effective_cpus and subparts_cpus are mutually exclusive.
123 *
124 * effective_cpus contains only onlined CPUs, but subparts_cpus
125 * may have offlined ones.
126 */
127 cpumask_var_t subparts_cpus;
128
129 /*
130 * This is old Memory Nodes tasks took on.
131 *
132 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
133 * - A new cpuset's old_mems_allowed is initialized when some
134 * task is moved into it.
135 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
136 * cpuset.mems_allowed and have tasks' nodemask updated, and
137 * then old_mems_allowed is updated to mems_allowed.
138 */
139 nodemask_t old_mems_allowed;
140
141 struct fmeter fmeter; /* memory_pressure filter */
142
143 /*
144 * Tasks are being attached to this cpuset. Used to prevent
145 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
146 */
147 int attach_in_progress;
148
149 /* partition number for rebuild_sched_domains() */
150 int pn;
151
152 /* for custom sched domain */
153 int relax_domain_level;
154
155 /* number of CPUs in subparts_cpus */
156 int nr_subparts_cpus;
157
158 /* partition root state */
159 int partition_root_state;
160
161 /*
162 * Default hierarchy only:
163 * use_parent_ecpus - set if using parent's effective_cpus
164 * child_ecpus_count - # of children with use_parent_ecpus set
165 */
166 int use_parent_ecpus;
167 int child_ecpus_count;
168
169 /*
170 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
171 * know when to rebuild associated root domain bandwidth information.
172 */
173 int nr_deadline_tasks;
174 int nr_migrate_dl_tasks;
175 u64 sum_migrate_dl_bw;
176 };
177
178 /*
179 * Partition root states:
180 *
181 * 0 - not a partition root
182 *
183 * 1 - partition root
184 *
185 * -1 - invalid partition root
186 * None of the cpus in cpus_allowed can be put into the parent's
187 * subparts_cpus. In this case, the cpuset is not a real partition
188 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
189 * and the cpuset can be restored back to a partition root if the
190 * parent cpuset can give more CPUs back to this child cpuset.
191 */
192 #define PRS_DISABLED 0
193 #define PRS_ENABLED 1
194 #define PRS_ERROR -1
195
196 /*
197 * Temporary cpumasks for working with partitions that are passed among
198 * functions to avoid memory allocation in inner functions.
199 */
200 struct tmpmasks {
201 cpumask_var_t addmask, delmask; /* For partition root */
202 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
203 };
204
css_cs(struct cgroup_subsys_state * css)205 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
206 {
207 return css ? container_of(css, struct cpuset, css) : NULL;
208 }
209
210 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)211 static inline struct cpuset *task_cs(struct task_struct *task)
212 {
213 return css_cs(task_css(task, cpuset_cgrp_id));
214 }
215
parent_cs(struct cpuset * cs)216 static inline struct cpuset *parent_cs(struct cpuset *cs)
217 {
218 return css_cs(cs->css.parent);
219 }
220
inc_dl_tasks_cs(struct task_struct * p)221 void inc_dl_tasks_cs(struct task_struct *p)
222 {
223 struct cpuset *cs = task_cs(p);
224
225 cs->nr_deadline_tasks++;
226 }
227
dec_dl_tasks_cs(struct task_struct * p)228 void dec_dl_tasks_cs(struct task_struct *p)
229 {
230 struct cpuset *cs = task_cs(p);
231
232 cs->nr_deadline_tasks--;
233 }
234
235 /* bits in struct cpuset flags field */
236 typedef enum {
237 CS_ONLINE,
238 CS_CPU_EXCLUSIVE,
239 CS_MEM_EXCLUSIVE,
240 CS_MEM_HARDWALL,
241 CS_MEMORY_MIGRATE,
242 CS_SCHED_LOAD_BALANCE,
243 CS_SPREAD_PAGE,
244 CS_SPREAD_SLAB,
245 } cpuset_flagbits_t;
246
247 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)248 static inline bool is_cpuset_online(struct cpuset *cs)
249 {
250 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
251 }
252
is_cpu_exclusive(const struct cpuset * cs)253 static inline int is_cpu_exclusive(const struct cpuset *cs)
254 {
255 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
256 }
257
is_mem_exclusive(const struct cpuset * cs)258 static inline int is_mem_exclusive(const struct cpuset *cs)
259 {
260 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
261 }
262
is_mem_hardwall(const struct cpuset * cs)263 static inline int is_mem_hardwall(const struct cpuset *cs)
264 {
265 return test_bit(CS_MEM_HARDWALL, &cs->flags);
266 }
267
is_sched_load_balance(const struct cpuset * cs)268 static inline int is_sched_load_balance(const struct cpuset *cs)
269 {
270 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
271 }
272
is_memory_migrate(const struct cpuset * cs)273 static inline int is_memory_migrate(const struct cpuset *cs)
274 {
275 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
276 }
277
is_spread_page(const struct cpuset * cs)278 static inline int is_spread_page(const struct cpuset *cs)
279 {
280 return test_bit(CS_SPREAD_PAGE, &cs->flags);
281 }
282
is_spread_slab(const struct cpuset * cs)283 static inline int is_spread_slab(const struct cpuset *cs)
284 {
285 return test_bit(CS_SPREAD_SLAB, &cs->flags);
286 }
287
is_partition_root(const struct cpuset * cs)288 static inline int is_partition_root(const struct cpuset *cs)
289 {
290 return cs->partition_root_state > 0;
291 }
292
293 static struct cpuset top_cpuset = {
294 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
295 (1 << CS_MEM_EXCLUSIVE)),
296 .partition_root_state = PRS_ENABLED,
297 };
298
299 /**
300 * cpuset_for_each_child - traverse online children of a cpuset
301 * @child_cs: loop cursor pointing to the current child
302 * @pos_css: used for iteration
303 * @parent_cs: target cpuset to walk children of
304 *
305 * Walk @child_cs through the online children of @parent_cs. Must be used
306 * with RCU read locked.
307 */
308 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
309 css_for_each_child((pos_css), &(parent_cs)->css) \
310 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
311
312 /**
313 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
314 * @des_cs: loop cursor pointing to the current descendant
315 * @pos_css: used for iteration
316 * @root_cs: target cpuset to walk ancestor of
317 *
318 * Walk @des_cs through the online descendants of @root_cs. Must be used
319 * with RCU read locked. The caller may modify @pos_css by calling
320 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
321 * iteration and the first node to be visited.
322 */
323 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
324 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
325 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
326
327 /*
328 * There are two global locks guarding cpuset structures - cpuset_mutex and
329 * callback_lock. We also require taking task_lock() when dereferencing a
330 * task's cpuset pointer. See "The task_lock() exception", at the end of this
331 * comment.
332 *
333 * A task must hold both locks to modify cpusets. If a task holds
334 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
335 * is the only task able to also acquire callback_lock and be able to
336 * modify cpusets. It can perform various checks on the cpuset structure
337 * first, knowing nothing will change. It can also allocate memory while
338 * just holding cpuset_mutex. While it is performing these checks, various
339 * callback routines can briefly acquire callback_lock to query cpusets.
340 * Once it is ready to make the changes, it takes callback_lock, blocking
341 * everyone else.
342 *
343 * Calls to the kernel memory allocator can not be made while holding
344 * callback_lock, as that would risk double tripping on callback_lock
345 * from one of the callbacks into the cpuset code from within
346 * __alloc_pages().
347 *
348 * If a task is only holding callback_lock, then it has read-only
349 * access to cpusets.
350 *
351 * Now, the task_struct fields mems_allowed and mempolicy may be changed
352 * by other task, we use alloc_lock in the task_struct fields to protect
353 * them.
354 *
355 * The cpuset_common_file_read() handlers only hold callback_lock across
356 * small pieces of code, such as when reading out possibly multi-word
357 * cpumasks and nodemasks.
358 *
359 * Accessing a task's cpuset should be done in accordance with the
360 * guidelines for accessing subsystem state in kernel/cgroup.c
361 */
362
363 static DEFINE_MUTEX(cpuset_mutex);
364
cpuset_lock(void)365 void cpuset_lock(void)
366 {
367 mutex_lock(&cpuset_mutex);
368 }
369
cpuset_unlock(void)370 void cpuset_unlock(void)
371 {
372 mutex_unlock(&cpuset_mutex);
373 }
374
375 static DEFINE_SPINLOCK(callback_lock);
376
377 static struct workqueue_struct *cpuset_migrate_mm_wq;
378
379 /*
380 * CPU / memory hotplug is handled asynchronously
381 * for hotplug, synchronously for resume_cpus
382 */
383 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
384
385 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
386
387 /*
388 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
389 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
390 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
391 * With v2 behavior, "cpus" and "mems" are always what the users have
392 * requested and won't be changed by hotplug events. Only the effective
393 * cpus or mems will be affected.
394 */
is_in_v2_mode(void)395 static inline bool is_in_v2_mode(void)
396 {
397 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
398 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
399 }
400
401 /*
402 * Return in pmask the portion of a task's cpusets's cpus_allowed that
403 * are online and are capable of running the task. If none are found,
404 * walk up the cpuset hierarchy until we find one that does have some
405 * appropriate cpus.
406 *
407 * One way or another, we guarantee to return some non-empty subset
408 * of cpu_active_mask.
409 *
410 * Call with callback_lock or cpuset_mutex held.
411 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)412 static void guarantee_online_cpus(struct task_struct *tsk,
413 struct cpumask *pmask)
414 {
415 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
416 struct cpuset *cs;
417
418 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
419 cpumask_copy(pmask, cpu_active_mask);
420
421 rcu_read_lock();
422 cs = task_cs(tsk);
423
424 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
425 cs = parent_cs(cs);
426 if (unlikely(!cs)) {
427 /*
428 * The top cpuset doesn't have any online cpu as a
429 * consequence of a race between cpuset_hotplug_work
430 * and cpu hotplug notifier. But we know the top
431 * cpuset's effective_cpus is on its way to be
432 * identical to cpu_online_mask.
433 */
434 goto out_unlock;
435 }
436 }
437 cpumask_and(pmask, pmask, cs->effective_cpus);
438
439 out_unlock:
440 rcu_read_unlock();
441 }
442
443 /*
444 * Return in *pmask the portion of a cpusets's mems_allowed that
445 * are online, with memory. If none are online with memory, walk
446 * up the cpuset hierarchy until we find one that does have some
447 * online mems. The top cpuset always has some mems online.
448 *
449 * One way or another, we guarantee to return some non-empty subset
450 * of node_states[N_MEMORY].
451 *
452 * Call with callback_lock or cpuset_mutex held.
453 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
455 {
456 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
457 cs = parent_cs(cs);
458 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
459 }
460
461 /*
462 * update task's spread flag if cpuset's page/slab spread flag is set
463 *
464 * Call with callback_lock or cpuset_mutex held.
465 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)466 static void cpuset_update_task_spread_flag(struct cpuset *cs,
467 struct task_struct *tsk)
468 {
469 if (is_spread_page(cs))
470 task_set_spread_page(tsk);
471 else
472 task_clear_spread_page(tsk);
473
474 if (is_spread_slab(cs))
475 task_set_spread_slab(tsk);
476 else
477 task_clear_spread_slab(tsk);
478 }
479
480 /*
481 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
482 *
483 * One cpuset is a subset of another if all its allowed CPUs and
484 * Memory Nodes are a subset of the other, and its exclusive flags
485 * are only set if the other's are set. Call holding cpuset_mutex.
486 */
487
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)488 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
489 {
490 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
491 nodes_subset(p->mems_allowed, q->mems_allowed) &&
492 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
493 is_mem_exclusive(p) <= is_mem_exclusive(q);
494 }
495
496 /**
497 * alloc_cpumasks - allocate three cpumasks for cpuset
498 * @cs: the cpuset that have cpumasks to be allocated.
499 * @tmp: the tmpmasks structure pointer
500 * Return: 0 if successful, -ENOMEM otherwise.
501 *
502 * Only one of the two input arguments should be non-NULL.
503 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)504 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
505 {
506 cpumask_var_t *pmask1, *pmask2, *pmask3;
507
508 if (cs) {
509 pmask1 = &cs->cpus_allowed;
510 pmask2 = &cs->effective_cpus;
511 pmask3 = &cs->subparts_cpus;
512 } else {
513 pmask1 = &tmp->new_cpus;
514 pmask2 = &tmp->addmask;
515 pmask3 = &tmp->delmask;
516 }
517
518 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
519 return -ENOMEM;
520
521 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
522 goto free_one;
523
524 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
525 goto free_two;
526
527 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
528 goto free_three;
529
530 return 0;
531
532 free_three:
533 free_cpumask_var(*pmask3);
534 free_two:
535 free_cpumask_var(*pmask2);
536 free_one:
537 free_cpumask_var(*pmask1);
538 return -ENOMEM;
539 }
540
541 /**
542 * free_cpumasks - free cpumasks in a tmpmasks structure
543 * @cs: the cpuset that have cpumasks to be free.
544 * @tmp: the tmpmasks structure pointer
545 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)546 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
547 {
548 if (cs) {
549 free_cpumask_var(cs->cpus_allowed);
550 free_cpumask_var(cs->cpus_requested);
551 free_cpumask_var(cs->effective_cpus);
552 free_cpumask_var(cs->subparts_cpus);
553 }
554 if (tmp) {
555 free_cpumask_var(tmp->new_cpus);
556 free_cpumask_var(tmp->addmask);
557 free_cpumask_var(tmp->delmask);
558 }
559 }
560
561 /**
562 * alloc_trial_cpuset - allocate a trial cpuset
563 * @cs: the cpuset that the trial cpuset duplicates
564 */
alloc_trial_cpuset(struct cpuset * cs)565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 struct cpuset *trial;
568
569 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 if (!trial)
571 return NULL;
572
573 if (alloc_cpumasks(trial, NULL)) {
574 kfree(trial);
575 return NULL;
576 }
577
578 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
580 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
581 return trial;
582 }
583
584 /**
585 * free_cpuset - free the cpuset
586 * @cs: the cpuset to be freed
587 */
free_cpuset(struct cpuset * cs)588 static inline void free_cpuset(struct cpuset *cs)
589 {
590 free_cpumasks(cs, NULL);
591 kfree(cs);
592 }
593
594 /*
595 * validate_change() - Used to validate that any proposed cpuset change
596 * follows the structural rules for cpusets.
597 *
598 * If we replaced the flag and mask values of the current cpuset
599 * (cur) with those values in the trial cpuset (trial), would
600 * our various subset and exclusive rules still be valid? Presumes
601 * cpuset_mutex held.
602 *
603 * 'cur' is the address of an actual, in-use cpuset. Operations
604 * such as list traversal that depend on the actual address of the
605 * cpuset in the list must use cur below, not trial.
606 *
607 * 'trial' is the address of bulk structure copy of cur, with
608 * perhaps one or more of the fields cpus_allowed, mems_allowed,
609 * or flags changed to new, trial values.
610 *
611 * Return 0 if valid, -errno if not.
612 */
613
validate_change(struct cpuset * cur,struct cpuset * trial)614 static int validate_change(struct cpuset *cur, struct cpuset *trial)
615 {
616 struct cgroup_subsys_state *css;
617 struct cpuset *c, *par;
618 int ret;
619
620 rcu_read_lock();
621
622 /* Each of our child cpusets must be a subset of us */
623 ret = -EBUSY;
624 cpuset_for_each_child(c, css, cur)
625 if (!is_cpuset_subset(c, trial))
626 goto out;
627
628 /* Remaining checks don't apply to root cpuset */
629 ret = 0;
630 if (cur == &top_cpuset)
631 goto out;
632
633 par = parent_cs(cur);
634
635 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
636 ret = -EACCES;
637 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
638 goto out;
639
640 /*
641 * If either I or some sibling (!= me) is exclusive, we can't
642 * overlap
643 */
644 ret = -EINVAL;
645 cpuset_for_each_child(c, css, par) {
646 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
647 c != cur &&
648 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
649 goto out;
650 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
651 c != cur &&
652 nodes_intersects(trial->mems_allowed, c->mems_allowed))
653 goto out;
654 }
655
656 /*
657 * Cpusets with tasks - existing or newly being attached - can't
658 * be changed to have empty cpus_allowed or mems_allowed.
659 */
660 ret = -ENOSPC;
661 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
662 if (!cpumask_empty(cur->cpus_allowed) &&
663 cpumask_empty(trial->cpus_allowed))
664 goto out;
665 if (!nodes_empty(cur->mems_allowed) &&
666 nodes_empty(trial->mems_allowed))
667 goto out;
668 }
669
670 /*
671 * We can't shrink if we won't have enough room for SCHED_DEADLINE
672 * tasks.
673 */
674 ret = -EBUSY;
675 if (is_cpu_exclusive(cur) &&
676 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
677 trial->cpus_allowed))
678 goto out;
679
680 ret = 0;
681 out:
682 rcu_read_unlock();
683 return ret;
684 }
685
686 #ifdef CONFIG_SMP
687 /*
688 * Helper routine for generate_sched_domains().
689 * Do cpusets a, b have overlapping effective cpus_allowed masks?
690 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)691 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
692 {
693 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
694 }
695
696 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)697 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
698 {
699 if (dattr->relax_domain_level < c->relax_domain_level)
700 dattr->relax_domain_level = c->relax_domain_level;
701 return;
702 }
703
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)704 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
705 struct cpuset *root_cs)
706 {
707 struct cpuset *cp;
708 struct cgroup_subsys_state *pos_css;
709
710 rcu_read_lock();
711 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
712 /* skip the whole subtree if @cp doesn't have any CPU */
713 if (cpumask_empty(cp->cpus_allowed)) {
714 pos_css = css_rightmost_descendant(pos_css);
715 continue;
716 }
717
718 if (is_sched_load_balance(cp))
719 update_domain_attr(dattr, cp);
720 }
721 rcu_read_unlock();
722 }
723
724 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)725 static inline int nr_cpusets(void)
726 {
727 /* jump label reference count + the top-level cpuset */
728 return static_key_count(&cpusets_enabled_key.key) + 1;
729 }
730
731 /*
732 * generate_sched_domains()
733 *
734 * This function builds a partial partition of the systems CPUs
735 * A 'partial partition' is a set of non-overlapping subsets whose
736 * union is a subset of that set.
737 * The output of this function needs to be passed to kernel/sched/core.c
738 * partition_sched_domains() routine, which will rebuild the scheduler's
739 * load balancing domains (sched domains) as specified by that partial
740 * partition.
741 *
742 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
743 * for a background explanation of this.
744 *
745 * Does not return errors, on the theory that the callers of this
746 * routine would rather not worry about failures to rebuild sched
747 * domains when operating in the severe memory shortage situations
748 * that could cause allocation failures below.
749 *
750 * Must be called with cpuset_mutex held.
751 *
752 * The three key local variables below are:
753 * cp - cpuset pointer, used (together with pos_css) to perform a
754 * top-down scan of all cpusets. For our purposes, rebuilding
755 * the schedulers sched domains, we can ignore !is_sched_load_
756 * balance cpusets.
757 * csa - (for CpuSet Array) Array of pointers to all the cpusets
758 * that need to be load balanced, for convenient iterative
759 * access by the subsequent code that finds the best partition,
760 * i.e the set of domains (subsets) of CPUs such that the
761 * cpus_allowed of every cpuset marked is_sched_load_balance
762 * is a subset of one of these domains, while there are as
763 * many such domains as possible, each as small as possible.
764 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
765 * the kernel/sched/core.c routine partition_sched_domains() in a
766 * convenient format, that can be easily compared to the prior
767 * value to determine what partition elements (sched domains)
768 * were changed (added or removed.)
769 *
770 * Finding the best partition (set of domains):
771 * The triple nested loops below over i, j, k scan over the
772 * load balanced cpusets (using the array of cpuset pointers in
773 * csa[]) looking for pairs of cpusets that have overlapping
774 * cpus_allowed, but which don't have the same 'pn' partition
775 * number and gives them in the same partition number. It keeps
776 * looping on the 'restart' label until it can no longer find
777 * any such pairs.
778 *
779 * The union of the cpus_allowed masks from the set of
780 * all cpusets having the same 'pn' value then form the one
781 * element of the partition (one sched domain) to be passed to
782 * partition_sched_domains().
783 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)784 static int generate_sched_domains(cpumask_var_t **domains,
785 struct sched_domain_attr **attributes)
786 {
787 struct cpuset *cp; /* top-down scan of cpusets */
788 struct cpuset **csa; /* array of all cpuset ptrs */
789 int csn; /* how many cpuset ptrs in csa so far */
790 int i, j, k; /* indices for partition finding loops */
791 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
792 struct sched_domain_attr *dattr; /* attributes for custom domains */
793 int ndoms = 0; /* number of sched domains in result */
794 int nslot; /* next empty doms[] struct cpumask slot */
795 struct cgroup_subsys_state *pos_css;
796 bool root_load_balance = is_sched_load_balance(&top_cpuset);
797
798 doms = NULL;
799 dattr = NULL;
800 csa = NULL;
801
802 /* Special case for the 99% of systems with one, full, sched domain */
803 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
804 ndoms = 1;
805 doms = alloc_sched_domains(ndoms);
806 if (!doms)
807 goto done;
808
809 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
810 if (dattr) {
811 *dattr = SD_ATTR_INIT;
812 update_domain_attr_tree(dattr, &top_cpuset);
813 }
814 cpumask_and(doms[0], top_cpuset.effective_cpus,
815 housekeeping_cpumask(HK_FLAG_DOMAIN));
816
817 goto done;
818 }
819
820 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
821 if (!csa)
822 goto done;
823 csn = 0;
824
825 rcu_read_lock();
826 if (root_load_balance)
827 csa[csn++] = &top_cpuset;
828 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
829 if (cp == &top_cpuset)
830 continue;
831 /*
832 * Continue traversing beyond @cp iff @cp has some CPUs and
833 * isn't load balancing. The former is obvious. The
834 * latter: All child cpusets contain a subset of the
835 * parent's cpus, so just skip them, and then we call
836 * update_domain_attr_tree() to calc relax_domain_level of
837 * the corresponding sched domain.
838 *
839 * If root is load-balancing, we can skip @cp if it
840 * is a subset of the root's effective_cpus.
841 */
842 if (!cpumask_empty(cp->cpus_allowed) &&
843 !(is_sched_load_balance(cp) &&
844 cpumask_intersects(cp->cpus_allowed,
845 housekeeping_cpumask(HK_FLAG_DOMAIN))))
846 continue;
847
848 if (root_load_balance &&
849 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
850 continue;
851
852 if (is_sched_load_balance(cp) &&
853 !cpumask_empty(cp->effective_cpus))
854 csa[csn++] = cp;
855
856 /* skip @cp's subtree if not a partition root */
857 if (!is_partition_root(cp))
858 pos_css = css_rightmost_descendant(pos_css);
859 }
860 rcu_read_unlock();
861
862 for (i = 0; i < csn; i++)
863 csa[i]->pn = i;
864 ndoms = csn;
865
866 restart:
867 /* Find the best partition (set of sched domains) */
868 for (i = 0; i < csn; i++) {
869 struct cpuset *a = csa[i];
870 int apn = a->pn;
871
872 for (j = 0; j < csn; j++) {
873 struct cpuset *b = csa[j];
874 int bpn = b->pn;
875
876 if (apn != bpn && cpusets_overlap(a, b)) {
877 for (k = 0; k < csn; k++) {
878 struct cpuset *c = csa[k];
879
880 if (c->pn == bpn)
881 c->pn = apn;
882 }
883 ndoms--; /* one less element */
884 goto restart;
885 }
886 }
887 }
888
889 /*
890 * Now we know how many domains to create.
891 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
892 */
893 doms = alloc_sched_domains(ndoms);
894 if (!doms)
895 goto done;
896
897 /*
898 * The rest of the code, including the scheduler, can deal with
899 * dattr==NULL case. No need to abort if alloc fails.
900 */
901 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
902 GFP_KERNEL);
903
904 for (nslot = 0, i = 0; i < csn; i++) {
905 struct cpuset *a = csa[i];
906 struct cpumask *dp;
907 int apn = a->pn;
908
909 if (apn < 0) {
910 /* Skip completed partitions */
911 continue;
912 }
913
914 dp = doms[nslot];
915
916 if (nslot == ndoms) {
917 static int warnings = 10;
918 if (warnings) {
919 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
920 nslot, ndoms, csn, i, apn);
921 warnings--;
922 }
923 continue;
924 }
925
926 cpumask_clear(dp);
927 if (dattr)
928 *(dattr + nslot) = SD_ATTR_INIT;
929 for (j = i; j < csn; j++) {
930 struct cpuset *b = csa[j];
931
932 if (apn == b->pn) {
933 cpumask_or(dp, dp, b->effective_cpus);
934 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
935 if (dattr)
936 update_domain_attr_tree(dattr + nslot, b);
937
938 /* Done with this partition */
939 b->pn = -1;
940 }
941 }
942 nslot++;
943 }
944 BUG_ON(nslot != ndoms);
945
946 done:
947 kfree(csa);
948
949 /*
950 * Fallback to the default domain if kmalloc() failed.
951 * See comments in partition_sched_domains().
952 */
953 if (doms == NULL)
954 ndoms = 1;
955
956 *domains = doms;
957 *attributes = dattr;
958 return ndoms;
959 }
960
dl_update_tasks_root_domain(struct cpuset * cs)961 static void dl_update_tasks_root_domain(struct cpuset *cs)
962 {
963 struct css_task_iter it;
964 struct task_struct *task;
965
966 if (cs->nr_deadline_tasks == 0)
967 return;
968
969 css_task_iter_start(&cs->css, 0, &it);
970
971 while ((task = css_task_iter_next(&it)))
972 dl_add_task_root_domain(task);
973
974 css_task_iter_end(&it);
975 }
976
dl_rebuild_rd_accounting(void)977 static void dl_rebuild_rd_accounting(void)
978 {
979 struct cpuset *cs = NULL;
980 struct cgroup_subsys_state *pos_css;
981 bool bypass = false;
982
983 trace_android_vh_rebuild_root_domains_bypass(cpuhp_tasks_frozen, &bypass);
984
985 if (bypass)
986 return;
987
988 lockdep_assert_held(&cpuset_mutex);
989 lockdep_assert_cpus_held();
990 lockdep_assert_held(&sched_domains_mutex);
991
992 rcu_read_lock();
993
994 /*
995 * Clear default root domain DL accounting, it will be computed again
996 * if a task belongs to it.
997 */
998 dl_clear_root_domain(&def_root_domain);
999
1000 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1001
1002 if (cpumask_empty(cs->effective_cpus)) {
1003 pos_css = css_rightmost_descendant(pos_css);
1004 continue;
1005 }
1006
1007 css_get(&cs->css);
1008
1009 rcu_read_unlock();
1010
1011 dl_update_tasks_root_domain(cs);
1012
1013 rcu_read_lock();
1014 css_put(&cs->css);
1015 }
1016 rcu_read_unlock();
1017 }
1018
1019 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1020 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1021 struct sched_domain_attr *dattr_new)
1022 {
1023 mutex_lock(&sched_domains_mutex);
1024 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1025 dl_rebuild_rd_accounting();
1026 mutex_unlock(&sched_domains_mutex);
1027 }
1028
1029 /*
1030 * Rebuild scheduler domains.
1031 *
1032 * If the flag 'sched_load_balance' of any cpuset with non-empty
1033 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1034 * which has that flag enabled, or if any cpuset with a non-empty
1035 * 'cpus' is removed, then call this routine to rebuild the
1036 * scheduler's dynamic sched domains.
1037 *
1038 * Call with cpuset_mutex held. Takes get_online_cpus().
1039 */
rebuild_sched_domains_locked(void)1040 static void rebuild_sched_domains_locked(void)
1041 {
1042 struct cgroup_subsys_state *pos_css;
1043 struct sched_domain_attr *attr;
1044 cpumask_var_t *doms;
1045 struct cpuset *cs;
1046 int ndoms;
1047
1048 lockdep_assert_held(&cpuset_mutex);
1049
1050 /*
1051 * If we have raced with CPU hotplug, return early to avoid
1052 * passing doms with offlined cpu to partition_sched_domains().
1053 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1054 *
1055 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1056 * should be the same as the active CPUs, so checking only top_cpuset
1057 * is enough to detect racing CPU offlines.
1058 */
1059 if (!top_cpuset.nr_subparts_cpus &&
1060 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1061 return;
1062
1063 /*
1064 * With subpartition CPUs, however, the effective CPUs of a partition
1065 * root should be only a subset of the active CPUs. Since a CPU in any
1066 * partition root could be offlined, all must be checked.
1067 */
1068 if (top_cpuset.nr_subparts_cpus) {
1069 rcu_read_lock();
1070 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1071 if (!is_partition_root(cs)) {
1072 pos_css = css_rightmost_descendant(pos_css);
1073 continue;
1074 }
1075 if (!cpumask_subset(cs->effective_cpus,
1076 cpu_active_mask)) {
1077 rcu_read_unlock();
1078 return;
1079 }
1080 }
1081 rcu_read_unlock();
1082 }
1083
1084 /* Generate domain masks and attrs */
1085 ndoms = generate_sched_domains(&doms, &attr);
1086
1087 /* Have scheduler rebuild the domains */
1088 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1089 }
1090 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1091 static void rebuild_sched_domains_locked(void)
1092 {
1093 }
1094 #endif /* CONFIG_SMP */
1095
rebuild_sched_domains(void)1096 void rebuild_sched_domains(void)
1097 {
1098 get_online_cpus();
1099 mutex_lock(&cpuset_mutex);
1100 rebuild_sched_domains_locked();
1101 mutex_unlock(&cpuset_mutex);
1102 put_online_cpus();
1103 }
1104
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1105 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1106 const struct cpumask *new_mask)
1107 {
1108 int ret = -EINVAL;
1109
1110 trace_android_rvh_update_cpus_allowed(p, cs->cpus_requested, new_mask, &ret);
1111 if (!ret)
1112 return ret;
1113
1114 return set_cpus_allowed_ptr(p, new_mask);
1115 }
1116
1117 /**
1118 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1119 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1120 *
1121 * Iterate through each task of @cs updating its cpus_allowed to the
1122 * effective cpuset's. As this function is called with cpuset_mutex held,
1123 * cpuset membership stays stable.
1124 */
update_tasks_cpumask(struct cpuset * cs)1125 static void update_tasks_cpumask(struct cpuset *cs)
1126 {
1127 struct css_task_iter it;
1128 struct task_struct *task;
1129 bool top_cs = cs == &top_cpuset;
1130
1131 css_task_iter_start(&cs->css, 0, &it);
1132 while ((task = css_task_iter_next(&it))) {
1133 /*
1134 * Percpu kthreads in top_cpuset are ignored
1135 */
1136 if (top_cs && (task->flags & PF_KTHREAD) &&
1137 kthread_is_per_cpu(task))
1138 continue;
1139 update_cpus_allowed(cs, task, cs->effective_cpus);
1140 }
1141 css_task_iter_end(&it);
1142 }
1143
1144 /**
1145 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1146 * @new_cpus: the temp variable for the new effective_cpus mask
1147 * @cs: the cpuset the need to recompute the new effective_cpus mask
1148 * @parent: the parent cpuset
1149 *
1150 * If the parent has subpartition CPUs, include them in the list of
1151 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1152 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1153 * to mask those out.
1154 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1155 static void compute_effective_cpumask(struct cpumask *new_cpus,
1156 struct cpuset *cs, struct cpuset *parent)
1157 {
1158 if (parent->nr_subparts_cpus) {
1159 cpumask_or(new_cpus, parent->effective_cpus,
1160 parent->subparts_cpus);
1161 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1162 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1163 } else {
1164 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1165 }
1166 }
1167
1168 /*
1169 * Commands for update_parent_subparts_cpumask
1170 */
1171 enum subparts_cmd {
1172 partcmd_enable, /* Enable partition root */
1173 partcmd_disable, /* Disable partition root */
1174 partcmd_update, /* Update parent's subparts_cpus */
1175 };
1176
1177 /**
1178 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1179 * @cpuset: The cpuset that requests change in partition root state
1180 * @cmd: Partition root state change command
1181 * @newmask: Optional new cpumask for partcmd_update
1182 * @tmp: Temporary addmask and delmask
1183 * Return: 0, 1 or an error code
1184 *
1185 * For partcmd_enable, the cpuset is being transformed from a non-partition
1186 * root to a partition root. The cpus_allowed mask of the given cpuset will
1187 * be put into parent's subparts_cpus and taken away from parent's
1188 * effective_cpus. The function will return 0 if all the CPUs listed in
1189 * cpus_allowed can be granted or an error code will be returned.
1190 *
1191 * For partcmd_disable, the cpuset is being transofrmed from a partition
1192 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1193 * parent's subparts_cpus will be taken away from that cpumask and put back
1194 * into parent's effective_cpus. 0 should always be returned.
1195 *
1196 * For partcmd_update, if the optional newmask is specified, the cpu
1197 * list is to be changed from cpus_allowed to newmask. Otherwise,
1198 * cpus_allowed is assumed to remain the same. The cpuset should either
1199 * be a partition root or an invalid partition root. The partition root
1200 * state may change if newmask is NULL and none of the requested CPUs can
1201 * be granted by the parent. The function will return 1 if changes to
1202 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1203 * Error code should only be returned when newmask is non-NULL.
1204 *
1205 * The partcmd_enable and partcmd_disable commands are used by
1206 * update_prstate(). The partcmd_update command is used by
1207 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1208 * newmask set.
1209 *
1210 * The checking is more strict when enabling partition root than the
1211 * other two commands.
1212 *
1213 * Because of the implicit cpu exclusive nature of a partition root,
1214 * cpumask changes that violates the cpu exclusivity rule will not be
1215 * permitted when checked by validate_change(). The validate_change()
1216 * function will also prevent any changes to the cpu list if it is not
1217 * a superset of children's cpu lists.
1218 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1219 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1220 struct cpumask *newmask,
1221 struct tmpmasks *tmp)
1222 {
1223 struct cpuset *parent = parent_cs(cpuset);
1224 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1225 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1226 int new_prs;
1227 bool part_error = false; /* Partition error? */
1228
1229 lockdep_assert_held(&cpuset_mutex);
1230
1231 /*
1232 * The parent must be a partition root.
1233 * The new cpumask, if present, or the current cpus_allowed must
1234 * not be empty.
1235 */
1236 if (!is_partition_root(parent) ||
1237 (newmask && cpumask_empty(newmask)) ||
1238 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1239 return -EINVAL;
1240
1241 /*
1242 * Enabling/disabling partition root is not allowed if there are
1243 * online children.
1244 */
1245 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1246 return -EBUSY;
1247
1248 /*
1249 * Enabling partition root is not allowed if not all the CPUs
1250 * can be granted from parent's effective_cpus or at least one
1251 * CPU will be left after that.
1252 */
1253 if ((cmd == partcmd_enable) &&
1254 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1255 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1256 return -EINVAL;
1257
1258 /*
1259 * A cpumask update cannot make parent's effective_cpus become empty.
1260 */
1261 adding = deleting = false;
1262 new_prs = cpuset->partition_root_state;
1263 if (cmd == partcmd_enable) {
1264 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1265 adding = true;
1266 } else if (cmd == partcmd_disable) {
1267 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1268 parent->subparts_cpus);
1269 } else if (newmask) {
1270 /*
1271 * partcmd_update with newmask:
1272 *
1273 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1274 * addmask = newmask & parent->effective_cpus
1275 * & ~parent->subparts_cpus
1276 */
1277 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1278 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1279 parent->subparts_cpus);
1280
1281 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1282 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1283 parent->subparts_cpus);
1284 /*
1285 * Return error if the new effective_cpus could become empty.
1286 */
1287 if (adding &&
1288 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1289 if (!deleting)
1290 return -EINVAL;
1291 /*
1292 * As some of the CPUs in subparts_cpus might have
1293 * been offlined, we need to compute the real delmask
1294 * to confirm that.
1295 */
1296 if (!cpumask_and(tmp->addmask, tmp->delmask,
1297 cpu_active_mask))
1298 return -EINVAL;
1299 cpumask_copy(tmp->addmask, parent->effective_cpus);
1300 }
1301 } else {
1302 /*
1303 * partcmd_update w/o newmask:
1304 *
1305 * addmask = cpus_allowed & parent->effective_cpus
1306 *
1307 * Note that parent's subparts_cpus may have been
1308 * pre-shrunk in case there is a change in the cpu list.
1309 * So no deletion is needed.
1310 */
1311 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1312 parent->effective_cpus);
1313 part_error = cpumask_equal(tmp->addmask,
1314 parent->effective_cpus);
1315 }
1316
1317 if (cmd == partcmd_update) {
1318 int prev_prs = cpuset->partition_root_state;
1319
1320 /*
1321 * Check for possible transition between PRS_ENABLED
1322 * and PRS_ERROR.
1323 */
1324 switch (cpuset->partition_root_state) {
1325 case PRS_ENABLED:
1326 if (part_error)
1327 new_prs = PRS_ERROR;
1328 break;
1329 case PRS_ERROR:
1330 if (!part_error)
1331 new_prs = PRS_ENABLED;
1332 break;
1333 }
1334 /*
1335 * Set part_error if previously in invalid state.
1336 */
1337 part_error = (prev_prs == PRS_ERROR);
1338 }
1339
1340 if (!part_error && (new_prs == PRS_ERROR))
1341 return 0; /* Nothing need to be done */
1342
1343 if (new_prs == PRS_ERROR) {
1344 /*
1345 * Remove all its cpus from parent's subparts_cpus.
1346 */
1347 adding = false;
1348 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1349 parent->subparts_cpus);
1350 }
1351
1352 if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1353 return 0;
1354
1355 /*
1356 * Change the parent's subparts_cpus.
1357 * Newly added CPUs will be removed from effective_cpus and
1358 * newly deleted ones will be added back to effective_cpus.
1359 */
1360 spin_lock_irq(&callback_lock);
1361 if (adding) {
1362 cpumask_or(parent->subparts_cpus,
1363 parent->subparts_cpus, tmp->addmask);
1364 cpumask_andnot(parent->effective_cpus,
1365 parent->effective_cpus, tmp->addmask);
1366 }
1367 if (deleting) {
1368 cpumask_andnot(parent->subparts_cpus,
1369 parent->subparts_cpus, tmp->delmask);
1370 /*
1371 * Some of the CPUs in subparts_cpus might have been offlined.
1372 */
1373 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1374 cpumask_or(parent->effective_cpus,
1375 parent->effective_cpus, tmp->delmask);
1376 }
1377
1378 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1379
1380 if (cpuset->partition_root_state != new_prs)
1381 cpuset->partition_root_state = new_prs;
1382 spin_unlock_irq(&callback_lock);
1383
1384 return cmd == partcmd_update;
1385 }
1386
1387 /*
1388 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1389 * @cs: the cpuset to consider
1390 * @tmp: temp variables for calculating effective_cpus & partition setup
1391 *
1392 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1393 * and all its descendants need to be updated.
1394 *
1395 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1396 *
1397 * Called with cpuset_mutex held
1398 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1399 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1400 {
1401 struct cpuset *cp;
1402 struct cgroup_subsys_state *pos_css;
1403 bool need_rebuild_sched_domains = false;
1404 int new_prs;
1405
1406 rcu_read_lock();
1407 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1408 struct cpuset *parent = parent_cs(cp);
1409
1410 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1411
1412 /*
1413 * If it becomes empty, inherit the effective mask of the
1414 * parent, which is guaranteed to have some CPUs.
1415 */
1416 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1417 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1418 if (!cp->use_parent_ecpus) {
1419 cp->use_parent_ecpus = true;
1420 parent->child_ecpus_count++;
1421 }
1422 } else if (cp->use_parent_ecpus) {
1423 cp->use_parent_ecpus = false;
1424 WARN_ON_ONCE(!parent->child_ecpus_count);
1425 parent->child_ecpus_count--;
1426 }
1427
1428 /*
1429 * Skip the whole subtree if the cpumask remains the same
1430 * and has no partition root state.
1431 */
1432 if (!cp->partition_root_state &&
1433 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1434 pos_css = css_rightmost_descendant(pos_css);
1435 continue;
1436 }
1437
1438 /*
1439 * update_parent_subparts_cpumask() should have been called
1440 * for cs already in update_cpumask(). We should also call
1441 * update_tasks_cpumask() again for tasks in the parent
1442 * cpuset if the parent's subparts_cpus changes.
1443 */
1444 new_prs = cp->partition_root_state;
1445 if ((cp != cs) && new_prs) {
1446 switch (parent->partition_root_state) {
1447 case PRS_DISABLED:
1448 /*
1449 * If parent is not a partition root or an
1450 * invalid partition root, clear its state
1451 * and its CS_CPU_EXCLUSIVE flag.
1452 */
1453 WARN_ON_ONCE(cp->partition_root_state
1454 != PRS_ERROR);
1455 new_prs = PRS_DISABLED;
1456
1457 /*
1458 * clear_bit() is an atomic operation and
1459 * readers aren't interested in the state
1460 * of CS_CPU_EXCLUSIVE anyway. So we can
1461 * just update the flag without holding
1462 * the callback_lock.
1463 */
1464 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1465 break;
1466
1467 case PRS_ENABLED:
1468 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1469 update_tasks_cpumask(parent);
1470 break;
1471
1472 case PRS_ERROR:
1473 /*
1474 * When parent is invalid, it has to be too.
1475 */
1476 new_prs = PRS_ERROR;
1477 break;
1478 }
1479 }
1480
1481 if (!css_tryget_online(&cp->css))
1482 continue;
1483 rcu_read_unlock();
1484
1485 spin_lock_irq(&callback_lock);
1486
1487 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1488 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1489 cp->nr_subparts_cpus = 0;
1490 cpumask_clear(cp->subparts_cpus);
1491 } else if (cp->nr_subparts_cpus) {
1492 /*
1493 * Make sure that effective_cpus & subparts_cpus
1494 * are mutually exclusive.
1495 *
1496 * In the unlikely event that effective_cpus
1497 * becomes empty. we clear cp->nr_subparts_cpus and
1498 * let its child partition roots to compete for
1499 * CPUs again.
1500 */
1501 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1502 cp->subparts_cpus);
1503 if (cpumask_empty(cp->effective_cpus)) {
1504 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1505 cpumask_clear(cp->subparts_cpus);
1506 cp->nr_subparts_cpus = 0;
1507 } else if (!cpumask_subset(cp->subparts_cpus,
1508 tmp->new_cpus)) {
1509 cpumask_andnot(cp->subparts_cpus,
1510 cp->subparts_cpus, tmp->new_cpus);
1511 cp->nr_subparts_cpus
1512 = cpumask_weight(cp->subparts_cpus);
1513 }
1514 }
1515
1516 if (new_prs != cp->partition_root_state)
1517 cp->partition_root_state = new_prs;
1518
1519 spin_unlock_irq(&callback_lock);
1520
1521 WARN_ON(!is_in_v2_mode() &&
1522 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1523
1524 update_tasks_cpumask(cp);
1525
1526 /*
1527 * On legacy hierarchy, if the effective cpumask of any non-
1528 * empty cpuset is changed, we need to rebuild sched domains.
1529 * On default hierarchy, the cpuset needs to be a partition
1530 * root as well.
1531 */
1532 if (!cpumask_empty(cp->cpus_allowed) &&
1533 is_sched_load_balance(cp) &&
1534 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1535 is_partition_root(cp)))
1536 need_rebuild_sched_domains = true;
1537
1538 rcu_read_lock();
1539 css_put(&cp->css);
1540 }
1541 rcu_read_unlock();
1542
1543 if (need_rebuild_sched_domains)
1544 rebuild_sched_domains_locked();
1545 }
1546
1547 /**
1548 * update_sibling_cpumasks - Update siblings cpumasks
1549 * @parent: Parent cpuset
1550 * @cs: Current cpuset
1551 * @tmp: Temp variables
1552 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1553 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1554 struct tmpmasks *tmp)
1555 {
1556 struct cpuset *sibling;
1557 struct cgroup_subsys_state *pos_css;
1558
1559 lockdep_assert_held(&cpuset_mutex);
1560
1561 /*
1562 * Check all its siblings and call update_cpumasks_hier()
1563 * if their use_parent_ecpus flag is set in order for them
1564 * to use the right effective_cpus value.
1565 *
1566 * The update_cpumasks_hier() function may sleep. So we have to
1567 * release the RCU read lock before calling it.
1568 */
1569 rcu_read_lock();
1570 cpuset_for_each_child(sibling, pos_css, parent) {
1571 if (sibling == cs)
1572 continue;
1573 if (!sibling->use_parent_ecpus)
1574 continue;
1575 if (!css_tryget_online(&sibling->css))
1576 continue;
1577
1578 rcu_read_unlock();
1579 update_cpumasks_hier(sibling, tmp);
1580 rcu_read_lock();
1581 css_put(&sibling->css);
1582 }
1583 rcu_read_unlock();
1584 }
1585
1586 /**
1587 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1588 * @cs: the cpuset to consider
1589 * @trialcs: trial cpuset
1590 * @buf: buffer of cpu numbers written to this cpuset
1591 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1592 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1593 const char *buf)
1594 {
1595 int retval;
1596 struct tmpmasks tmp;
1597
1598 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1599 if (cs == &top_cpuset)
1600 return -EACCES;
1601
1602 /*
1603 * An empty cpus_requested is ok only if the cpuset has no tasks.
1604 * Since cpulist_parse() fails on an empty mask, we special case
1605 * that parsing. The validate_change() call ensures that cpusets
1606 * with tasks have cpus.
1607 */
1608 if (!*buf) {
1609 cpumask_clear(trialcs->cpus_requested);
1610 } else {
1611 retval = cpulist_parse(buf, trialcs->cpus_requested);
1612 if (retval < 0)
1613 return retval;
1614 }
1615
1616 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1617 return -EINVAL;
1618
1619 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1620
1621 /* Nothing to do if the cpus didn't change */
1622 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1623 return 0;
1624
1625 retval = validate_change(cs, trialcs);
1626 if (retval < 0)
1627 return retval;
1628
1629 #ifdef CONFIG_CPUMASK_OFFSTACK
1630 /*
1631 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1632 * to allocated cpumasks.
1633 */
1634 tmp.addmask = trialcs->subparts_cpus;
1635 tmp.delmask = trialcs->effective_cpus;
1636 tmp.new_cpus = trialcs->cpus_allowed;
1637 #endif
1638
1639 if (cs->partition_root_state) {
1640 /* Cpumask of a partition root cannot be empty */
1641 if (cpumask_empty(trialcs->cpus_allowed))
1642 return -EINVAL;
1643 if (update_parent_subparts_cpumask(cs, partcmd_update,
1644 trialcs->cpus_allowed, &tmp) < 0)
1645 return -EINVAL;
1646 }
1647
1648 spin_lock_irq(&callback_lock);
1649 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1650 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1651
1652 /*
1653 * Make sure that subparts_cpus is a subset of cpus_allowed.
1654 */
1655 if (cs->nr_subparts_cpus) {
1656 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1657 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1658 }
1659 spin_unlock_irq(&callback_lock);
1660
1661 update_cpumasks_hier(cs, &tmp);
1662
1663 if (cs->partition_root_state) {
1664 struct cpuset *parent = parent_cs(cs);
1665
1666 /*
1667 * For partition root, update the cpumasks of sibling
1668 * cpusets if they use parent's effective_cpus.
1669 */
1670 if (parent->child_ecpus_count)
1671 update_sibling_cpumasks(parent, cs, &tmp);
1672 }
1673 return 0;
1674 }
1675
1676 /*
1677 * Migrate memory region from one set of nodes to another. This is
1678 * performed asynchronously as it can be called from process migration path
1679 * holding locks involved in process management. All mm migrations are
1680 * performed in the queued order and can be waited for by flushing
1681 * cpuset_migrate_mm_wq.
1682 */
1683
1684 struct cpuset_migrate_mm_work {
1685 struct work_struct work;
1686 struct mm_struct *mm;
1687 nodemask_t from;
1688 nodemask_t to;
1689 };
1690
cpuset_migrate_mm_workfn(struct work_struct * work)1691 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1692 {
1693 struct cpuset_migrate_mm_work *mwork =
1694 container_of(work, struct cpuset_migrate_mm_work, work);
1695
1696 /* on a wq worker, no need to worry about %current's mems_allowed */
1697 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1698 mmput(mwork->mm);
1699 kfree(mwork);
1700 }
1701
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1702 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1703 const nodemask_t *to)
1704 {
1705 struct cpuset_migrate_mm_work *mwork;
1706
1707 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1708 if (mwork) {
1709 mwork->mm = mm;
1710 mwork->from = *from;
1711 mwork->to = *to;
1712 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1713 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1714 } else {
1715 mmput(mm);
1716 }
1717 }
1718
cpuset_post_attach(void)1719 static void cpuset_post_attach(void)
1720 {
1721 flush_workqueue(cpuset_migrate_mm_wq);
1722 }
1723
1724 /*
1725 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1726 * @tsk: the task to change
1727 * @newmems: new nodes that the task will be set
1728 *
1729 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1730 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1731 * parallel, it might temporarily see an empty intersection, which results in
1732 * a seqlock check and retry before OOM or allocation failure.
1733 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1734 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1735 nodemask_t *newmems)
1736 {
1737 task_lock(tsk);
1738
1739 local_irq_disable();
1740 write_seqcount_begin(&tsk->mems_allowed_seq);
1741
1742 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1743 mpol_rebind_task(tsk, newmems);
1744 tsk->mems_allowed = *newmems;
1745
1746 write_seqcount_end(&tsk->mems_allowed_seq);
1747 local_irq_enable();
1748
1749 task_unlock(tsk);
1750 }
1751
1752 static void *cpuset_being_rebound;
1753
1754 /**
1755 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1756 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1757 *
1758 * Iterate through each task of @cs updating its mems_allowed to the
1759 * effective cpuset's. As this function is called with cpuset_mutex held,
1760 * cpuset membership stays stable.
1761 */
update_tasks_nodemask(struct cpuset * cs)1762 static void update_tasks_nodemask(struct cpuset *cs)
1763 {
1764 static nodemask_t newmems; /* protected by cpuset_mutex */
1765 struct css_task_iter it;
1766 struct task_struct *task;
1767
1768 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1769
1770 guarantee_online_mems(cs, &newmems);
1771
1772 /*
1773 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1774 * take while holding tasklist_lock. Forks can happen - the
1775 * mpol_dup() cpuset_being_rebound check will catch such forks,
1776 * and rebind their vma mempolicies too. Because we still hold
1777 * the global cpuset_mutex, we know that no other rebind effort
1778 * will be contending for the global variable cpuset_being_rebound.
1779 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1780 * is idempotent. Also migrate pages in each mm to new nodes.
1781 */
1782 css_task_iter_start(&cs->css, 0, &it);
1783 while ((task = css_task_iter_next(&it))) {
1784 struct mm_struct *mm;
1785 bool migrate;
1786
1787 cpuset_change_task_nodemask(task, &newmems);
1788
1789 mm = get_task_mm(task);
1790 if (!mm)
1791 continue;
1792
1793 migrate = is_memory_migrate(cs);
1794
1795 mpol_rebind_mm(mm, &cs->mems_allowed);
1796 if (migrate)
1797 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1798 else
1799 mmput(mm);
1800 }
1801 css_task_iter_end(&it);
1802
1803 /*
1804 * All the tasks' nodemasks have been updated, update
1805 * cs->old_mems_allowed.
1806 */
1807 cs->old_mems_allowed = newmems;
1808
1809 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1810 cpuset_being_rebound = NULL;
1811 }
1812
1813 /*
1814 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1815 * @cs: the cpuset to consider
1816 * @new_mems: a temp variable for calculating new effective_mems
1817 *
1818 * When configured nodemask is changed, the effective nodemasks of this cpuset
1819 * and all its descendants need to be updated.
1820 *
1821 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1822 *
1823 * Called with cpuset_mutex held
1824 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1825 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1826 {
1827 struct cpuset *cp;
1828 struct cgroup_subsys_state *pos_css;
1829
1830 rcu_read_lock();
1831 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1832 struct cpuset *parent = parent_cs(cp);
1833
1834 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1835
1836 /*
1837 * If it becomes empty, inherit the effective mask of the
1838 * parent, which is guaranteed to have some MEMs.
1839 */
1840 if (is_in_v2_mode() && nodes_empty(*new_mems))
1841 *new_mems = parent->effective_mems;
1842
1843 /* Skip the whole subtree if the nodemask remains the same. */
1844 if (nodes_equal(*new_mems, cp->effective_mems)) {
1845 pos_css = css_rightmost_descendant(pos_css);
1846 continue;
1847 }
1848
1849 if (!css_tryget_online(&cp->css))
1850 continue;
1851 rcu_read_unlock();
1852
1853 spin_lock_irq(&callback_lock);
1854 cp->effective_mems = *new_mems;
1855 spin_unlock_irq(&callback_lock);
1856
1857 WARN_ON(!is_in_v2_mode() &&
1858 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1859
1860 update_tasks_nodemask(cp);
1861
1862 rcu_read_lock();
1863 css_put(&cp->css);
1864 }
1865 rcu_read_unlock();
1866 }
1867
1868 /*
1869 * Handle user request to change the 'mems' memory placement
1870 * of a cpuset. Needs to validate the request, update the
1871 * cpusets mems_allowed, and for each task in the cpuset,
1872 * update mems_allowed and rebind task's mempolicy and any vma
1873 * mempolicies and if the cpuset is marked 'memory_migrate',
1874 * migrate the tasks pages to the new memory.
1875 *
1876 * Call with cpuset_mutex held. May take callback_lock during call.
1877 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1878 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1879 * their mempolicies to the cpusets new mems_allowed.
1880 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1881 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1882 const char *buf)
1883 {
1884 int retval;
1885
1886 /*
1887 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1888 * it's read-only
1889 */
1890 if (cs == &top_cpuset) {
1891 retval = -EACCES;
1892 goto done;
1893 }
1894
1895 /*
1896 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1897 * Since nodelist_parse() fails on an empty mask, we special case
1898 * that parsing. The validate_change() call ensures that cpusets
1899 * with tasks have memory.
1900 */
1901 if (!*buf) {
1902 nodes_clear(trialcs->mems_allowed);
1903 } else {
1904 retval = nodelist_parse(buf, trialcs->mems_allowed);
1905 if (retval < 0)
1906 goto done;
1907
1908 if (!nodes_subset(trialcs->mems_allowed,
1909 top_cpuset.mems_allowed)) {
1910 retval = -EINVAL;
1911 goto done;
1912 }
1913 }
1914
1915 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1916 retval = 0; /* Too easy - nothing to do */
1917 goto done;
1918 }
1919 retval = validate_change(cs, trialcs);
1920 if (retval < 0)
1921 goto done;
1922
1923 spin_lock_irq(&callback_lock);
1924 cs->mems_allowed = trialcs->mems_allowed;
1925 spin_unlock_irq(&callback_lock);
1926
1927 /* use trialcs->mems_allowed as a temp variable */
1928 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1929 done:
1930 return retval;
1931 }
1932
current_cpuset_is_being_rebound(void)1933 bool current_cpuset_is_being_rebound(void)
1934 {
1935 bool ret;
1936
1937 rcu_read_lock();
1938 ret = task_cs(current) == cpuset_being_rebound;
1939 rcu_read_unlock();
1940
1941 return ret;
1942 }
1943
update_relax_domain_level(struct cpuset * cs,s64 val)1944 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1945 {
1946 #ifdef CONFIG_SMP
1947 if (val < -1 || val >= sched_domain_level_max)
1948 return -EINVAL;
1949 #endif
1950
1951 if (val != cs->relax_domain_level) {
1952 cs->relax_domain_level = val;
1953 if (!cpumask_empty(cs->cpus_allowed) &&
1954 is_sched_load_balance(cs))
1955 rebuild_sched_domains_locked();
1956 }
1957
1958 return 0;
1959 }
1960
1961 /**
1962 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1963 * @cs: the cpuset in which each task's spread flags needs to be changed
1964 *
1965 * Iterate through each task of @cs updating its spread flags. As this
1966 * function is called with cpuset_mutex held, cpuset membership stays
1967 * stable.
1968 */
update_tasks_flags(struct cpuset * cs)1969 static void update_tasks_flags(struct cpuset *cs)
1970 {
1971 struct css_task_iter it;
1972 struct task_struct *task;
1973
1974 css_task_iter_start(&cs->css, 0, &it);
1975 while ((task = css_task_iter_next(&it)))
1976 cpuset_update_task_spread_flag(cs, task);
1977 css_task_iter_end(&it);
1978 }
1979
1980 /*
1981 * update_flag - read a 0 or a 1 in a file and update associated flag
1982 * bit: the bit to update (see cpuset_flagbits_t)
1983 * cs: the cpuset to update
1984 * turning_on: whether the flag is being set or cleared
1985 *
1986 * Call with cpuset_mutex held.
1987 */
1988
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1989 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1990 int turning_on)
1991 {
1992 struct cpuset *trialcs;
1993 int balance_flag_changed;
1994 int spread_flag_changed;
1995 int err;
1996
1997 trialcs = alloc_trial_cpuset(cs);
1998 if (!trialcs)
1999 return -ENOMEM;
2000
2001 if (turning_on)
2002 set_bit(bit, &trialcs->flags);
2003 else
2004 clear_bit(bit, &trialcs->flags);
2005
2006 err = validate_change(cs, trialcs);
2007 if (err < 0)
2008 goto out;
2009
2010 balance_flag_changed = (is_sched_load_balance(cs) !=
2011 is_sched_load_balance(trialcs));
2012
2013 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2014 || (is_spread_page(cs) != is_spread_page(trialcs)));
2015
2016 spin_lock_irq(&callback_lock);
2017 cs->flags = trialcs->flags;
2018 spin_unlock_irq(&callback_lock);
2019
2020 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2021 rebuild_sched_domains_locked();
2022
2023 if (spread_flag_changed)
2024 update_tasks_flags(cs);
2025 out:
2026 free_cpuset(trialcs);
2027 return err;
2028 }
2029
2030 /*
2031 * update_prstate - update partititon_root_state
2032 * cs: the cpuset to update
2033 * new_prs: new partition root state
2034 *
2035 * Call with cpuset_mutex held.
2036 */
update_prstate(struct cpuset * cs,int new_prs)2037 static int update_prstate(struct cpuset *cs, int new_prs)
2038 {
2039 int err, old_prs = cs->partition_root_state;
2040 struct cpuset *parent = parent_cs(cs);
2041 struct tmpmasks tmpmask;
2042
2043 if (old_prs == new_prs)
2044 return 0;
2045
2046 /*
2047 * Cannot force a partial or invalid partition root to a full
2048 * partition root.
2049 */
2050 if (new_prs && (old_prs == PRS_ERROR))
2051 return -EINVAL;
2052
2053 if (alloc_cpumasks(NULL, &tmpmask))
2054 return -ENOMEM;
2055
2056 err = -EINVAL;
2057 if (!old_prs) {
2058 /*
2059 * Turning on partition root requires setting the
2060 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2061 * cannot be NULL.
2062 */
2063 if (cpumask_empty(cs->cpus_allowed))
2064 goto out;
2065
2066 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2067 if (err)
2068 goto out;
2069
2070 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2071 NULL, &tmpmask);
2072 if (err) {
2073 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2074 goto out;
2075 }
2076 } else {
2077 /*
2078 * Turning off partition root will clear the
2079 * CS_CPU_EXCLUSIVE bit.
2080 */
2081 if (old_prs == PRS_ERROR) {
2082 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2083 err = 0;
2084 goto out;
2085 }
2086
2087 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2088 NULL, &tmpmask);
2089 if (err)
2090 goto out;
2091
2092 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2093 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2094 }
2095
2096 update_tasks_cpumask(parent);
2097
2098 if (parent->child_ecpus_count)
2099 update_sibling_cpumasks(parent, cs, &tmpmask);
2100
2101 rebuild_sched_domains_locked();
2102 out:
2103 if (!err) {
2104 spin_lock_irq(&callback_lock);
2105 cs->partition_root_state = new_prs;
2106 spin_unlock_irq(&callback_lock);
2107 }
2108
2109 free_cpumasks(NULL, &tmpmask);
2110 return err;
2111 }
2112
2113 /*
2114 * Frequency meter - How fast is some event occurring?
2115 *
2116 * These routines manage a digitally filtered, constant time based,
2117 * event frequency meter. There are four routines:
2118 * fmeter_init() - initialize a frequency meter.
2119 * fmeter_markevent() - called each time the event happens.
2120 * fmeter_getrate() - returns the recent rate of such events.
2121 * fmeter_update() - internal routine used to update fmeter.
2122 *
2123 * A common data structure is passed to each of these routines,
2124 * which is used to keep track of the state required to manage the
2125 * frequency meter and its digital filter.
2126 *
2127 * The filter works on the number of events marked per unit time.
2128 * The filter is single-pole low-pass recursive (IIR). The time unit
2129 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2130 * simulate 3 decimal digits of precision (multiplied by 1000).
2131 *
2132 * With an FM_COEF of 933, and a time base of 1 second, the filter
2133 * has a half-life of 10 seconds, meaning that if the events quit
2134 * happening, then the rate returned from the fmeter_getrate()
2135 * will be cut in half each 10 seconds, until it converges to zero.
2136 *
2137 * It is not worth doing a real infinitely recursive filter. If more
2138 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2139 * just compute FM_MAXTICKS ticks worth, by which point the level
2140 * will be stable.
2141 *
2142 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2143 * arithmetic overflow in the fmeter_update() routine.
2144 *
2145 * Given the simple 32 bit integer arithmetic used, this meter works
2146 * best for reporting rates between one per millisecond (msec) and
2147 * one per 32 (approx) seconds. At constant rates faster than one
2148 * per msec it maxes out at values just under 1,000,000. At constant
2149 * rates between one per msec, and one per second it will stabilize
2150 * to a value N*1000, where N is the rate of events per second.
2151 * At constant rates between one per second and one per 32 seconds,
2152 * it will be choppy, moving up on the seconds that have an event,
2153 * and then decaying until the next event. At rates slower than
2154 * about one in 32 seconds, it decays all the way back to zero between
2155 * each event.
2156 */
2157
2158 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2159 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2160 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2161 #define FM_SCALE 1000 /* faux fixed point scale */
2162
2163 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2164 static void fmeter_init(struct fmeter *fmp)
2165 {
2166 fmp->cnt = 0;
2167 fmp->val = 0;
2168 fmp->time = 0;
2169 spin_lock_init(&fmp->lock);
2170 }
2171
2172 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2173 static void fmeter_update(struct fmeter *fmp)
2174 {
2175 time64_t now;
2176 u32 ticks;
2177
2178 now = ktime_get_seconds();
2179 ticks = now - fmp->time;
2180
2181 if (ticks == 0)
2182 return;
2183
2184 ticks = min(FM_MAXTICKS, ticks);
2185 while (ticks-- > 0)
2186 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2187 fmp->time = now;
2188
2189 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2190 fmp->cnt = 0;
2191 }
2192
2193 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2194 static void fmeter_markevent(struct fmeter *fmp)
2195 {
2196 spin_lock(&fmp->lock);
2197 fmeter_update(fmp);
2198 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2199 spin_unlock(&fmp->lock);
2200 }
2201
2202 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2203 static int fmeter_getrate(struct fmeter *fmp)
2204 {
2205 int val;
2206
2207 spin_lock(&fmp->lock);
2208 fmeter_update(fmp);
2209 val = fmp->val;
2210 spin_unlock(&fmp->lock);
2211 return val;
2212 }
2213
2214 static struct cpuset *cpuset_attach_old_cs;
2215
reset_migrate_dl_data(struct cpuset * cs)2216 static void reset_migrate_dl_data(struct cpuset *cs)
2217 {
2218 cs->nr_migrate_dl_tasks = 0;
2219 cs->sum_migrate_dl_bw = 0;
2220 }
2221
2222 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2223 static int cpuset_can_attach(struct cgroup_taskset *tset)
2224 {
2225 struct cgroup_subsys_state *css;
2226 struct cpuset *cs, *oldcs;
2227 struct task_struct *task;
2228 int ret;
2229
2230 /* used later by cpuset_attach() */
2231 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2232 oldcs = cpuset_attach_old_cs;
2233 cs = css_cs(css);
2234
2235 mutex_lock(&cpuset_mutex);
2236
2237 /* allow moving tasks into an empty cpuset if on default hierarchy */
2238 ret = -ENOSPC;
2239 if (!is_in_v2_mode() &&
2240 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2241 goto out_unlock;
2242
2243 cgroup_taskset_for_each(task, css, tset) {
2244 ret = task_can_attach(task);
2245 if (ret)
2246 goto out_unlock;
2247 ret = security_task_setscheduler(task);
2248 if (ret)
2249 goto out_unlock;
2250
2251 if (dl_task(task)) {
2252 cs->nr_migrate_dl_tasks++;
2253 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2254 }
2255 }
2256
2257 if (!cs->nr_migrate_dl_tasks)
2258 goto out_success;
2259
2260 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2261 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2262
2263 if (unlikely(cpu >= nr_cpu_ids)) {
2264 reset_migrate_dl_data(cs);
2265 ret = -EINVAL;
2266 goto out_unlock;
2267 }
2268
2269 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2270 if (ret) {
2271 reset_migrate_dl_data(cs);
2272 goto out_unlock;
2273 }
2274 }
2275
2276 out_success:
2277 /*
2278 * Mark attach is in progress. This makes validate_change() fail
2279 * changes which zero cpus/mems_allowed.
2280 */
2281 cs->attach_in_progress++;
2282 ret = 0;
2283 out_unlock:
2284 mutex_unlock(&cpuset_mutex);
2285 return ret;
2286 }
2287
cpuset_cancel_attach(struct cgroup_taskset * tset)2288 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2289 {
2290 struct cgroup_subsys_state *css;
2291 struct cpuset *cs;
2292
2293 cgroup_taskset_first(tset, &css);
2294 cs = css_cs(css);
2295
2296 mutex_lock(&cpuset_mutex);
2297 cs->attach_in_progress--;
2298 if (!cs->attach_in_progress)
2299 wake_up(&cpuset_attach_wq);
2300
2301 if (cs->nr_migrate_dl_tasks) {
2302 int cpu = cpumask_any(cs->effective_cpus);
2303
2304 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2305 reset_migrate_dl_data(cs);
2306 }
2307
2308 mutex_unlock(&cpuset_mutex);
2309 }
2310
2311 /*
2312 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2313 * but we can't allocate it dynamically there. Define it global and
2314 * allocate from cpuset_init().
2315 */
2316 static cpumask_var_t cpus_attach;
2317
cpuset_attach(struct cgroup_taskset * tset)2318 static void cpuset_attach(struct cgroup_taskset *tset)
2319 {
2320 /* static buf protected by cpuset_mutex */
2321 static nodemask_t cpuset_attach_nodemask_to;
2322 struct task_struct *task;
2323 struct task_struct *leader;
2324 struct cgroup_subsys_state *css;
2325 struct cpuset *cs;
2326 struct cpuset *oldcs = cpuset_attach_old_cs;
2327
2328 cgroup_taskset_first(tset, &css);
2329 cs = css_cs(css);
2330
2331 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2332 mutex_lock(&cpuset_mutex);
2333
2334 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2335
2336 cgroup_taskset_for_each(task, css, tset) {
2337 if (cs != &top_cpuset)
2338 guarantee_online_cpus(task, cpus_attach);
2339 else
2340 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2341 /*
2342 * can_attach beforehand should guarantee that this doesn't
2343 * fail. TODO: have a better way to handle failure here
2344 */
2345 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
2346
2347 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2348 cpuset_update_task_spread_flag(cs, task);
2349 }
2350
2351 /*
2352 * Change mm for all threadgroup leaders. This is expensive and may
2353 * sleep and should be moved outside migration path proper.
2354 */
2355 cpuset_attach_nodemask_to = cs->effective_mems;
2356 cgroup_taskset_for_each_leader(leader, css, tset) {
2357 struct mm_struct *mm = get_task_mm(leader);
2358
2359 if (mm) {
2360 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2361
2362 /*
2363 * old_mems_allowed is the same with mems_allowed
2364 * here, except if this task is being moved
2365 * automatically due to hotplug. In that case
2366 * @mems_allowed has been updated and is empty, so
2367 * @old_mems_allowed is the right nodesets that we
2368 * migrate mm from.
2369 */
2370 if (is_memory_migrate(cs))
2371 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2372 &cpuset_attach_nodemask_to);
2373 else
2374 mmput(mm);
2375 }
2376 }
2377
2378 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2379
2380 if (cs->nr_migrate_dl_tasks) {
2381 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2382 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2383 reset_migrate_dl_data(cs);
2384 }
2385
2386 cs->attach_in_progress--;
2387 if (!cs->attach_in_progress)
2388 wake_up(&cpuset_attach_wq);
2389
2390 mutex_unlock(&cpuset_mutex);
2391 }
2392
2393 /* The various types of files and directories in a cpuset file system */
2394
2395 typedef enum {
2396 FILE_MEMORY_MIGRATE,
2397 FILE_CPULIST,
2398 FILE_MEMLIST,
2399 FILE_EFFECTIVE_CPULIST,
2400 FILE_EFFECTIVE_MEMLIST,
2401 FILE_SUBPARTS_CPULIST,
2402 FILE_CPU_EXCLUSIVE,
2403 FILE_MEM_EXCLUSIVE,
2404 FILE_MEM_HARDWALL,
2405 FILE_SCHED_LOAD_BALANCE,
2406 FILE_PARTITION_ROOT,
2407 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2408 FILE_MEMORY_PRESSURE_ENABLED,
2409 FILE_MEMORY_PRESSURE,
2410 FILE_SPREAD_PAGE,
2411 FILE_SPREAD_SLAB,
2412 } cpuset_filetype_t;
2413
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2414 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2415 u64 val)
2416 {
2417 struct cpuset *cs = css_cs(css);
2418 cpuset_filetype_t type = cft->private;
2419 int retval = 0;
2420
2421 get_online_cpus();
2422 mutex_lock(&cpuset_mutex);
2423 if (!is_cpuset_online(cs)) {
2424 retval = -ENODEV;
2425 goto out_unlock;
2426 }
2427
2428 switch (type) {
2429 case FILE_CPU_EXCLUSIVE:
2430 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2431 break;
2432 case FILE_MEM_EXCLUSIVE:
2433 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2434 break;
2435 case FILE_MEM_HARDWALL:
2436 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2437 break;
2438 case FILE_SCHED_LOAD_BALANCE:
2439 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2440 break;
2441 case FILE_MEMORY_MIGRATE:
2442 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2443 break;
2444 case FILE_MEMORY_PRESSURE_ENABLED:
2445 cpuset_memory_pressure_enabled = !!val;
2446 break;
2447 case FILE_SPREAD_PAGE:
2448 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2449 break;
2450 case FILE_SPREAD_SLAB:
2451 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2452 break;
2453 default:
2454 retval = -EINVAL;
2455 break;
2456 }
2457 out_unlock:
2458 mutex_unlock(&cpuset_mutex);
2459 put_online_cpus();
2460 return retval;
2461 }
2462
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2463 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2464 s64 val)
2465 {
2466 struct cpuset *cs = css_cs(css);
2467 cpuset_filetype_t type = cft->private;
2468 int retval = -ENODEV;
2469
2470 get_online_cpus();
2471 mutex_lock(&cpuset_mutex);
2472 if (!is_cpuset_online(cs))
2473 goto out_unlock;
2474
2475 switch (type) {
2476 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2477 retval = update_relax_domain_level(cs, val);
2478 break;
2479 default:
2480 retval = -EINVAL;
2481 break;
2482 }
2483 out_unlock:
2484 mutex_unlock(&cpuset_mutex);
2485 put_online_cpus();
2486 return retval;
2487 }
2488
2489 /*
2490 * Common handling for a write to a "cpus" or "mems" file.
2491 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2492 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2493 char *buf, size_t nbytes, loff_t off)
2494 {
2495 struct cpuset *cs = css_cs(of_css(of));
2496 struct cpuset *trialcs;
2497 int retval = -ENODEV;
2498
2499 buf = strstrip(buf);
2500
2501 /*
2502 * CPU or memory hotunplug may leave @cs w/o any execution
2503 * resources, in which case the hotplug code asynchronously updates
2504 * configuration and transfers all tasks to the nearest ancestor
2505 * which can execute.
2506 *
2507 * As writes to "cpus" or "mems" may restore @cs's execution
2508 * resources, wait for the previously scheduled operations before
2509 * proceeding, so that we don't end up keep removing tasks added
2510 * after execution capability is restored.
2511 *
2512 * cpuset_hotplug_work calls back into cgroup core via
2513 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2514 * operation like this one can lead to a deadlock through kernfs
2515 * active_ref protection. Let's break the protection. Losing the
2516 * protection is okay as we check whether @cs is online after
2517 * grabbing cpuset_mutex anyway. This only happens on the legacy
2518 * hierarchies.
2519 */
2520 css_get(&cs->css);
2521 kernfs_break_active_protection(of->kn);
2522 flush_work(&cpuset_hotplug_work);
2523
2524 get_online_cpus();
2525 mutex_lock(&cpuset_mutex);
2526 if (!is_cpuset_online(cs))
2527 goto out_unlock;
2528
2529 trialcs = alloc_trial_cpuset(cs);
2530 if (!trialcs) {
2531 retval = -ENOMEM;
2532 goto out_unlock;
2533 }
2534
2535 switch (of_cft(of)->private) {
2536 case FILE_CPULIST:
2537 retval = update_cpumask(cs, trialcs, buf);
2538 break;
2539 case FILE_MEMLIST:
2540 retval = update_nodemask(cs, trialcs, buf);
2541 break;
2542 default:
2543 retval = -EINVAL;
2544 break;
2545 }
2546
2547 free_cpuset(trialcs);
2548 out_unlock:
2549 mutex_unlock(&cpuset_mutex);
2550 put_online_cpus();
2551 kernfs_unbreak_active_protection(of->kn);
2552 css_put(&cs->css);
2553 flush_workqueue(cpuset_migrate_mm_wq);
2554 return retval ?: nbytes;
2555 }
2556
2557 /*
2558 * These ascii lists should be read in a single call, by using a user
2559 * buffer large enough to hold the entire map. If read in smaller
2560 * chunks, there is no guarantee of atomicity. Since the display format
2561 * used, list of ranges of sequential numbers, is variable length,
2562 * and since these maps can change value dynamically, one could read
2563 * gibberish by doing partial reads while a list was changing.
2564 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2565 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2566 {
2567 struct cpuset *cs = css_cs(seq_css(sf));
2568 cpuset_filetype_t type = seq_cft(sf)->private;
2569 int ret = 0;
2570
2571 spin_lock_irq(&callback_lock);
2572
2573 switch (type) {
2574 case FILE_CPULIST:
2575 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2576 break;
2577 case FILE_MEMLIST:
2578 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2579 break;
2580 case FILE_EFFECTIVE_CPULIST:
2581 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2582 break;
2583 case FILE_EFFECTIVE_MEMLIST:
2584 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2585 break;
2586 case FILE_SUBPARTS_CPULIST:
2587 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2588 break;
2589 default:
2590 ret = -EINVAL;
2591 }
2592
2593 spin_unlock_irq(&callback_lock);
2594 return ret;
2595 }
2596
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2597 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2598 {
2599 struct cpuset *cs = css_cs(css);
2600 cpuset_filetype_t type = cft->private;
2601 switch (type) {
2602 case FILE_CPU_EXCLUSIVE:
2603 return is_cpu_exclusive(cs);
2604 case FILE_MEM_EXCLUSIVE:
2605 return is_mem_exclusive(cs);
2606 case FILE_MEM_HARDWALL:
2607 return is_mem_hardwall(cs);
2608 case FILE_SCHED_LOAD_BALANCE:
2609 return is_sched_load_balance(cs);
2610 case FILE_MEMORY_MIGRATE:
2611 return is_memory_migrate(cs);
2612 case FILE_MEMORY_PRESSURE_ENABLED:
2613 return cpuset_memory_pressure_enabled;
2614 case FILE_MEMORY_PRESSURE:
2615 return fmeter_getrate(&cs->fmeter);
2616 case FILE_SPREAD_PAGE:
2617 return is_spread_page(cs);
2618 case FILE_SPREAD_SLAB:
2619 return is_spread_slab(cs);
2620 default:
2621 BUG();
2622 }
2623
2624 /* Unreachable but makes gcc happy */
2625 return 0;
2626 }
2627
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2628 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2629 {
2630 struct cpuset *cs = css_cs(css);
2631 cpuset_filetype_t type = cft->private;
2632 switch (type) {
2633 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2634 return cs->relax_domain_level;
2635 default:
2636 BUG();
2637 }
2638
2639 /* Unrechable but makes gcc happy */
2640 return 0;
2641 }
2642
sched_partition_show(struct seq_file * seq,void * v)2643 static int sched_partition_show(struct seq_file *seq, void *v)
2644 {
2645 struct cpuset *cs = css_cs(seq_css(seq));
2646
2647 switch (cs->partition_root_state) {
2648 case PRS_ENABLED:
2649 seq_puts(seq, "root\n");
2650 break;
2651 case PRS_DISABLED:
2652 seq_puts(seq, "member\n");
2653 break;
2654 case PRS_ERROR:
2655 seq_puts(seq, "root invalid\n");
2656 break;
2657 }
2658 return 0;
2659 }
2660
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2661 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2662 size_t nbytes, loff_t off)
2663 {
2664 struct cpuset *cs = css_cs(of_css(of));
2665 int val;
2666 int retval = -ENODEV;
2667
2668 buf = strstrip(buf);
2669
2670 /*
2671 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2672 */
2673 if (!strcmp(buf, "root"))
2674 val = PRS_ENABLED;
2675 else if (!strcmp(buf, "member"))
2676 val = PRS_DISABLED;
2677 else
2678 return -EINVAL;
2679
2680 css_get(&cs->css);
2681 get_online_cpus();
2682 mutex_lock(&cpuset_mutex);
2683 if (!is_cpuset_online(cs))
2684 goto out_unlock;
2685
2686 retval = update_prstate(cs, val);
2687 out_unlock:
2688 mutex_unlock(&cpuset_mutex);
2689 put_online_cpus();
2690 css_put(&cs->css);
2691 return retval ?: nbytes;
2692 }
2693
2694 /*
2695 * for the common functions, 'private' gives the type of file
2696 */
2697
2698 static struct cftype legacy_files[] = {
2699 {
2700 .name = "cpus",
2701 .seq_show = cpuset_common_seq_show,
2702 .write = cpuset_write_resmask,
2703 .max_write_len = (100U + 6 * NR_CPUS),
2704 .private = FILE_CPULIST,
2705 },
2706
2707 {
2708 .name = "mems",
2709 .seq_show = cpuset_common_seq_show,
2710 .write = cpuset_write_resmask,
2711 .max_write_len = (100U + 6 * MAX_NUMNODES),
2712 .private = FILE_MEMLIST,
2713 },
2714
2715 {
2716 .name = "effective_cpus",
2717 .seq_show = cpuset_common_seq_show,
2718 .private = FILE_EFFECTIVE_CPULIST,
2719 },
2720
2721 {
2722 .name = "effective_mems",
2723 .seq_show = cpuset_common_seq_show,
2724 .private = FILE_EFFECTIVE_MEMLIST,
2725 },
2726
2727 {
2728 .name = "cpu_exclusive",
2729 .read_u64 = cpuset_read_u64,
2730 .write_u64 = cpuset_write_u64,
2731 .private = FILE_CPU_EXCLUSIVE,
2732 },
2733
2734 {
2735 .name = "mem_exclusive",
2736 .read_u64 = cpuset_read_u64,
2737 .write_u64 = cpuset_write_u64,
2738 .private = FILE_MEM_EXCLUSIVE,
2739 },
2740
2741 {
2742 .name = "mem_hardwall",
2743 .read_u64 = cpuset_read_u64,
2744 .write_u64 = cpuset_write_u64,
2745 .private = FILE_MEM_HARDWALL,
2746 },
2747
2748 {
2749 .name = "sched_load_balance",
2750 .read_u64 = cpuset_read_u64,
2751 .write_u64 = cpuset_write_u64,
2752 .private = FILE_SCHED_LOAD_BALANCE,
2753 },
2754
2755 {
2756 .name = "sched_relax_domain_level",
2757 .read_s64 = cpuset_read_s64,
2758 .write_s64 = cpuset_write_s64,
2759 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2760 },
2761
2762 {
2763 .name = "memory_migrate",
2764 .read_u64 = cpuset_read_u64,
2765 .write_u64 = cpuset_write_u64,
2766 .private = FILE_MEMORY_MIGRATE,
2767 },
2768
2769 {
2770 .name = "memory_pressure",
2771 .read_u64 = cpuset_read_u64,
2772 .private = FILE_MEMORY_PRESSURE,
2773 },
2774
2775 {
2776 .name = "memory_spread_page",
2777 .read_u64 = cpuset_read_u64,
2778 .write_u64 = cpuset_write_u64,
2779 .private = FILE_SPREAD_PAGE,
2780 },
2781
2782 {
2783 .name = "memory_spread_slab",
2784 .read_u64 = cpuset_read_u64,
2785 .write_u64 = cpuset_write_u64,
2786 .private = FILE_SPREAD_SLAB,
2787 },
2788
2789 {
2790 .name = "memory_pressure_enabled",
2791 .flags = CFTYPE_ONLY_ON_ROOT,
2792 .read_u64 = cpuset_read_u64,
2793 .write_u64 = cpuset_write_u64,
2794 .private = FILE_MEMORY_PRESSURE_ENABLED,
2795 },
2796
2797 { } /* terminate */
2798 };
2799
2800 /*
2801 * This is currently a minimal set for the default hierarchy. It can be
2802 * expanded later on by migrating more features and control files from v1.
2803 */
2804 static struct cftype dfl_files[] = {
2805 {
2806 .name = "cpus",
2807 .seq_show = cpuset_common_seq_show,
2808 .write = cpuset_write_resmask,
2809 .max_write_len = (100U + 6 * NR_CPUS),
2810 .private = FILE_CPULIST,
2811 .flags = CFTYPE_NOT_ON_ROOT,
2812 },
2813
2814 {
2815 .name = "mems",
2816 .seq_show = cpuset_common_seq_show,
2817 .write = cpuset_write_resmask,
2818 .max_write_len = (100U + 6 * MAX_NUMNODES),
2819 .private = FILE_MEMLIST,
2820 .flags = CFTYPE_NOT_ON_ROOT,
2821 },
2822
2823 {
2824 .name = "cpus.effective",
2825 .seq_show = cpuset_common_seq_show,
2826 .private = FILE_EFFECTIVE_CPULIST,
2827 },
2828
2829 {
2830 .name = "mems.effective",
2831 .seq_show = cpuset_common_seq_show,
2832 .private = FILE_EFFECTIVE_MEMLIST,
2833 },
2834
2835 {
2836 .name = "cpus.partition",
2837 .seq_show = sched_partition_show,
2838 .write = sched_partition_write,
2839 .private = FILE_PARTITION_ROOT,
2840 .flags = CFTYPE_NOT_ON_ROOT,
2841 },
2842
2843 {
2844 .name = "cpus.subpartitions",
2845 .seq_show = cpuset_common_seq_show,
2846 .private = FILE_SUBPARTS_CPULIST,
2847 .flags = CFTYPE_DEBUG,
2848 },
2849
2850 { } /* terminate */
2851 };
2852
2853
2854 /*
2855 * cpuset_css_alloc - allocate a cpuset css
2856 * cgrp: control group that the new cpuset will be part of
2857 */
2858
2859 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2860 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2861 {
2862 struct cpuset *cs;
2863
2864 if (!parent_css)
2865 return &top_cpuset.css;
2866
2867 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2868 if (!cs)
2869 return ERR_PTR(-ENOMEM);
2870
2871 if (alloc_cpumasks(cs, NULL)) {
2872 kfree(cs);
2873 return ERR_PTR(-ENOMEM);
2874 }
2875
2876 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2877 nodes_clear(cs->mems_allowed);
2878 nodes_clear(cs->effective_mems);
2879 fmeter_init(&cs->fmeter);
2880 cs->relax_domain_level = -1;
2881
2882 return &cs->css;
2883 }
2884
cpuset_css_online(struct cgroup_subsys_state * css)2885 static int cpuset_css_online(struct cgroup_subsys_state *css)
2886 {
2887 struct cpuset *cs = css_cs(css);
2888 struct cpuset *parent = parent_cs(cs);
2889 struct cpuset *tmp_cs;
2890 struct cgroup_subsys_state *pos_css;
2891
2892 if (!parent)
2893 return 0;
2894
2895 get_online_cpus();
2896 mutex_lock(&cpuset_mutex);
2897
2898 set_bit(CS_ONLINE, &cs->flags);
2899 if (is_spread_page(parent))
2900 set_bit(CS_SPREAD_PAGE, &cs->flags);
2901 if (is_spread_slab(parent))
2902 set_bit(CS_SPREAD_SLAB, &cs->flags);
2903
2904 cpuset_inc();
2905
2906 spin_lock_irq(&callback_lock);
2907 if (is_in_v2_mode()) {
2908 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2909 cs->effective_mems = parent->effective_mems;
2910 cs->use_parent_ecpus = true;
2911 parent->child_ecpus_count++;
2912 }
2913 spin_unlock_irq(&callback_lock);
2914
2915 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2916 goto out_unlock;
2917
2918 /*
2919 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2920 * set. This flag handling is implemented in cgroup core for
2921 * histrical reasons - the flag may be specified during mount.
2922 *
2923 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2924 * refuse to clone the configuration - thereby refusing the task to
2925 * be entered, and as a result refusing the sys_unshare() or
2926 * clone() which initiated it. If this becomes a problem for some
2927 * users who wish to allow that scenario, then this could be
2928 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2929 * (and likewise for mems) to the new cgroup.
2930 */
2931 rcu_read_lock();
2932 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2933 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2934 rcu_read_unlock();
2935 goto out_unlock;
2936 }
2937 }
2938 rcu_read_unlock();
2939
2940 spin_lock_irq(&callback_lock);
2941 cs->mems_allowed = parent->mems_allowed;
2942 cs->effective_mems = parent->mems_allowed;
2943 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2944 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2945 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2946 spin_unlock_irq(&callback_lock);
2947 out_unlock:
2948 mutex_unlock(&cpuset_mutex);
2949 put_online_cpus();
2950 return 0;
2951 }
2952
2953 /*
2954 * If the cpuset being removed has its flag 'sched_load_balance'
2955 * enabled, then simulate turning sched_load_balance off, which
2956 * will call rebuild_sched_domains_locked(). That is not needed
2957 * in the default hierarchy where only changes in partition
2958 * will cause repartitioning.
2959 *
2960 * If the cpuset has the 'sched.partition' flag enabled, simulate
2961 * turning 'sched.partition" off.
2962 */
2963
cpuset_css_offline(struct cgroup_subsys_state * css)2964 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2965 {
2966 struct cpuset *cs = css_cs(css);
2967
2968 get_online_cpus();
2969 mutex_lock(&cpuset_mutex);
2970
2971 if (is_partition_root(cs))
2972 update_prstate(cs, 0);
2973
2974 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2975 is_sched_load_balance(cs))
2976 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2977
2978 if (cs->use_parent_ecpus) {
2979 struct cpuset *parent = parent_cs(cs);
2980
2981 cs->use_parent_ecpus = false;
2982 parent->child_ecpus_count--;
2983 }
2984
2985 cpuset_dec();
2986 clear_bit(CS_ONLINE, &cs->flags);
2987
2988 mutex_unlock(&cpuset_mutex);
2989 put_online_cpus();
2990 }
2991
cpuset_css_free(struct cgroup_subsys_state * css)2992 static void cpuset_css_free(struct cgroup_subsys_state *css)
2993 {
2994 struct cpuset *cs = css_cs(css);
2995
2996 free_cpuset(cs);
2997 }
2998
cpuset_bind(struct cgroup_subsys_state * root_css)2999 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3000 {
3001 mutex_lock(&cpuset_mutex);
3002 spin_lock_irq(&callback_lock);
3003
3004 if (is_in_v2_mode()) {
3005 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3006 top_cpuset.mems_allowed = node_possible_map;
3007 } else {
3008 cpumask_copy(top_cpuset.cpus_allowed,
3009 top_cpuset.effective_cpus);
3010 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3011 }
3012
3013 spin_unlock_irq(&callback_lock);
3014 mutex_unlock(&cpuset_mutex);
3015 }
3016
3017 /*
3018 * Make sure the new task conform to the current state of its parent,
3019 * which could have been changed by cpuset just after it inherits the
3020 * state from the parent and before it sits on the cgroup's task list.
3021 */
cpuset_fork(struct task_struct * task)3022 static void cpuset_fork(struct task_struct *task)
3023 {
3024 int inherit_cpus = 0;
3025 if (task_css_is_root(task, cpuset_cgrp_id))
3026 return;
3027
3028 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
3029 if (!inherit_cpus)
3030 set_cpus_allowed_ptr(task, current->cpus_ptr);
3031 task->mems_allowed = current->mems_allowed;
3032 }
3033
3034 struct cgroup_subsys cpuset_cgrp_subsys = {
3035 .css_alloc = cpuset_css_alloc,
3036 .css_online = cpuset_css_online,
3037 .css_offline = cpuset_css_offline,
3038 .css_free = cpuset_css_free,
3039 .can_attach = cpuset_can_attach,
3040 .cancel_attach = cpuset_cancel_attach,
3041 .attach = cpuset_attach,
3042 .post_attach = cpuset_post_attach,
3043 .bind = cpuset_bind,
3044 .fork = cpuset_fork,
3045 .legacy_cftypes = legacy_files,
3046 .dfl_cftypes = dfl_files,
3047 .early_init = true,
3048 .threaded = true,
3049 };
3050
3051 /**
3052 * cpuset_init - initialize cpusets at system boot
3053 *
3054 * Description: Initialize top_cpuset
3055 **/
3056
cpuset_init(void)3057 int __init cpuset_init(void)
3058 {
3059 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3060 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3061 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3062 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
3063
3064 cpumask_setall(top_cpuset.cpus_allowed);
3065 cpumask_setall(top_cpuset.cpus_requested);
3066 nodes_setall(top_cpuset.mems_allowed);
3067 cpumask_setall(top_cpuset.effective_cpus);
3068 nodes_setall(top_cpuset.effective_mems);
3069
3070 fmeter_init(&top_cpuset.fmeter);
3071 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3072 top_cpuset.relax_domain_level = -1;
3073
3074 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3075
3076 return 0;
3077 }
3078
3079 /*
3080 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3081 * or memory nodes, we need to walk over the cpuset hierarchy,
3082 * removing that CPU or node from all cpusets. If this removes the
3083 * last CPU or node from a cpuset, then move the tasks in the empty
3084 * cpuset to its next-highest non-empty parent.
3085 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3086 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3087 {
3088 struct cpuset *parent;
3089
3090 /*
3091 * Find its next-highest non-empty parent, (top cpuset
3092 * has online cpus, so can't be empty).
3093 */
3094 parent = parent_cs(cs);
3095 while (cpumask_empty(parent->cpus_allowed) ||
3096 nodes_empty(parent->mems_allowed))
3097 parent = parent_cs(parent);
3098
3099 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3100 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3101 pr_cont_cgroup_name(cs->css.cgroup);
3102 pr_cont("\n");
3103 }
3104 }
3105
3106 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3107 hotplug_update_tasks_legacy(struct cpuset *cs,
3108 struct cpumask *new_cpus, nodemask_t *new_mems,
3109 bool cpus_updated, bool mems_updated)
3110 {
3111 bool is_empty;
3112
3113 spin_lock_irq(&callback_lock);
3114 cpumask_copy(cs->cpus_allowed, new_cpus);
3115 cpumask_copy(cs->effective_cpus, new_cpus);
3116 cs->mems_allowed = *new_mems;
3117 cs->effective_mems = *new_mems;
3118 spin_unlock_irq(&callback_lock);
3119
3120 /*
3121 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3122 * as the tasks will be migratecd to an ancestor.
3123 */
3124 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3125 update_tasks_cpumask(cs);
3126 if (mems_updated && !nodes_empty(cs->mems_allowed))
3127 update_tasks_nodemask(cs);
3128
3129 is_empty = cpumask_empty(cs->cpus_allowed) ||
3130 nodes_empty(cs->mems_allowed);
3131
3132 mutex_unlock(&cpuset_mutex);
3133
3134 /*
3135 * Move tasks to the nearest ancestor with execution resources,
3136 * This is full cgroup operation which will also call back into
3137 * cpuset. Should be done outside any lock.
3138 */
3139 if (is_empty)
3140 remove_tasks_in_empty_cpuset(cs);
3141
3142 mutex_lock(&cpuset_mutex);
3143 }
3144
3145 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3146 hotplug_update_tasks(struct cpuset *cs,
3147 struct cpumask *new_cpus, nodemask_t *new_mems,
3148 bool cpus_updated, bool mems_updated)
3149 {
3150 if (cpumask_empty(new_cpus))
3151 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3152 if (nodes_empty(*new_mems))
3153 *new_mems = parent_cs(cs)->effective_mems;
3154
3155 spin_lock_irq(&callback_lock);
3156 cpumask_copy(cs->effective_cpus, new_cpus);
3157 cs->effective_mems = *new_mems;
3158 spin_unlock_irq(&callback_lock);
3159
3160 if (cpus_updated)
3161 update_tasks_cpumask(cs);
3162 if (mems_updated)
3163 update_tasks_nodemask(cs);
3164 }
3165
3166 static bool force_rebuild;
3167
cpuset_force_rebuild(void)3168 void cpuset_force_rebuild(void)
3169 {
3170 force_rebuild = true;
3171 }
3172
3173 /**
3174 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3175 * @cs: cpuset in interest
3176 * @tmp: the tmpmasks structure pointer
3177 *
3178 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3179 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3180 * all its tasks are moved to the nearest ancestor with both resources.
3181 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3182 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3183 {
3184 static cpumask_t new_cpus;
3185 static nodemask_t new_mems;
3186 bool cpus_updated;
3187 bool mems_updated;
3188 struct cpuset *parent;
3189 retry:
3190 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3191
3192 mutex_lock(&cpuset_mutex);
3193
3194 /*
3195 * We have raced with task attaching. We wait until attaching
3196 * is finished, so we won't attach a task to an empty cpuset.
3197 */
3198 if (cs->attach_in_progress) {
3199 mutex_unlock(&cpuset_mutex);
3200 goto retry;
3201 }
3202
3203 parent = parent_cs(cs);
3204 compute_effective_cpumask(&new_cpus, cs, parent);
3205 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3206
3207 if (cs->nr_subparts_cpus)
3208 /*
3209 * Make sure that CPUs allocated to child partitions
3210 * do not show up in effective_cpus.
3211 */
3212 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3213
3214 if (!tmp || !cs->partition_root_state)
3215 goto update_tasks;
3216
3217 /*
3218 * In the unlikely event that a partition root has empty
3219 * effective_cpus or its parent becomes erroneous, we have to
3220 * transition it to the erroneous state.
3221 */
3222 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3223 (parent->partition_root_state == PRS_ERROR))) {
3224 if (cs->nr_subparts_cpus) {
3225 spin_lock_irq(&callback_lock);
3226 cs->nr_subparts_cpus = 0;
3227 cpumask_clear(cs->subparts_cpus);
3228 spin_unlock_irq(&callback_lock);
3229 compute_effective_cpumask(&new_cpus, cs, parent);
3230 }
3231
3232 /*
3233 * If the effective_cpus is empty because the child
3234 * partitions take away all the CPUs, we can keep
3235 * the current partition and let the child partitions
3236 * fight for available CPUs.
3237 */
3238 if ((parent->partition_root_state == PRS_ERROR) ||
3239 cpumask_empty(&new_cpus)) {
3240 update_parent_subparts_cpumask(cs, partcmd_disable,
3241 NULL, tmp);
3242 spin_lock_irq(&callback_lock);
3243 cs->partition_root_state = PRS_ERROR;
3244 spin_unlock_irq(&callback_lock);
3245 }
3246 cpuset_force_rebuild();
3247 }
3248
3249 /*
3250 * On the other hand, an erroneous partition root may be transitioned
3251 * back to a regular one or a partition root with no CPU allocated
3252 * from the parent may change to erroneous.
3253 */
3254 if (is_partition_root(parent) &&
3255 ((cs->partition_root_state == PRS_ERROR) ||
3256 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3257 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3258 cpuset_force_rebuild();
3259
3260 update_tasks:
3261 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3262 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3263
3264 if (is_in_v2_mode())
3265 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3266 cpus_updated, mems_updated);
3267 else
3268 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3269 cpus_updated, mems_updated);
3270
3271 mutex_unlock(&cpuset_mutex);
3272 }
3273
3274 /**
3275 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3276 *
3277 * This function is called after either CPU or memory configuration has
3278 * changed and updates cpuset accordingly. The top_cpuset is always
3279 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3280 * order to make cpusets transparent (of no affect) on systems that are
3281 * actively using CPU hotplug but making no active use of cpusets.
3282 *
3283 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3284 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3285 * all descendants.
3286 *
3287 * Note that CPU offlining during suspend is ignored. We don't modify
3288 * cpusets across suspend/resume cycles at all.
3289 */
cpuset_hotplug_workfn(struct work_struct * work)3290 void cpuset_hotplug_workfn(struct work_struct *work)
3291 {
3292 static cpumask_t new_cpus;
3293 static nodemask_t new_mems;
3294 bool cpus_updated, mems_updated;
3295 bool on_dfl = is_in_v2_mode();
3296 struct tmpmasks tmp, *ptmp = NULL;
3297
3298 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3299 ptmp = &tmp;
3300
3301 mutex_lock(&cpuset_mutex);
3302
3303 /* fetch the available cpus/mems and find out which changed how */
3304 cpumask_copy(&new_cpus, cpu_active_mask);
3305 new_mems = node_states[N_MEMORY];
3306
3307 /*
3308 * If subparts_cpus is populated, it is likely that the check below
3309 * will produce a false positive on cpus_updated when the cpu list
3310 * isn't changed. It is extra work, but it is better to be safe.
3311 */
3312 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3313 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3314
3315 /*
3316 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3317 * we assumed that cpus are updated.
3318 */
3319 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3320 cpus_updated = true;
3321
3322 /* synchronize cpus_allowed to cpu_active_mask */
3323 if (cpus_updated) {
3324 spin_lock_irq(&callback_lock);
3325 if (!on_dfl)
3326 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3327 /*
3328 * Make sure that CPUs allocated to child partitions
3329 * do not show up in effective_cpus. If no CPU is left,
3330 * we clear the subparts_cpus & let the child partitions
3331 * fight for the CPUs again.
3332 */
3333 if (top_cpuset.nr_subparts_cpus) {
3334 if (cpumask_subset(&new_cpus,
3335 top_cpuset.subparts_cpus)) {
3336 top_cpuset.nr_subparts_cpus = 0;
3337 cpumask_clear(top_cpuset.subparts_cpus);
3338 } else {
3339 cpumask_andnot(&new_cpus, &new_cpus,
3340 top_cpuset.subparts_cpus);
3341 }
3342 }
3343 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3344 spin_unlock_irq(&callback_lock);
3345 /* we don't mess with cpumasks of tasks in top_cpuset */
3346 }
3347
3348 /* synchronize mems_allowed to N_MEMORY */
3349 if (mems_updated) {
3350 spin_lock_irq(&callback_lock);
3351 if (!on_dfl)
3352 top_cpuset.mems_allowed = new_mems;
3353 top_cpuset.effective_mems = new_mems;
3354 spin_unlock_irq(&callback_lock);
3355 update_tasks_nodemask(&top_cpuset);
3356 }
3357
3358 mutex_unlock(&cpuset_mutex);
3359
3360 /* if cpus or mems changed, we need to propagate to descendants */
3361 if (cpus_updated || mems_updated) {
3362 struct cpuset *cs;
3363 struct cgroup_subsys_state *pos_css;
3364
3365 rcu_read_lock();
3366 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3367 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3368 continue;
3369 rcu_read_unlock();
3370
3371 cpuset_hotplug_update_tasks(cs, ptmp);
3372
3373 rcu_read_lock();
3374 css_put(&cs->css);
3375 }
3376 rcu_read_unlock();
3377 }
3378
3379 /* rebuild sched domains if cpus_allowed has changed */
3380 if (cpus_updated || force_rebuild) {
3381 force_rebuild = false;
3382 rebuild_sched_domains();
3383 }
3384
3385 free_cpumasks(NULL, ptmp);
3386 }
3387
cpuset_update_active_cpus(void)3388 void cpuset_update_active_cpus(void)
3389 {
3390 /*
3391 * We're inside cpu hotplug critical region which usually nests
3392 * inside cgroup synchronization. Bounce actual hotplug processing
3393 * to a work item to avoid reverse locking order.
3394 */
3395 schedule_work(&cpuset_hotplug_work);
3396 }
3397
cpuset_wait_for_hotplug(void)3398 void cpuset_wait_for_hotplug(void)
3399 {
3400 flush_work(&cpuset_hotplug_work);
3401 }
3402 EXPORT_SYMBOL_GPL(cpuset_wait_for_hotplug);
3403
3404 /*
3405 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3406 * Call this routine anytime after node_states[N_MEMORY] changes.
3407 * See cpuset_update_active_cpus() for CPU hotplug handling.
3408 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3409 static int cpuset_track_online_nodes(struct notifier_block *self,
3410 unsigned long action, void *arg)
3411 {
3412 schedule_work(&cpuset_hotplug_work);
3413 return NOTIFY_OK;
3414 }
3415
3416 static struct notifier_block cpuset_track_online_nodes_nb = {
3417 .notifier_call = cpuset_track_online_nodes,
3418 .priority = 10, /* ??! */
3419 };
3420
3421 /**
3422 * cpuset_init_smp - initialize cpus_allowed
3423 *
3424 * Description: Finish top cpuset after cpu, node maps are initialized
3425 */
cpuset_init_smp(void)3426 void __init cpuset_init_smp(void)
3427 {
3428 /*
3429 * cpus_allowd/mems_allowed set to v2 values in the initial
3430 * cpuset_bind() call will be reset to v1 values in another
3431 * cpuset_bind() call when v1 cpuset is mounted.
3432 */
3433 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3434
3435 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3436 top_cpuset.effective_mems = node_states[N_MEMORY];
3437
3438 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3439
3440 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3441 BUG_ON(!cpuset_migrate_mm_wq);
3442 }
3443
3444 /**
3445 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3446 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3447 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3448 *
3449 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3450 * attached to the specified @tsk. Guaranteed to return some non-empty
3451 * subset of cpu_online_mask, even if this means going outside the
3452 * tasks cpuset.
3453 **/
3454
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3455 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3456 {
3457 unsigned long flags;
3458
3459 spin_lock_irqsave(&callback_lock, flags);
3460 rcu_read_lock();
3461 guarantee_online_cpus(tsk, pmask);
3462 rcu_read_unlock();
3463 spin_unlock_irqrestore(&callback_lock, flags);
3464 }
3465 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
3466 /**
3467 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3468 * @tsk: pointer to task_struct with which the scheduler is struggling
3469 *
3470 * Description: In the case that the scheduler cannot find an allowed cpu in
3471 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3472 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3473 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3474 * This is the absolute last resort for the scheduler and it is only used if
3475 * _every_ other avenue has been traveled.
3476 **/
3477
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3478 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3479 {
3480 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3481 const struct cpumask *cs_mask;
3482
3483 rcu_read_lock();
3484 cs_mask = task_cs(tsk)->cpus_allowed;
3485
3486 if (!is_in_v2_mode() || !cpumask_subset(cs_mask, possible_mask))
3487 goto unlock; /* select_fallback_rq will try harder */
3488
3489 do_set_cpus_allowed(tsk, cs_mask);
3490 unlock:
3491 rcu_read_unlock();
3492
3493 /*
3494 * We own tsk->cpus_allowed, nobody can change it under us.
3495 *
3496 * But we used cs && cs->cpus_allowed lockless and thus can
3497 * race with cgroup_attach_task() or update_cpumask() and get
3498 * the wrong tsk->cpus_allowed. However, both cases imply the
3499 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3500 * which takes task_rq_lock().
3501 *
3502 * If we are called after it dropped the lock we must see all
3503 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3504 * set any mask even if it is not right from task_cs() pov,
3505 * the pending set_cpus_allowed_ptr() will fix things.
3506 *
3507 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3508 * if required.
3509 */
3510 }
3511
cpuset_init_current_mems_allowed(void)3512 void __init cpuset_init_current_mems_allowed(void)
3513 {
3514 nodes_setall(current->mems_allowed);
3515 }
3516
3517 /**
3518 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3519 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3520 *
3521 * Description: Returns the nodemask_t mems_allowed of the cpuset
3522 * attached to the specified @tsk. Guaranteed to return some non-empty
3523 * subset of node_states[N_MEMORY], even if this means going outside the
3524 * tasks cpuset.
3525 **/
3526
cpuset_mems_allowed(struct task_struct * tsk)3527 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3528 {
3529 nodemask_t mask;
3530 unsigned long flags;
3531
3532 spin_lock_irqsave(&callback_lock, flags);
3533 rcu_read_lock();
3534 guarantee_online_mems(task_cs(tsk), &mask);
3535 rcu_read_unlock();
3536 spin_unlock_irqrestore(&callback_lock, flags);
3537
3538 return mask;
3539 }
3540
3541 /**
3542 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3543 * @nodemask: the nodemask to be checked
3544 *
3545 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3546 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3547 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3548 {
3549 return nodes_intersects(*nodemask, current->mems_allowed);
3550 }
3551
3552 /*
3553 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3554 * mem_hardwall ancestor to the specified cpuset. Call holding
3555 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3556 * (an unusual configuration), then returns the root cpuset.
3557 */
nearest_hardwall_ancestor(struct cpuset * cs)3558 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3559 {
3560 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3561 cs = parent_cs(cs);
3562 return cs;
3563 }
3564
3565 /**
3566 * cpuset_node_allowed - Can we allocate on a memory node?
3567 * @node: is this an allowed node?
3568 * @gfp_mask: memory allocation flags
3569 *
3570 * If we're in interrupt, yes, we can always allocate. If @node is set in
3571 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3572 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3573 * yes. If current has access to memory reserves as an oom victim, yes.
3574 * Otherwise, no.
3575 *
3576 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3577 * and do not allow allocations outside the current tasks cpuset
3578 * unless the task has been OOM killed.
3579 * GFP_KERNEL allocations are not so marked, so can escape to the
3580 * nearest enclosing hardwalled ancestor cpuset.
3581 *
3582 * Scanning up parent cpusets requires callback_lock. The
3583 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3584 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3585 * current tasks mems_allowed came up empty on the first pass over
3586 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3587 * cpuset are short of memory, might require taking the callback_lock.
3588 *
3589 * The first call here from mm/page_alloc:get_page_from_freelist()
3590 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3591 * so no allocation on a node outside the cpuset is allowed (unless
3592 * in interrupt, of course).
3593 *
3594 * The second pass through get_page_from_freelist() doesn't even call
3595 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3596 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3597 * in alloc_flags. That logic and the checks below have the combined
3598 * affect that:
3599 * in_interrupt - any node ok (current task context irrelevant)
3600 * GFP_ATOMIC - any node ok
3601 * tsk_is_oom_victim - any node ok
3602 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3603 * GFP_USER - only nodes in current tasks mems allowed ok.
3604 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3605 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3606 {
3607 struct cpuset *cs; /* current cpuset ancestors */
3608 int allowed; /* is allocation in zone z allowed? */
3609 unsigned long flags;
3610
3611 if (in_interrupt())
3612 return true;
3613 if (node_isset(node, current->mems_allowed))
3614 return true;
3615 /*
3616 * Allow tasks that have access to memory reserves because they have
3617 * been OOM killed to get memory anywhere.
3618 */
3619 if (unlikely(tsk_is_oom_victim(current)))
3620 return true;
3621 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3622 return false;
3623
3624 if (current->flags & PF_EXITING) /* Let dying task have memory */
3625 return true;
3626
3627 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3628 spin_lock_irqsave(&callback_lock, flags);
3629
3630 rcu_read_lock();
3631 cs = nearest_hardwall_ancestor(task_cs(current));
3632 allowed = node_isset(node, cs->mems_allowed);
3633 rcu_read_unlock();
3634
3635 spin_unlock_irqrestore(&callback_lock, flags);
3636 return allowed;
3637 }
3638
3639 /**
3640 * cpuset_mem_spread_node() - On which node to begin search for a file page
3641 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3642 *
3643 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3644 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3645 * and if the memory allocation used cpuset_mem_spread_node()
3646 * to determine on which node to start looking, as it will for
3647 * certain page cache or slab cache pages such as used for file
3648 * system buffers and inode caches, then instead of starting on the
3649 * local node to look for a free page, rather spread the starting
3650 * node around the tasks mems_allowed nodes.
3651 *
3652 * We don't have to worry about the returned node being offline
3653 * because "it can't happen", and even if it did, it would be ok.
3654 *
3655 * The routines calling guarantee_online_mems() are careful to
3656 * only set nodes in task->mems_allowed that are online. So it
3657 * should not be possible for the following code to return an
3658 * offline node. But if it did, that would be ok, as this routine
3659 * is not returning the node where the allocation must be, only
3660 * the node where the search should start. The zonelist passed to
3661 * __alloc_pages() will include all nodes. If the slab allocator
3662 * is passed an offline node, it will fall back to the local node.
3663 * See kmem_cache_alloc_node().
3664 */
3665
cpuset_spread_node(int * rotor)3666 static int cpuset_spread_node(int *rotor)
3667 {
3668 return *rotor = next_node_in(*rotor, current->mems_allowed);
3669 }
3670
cpuset_mem_spread_node(void)3671 int cpuset_mem_spread_node(void)
3672 {
3673 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3674 current->cpuset_mem_spread_rotor =
3675 node_random(¤t->mems_allowed);
3676
3677 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3678 }
3679
cpuset_slab_spread_node(void)3680 int cpuset_slab_spread_node(void)
3681 {
3682 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3683 current->cpuset_slab_spread_rotor =
3684 node_random(¤t->mems_allowed);
3685
3686 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3687 }
3688
3689 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3690
3691 /**
3692 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3693 * @tsk1: pointer to task_struct of some task.
3694 * @tsk2: pointer to task_struct of some other task.
3695 *
3696 * Description: Return true if @tsk1's mems_allowed intersects the
3697 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3698 * one of the task's memory usage might impact the memory available
3699 * to the other.
3700 **/
3701
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3702 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3703 const struct task_struct *tsk2)
3704 {
3705 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3706 }
3707
3708 /**
3709 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3710 *
3711 * Description: Prints current's name, cpuset name, and cached copy of its
3712 * mems_allowed to the kernel log.
3713 */
cpuset_print_current_mems_allowed(void)3714 void cpuset_print_current_mems_allowed(void)
3715 {
3716 struct cgroup *cgrp;
3717
3718 rcu_read_lock();
3719
3720 cgrp = task_cs(current)->css.cgroup;
3721 pr_cont(",cpuset=");
3722 pr_cont_cgroup_name(cgrp);
3723 pr_cont(",mems_allowed=%*pbl",
3724 nodemask_pr_args(¤t->mems_allowed));
3725
3726 rcu_read_unlock();
3727 }
3728
3729 /*
3730 * Collection of memory_pressure is suppressed unless
3731 * this flag is enabled by writing "1" to the special
3732 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3733 */
3734
3735 int cpuset_memory_pressure_enabled __read_mostly;
3736
3737 /**
3738 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3739 *
3740 * Keep a running average of the rate of synchronous (direct)
3741 * page reclaim efforts initiated by tasks in each cpuset.
3742 *
3743 * This represents the rate at which some task in the cpuset
3744 * ran low on memory on all nodes it was allowed to use, and
3745 * had to enter the kernels page reclaim code in an effort to
3746 * create more free memory by tossing clean pages or swapping
3747 * or writing dirty pages.
3748 *
3749 * Display to user space in the per-cpuset read-only file
3750 * "memory_pressure". Value displayed is an integer
3751 * representing the recent rate of entry into the synchronous
3752 * (direct) page reclaim by any task attached to the cpuset.
3753 **/
3754
__cpuset_memory_pressure_bump(void)3755 void __cpuset_memory_pressure_bump(void)
3756 {
3757 rcu_read_lock();
3758 fmeter_markevent(&task_cs(current)->fmeter);
3759 rcu_read_unlock();
3760 }
3761
3762 #ifdef CONFIG_PROC_PID_CPUSET
3763 /*
3764 * proc_cpuset_show()
3765 * - Print tasks cpuset path into seq_file.
3766 * - Used for /proc/<pid>/cpuset.
3767 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3768 * doesn't really matter if tsk->cpuset changes after we read it,
3769 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3770 * anyway.
3771 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3772 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3773 struct pid *pid, struct task_struct *tsk)
3774 {
3775 char *buf;
3776 struct cgroup_subsys_state *css;
3777 int retval;
3778
3779 retval = -ENOMEM;
3780 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3781 if (!buf)
3782 goto out;
3783
3784 css = task_get_css(tsk, cpuset_cgrp_id);
3785 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3786 current->nsproxy->cgroup_ns);
3787 css_put(css);
3788 if (retval >= PATH_MAX)
3789 retval = -ENAMETOOLONG;
3790 if (retval < 0)
3791 goto out_free;
3792 seq_puts(m, buf);
3793 seq_putc(m, '\n');
3794 retval = 0;
3795 out_free:
3796 kfree(buf);
3797 out:
3798 return retval;
3799 }
3800 #endif /* CONFIG_PROC_PID_CPUSET */
3801
3802 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3803 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3804 {
3805 seq_printf(m, "Mems_allowed:\t%*pb\n",
3806 nodemask_pr_args(&task->mems_allowed));
3807 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3808 nodemask_pr_args(&task->mems_allowed));
3809 }
3810